JP2002117831A - Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery - Google Patents

Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery

Info

Publication number
JP2002117831A
JP2002117831A JP2000306879A JP2000306879A JP2002117831A JP 2002117831 A JP2002117831 A JP 2002117831A JP 2000306879 A JP2000306879 A JP 2000306879A JP 2000306879 A JP2000306879 A JP 2000306879A JP 2002117831 A JP2002117831 A JP 2002117831A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
producing
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000306879A
Other languages
Japanese (ja)
Other versions
JP4724912B2 (en
Inventor
Mamoru Hosoya
守 細谷
Gen Fukushima
弦 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000306879A priority Critical patent/JP4724912B2/en
Publication of JP2002117831A publication Critical patent/JP2002117831A/en
Application granted granted Critical
Publication of JP4724912B2 publication Critical patent/JP4724912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a simple synthetic method of LiFePO4 wherein a manufacturing cost is inexpensive. SOLUTION: This has a coprecipitation process wherein a mixed aqueous solution is prepared by mixing a water-soluble organic reducer with a phosphoric acid aqueous solution containing lithium salts and iron salts, and wherein an alkaline solution is mixed with the mixed aqueous solution to form a coprecipitate of complex phosphate with lithium and iron, and has a calcination process to calcine the coprecipitate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを可逆的
にドープ及び脱ドープ可能な正極活物質を用いた正極活
物質及びそれを用いた非水電解質二次電池の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material using a positive electrode active material capable of reversibly doping and undoping lithium, and a method for manufacturing a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、種々の電子機器の飛躍的進歩とと
もに、長時間便利に、且つ経済的に使用できる電源とし
て、再充電可能な二次電池の研究が進められている。代
表的な二次電池としては、鉛蓄電池、アルカリ蓄電池、
非水電解質二次電池等が知られている。
2. Description of the Related Art In recent years, with the remarkable progress of various electronic devices, research on a rechargeable secondary battery has been advanced as a power source that can be used conveniently and economically for a long time. Typical secondary batteries include lead storage batteries, alkaline storage batteries,
Non-aqueous electrolyte secondary batteries and the like are known.

【0003】上記のような二次電池の中でも特に、非水
電解質二次電池であるリチウムイオン二次電池は、高出
力、高エネルギー密度などの利点を有している。リチウ
ムイオン二次電池は、少なくともリチウムイオンを可逆
的に脱挿入可能な活物質を有する正極と負極と、非水電
解質とから構成される。
[0003] Among the above secondary batteries, a lithium ion secondary battery, which is a nonaqueous electrolyte secondary battery, has advantages such as high output and high energy density. A lithium ion secondary battery is composed of a positive electrode having an active material capable of reversibly inserting and removing lithium ions, a negative electrode, and a non-aqueous electrolyte.

【0004】ここで、負極活物質としては、一般に金属
リチウム、Li−Al合金等のリチウム合金、ポリアセ
チレンやポリピロール等のリチウムをドープした導電性
高分子、リチウムイオンを結晶中に取り込んだ層間化合
物や炭素材料等が用いられている。また、電解液として
は、非プロトン性有機溶媒にリチウム塩を溶解させた溶
液が用いられている。
Here, as the negative electrode active material, generally, lithium metal, a lithium alloy such as a Li-Al alloy, a conductive polymer doped with lithium such as polyacetylene or polypyrrole, an interlayer compound in which lithium ions are incorporated in a crystal, A carbon material or the like is used. As the electrolyte, a solution in which a lithium salt is dissolved in an aprotic organic solvent is used.

【0005】一方、正極活物質には、金属酸化物、金属
硫化物、あるいはポリマーが用いられ、例えばTi
2、MoS2、NbSe2、V25等が知られている。
これらの材料を用いた非水電解質二次電池の放電反応
は、負極においてリチウムイオンが電解液中に溶出し、
正極では正極活物質の層間にリチウムイオンがインター
カレーションすることによって進行する。逆に、充電す
る場合には、上記の逆反応が進行し、正極においては、
リチウムがインターカレーションする。すなわち、負極
からのリチウムイオンが正極活物質に出入りする反応を
繰り返すことによって充放電を繰り返すことができる。
On the other hand, a metal oxide, a metal sulfide, or a polymer is used as the positive electrode active material.
S 2 , MoS 2 , NbSe 2 , V 2 O 5 and the like are known.
In the discharge reaction of a non-aqueous electrolyte secondary battery using these materials, lithium ions are eluted into the electrolyte at the negative electrode,
In the positive electrode, the process proceeds by intercalation of lithium ions between layers of the positive electrode active material. Conversely, when charging, the above reverse reaction proceeds, and in the positive electrode,
Lithium intercalates. That is, charge and discharge can be repeated by repeating a reaction in which lithium ions from the negative electrode enter and exit the positive electrode active material.

【0006】現在、リチウムイオン二次電池の正極活物
質としては、高エネルギー密度、高電圧を有すること等
から、LiCoO2、LiNiO2、LiMn24等が用
いられている。しかし、これらの正極活物質は、クラー
ク数の低い金属元素をその組成中に有しているため、コ
ストが高くつく他、安定供給が難しいという問題があ
る。また、これらの正極活物質は、毒性も比較的高く、
環境に与える影響も大きいことから、これらに代わる新
規正極活物質が求められている。
At present, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like are used as a positive electrode active material of a lithium ion secondary battery because of its high energy density and high voltage. However, since these positive electrode active materials have a metal element having a low Clark number in their composition, they have a problem that the cost is high and a stable supply is difficult. In addition, these positive electrode active materials have relatively high toxicity,
Because of its great impact on the environment, there is a need for new positive electrode active materials to replace them.

【0007】これに対し、オリビン構造を有する化合物
をリチウムイオン二次電池の正極活物質として用いるこ
とが提案されている。例えば、オリビン構造を有する化
合物であるLiFePO4は、体積密度が3.6g/c
3と大きく、3.4Vの高電位を発生し、理論容量も
170mAh/gと大きい。また、LiFePO4は、
初期状態で、電気化学的に脱ドープ可能なLiを、Fe
原子1個当たりに1個含んでいるので、リチウムイオン
電池の正極活物質として有望な材料である。しかもLi
FePO4は、資源的に豊富で安価な材料である鉄をそ
の組成中に有しているため、上述のLiCoO2、Li
NiO2、LiMn24等と比較して低コストであり、
また、毒性も低いため環境に与える影響も小さい。
On the other hand, it has been proposed to use a compound having an olivine structure as a positive electrode active material of a lithium ion secondary battery. For example, LiFePO 4 , which is a compound having an olivine structure, has a volume density of 3.6 g / c.
large as m 3, and generates a high potential of 3.4 V, with the theoretical capacity being as high as 170 mAh / g. LiFePO 4 is
Initially, Li that can be electrochemically undoped is converted to Fe
Since one atom is contained per atom, it is a promising material as a positive electrode active material of a lithium ion battery. Moreover, Li
Since FePO 4 has iron in its composition, which is a resource-rich and inexpensive material, the above-mentioned LiCoO 2 , Li
Low cost compared to NiO 2 , LiMn 2 O 4, etc.
In addition, the effect on the environment is small due to low toxicity.

【0008】[0008]

【発明が解決しようとする課題】ところで、LiFeP
4の合成法としては、固相反応による合成法がある。
固相反応によるLiFePO4の合成法としては、例え
ば、代表的な合成原料として炭酸リチウムLiCo
3と、リン酸二アンモニウムNH42PO4と、酢酸鉄
(II)Fe(CH3COO)2を利用して下記化1示す
反応による合成法や、リン酸リチウムLi3PO4と、リ
ン酸第一鉄n水和物Fe3(PO42・nH2O(但し、
nは水和数である。)とを利用して下記化2に示す反応
による合成法が挙げられる。
By the way, LiFeP
As a method for synthesizing O 4 , there is a synthesis method by a solid phase reaction.
As a method for synthesizing LiFePO 4 by a solid-phase reaction, for example, lithium carbonate LiCo
3 , a diammonium phosphate NH 4 H 2 PO 4 and iron (II) acetate Fe (CH 3 COO) 2 using a synthesis method by a reaction represented by the following formula 1, lithium phosphate Li 3 PO 4 , Ferrous phosphate n-hydrate Fe 3 (PO 4 ) 2 .nH 2 O (provided that
n is the hydration number. )) And a synthesis method by the reaction shown in the following chemical formula 2.

【0009】[0009]

【化1】 Embedded image

【0010】[0010]

【化2】 Embedded image

【0011】しかしながら、上述したような合成法は、
固相反応によって行われるため、合成原料を粉砕及び混
合する工程が必用となり、そのための設備として例えば
ボールミルのような大型設備が必用となり、また、工程
が複雑になる。したがって、合成原料粉末を粉砕及び混
合する工程の存在は、製造コストの上昇及び生産性の低
下のにつながり、これに代わる工程が望まれている。
However, the synthesis method as described above is
Since the reaction is carried out by a solid-phase reaction, a step of pulverizing and mixing the synthetic raw materials is required, and large-scale equipment such as a ball mill is required as equipment for this, and the process becomes complicated. Therefore, the presence of the step of pulverizing and mixing the synthetic raw material powder leads to an increase in production cost and a decrease in productivity, and an alternative step is desired.

【0012】そこで本発明は、かかる従来の実情に鑑み
て提案されたものであって、製造コストが安価であり、
且つ簡便な正極活物質の合成法及び非水電解質二次電池
の製造方法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and has a low manufacturing cost.
It is another object of the present invention to provide a simple method for synthesizing a positive electrode active material and a method for manufacturing a nonaqueous electrolyte secondary battery.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明に係る正極活物質の製造方法は、リチウム
塩と鉄塩とを含有するリン酸水溶液に水溶性有機還元剤
を混合して混合水溶液を調製し、当該混合水溶液にアル
カリ溶液を混合してリチウムと鉄との複合リン酸化物の
共沈体を生成させる共沈工程と、共沈体を焼成する焼成
工程とを有することを特徴とするものである。
In order to achieve the above object, a method for producing a positive electrode active material according to the present invention comprises mixing a water-soluble organic reducing agent with a phosphoric acid aqueous solution containing a lithium salt and an iron salt. And preparing a mixed aqueous solution by mixing the mixed aqueous solution with an alkaline solution to form a coprecipitate of a composite phosphorous oxide of lithium and iron, and a firing step of firing the coprecipitate. It is characterized by the following.

【0014】以上のような正極活物質の製造方法は、リ
チウムと鉄との複合リン酸化物の共沈体を生成させ、こ
の共沈体を焼成するものであり、固相反応による合成法
でないため、正極活物質の合成原料粉末を粉砕、混合す
る工程が不要とされる。すなわち、正極活物質の合成原
料粉末を粉砕、混合するための装置、例えばボールミル
等の装置を必用としないため、設備導入によるコスト上
昇がない。
The method for producing a positive electrode active material as described above involves forming a coprecipitate of a composite phosphorous oxide of lithium and iron and firing the coprecipitate, and is not a synthesis method by a solid phase reaction. Therefore, the step of pulverizing and mixing the raw material powder of the positive electrode active material is not required. That is, an apparatus for pulverizing and mixing the synthetic raw material powder of the positive electrode active material, for example, an apparatus such as a ball mill is not required, so that there is no increase in cost due to the introduction of equipment.

【0015】また、正極活物質の合成原料粉末の粉砕、
混合工程がないため、この工程に起因する正極活物質の
製造工程の複雑化や生産性の低下といった問題が生じる
ことなく、簡便に正極活物質を製造することが可能とさ
れる。
Further, pulverization of a raw material powder for synthesis of a positive electrode active material;
Since there is no mixing step, it is possible to easily produce the positive electrode active material without problems such as complication of the production process of the positive electrode active material and reduction in productivity caused by this step.

【0016】また、固相反応による合成法の場合、正極
活物質の合成原料として希少であり高価な材料を用いる
ため、原料コストが高くなってしまう。それに対して、
この正極活物質の製造方法の場合、使用する正極活物質
の合成原料としては、一般的な材料を用いるため、原料
コストが低く抑えられる。
Further, in the case of the synthesis method by the solid phase reaction, since a rare and expensive material is used as a raw material for synthesizing the positive electrode active material, the raw material cost is increased. On the other hand,
In the case of this method for producing a positive electrode active material, since a general material is used as a raw material for synthesizing the positive electrode active material to be used, the raw material cost can be kept low.

【0017】また、上述の目的を達成するために、本発
明に係る非水電解質二次電池の製造方法は、正極活物質
を有する正極と、負極活物質を有する負極と、非水電解
質とを備え、正極活物質の製造方法が、リチウム塩と鉄
塩とを含有するリン酸水溶液に水溶性有機還元剤を混合
し、さらにアルカリ溶液を混合してリチウムと鉄との複
合リン酸化物の共沈体を生成させる共沈工程と、共沈体
を焼成する焼成工程とを有することを特徴とするもので
ある。
Further, in order to achieve the above-mentioned object, a method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention comprises a method of forming a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. The method for producing a positive electrode active material comprises the steps of mixing a water-soluble organic reducing agent with a phosphoric acid aqueous solution containing a lithium salt and an iron salt, and further mixing an alkaline solution to form a lithium-iron complex phosphorous oxide. It is characterized by having a coprecipitation step of generating a precipitate and a firing step of firing the coprecipitate.

【0018】以上のような非水電解質二次電池の製造方
法は、正極活物質を製造する際にリチウムと鉄との複合
リン酸化物の共沈体を生成させ、この共沈体を焼成する
ものであり、固相反応による合成を行わないため、正極
活物質の合成原料粉末を粉砕、混合する工程が不要とさ
れる。すなわち、正極活物質の合成原料粉末を粉砕、混
合するための装置、例えばボールミル等の装置を必用と
しないため、設備導入によるコスト上昇がない。
In the method of manufacturing a non-aqueous electrolyte secondary battery as described above, a co-precipitate of a composite phosphorous oxide of lithium and iron is formed when a positive electrode active material is manufactured, and the co-precipitate is fired. Since the synthesis by the solid phase reaction is not performed, the step of pulverizing and mixing the raw material powder for the synthesis of the positive electrode active material is unnecessary. That is, an apparatus for pulverizing and mixing the synthetic raw material powder of the positive electrode active material, for example, an apparatus such as a ball mill is not required, so that there is no increase in cost due to the introduction of equipment.

【0019】また、正極活物質の合成原料粉末の粉砕、
混合工程がないため、この工程に起因する正極活物質の
製造工程の複雑化や生産性の低下といった問題が生じる
ことなく、簡便に正極活物質を製造することが可能とさ
れるため、非水電解質二次電池の製造が簡便化される。
Further, pulverization of raw material powder for synthesis of the positive electrode active material,
Since there is no mixing step, it is possible to easily produce the positive electrode active material without causing problems such as complication of the production process of the positive electrode active material and a decrease in productivity due to this step. Manufacture of the electrolyte secondary battery is simplified.

【0020】また、固相反応により正極活物質を合成す
る場合、正極活物質の合成原料として希少であり高価な
材料を用いるため、原料コストが高くなってしまう。そ
れに対して、この非水電解質二次電池の製造方法では、
正極活物質の合成原料としては、一般的な材料を用いる
ため、原料コストが低く抑えられる。
When a positive electrode active material is synthesized by a solid-phase reaction, a rare and expensive material is used as a raw material for synthesizing the positive electrode active material, so that the raw material cost increases. On the other hand, in this method of manufacturing a nonaqueous electrolyte secondary battery,
Since a general material is used as a raw material for synthesizing the positive electrode active material, the raw material cost can be kept low.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。なお、本発明は、以下の記述に限定される
ものではなく、本発明を逸脱しない範囲で適宜変更可能
である。
Embodiments of the present invention will be described below. It should be noted that the present invention is not limited to the following description, and can be appropriately modified without departing from the present invention.

【0022】本発明を適用して製造される非水電解液電
池1は、図1に示すように、負極2と、負極2を収容す
る負極缶3と、正極4と、正極4を収容する正極缶5
と、正極4と負極2との間に配されたセパレータ6と、
絶縁ガスケット7とを備え、負極缶3及び正極缶5内に
非水電解液が充填されてなる。
As shown in FIG. 1, a non-aqueous electrolyte battery 1 manufactured by applying the present invention contains a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, and a positive electrode 4. Positive electrode can 5
And a separator 6 disposed between the positive electrode 4 and the negative electrode 2,
An insulating gasket 7 is provided, and the negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte.

【0023】負極2は、負極活物質となる例えば金属リ
チウム箔からなる。また、負極活物質として、リチウム
をドープ、脱ドープ可能な材料を用いる場合には、負極
2は、負極集電体上に、上記負極活物質を含有する負極
活物質層が形成されてなる。負極集電体としては、例え
ばニッケル箔等が用いられる。
The negative electrode 2 is made of, for example, a metal lithium foil serving as a negative electrode active material. When a material that can be doped and dedoped with lithium is used as the negative electrode active material, the negative electrode 2 is formed by forming a negative electrode active material layer containing the negative electrode active material on a negative electrode current collector. As the negative electrode current collector, for example, a nickel foil or the like is used.

【0024】リチウムをドープ、脱ドープ可能な負極活
物質としては、金属リチウム、リチウム合金、リチウム
がドープされた導電性高分子、炭素材料や金属酸化物な
どの層状化合物を用いることができる。
As the negative electrode active material which can be doped with and dedoped with lithium, metal lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound such as a carbon material and a metal oxide can be used.

【0025】負極活物質層に含有される結着剤として
は、この種の非水電解液電池において負極活物質層の結
着剤として通常用いられている公知の樹脂材料等を用い
ることができる。
As the binder contained in the negative electrode active material layer, a known resin material or the like which is usually used as a binder for the negative electrode active material layer in this type of nonaqueous electrolyte battery can be used. .

【0026】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.

【0027】正極4は、例えばアルミニウム箔等からな
る正極集電体上に、リチウムを電気化学的に放出するこ
とが可能であり、且つ吸蔵することも可逆的に可能であ
る正極活物質を含有する正極活物質層が形成されてな
る。ここで、正極活物質層は、正極活物質を主体とし、
必要に応じて結着剤や導電材等を含んでなるものであ
る。
The positive electrode 4 contains a positive electrode active material capable of electrochemically releasing lithium and reversibly occluding lithium on a positive electrode current collector made of, for example, an aluminum foil. The positive electrode active material layer is formed. Here, the positive electrode active material layer is mainly composed of the positive electrode active material,
It contains a binder, a conductive material and the like as necessary.

【0028】正極活物質としては、詳細な製造方法は後
述するが、オリビン構造を有し、一般式LixFePO4
(式中、0<x≦1.0である。)で表される化合物、
あるいはこれらの化合物と炭素材料との複合体、すなわ
ちLixFePO4炭素複合体を用いる。
The positive electrode active material has an olivine structure and a general formula Li x FePO 4 , which will be described in detail later.
(Wherein, 0 <x ≦ 1.0),
Alternatively, a composite of these compounds and a carbon material, that is, a Li x FePO 4 carbon composite is used.

【0029】以下、LixFePO4としてLiFePO
4を用い、これと炭素材料とからなる複合体、すなわち
LiFePO4炭素複合体を正極活物質として用いる場
合について説明する。
Hereinafter, Li x FePO 4 will be referred to as LiFePO 4.
4 , the case where a composite comprising this and a carbon material, that is, a LiFePO 4 carbon composite is used as the positive electrode active material will be described.

【0030】LiFePO4炭素複合体は、LiFeP
4粒子の表面に、当該LiFePO 4粒子の粒径に比べ
て極めて小とされる粒径を有する炭素材料の粒子が多数
個、付着してなるものである。炭素材料は導電性を有す
るので、炭素材料とLiFePO4とから構成されるL
iFePO4炭素複合体は、例えばLiFePO4と比較
すると電子伝導性に優れている。すなわち、LiFeP
4炭素複合体は、LiFePO4粒子の表面に付着する
炭素粒子により電子伝導性が向上するので、LiFeP
4本来の容量を十分に引き出される。したがって、正
極活物質としてLiFePO4炭素複合体を用いること
により、高容量を有する非水電解液電池1を実現でき
る。
LiFePOFourThe carbon composite is LiFeP
OFourThe surface of the particles has the LiFePO FourCompared to particle size
Particles of carbon material with a very small particle size
Individually attached. Carbon material has conductivity
Therefore, carbon material and LiFePOFourL composed of
iFePOFourThe carbon composite is, for example, LiFePOFourCompare with
Then, the electron conductivity is excellent. That is, LiFeP
OFourThe carbon composite is LiFePOFourAdhere to the surface of particles
Since the electron conductivity is improved by the carbon particles, LiFeP
OFourThe original capacity is fully drawn out. Therefore, positive
LiFePO as pole active materialFourUsing carbon composite
Thereby, the non-aqueous electrolyte battery 1 having a high capacity can be realized.
You.

【0031】正極活物質層に含有される結着剤として
は、この種の非水電解液電池において正極活物質層の結
着剤として通常用いられている公知の樹脂材料等を用い
ることができる。
As the binder contained in the positive electrode active material layer, a known resin material or the like usually used as a binder for the positive electrode active material layer in this type of nonaqueous electrolyte battery can be used. .

【0032】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0033】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えばポリプロピレンなどの高分子フィルムが
用いられる。また、リチウムイオン伝導度とエネルギー
密度との関係から、セパレータの厚みはできるだけ薄い
ことが必要である。具体的には、セパレータの厚みは例
えば50μm以下が適当である。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can be made of a known material usually used as a separator of this kind of non-aqueous electrolyte battery. A polymer film is used. Also, from the relationship between lithium ion conductivity and energy density, it is necessary that the thickness of the separator be as small as possible. Specifically, the thickness of the separator is suitably, for example, 50 μm or less.

【0034】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is integrated into the negative electrode can 3. The insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.

【0035】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used.

【0036】非水溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、γ−ブチルラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、2−メチルテトラヒドロフラン、3−メチル
−1,3−ジオキソラン、プロピオン酸メチル、酪酸メ
チル、ジメチルカーボネート、ジエチルカーボネート、
ジプロピルカーボネート等を使用することができる。特
に、電圧安定性の点からは、プロピレンカーボネート、
エチレンカーボネート、ブチレンカーボネート、ビニレ
ンカーボネート等の環状カーボネート類、ジメチルカー
ボネート、ジエチルカーボネート、ジプロピルカーボネ
ート等の鎖状カーボネート類を使用することが好まし
い。また、このような非水溶媒は、1種類を単独で用い
ても良いし、2種類以上を混合して用いても良い。
Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyl lactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, -Methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate,
Dipropyl carbonate and the like can be used. In particular, from the viewpoint of voltage stability, propylene carbonate,
It is preferable to use cyclic carbonates such as ethylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and dipropyl carbonate. Further, one kind of such a non-aqueous solvent may be used alone, or two or more kinds may be mixed and used.

【0037】また、非水溶媒に溶解させる電解質として
は、例えば、LiPF6、LiClO4、LiAsF6
LiBF4、LiCF3SO3、LiN(CF3SO22
のリチウム塩を使用することができる。これらのリチウ
ム塩の中でも特に、LiPF 6、LiBF4を使用するこ
とが好ましい。
As an electrolyte dissolved in a non-aqueous solvent,
Is, for example, LiPF6, LiClOFour, LiAsF6,
LiBFFour, LiCFThreeSOThree, LiN (CFThreeSOTwo)Twoetc
Can be used. These lithu
LiPF 6, LiBFFourUse
Is preferred.

【0038】なお、本発明を適用した非水電解質電池と
して、非水電解液を用いた非水電解液電池1を例に挙げ
て説明したが、本発明はこれに限定されるものではな
く、非水電解質として、固体電解質を用いた場合にも適
用可能である。ここで、固体電解質としては、リチウム
イオン導電性を有する材料であれば無機固体電解質、ゲ
ル状電解質等の高分子固体電解質の何れも用いることが
できる。ここで、無機固体電解質としては、窒化リチウ
ム、ヨウ化リチウム等が挙げられる。また、高分子固体
電解質は、電解質塩とそれを溶解する高分子化合物とか
らなり、その高分子化合物は、ポリ(エチレンオキサイ
ド)や、同架橋体などのエーテル系高分子、ポリ(メタ
クリレート)エステル系高分子、アクリレート系高分子
等を単独、又は分子中に共重合、又は混合して用いるこ
とができる。この場合、例えばゲル状電解質のマトリッ
クスとしては、非水電解液を吸収してゲル化するもので
あれば種々の高分子材料を用いることができる。このよ
うな高分子材料としては、例えば、ポリ(ビニリデンフ
ルオロライド)や、ポリ(ビニリデンフルオロライド−
CO−ヘキサフルオロプロピレン)等のフッ素系高分
子、ポリ(エチレンオキサイド)や、同架橋体などのエ
ーテル系高分子、またポリ(アクリロニトリル)などを
用いることができる。そして、これらの中でも特に、酸
化還元安定性の観点からフッ素系高分子を用いることが
好ましい。
Although the nonaqueous electrolyte battery 1 using a nonaqueous electrolyte has been described as an example of the nonaqueous electrolyte battery to which the present invention is applied, the present invention is not limited to this. The present invention is also applicable when a solid electrolyte is used as the non-aqueous electrolyte. Here, as the solid electrolyte, any of a solid polymer electrolyte such as an inorganic solid electrolyte and a gel electrolyte can be used as long as the material has lithium ion conductivity. Here, examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt, and the polymer compound includes poly (ethylene oxide), an ether polymer such as a crosslinked product thereof, and a poly (methacrylate) ester. -Based polymers, acrylate-based polymers and the like can be used alone, or copolymerized or mixed in the molecule. In this case, as the matrix of the gel electrolyte, for example, various polymer materials can be used as long as they absorb the non-aqueous electrolyte and gel. Examples of such a polymer material include poly (vinylidene fluoride) and poly (vinylidene fluoride).
Fluorine-based polymers such as CO-hexafluoropropylene), poly (ethylene oxide), ether-based polymers such as crosslinked products thereof, and poly (acrylonitrile) can be used. In particular, among these, it is preferable to use a fluoropolymer from the viewpoint of oxidation-reduction stability.

【0039】上述のように構成される非水電解液電池1
の製造方法について、以下に説明する。
Non-aqueous electrolyte battery 1 constructed as described above
The manufacturing method of the will be described below.

【0040】まず、正極活物質としてLiFePO4
炭素材料との複合体、すなわちLiFePO4炭素複合
体を以下に示す製造方法に従って合成する。
First, a composite of LiFePO 4 and a carbon material as a positive electrode active material, that is, a LiFePO 4 carbon composite is synthesized according to the following production method.

【0041】本発明においては、この正極活物質は、リ
チウムと鉄との複合リン酸化物の共沈体を生成させる共
沈工程と、共沈体を焼成する焼成工程とを経ることによ
り製造する。
In the present invention, this positive electrode active material is produced by passing through a coprecipitation step of forming a coprecipitate of a composite phosphorous oxide of lithium and iron and a firing step of firing the coprecipitate. .

【0042】共沈工程では、リチウム塩と鉄塩とを含有
するリン酸水溶液を用いてリチウムと鉄との複合リン酸
化物の共沈体を生成させる。
In the co-precipitation step, a co-precipitate of a composite phosphate of lithium and iron is formed using an aqueous phosphoric acid solution containing a lithium salt and an iron salt.

【0043】まず、リチウム塩と鉄塩とを含有するリン
酸水溶液に水溶性有機還元剤を混合し、混合水溶液を調
製する。ここで、水溶性有機還元剤は、リン酸水溶液中
に存在したFeが、リン酸水溶液と水溶性有機還元剤と
の混合水溶液中で酸化されて生成するFe3+イオンを還
元するために混合するものである。このような水溶性有
機還元剤としては、アスコルビン酸や、フェノールやピ
ロガノール等のフェノール類誘導体等の還元性を有する
水溶性有機化合物を用いることができる。そして、その
中でも、アスコルビン酸を好適に用いることができる。
First, a water-soluble organic reducing agent is mixed with an aqueous phosphoric acid solution containing a lithium salt and an iron salt to prepare a mixed aqueous solution. Here, the water-soluble organic reducing agent is mixed to reduce Fe 3+ ions generated by oxidizing Fe present in the phosphoric acid aqueous solution in a mixed aqueous solution of the phosphoric acid aqueous solution and the water-soluble organic reducing agent. Is what you do. As such a water-soluble organic reducing agent, a water-soluble organic compound having a reducing property such as ascorbic acid or a phenol derivative such as phenol or pyroganol can be used. And among them, ascorbic acid can be suitably used.

【0044】つぎに、この混合水溶液にアセトンを所定
の分量だけ、例えばこの混合水溶液の0.5体積%程度
添加する。これは、引き続き添加するアセチレンブラッ
クの親水性を改善するために添加するものである。
Next, acetone is added to the mixed aqueous solution by a predetermined amount, for example, about 0.5% by volume of the mixed aqueous solution. This is added to improve the hydrophilicity of acetylene black to be subsequently added.

【0045】次に、アセトンを添加した混合水溶液に炭
素材料を所定の分量だけ、例えば生成されると予想され
る共沈体重量の10重量%程度添加する。ここで、炭素
材料は、LiFePO4炭素複合体の原料となるもので
あり、また、炭素材料を添加して共沈体を焼成すること
により、共沈体中に炭素材料が入り込み反応面積を小さ
くすることができるため、焼成工程におけるLiFeP
4粒子の粒子成長を抑制することができ、粒径の小さ
いLiFePO4炭素複合体を合成することができる。
これにより、LiFePO4炭素複合体の重量当たりの
比表面積を大きくすることができるため、電子伝導性に
優れたLiFePO4炭素複合体を合成することができ
る。
Next, a predetermined amount of the carbon material is added to the mixed aqueous solution to which acetone is added, for example, about 10% by weight of the weight of the coprecipitate expected to be produced. Here, the carbon material is a raw material of the LiFePO 4 carbon composite. Further, by adding the carbon material and firing the coprecipitate, the carbon material enters the coprecipitate to reduce the reaction area. LiFeP in the firing step
The growth of O 4 particles can be suppressed, and a LiFePO 4 carbon composite having a small particle size can be synthesized.
Thereby, the specific surface area per weight of the LiFePO 4 carbon composite can be increased, so that a LiFePO 4 carbon composite having excellent electron conductivity can be synthesized.

【0046】次に、炭素材料を添加した混合水溶液にア
ルカリ溶液を混合する。ここで、アルカリ溶液は、リチ
ウム塩と鉄塩とを含有するリン酸水溶液と水溶性有機還
元剤との混合液の水素イオン濃度(pH)を高くし、リ
チウムと鉄との複合リン酸化物の共沈体を生成させるた
めに混合するものである。このようなアルカリ溶液とし
ては、特に限定されることはなく、例えば水酸化カリウ
ムや水酸化ナトリウム等を好適に用いることができる。
Next, an alkaline solution is mixed with the mixed aqueous solution to which the carbon material has been added. Here, the alkaline solution increases the hydrogen ion concentration (pH) of a mixture of a phosphoric acid aqueous solution containing a lithium salt and an iron salt and a water-soluble organic reducing agent, and forms a composite phosphorous oxide of lithium and iron. It mixes to form a coprecipitate. Such an alkaline solution is not particularly limited, and for example, potassium hydroxide, sodium hydroxide and the like can be suitably used.

【0047】以上のような操作を行うことにより、リチ
ウムと鉄との複合リン酸化物の共沈体を生成させること
ができる。。
By performing the above-described operations, a coprecipitate of a composite phosphorous oxide of lithium and iron can be generated. .

【0048】次に、共沈工程で得られた共沈体をろ過
し、水洗し、乾燥させることにより共沈体を回収する。
Next, the coprecipitate obtained in the coprecipitation step is filtered, washed with water, and dried to collect the coprecipitate.

【0049】続いて、焼成工程において、回収した共沈
体を焼成する。共沈体を焼成することにより、共沈体内
で反応を生じさせ、LiFePO4炭素複合体を合成す
る。
Subsequently, in the firing step, the recovered coprecipitate is fired. By firing the coprecipitate, a reaction occurs in the coprecipitate to synthesize a LiFePO 4 carbon composite.

【0050】ここで、共沈体の焼成を行う際の焼成温度
は、350℃〜900℃とすることにが好ましい。焼成
温度を350℃〜900℃とすることにより、LiFe
PO 4炭素複合体を確実に単相合成することが可能とな
る。焼成温度が350℃未満であると、化学反応及び結
晶化が十分に進まず、合成原料であるLi3PO4等の不
純物相が存在し、均一なLiFePO4炭素複合体を得
られない虞がある。一方、焼成温度が900℃を上回る
と、結晶化が過剰に進行してLiFePO4炭素複合体
におけるLiFePO4粒子が大きくなり、LiFeP
4と炭素材料との接触面積が減少し、電子伝導性が下
がるため、十分な放電容量を得られない虞がある。さら
に、電池性能を考慮した場合、焼成温度は、400℃〜
800℃とすることがより好ましい。焼成温度を400
℃〜800℃とすることにより、優れた電池特性を有す
るLiFePO4炭素複合体を確実に単相合成すること
が可能となる。
Here, the firing temperature for firing the coprecipitate
Is preferably set to 350 ° C. to 900 ° C. Firing
By setting the temperature to 350 ° C to 900 ° C, LiFe
PO FourSingle phase synthesis of carbon composites
You. If the firing temperature is lower than 350 ° C, chemical reaction and
Crystallization does not proceed sufficiently, and the raw material LiThreePOFourSuch as
Pure phase exists and uniform LiFePOFourGet carbon composite
It may not be possible. On the other hand, firing temperature exceeds 900 ° C
When crystallization proceeds excessively, LiFePOFourCarbon composite
LiFePOFourThe particles become larger and LiFeP
OFourThe contact area between carbon and carbon material is reduced, and electron conductivity is reduced.
Therefore, a sufficient discharge capacity may not be obtained. Further
In consideration of battery performance, the firing temperature is 400 ° C.
More preferably, the temperature is set to 800 ° C. Firing temperature 400
Excellent battery characteristics when the temperature is between 800C and 800C
LiFePOFourReliable single-phase synthesis of carbon composites
Becomes possible.

【0051】ところで、焼成時において、合成されたL
iFePO4炭素複合体中のFeは2価の状態である。
このため、LiFePO4炭素複合体中のFeは、焼成
雰囲気中の酸素によって下記化3に示す反応式によりF
3+に速やかに酸化されてしまう。これに起因して、3
価のFe化合物等の不純物が生成され、LiFePO 4
炭素複合体の単相合成が妨げられてしまう。
By the way, at the time of firing, the synthesized L
iFePOFourFe in the carbon composite is in a divalent state.
For this reason, LiFePOFourFe in the carbon composite is calcined
With the oxygen in the atmosphere, F
e3+Is quickly oxidized. Due to this, 3
Impurities such as trivalent Fe compounds are produced, and LiFePO Four
Single-phase synthesis of the carbon composite is hindered.

【0052】[0052]

【化3】 Embedded image

【0053】そこで、焼成雰囲気として窒素、アルゴン
等の不活性ガス又は水素や一酸化炭素等の還元性ガスを
用いるとともに、焼成雰囲気中の酸素濃度を、LiFe
PO 4炭素複合体中のFeが酸化されない範囲、すなわ
ち1012ppm(体積)以下とすることが好ましい。
焼成雰囲気中の酸素濃度を、1012ppm(体積)以
下とすることにより、Feの酸化を防止し、LiFeP
4炭素複合体の単相合成を確実に行うことが可能とな
る。
Therefore, the firing atmosphere is nitrogen or argon.
Etc. or a reducing gas such as hydrogen or carbon monoxide.
And the oxygen concentration in the firing atmosphere was adjusted to LiFe
PO FourThe range where Fe in the carbon composite is not oxidized, that is,
More preferably, it is 1012 ppm (volume) or less.
Reduce the oxygen concentration in the firing atmosphere to less than 1012 ppm (by volume)
By preventing the oxidation of Fe, LiFeP
OFourSingle phase synthesis of carbon composites can be reliably performed.
You.

【0054】焼成雰囲気中の酸素濃度が1012ppm
(体積)よりも高い場合には、焼成雰囲気中の酸素量が
多すぎるため、LiFePO4炭素複合体中のFeがF
3+に酸化されてしまい、これに起因して不純物が生成
してしまうため、LiFePO4炭素複合体の単相合成
が妨げられてしまう虞がある。
The oxygen concentration in the firing atmosphere is 1012 ppm
If the volume is higher than (volume), the amount of oxygen in the firing atmosphere is too large, so that Fe in the LiFePO 4 carbon composite becomes F
Since it is oxidized to e 3+ and an impurity is generated due to the oxidation, there is a possibility that the single-phase synthesis of the LiFePO 4 carbon composite is hindered.

【0055】焼成後のLiFePO4炭素複合体の取り
出しについては、焼成後のLiFePO4炭素複合体の
取り出し温度、すなわちLiFePO4炭素複合体を大
気中に暴露する際のLiFePO4炭素複合体の温度は
305℃以下とすることが好ましい。また、焼成後のL
iFePO4炭素複合体の取り出し温度を204℃以下
とすることがより好ましい。LiFePO4炭素複合体
の取り出し温度を305℃以下とすることにより、焼成
後のLiFePO4炭素複合体中のFeが大気中の酸素
により酸化され、不純物が生成されることを防止でき
る。
[0055] For removal of the sintered LiFePO 4 carbon composite material is taken out temperature of the sintered LiFePO 4 carbon composite material, that is, the temperature of the LiFePO 4 carbon composite material when exposed to atmosphere, the LiFePO 4 carbon composite material is The temperature is preferably 305 ° C. or lower. In addition, L after firing
More preferably, the temperature for taking out the iFePO 4 carbon composite is 204 ° C. or lower. By setting the temperature at which the LiFePO 4 carbon composite is taken out to 305 ° C. or lower, it is possible to prevent the Fe in the fired LiFePO 4 carbon composite from being oxidized by oxygen in the atmosphere and generating impurities.

【0056】焼成後にLiFePO4炭素複合体を十分
に冷却しない状態で取り出した場合、LiFePO4
素複合体中のFeが大気中の酸素により酸化され、不純
物が生成される虞がある。しかしながら、余り低い温度
までLiFePO4炭素複合体を冷却したのでは、作業
効率の低下を招く虞がある。
[0056] When taken out in an insufficiently cooled state of the LiFePO 4 carbon composite material after sintering, LiFePO 4 Fe of carbon composite material is oxidized by oxygen in the atmosphere, there is a fear that impurities are generated. However, if the LiFePO 4 carbon composite is cooled to a temperature that is too low, there is a possibility that the working efficiency will be reduced.

【0057】したがって、焼成後のLiFePO4炭素
複合体の取り出し温度を305℃以下とすることによ
り、焼成後のLiFePO4炭素複合体中のFeが大気
中の酸素により酸化されて不純物が生成されることを防
止するとともに、作業効率も維持することが可能とな
り、電池特性として好ましい特性を有するLiFePO
4炭素複合体を効率よく合成することができる。
Accordingly, by setting the temperature at which the calcined LiFePO 4 carbon composite is taken out to 305 ° C. or lower, Fe in the calcined LiFePO 4 carbon composite is oxidized by atmospheric oxygen to generate impurities. LiFePO 4 having favorable characteristics as battery characteristics, while maintaining the work efficiency.
A four- carbon composite can be efficiently synthesized.

【0058】なお、焼成後のLiFePO4炭素複合体
の冷却は焼成炉内で行うが、このときの冷却方法は、自
然冷却でも良く、また、強制冷却でも良い。ただし、冷
却時間の短縮、すなわち、作業効率を考慮した場合に
は、強制冷却することが好ましい。そして、強制冷却す
る場合には、焼成炉内を上述した酸素濃度、すなわち1
012ppm(体積)以下とするように酸素と不活性ガ
スとの混合ガス、又は不活性ガスのみを焼成炉内に供給
すれば良い。
The LiFePO 4 carbon composite after firing is cooled in a firing furnace. The cooling method at this time may be natural cooling or forced cooling. However, in consideration of shortening the cooling time, that is, considering the working efficiency, it is preferable to perform forced cooling. Then, in the case of forced cooling, the inside of the firing furnace has the above-described oxygen concentration, that is, 1%.
What is necessary is just to supply a mixed gas of oxygen and an inert gas or only an inert gas into the firing furnace so as to be 012 ppm (volume) or less.

【0059】上述した正極活物質の製造方法は、固相反
応による合成法でないため、正極活物質の合成原料粉末
を粉砕、混合する工程が不要とされる。すなわち、正極
活物質の合成原料粉末を粉砕、混合するための装置、例
えばボールミル等の装置を必用としないため、設備導入
によるコスト上昇が生じない。
Since the above-described method for producing a positive electrode active material is not a synthesis method based on a solid phase reaction, a step of pulverizing and mixing the raw material powder for synthesis of the positive electrode active material is not required. That is, an apparatus for pulverizing and mixing the synthetic raw material powder of the positive electrode active material, for example, an apparatus such as a ball mill, is not required, so that cost increase due to the introduction of equipment does not occur.

【0060】また、この工程に起因する正極活物質の製
造工程の複雑化や生産性の低下といった問題が生じるこ
とないため、簡便に正極活物質を製造することができ
る。
In addition, since there is no problem such as complication of the production process of the positive electrode active material and reduction in productivity due to this step, the positive electrode active material can be easily produced.

【0061】また、固相反応による合成法の場合、正極
活物質の合成原料として希少であり高価な材料を用いる
ため、原料コストが高くなってしまう。それに対して、
上述した正極活物質の製造方法の場合、正極活物質の合
成原料としては、一般的な材料を用いるため、原料コス
トを低く抑えることができる。したがって、上述した正
極活物質の製造方法によれば、LiFePO4炭素複合
体を安価に、且つ簡便な方法で確実に単相合成すること
が可能とされる。
Further, in the case of the synthesis method by the solid phase reaction, since a rare and expensive material is used as a raw material for synthesizing the positive electrode active material, the raw material cost is increased. On the other hand,
In the case of the above-described method for producing a positive electrode active material, a general material is used as a raw material for synthesizing the positive electrode active material, so that the raw material cost can be kept low. Therefore, according to the above-described method for producing a positive electrode active material, it is possible to surely synthesize a single-phase LiFePO 4 carbon composite by an inexpensive and simple method.

【0062】上述のようにして得られたLiFePO4
炭素複合体を正極活物質として用いた非水電解液電池1
は、例えば次のようにして製造される。
The LiFePO 4 obtained as described above
Non-aqueous electrolyte battery 1 using carbon composite as positive electrode active material 1
Is manufactured, for example, as follows.

【0063】負極2としては、まず、負極活物質と結着
剤とを溶媒中に分散させてスラリーの負極合剤を調製す
る。次に、得られた負極合剤を集電体上に均一に塗布、
乾燥して負極活物質層を形成することにより負極2が作
製される。上記負極合剤の結着剤としては、公知の結着
剤を用いることができる他、上記負極合剤に公知の添加
剤等を添加することができる。また、負極活物質となる
金属リチウムをそのまま負極2として用いることもでき
る。
For the negative electrode 2, first, a negative electrode mixture is prepared by dispersing a negative electrode active material and a binder in a solvent. Next, the obtained negative electrode mixture is uniformly applied on the current collector,
The negative electrode 2 is produced by drying to form a negative electrode active material layer. Known binders can be used as the binder of the negative electrode mixture, and known additives and the like can be added to the negative electrode mixture. Further, metallic lithium serving as a negative electrode active material can be used as the negative electrode 2 as it is.

【0064】正極4としては、まず、正極活物質となる
LiFePO4炭素複合体と、結着剤とを混合して正極
合剤を調製し、溶媒中に分散させてスラリー状とする。
As the positive electrode 4, first, a LiFePO 4 carbon composite serving as a positive electrode active material and a binder are mixed to prepare a positive electrode mixture, and the mixture is dispersed in a solvent to form a slurry.

【0065】次に、得られたスラリー状の正極合剤を集
電体上に均一に塗布、乾燥して正極活物質層を形成する
ことにより正極4が作製される。上記正極合剤の結着剤
としては、公知の結着剤を用いることができる他、上記
正極合剤に公知の添加剤等を添加することができる。
Next, the positive electrode 4 is produced by uniformly applying the obtained slurry-like positive electrode mixture on a current collector and drying to form a positive electrode active material layer. As the binder of the positive electrode mixture, a known binder can be used, and a known additive or the like can be added to the positive electrode mixture.

【0066】非水電解液は、電解質塩を非水溶媒中に溶
解することにより調製される。
The non-aqueous electrolyte is prepared by dissolving an electrolyte salt in a non-aqueous solvent.

【0067】そして、負極2を負極缶3に収容し、正極
4を正極缶5に収容し、負極2と正極4との間に、ポリ
プロピレン製多孔質膜等からなるセパレータ6を配す
る。負極缶3及び正極缶5内に非水電解液を注入し、絶
縁ガスケット7を介して負極缶3と正極缶5とをかしめ
て固定することにより、コイン型の非水電解液電池1が
完成する。
Then, the negative electrode 2 is accommodated in the negative electrode can 3, the positive electrode 4 is accommodated in the positive electrode can 5, and a separator 6 made of a porous polypropylene film or the like is disposed between the negative electrode 2 and the positive electrode 4. The coin-type nonaqueous electrolyte battery 1 is completed by injecting the nonaqueous electrolyte into the negative electrode can 3 and the positive electrode can 5 and caulking and fixing the negative electrode can 3 and the positive electrode can 5 via the insulating gasket 7. I do.

【0068】以上のような非水電解質二次電池の製造方
法は、正極活物質を製造する際にリチウムと鉄との複合
リン酸化物の共沈体を生成させ、この共沈体を焼成する
ものであり、固相反応による合成を行わないため、正極
活物質の合成原料粉末を粉砕、混合する工程が不要とさ
れる。すなわち、正極活物質の合成原料粉末を粉砕、混
合するための装置、例えばボールミル等の装置を必用と
しないため、設備導入によるコスト上昇がない。
In the method for manufacturing a non-aqueous electrolyte secondary battery as described above, a co-precipitate of a composite phosphorous oxide of lithium and iron is produced when the positive electrode active material is produced, and the co-precipitate is fired. Since the synthesis by the solid phase reaction is not performed, the step of pulverizing and mixing the raw material powder for the synthesis of the positive electrode active material is unnecessary. That is, an apparatus for pulverizing and mixing the synthetic raw material powder of the positive electrode active material, for example, an apparatus such as a ball mill is not required, so that there is no increase in cost due to the introduction of equipment.

【0069】また、正極活物質の合成原料粉末の粉砕、
混合工程がないため、この工程に起因する正極活物質の
製造工程の複雑化や生産性の低下といった問題が生じる
ことなく、簡便に正極活物質を製造することが可能とさ
れるため、簡便に非水電解質二次電池を製造することが
可能となる。
Further, pulverization of the raw material powder for the synthesis of the positive electrode active material,
Since there is no mixing step, it is possible to easily produce the positive electrode active material without problems such as complication of the production process of the positive electrode active material and a decrease in productivity caused by this step, so that A non-aqueous electrolyte secondary battery can be manufactured.

【0070】また、固相反応により正極活物質を合成す
る場合、正極活物質の合成原料として希少な高価な材料
を用いるため、原料コストが高くなってしまう。それに
対して、この非水電解質二次電池の製造方法では、正極
活物質の合成原料としては、一般的な材料を用いるた
め、原料コストが低く抑えることが可能となる。
In the case of synthesizing a positive electrode active material by a solid-phase reaction, since a rare and expensive material is used as a raw material for synthesizing the positive electrode active material, the raw material cost is increased. On the other hand, in the method for manufacturing a nonaqueous electrolyte secondary battery, since a general material is used as a raw material for synthesizing the positive electrode active material, the raw material cost can be reduced.

【0071】また、上記においては、正極活物質として
LiFePO4炭素複合体を用いた場合について説明し
たが、正極活物質としては、これに限定されることはな
く、例えばLiFePO4粒子の表面に炭素材料が付着
していないLiFePO4を用いても良い。
[0071] In the above, the description has been given of the case using the LiFePO 4 carbon composite material as the cathode active material, as the cathode active material is not limited to this, for example, carbon on the surface of the LiFePO 4 particles LiFePO 4 to which no material is attached may be used.

【0072】ここで、LiFePO4は、アセトンを添
加しないことと、炭素材料を添加しないことを除けば上
述したLiFePO4炭素複合体の製造方法と同様にし
て製造することができる。そして、この場合のLiFe
PO4の製造方法も固相反応による合成法でないため、
正極活物質の合成原料粉末を粉砕、混合する工程が不要
とされる。すなわち、正極活物質の合成原料粉末を粉
砕、混合するための装置、例えばボールミル等の装置を
必用としないため、設備導入によるコスト上昇や、この
工程に起因する生産性の低下といった問題が生じること
ない。また、固相反応による合成法の場合、正極活物質
の合成原料として希少であり高価な材料を用いるため、
原料コストが高くなってしまう。それに対して、上述し
た正極活物質の製造方法の場合、使用する正極活物質の
合成原料としては、一般的な材料が用いられるため、原
料コストを低く抑えることができる。したがって、この
正極活物質の製造方法によれば、LiFePO4を安価
に、且つ簡便な方法で確実に単相合成することが可能と
される。
Here, LiFePO 4 can be manufactured in the same manner as the above-described method for manufacturing a LiFePO 4 carbon composite except that acetone is not added and a carbon material is not added. And LiFe in this case
Since the method for producing PO 4 is not a synthesis method by a solid-phase reaction,
The step of pulverizing and mixing the raw material powder of the positive electrode active material is not required. That is, since a device for pulverizing and mixing the raw material powder of the positive electrode active material, for example, a device such as a ball mill, is not required, problems such as an increase in cost due to the introduction of equipment and a decrease in productivity due to this process occur. Absent. In addition, in the case of a synthesis method by a solid-phase reaction, since a rare and expensive material is used as a raw material for synthesizing a positive electrode active material,
Raw material costs increase. On the other hand, in the case of the above-described method for producing a positive electrode active material, a general material is used as a raw material for synthesizing the positive electrode active material to be used, so that the raw material cost can be reduced. Therefore, according to this method for producing a positive electrode active material, it is possible to surely synthesize LiFePO 4 in a single phase at low cost and with a simple method.

【0073】なお、上述したような本実施の形態に係る
非水電解液電池1は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
The shape of the nonaqueous electrolyte battery 1 according to the present embodiment as described above is not particularly limited, such as a cylindrical type, a square type, a coin type, and a button type.
In addition, various sizes such as a thin type and a large size can be used.

【0074】[0074]

【実施例】以下、本発明を具体的な実験結果に基づいて
説明する。ここでは、本発明の効果を調べるべく、正極
活物質としてLiFePO4及びLiFePO4炭素複合
体を合成し、これらを用いて非水電解質電池を作製し、
その特性を評価した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on specific experimental results. Here, in order to examine the effects of the present invention, LiFePO 4 and LiFePO 4 carbon composite were synthesized as a positive electrode active material, and a non-aqueous electrolyte battery was fabricated using these.
Its properties were evaluated.

【0075】<実施例1>本発明に係る正極活物質の製
造方法を適用して、正極活物質としてLiFePO4
合成した。この正極活物質の製造方法を以下に示す。
Example 1 LiFePO 4 was synthesized as a cathode active material by applying the method for producing a cathode active material according to the present invention. The method for producing this positive electrode active material is described below.

【0076】まず、濃度が10体積%である希釈リン酸
水溶液中に水酸化リチウム1水和物、硫酸鉄7水和物
を、Li:Feのモル比が1:1となるようにして加
え、溶解させて混合液を調製した。
First, lithium hydroxide monohydrate and iron sulfate heptahydrate were added to a diluted phosphoric acid aqueous solution having a concentration of 10% by volume so that the molar ratio of Li: Fe became 1: 1. , And dissolved to prepare a mixed solution.

【0077】次に、この混合液に、代表的な水溶性有機
還元剤であるアスコルビン酸を混合液の1重量%分添加
する。
Next, ascorbic acid, which is a typical water-soluble organic reducing agent, is added to the mixture at 1% by weight of the mixture.

【0078】次に、アスコルビン酸を添加した混合液
に、濃度が1mol/lである水酸化ナトリウム水溶液
を滴下することにより、沈殿物(共沈物)を生成させ
た。そして、この沈殿物をろ過後、水洗し、乾燥させる
ことにより沈殿物を回収した。
Next, an aqueous solution of sodium hydroxide having a concentration of 1 mol / l was added dropwise to the mixed solution to which ascorbic acid was added, thereby forming a precipitate (coprecipitate). Then, the precipitate was collected by filtration, washed with water and dried.

【0079】回収した沈殿物を誘導結合高周波プラズマ
分光分析を用いて元素分析したところ、沈殿物にはL
i、Fe、Pが含有されていることが確認され、また、
これらの含有モル比率は、Li:Fe:P=1:1:1
となっていることが確認された。
The collected precipitate was subjected to elemental analysis using inductively coupled high frequency plasma spectroscopy.
i, Fe, and P were confirmed to be contained, and
The molar ratio of these components is Li: Fe: P = 1: 1: 1.
Was confirmed.

【0080】その後、回収した沈殿物をセラミックるつ
ぼに入れ、窒素雰囲気中の電気炉にて350℃の温度で
5時間焼成することによりLiFePO4を得た。
Thereafter, the collected precipitate was placed in a ceramic crucible and calcined at a temperature of 350 ° C. for 5 hours in an electric furnace in a nitrogen atmosphere to obtain LiFePO 4 .

【0081】次に、上記において得られたLiFePO
4を正極活物質として用いて非水電解質電池を作製し
た。
Next, the LiFePO 4 obtained above is obtained.
Using 4 as a positive electrode active material, a non-aqueous electrolyte battery was fabricated.

【0082】まず、正極活物質として上記で得られたL
iFePO4を85重量部と、導電材としてアセチレン
ブラックを10重量部と、バインダーとしてフッ素樹脂
粉末であるポリ(ビニリデンフルオロライド)5重量部
とを混合した後、加圧成形して直径15.5mm、厚み
0.1mmのペレット状の正極とした。
First, as the positive electrode active material, the L obtained above was used.
After mixing 85 parts by weight of iFePO 4 , 10 parts by weight of acetylene black as a conductive material, and 5 parts by weight of poly (vinylidene fluoride), which is a fluororesin powder, as a binder, the mixture was press-molded to have a diameter of 15.5 mm. And a pellet-shaped positive electrode having a thickness of 0.1 mm.

【0083】次いで、リチウム金属箔を正極と略同形に
打ち抜くことにより負極とした。
Next, a negative electrode was obtained by punching the lithium metal foil into substantially the same shape as the positive electrode.

【0084】次いで、プロピレンカーボネートとジメチ
ルカーボネートとの等容量混合溶媒に、LiPF6を1
mol/lの濃度で溶解させることにより非水電解液を
調製した。
Next, LiPF 6 was added to a mixed solvent of propylene carbonate and dimethyl carbonate in equal volumes.
A non-aqueous electrolyte was prepared by dissolving at a concentration of mol / l.

【0085】以上のようにして得られた正極を正極缶に
収容し、負極を負極缶に収容し、正極と負極との間にセ
パレータを配した。正極缶及び負極缶内に非水電解液を
注入し、正極缶と負極缶とをかしめて固定することによ
り、直径20.0mm、厚み1.6mmの2016型の
コイン型テストセルを作製した。
The positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was arranged between the positive electrode and the negative electrode. A non-aqueous electrolyte solution was injected into the positive and negative electrode cans, and the positive and negative electrode cans were caulked and fixed, whereby a 2016 coin-type test cell having a diameter of 20.0 mm and a thickness of 1.6 mm was produced.

【0086】<実施例2>正極活物質を合成する際の焼
成温度を400℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
<Example 2> A coin-type test cell was produced in the same manner as in Example 1 except that the sintering temperature at the time of synthesizing the positive electrode active material was set at 400 ° C.

【0087】<実施例3>正極活物質を合成する際の焼
成温度を500℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Example 3 A coin-type test cell was manufactured in the same manner as in Example 1, except that the firing temperature at the time of synthesizing the positive electrode active material was set at 500 ° C.

【0088】<実施例4>正極活物質を合成する際の焼
成温度を600℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Example 4 A coin-type test cell was produced in the same manner as in Example 1 except that the firing temperature at the time of synthesizing the positive electrode active material was set at 600 ° C.

【0089】<実施例5>正極活物質を合成する際の焼
成温度を700℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Example 5 A coin-type test cell was produced in the same manner as in Example 1, except that the firing temperature at the time of synthesizing the positive electrode active material was 700 ° C.

【0090】<実施例6>正極活物質を合成する際の焼
成温度を750℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Example 6 A coin-type test cell was manufactured in the same manner as in Example 1, except that the firing temperature at the time of synthesizing the positive electrode active material was 750 ° C.

【0091】<比較例1>正極活物質を合成する際の焼
成温度を300℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Comparative Example 1 A coin-type test cell was produced in the same manner as in Example 1 except that the firing temperature at the time of synthesizing the positive electrode active material was 300 ° C.

【0092】<比較例2>正極活物質を合成する際の焼
成温度を800℃としたこと以外は、実施例1と同様に
してコイン型テストセルを作製した。
Comparative Example 2 A coin-type test cell was prepared in the same manner as in Example 1, except that the firing temperature at the time of synthesizing the positive electrode active material was 800 ° C.

【0093】上記において実施例1乃至実施例6、比較
例1及び比較例2で合成した正極活物質に対してX線回
折測定を行った。その結果を表1に示す。なお、表1に
おいては、JCPDS−No.401499に記載され
る粉末X線回折線と適合し、且つ他の回折線が確認され
ないものをLiFePO4の単相合成が行われたものと
して○を記した。そして、JCPDS−No.4014
99に記載される粉末X線回折線と適合しない、又は適
合しても他の回折線が確認されたものは、LiFePO
4の単相合成が行われなかったものとして×を記した。
X-ray diffraction measurements were performed on the positive electrode active materials synthesized in Examples 1 to 6 and Comparative Examples 1 and 2 as described above. Table 1 shows the results. In Table 1, JCPDS-No. A sample which conforms to the powder X-ray diffraction line described in No. 401499 and for which no other diffraction line is confirmed was marked as having been subjected to single-phase synthesis of LiFePO 4 . Then, JCPDS-No. 4014
Those which do not conform to the powder X-ray diffraction line described in No. 99, or which are confirmed to have another diffraction line even if conforming to the above, are LiFePO4.
The symbol x indicates that the single-phase synthesis of No. 4 was not performed.

【0094】[0094]

【表1】 [Table 1]

【0095】表1より、焼成温度が350℃以上である
実施例1乃至実施例6、及び比較例2では、JCPDS
−No.401499に記載される粉末X線回折線と適
合し、且つ他の回折線が確認されておらず、LiFeP
4の単相合成が行われたことが判る。
As shown in Table 1, in Examples 1 to 6 where the sintering temperature was 350 ° C. or higher and Comparative Example 2, the JCPDS
-No. LiFeP conforms to the powder X-ray diffraction line described in No. 401499, and no other diffraction lines have been confirmed.
It can be seen that a single-phase synthesis of O 4 was performed.

【0096】一方、焼成温度が300℃である比較例1
では、Li3PO4等の、JCPDS−No.40149
9に記載される粉末X線回折線以外の回折線が確認され
たため、LiFePO4の単相合成が行われなかったこ
とが判る。これは、焼成温度が低いため、LiFePO
4の合成反応が進行せず、焼成体中に不純物が残留して
しまったためであると考えられる。
Comparative Example 1 in which the firing temperature was 300 ° C.
In, such as Li 3 PO 4, JCPDS-No . 40149
Since diffraction lines other than the powder X-ray diffraction line described in No. 9 were confirmed, it can be seen that single-phase synthesis of LiFePO 4 was not performed. This is because the firing temperature is low and LiFePO
This is probably because the synthesis reaction of No. 4 did not proceed and impurities remained in the fired body.

【0097】以上のことより、上記のLiFePO4
合成法においては、焼成温度を350℃以上とすること
によりLiFePO4の単相合成を確実に行うことがで
きるといえる。
[0097] From the above facts, in the synthesis of the above LiFePO 4, it can be said that the firing temperature can be reliably performed by the single-phase synthesis of the LiFePO 4 by a 350 ° C. or higher.

【0098】また、実施例1乃至実施例6、比較例1及
び比較例2で作製したコイン型テストセルについて、以
下のようにして充放電試験を行い、初期放電容量密度を
評価した。
The coin-type test cells manufactured in Examples 1 to 6 and Comparative Examples 1 and 2 were subjected to a charge / discharge test as described below to evaluate the initial discharge capacity density.

【0099】<充放電試験>各テストセルに対して定電
流充電を行い、電池電圧が4.2Vになった時点で、定
電流充電から定電圧充電に切り替えて、電圧を4.2V
に保ったまま充電を行った。そして、電流が0.01m
A/cm2以下になった時点で充電を終了させた。その
後、放電を行い、電池電圧が2.0Vまで低下した時点
で放電を終了させた。なお、充電時、放電時ともに常温
(25℃)で行い、このときの電流密度は0.1mA/
cm2とした。その結果を結果を表1に合わせて示す。
なお、表1における電池評価は初期放電容量密度が14
0mAh/g以上のものを実用推奨レベルとして○を記
し、初期放電容量密度110mAh/g以上140mA
h/g未満のものを実用可能レベルとして△を記し、初
期放電容量密度が110mAh/g未満のものを実用不
可として×を記した。
<Charge / Discharge Test> Each test cell was charged with a constant current, and when the battery voltage reached 4.2 V, the voltage was switched from the constant current charge to the constant voltage charge, and the voltage was changed to 4.2 V.
The battery was charged while keeping And the current is 0.01m
The charging was terminated when the charge / discharge rate reached A / cm 2 or less. Thereafter, discharging was performed, and the discharging was terminated when the battery voltage dropped to 2.0 V. The charging and discharging were performed at room temperature (25 ° C.), and the current density at this time was 0.1 mA /
cm 2 . The results are shown in Table 1 together.
The battery evaluation in Table 1 indicates that the initial discharge capacity density was 14%.
A mark of 0 mAh / g or more is marked as "O" as a practical recommended level, and the initial discharge capacity density is 110 mAh / g or more and 140 mA or more.
Those with a h / g of less than 110 mAh / g were marked as unusable when the initial discharge capacity density was less than 110 mAh / g.

【0100】表1から判るように、LiFePO4を合
成する際の焼成温度が350℃〜750℃である実施例
1乃至実施例6では、初期放電容量密度は、全てにおい
て良好な値を示した。
As can be seen from Table 1, in Examples 1 to 6 in which the sintering temperature at the time of synthesizing LiFePO 4 was 350 ° C. to 750 ° C., the initial discharge capacity density showed a good value in all cases. .

【0101】一方、LiFePO4を合成する際の焼成
温度が300℃である比較例1では、初期放電容量密度
は98mAh/gと低い値を示した。これは、焼成温度
が低すぎるためLiFEPO4の合成が進行せず、正極
活物質であるLiFePO4が単相合成されず、電池反
応に寄与する正極活物質量が少ないためであると考えら
れる。
On the other hand, in Comparative Example 1 in which the firing temperature at the time of synthesizing LiFePO 4 was 300 ° C., the initial discharge capacity density was as low as 98 mAh / g. It is considered that this is because the synthesis temperature of LiFEPO 4 did not progress because the firing temperature was too low, LiFePO 4 as the positive electrode active material was not synthesized in a single phase, and the amount of the positive electrode active material contributing to the battery reaction was small.

【0102】また、LiFePO4を合成する際の焼成
温度が800℃である比較例2でも、初期放電容量密度
は86mAh/gと低い値を示した。これは、焼成温度
が高すぎるため、焼成中のLiFePO4粒子の粒子成
長が著しくなり、巨大な粒径を有するLiFePO4
合成され導電材との接触面積が減少したため、電子伝導
性の減少により電池の閉回路時の分極が大きくなり、そ
の結果、容量減少が生じたためであると考えられる。
Also, in Comparative Example 2 in which the sintering temperature for synthesizing LiFePO 4 was 800 ° C., the initial discharge capacity density was as low as 86 mAh / g. This is because the firing temperature is too high, the particle growth of LiFePO 4 particles during firing becomes remarkable, LiFePO 4 having a huge particle size is synthesized, and the contact area with the conductive material is reduced, so that the electron conductivity is reduced. It is considered that the polarization at the closed circuit of the battery was increased, and as a result, the capacity was reduced.

【0103】以上のことより、LiFePO4を合成す
る際の焼成温度は、350℃〜750℃とすることが好
ましいといえる。しかし、電池特性の観点からは、正極
活物質の初期放電容量密度は140mAh/g以上であ
ることが好ましく、このことよりLiFePO4を合成
する際の焼成温度は、400℃〜700℃とすることが
より好ましいといえる。
From the above, it can be said that the firing temperature for synthesizing LiFePO 4 is preferably 350 ° C. to 750 ° C. However, from the viewpoint of battery characteristics, the initial discharge capacity density of the positive electrode active material is preferably 140 mAh / g or more. Therefore, the firing temperature when synthesizing LiFePO 4 should be 400 ° C. to 700 ° C. Is more preferable.

【0104】次に、ポリマー電池を作製し、特性を評価
した。
Next, a polymer battery was manufactured and its characteristics were evaluated.

【0105】<実施例7>まず、ゲル状電解質を以下に
示すようにして作製した。まず、ヘキサフルオロプロピ
レンが6.9重量%の割合で共重合されたポリフッ化ビ
ニリデンと、非水電解液と、ジメチルカーボネートとを
混合し、撹拌、溶解させ、ゾル状の電解質溶液を調製し
た。次いで、ゾル状の電解質溶液に、ビニレンカーボネ
ート(VC)を0.5重量%の割合で添加してゲル状電
解質溶液とした。なお、非水電解液として、エチレンカ
ーボネート(EC)と、プロピレンカーボネート(P
C)とを体積比で6:4の割合で混合した混合溶媒にL
iPF6を0.85mol/kgの割合で溶解させたも
のを使用した。
<Example 7> First, a gel electrolyte was prepared as follows. First, polyvinylidene fluoride in which hexafluoropropylene was copolymerized at a ratio of 6.9% by weight, a non-aqueous electrolyte, and dimethyl carbonate were mixed, stirred, and dissolved to prepare a sol electrolyte solution. Next, vinylene carbonate (VC) was added to the sol electrolyte solution at a ratio of 0.5% by weight to obtain a gel electrolyte solution. In addition, ethylene carbonate (EC) and propylene carbonate (P
C) and L at a ratio of 6: 4 by volume.
The iPF 6 was used after dissolved in a proportion of 0.85 mol / kg.

【0106】次いで、正極を以下に示すようにして作製
した。まず、実施例4で作製したLiFePO4を85
重量部、導電剤としてグラファイトを10重量部、結着
剤としてフッ素樹脂粉末であるポリ(ビニリデンフルオ
ロライド)5重量部とを混合して正極合剤を調製した
後、N−メチルピロリドンを加えてスラリー状にしたも
のを準備した。次に、このスラリーを厚み20μmのア
ルミ箔に塗布、加熱乾燥後、加圧工程を経て正極塗布箔
を作製した。次に、この正極塗布箔の片面にゲル状電解
質溶液を塗布後、乾燥して溶剤を除去した後、セルの径
に準じて直径15mmの円形に打ち抜き、正極電極とし
た。
Next, a positive electrode was prepared as described below. First, 85% of the LiFePO 4 prepared in Example 4 was used.
After mixing 10 parts by weight of graphite as a conductive agent and 5 parts by weight of poly (vinylidene fluoride) which is a fluororesin powder as a binder, a positive electrode mixture was prepared, and then N-methylpyrrolidone was added. A slurry was prepared. Next, this slurry was applied to an aluminum foil having a thickness of 20 μm, heated and dried, and then subjected to a pressing step to produce a positive electrode coated foil. Next, a gel electrolyte solution was applied to one side of the positive electrode coating foil, dried, and the solvent was removed. Then, a 15 mm diameter circle was punched out according to the cell diameter to obtain a positive electrode.

【0107】次いで、負極を以下に示すようにして作製
した。まず、黒鉛粉末にバインダーとしてフッ素樹脂粉
末を10重量%混合し、N−メチルピロリドンを加えて
スラリー状にしたものを準備した。次に、このスラリー
を銅箔に塗布、加熱乾燥後、加圧工程を経てセルの大き
さに準じて直径16.5mmの円形に打ち抜き、負極電
極とした。
Next, a negative electrode was manufactured as described below. First, a slurry was prepared by mixing 10% by weight of a fluororesin powder as a binder with graphite powder and adding N-methylpyrrolidone. Next, this slurry was applied to a copper foil, heated and dried, and then subjected to a pressing step to punch out a 16.5 mm diameter circle in accordance with the size of the cell to obtain a negative electrode.

【0108】以上のようにして得られた正極を正極缶に
収容し、負極を負極缶に収容し、正極と負極との間にセ
パレータを配した。そして、正極缶と負極缶とをかしめ
て固定することにより、直径20mm、厚み1.6mm
の2016型のコイン型リチウムポリマー電池を作製し
た。
The positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was disposed between the positive electrode and the negative electrode. Then, by caulking and fixing the positive electrode can and the negative electrode can, the diameter is 20 mm and the thickness is 1.6 mm.
No. 2016 coin-type lithium polymer battery was produced.

【0109】<実施例8>正極を作製する際に、実施例
5で作製したLiFePO4を用いたこと以外は、実施
例7と同様にしてコイン型リチウムポリマー電池を作製
した。
<Example 8> A coin-type lithium polymer battery was manufactured in the same manner as in Example 7, except that the LiFePO 4 manufactured in Example 5 was used when manufacturing the positive electrode.

【0110】以上のようにして作製した実施例7及び実
施例8のコイン型リチウムポリマー電池について、以下
のようにして充放電サイクル特性試験を行い、初期放電
容量密度及び30サイクル後の放電容量維持率を求め
た。
The coin-type lithium polymer batteries of Examples 7 and 8 manufactured as described above were subjected to a charge / discharge cycle characteristic test as follows, and the initial discharge capacity density and the discharge capacity maintenance after 30 cycles were performed. The rate was determined.

【0111】<充放電サイクル特性試験>充放電サイク
ル特性は、充放電を繰り返した後の容量維持率により評
価した。
<Charge / Discharge Cycle Characteristics Test> The charge / discharge cycle characteristics were evaluated based on the capacity retention ratio after repeated charge / discharge.

【0112】コイン型リチウムポリマー電池に対して定
電流充電を行い、電池電圧が4.2Vになった時点で、
定電流充電から定電圧充電に切り替えて、電圧を4.2
Vに保ったまま充電を行った。そして、電流が0.01
mA/cm2以下になった時点で充電を終了させた。そ
の後、放電を行い、電池電圧が2.0Vまで低下した時
点で放電を終了させた。
A constant current charge was performed on the coin-type lithium polymer battery, and when the battery voltage became 4.2 V,
Switching from constant-current charging to constant-voltage charging, and changing the voltage to 4.2
The battery was charged while being kept at V. And the current is 0.01
The charging was terminated when the current became mA / cm 2 or less. Thereafter, discharging was performed, and the discharging was terminated when the battery voltage dropped to 2.0 V.

【0113】以上の工程を1サイクルとして、これを3
0サイクル行い、1サイクル目及び30サイクル目にお
ける放電容量を求めた。そして、1サイクル目の放電容
量(C1)に対する、30サイクル目の放電容量(C
2)の比率((C2/C1)×100)を放電容量維持
率として求めた。なお、充電時、放電時ともに常温(2
5℃)で行い、このときの電流密度は0.1mA/cm
2とした。その結果を表2に示す。
The above process is defined as one cycle, and
After 0 cycles, the discharge capacities at the first cycle and the 30th cycle were determined. Then, the discharge capacity at the 30th cycle (C1) with respect to the discharge capacity at the first cycle (C1)
The ratio (2) ((C2 / C1) × 100) was determined as the discharge capacity retention ratio. At the time of charging and discharging, the room temperature (2
5 ° C.), and the current density at this time is 0.1 mA / cm
And 2 . Table 2 shows the results.

【0114】[0114]

【表2】 [Table 2]

【0115】表2から判るように、初期放電容量密度、
30サイクル後の容量維持率ともに良好な値を示してい
る。このことから、本発明に係る製造方法により製造さ
れた正極活物質は、非水電解質として非水電解液の代わ
りにゲル状電解質を用いてポリマー電池を構成した場合
においても良好な電池特性を得ることができるといえ
る。
As can be seen from Table 2, the initial discharge capacity density,
The capacity retention rate after 30 cycles shows a good value. From this, the positive electrode active material manufactured by the manufacturing method according to the present invention obtains good battery characteristics even when a polymer battery is configured using a gel electrolyte instead of a nonaqueous electrolyte as a nonaqueous electrolyte. You can say that

【0116】<実施例9>本発明に係る正極活物質の製
造方法を適用して、正極活物質としてLiFePO4
素複合体を合成した。この正極活物質の製造方法を以下
に示す。
Example 9 A LiFePO 4 carbon composite was synthesized as a positive electrode active material by applying the method for producing a positive electrode active material according to the present invention. The method for producing this positive electrode active material is described below.

【0117】まず、濃度が10体積%である希釈リン酸
水溶液中に水酸化リチウム1水和物、硫酸鉄7水和物
を、Li:Feのモル比が1:1となるようにして加
え、溶解させて混合液を調整した。
First, lithium hydroxide monohydrate and iron sulfate heptahydrate were added to a diluted phosphoric acid aqueous solution having a concentration of 10% by volume so that the molar ratio of Li: Fe became 1: 1. And dissolved to prepare a mixed solution.

【0118】次に、この混合液に、代表的な水溶性有機
還元剤であるアスコルビン酸を混合液の1重量%分添加
した。
Next, ascorbic acid, which is a typical water-soluble organic reducing agent, was added to the mixture at 1% by weight of the mixture.

【0119】次に、アスコルビン酸を添加した混合液の
0.5体積%分のアセトンを添加し、さらに、計算から
予想される沈殿物(共沈物)重量の10重量%分だけア
セチレンブラック粉末を添加した。
Next, 0.5% by volume of acetone of the mixed solution to which ascorbic acid was added was added, and acetylene black powder was added by 10% by weight of the weight of the precipitate (coprecipitate) estimated from the calculation. Was added.

【0120】次に、この混合液に、濃度が1mol/l
である水酸化ナトリウム水溶液を滴下することにより、
沈殿物(共沈物)を生成させた。そして、この沈殿物を
ろ過後、水洗し、乾燥させることにより沈殿物を回収し
た。
Next, a concentration of 1 mol / l was added to this mixed solution.
Is added dropwise,
A precipitate (coprecipitate) was formed. Then, the precipitate was collected by filtration, washed with water and dried.

【0121】回収した沈殿物を誘導結合高周波プラズマ
分光分析を用いて元素分析したところ、沈殿物にはL
i、Fe、Pが含有されていることが確認され、また、
これらの含有モル比率は、Li:Fe:P=1:1:1
となっていることが確認された。
The collected precipitate was subjected to elemental analysis using inductively coupled high-frequency plasma spectroscopy.
i, Fe, and P were confirmed to be contained, and
The molar ratio of these components is Li: Fe: P = 1: 1: 1.
Was confirmed.

【0122】その後、回収した沈殿物をセラミックるつ
ぼに入れ、窒素雰囲気中の電気炉にて350℃の温度で
5時間焼成することによりLiFePO4炭素複合体を
得た。
Thereafter, the collected precipitate was placed in a ceramic crucible and fired in an electric furnace in a nitrogen atmosphere at a temperature of 350 ° C. for 5 hours to obtain a LiFePO 4 carbon composite.

【0123】次に、上記において得られたLiFePO
4炭素複合体を正極活物質として用いて非水電解質電池
を作製した。
Next, the LiFePO 4 obtained above is obtained.
A non-aqueous electrolyte battery was fabricated using the four- carbon composite as a positive electrode active material.

【0124】まず、正極活物質として上記で得られたL
iFePO4炭素複合体を85重量部と、導電材として
アセチレンブラックを10重量部と、バインダーとして
フッ素樹脂粉末であるポリ(ビニリデンフルオロライ
ド)5重量部とを混合した後、加圧成形して直径15.
5mm、厚み0.1mmのペレット状の正極とした。
First, as the positive electrode active material, L obtained above was used.
After mixing 85 parts by weight of the iFePO 4 carbon composite, 10 parts by weight of acetylene black as a conductive material, and 5 parts by weight of a poly (vinylidene fluoride) which is a fluororesin powder as a binder, the mixture was pressure-molded to obtain a diameter. 15.
A pellet-shaped positive electrode having a thickness of 5 mm and a thickness of 0.1 mm was obtained.

【0125】次いで、リチウム金属箔を正極と略同形に
打ち抜くことにより負極とした。
Next, a negative electrode was obtained by punching the lithium metal foil into substantially the same shape as the positive electrode.

【0126】次いで、プロピレンカーボネートとジメチ
ルカーボネートとの等容量混合溶媒に、LiPF6を1
mol/lの濃度で溶解させることにより非水電解液を
調製した。
Next, LiPF 6 was added to a mixed solvent of propylene carbonate and dimethyl carbonate in equal volumes.
A non-aqueous electrolyte was prepared by dissolving at a concentration of mol / l.

【0127】以上のようにして得られた正極を正極缶に
収容し、負極を負極缶に収容し、正極と負極との間にセ
パレータを配した。正極缶及び負極缶内に非水電解液を
注入し、正極缶と負極缶とをかしめて固定することによ
り、直径20.0mm、厚み1.6mmの2016型の
コイン型テストセルを作製した。
The positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was disposed between the positive electrode and the negative electrode. A non-aqueous electrolyte solution was injected into the positive and negative electrode cans, and the positive and negative electrode cans were caulked and fixed, whereby a 2016 coin-type test cell having a diameter of 20.0 mm and a thickness of 1.6 mm was produced.

【0128】<実施例10>正極活物質を合成する際の
焼成温度を400℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Example 10 A coin-type test cell was manufactured in the same manner as in Example 9, except that the firing temperature at the time of synthesizing the positive electrode active material was 400 ° C.

【0129】<実施例11>正極活物質を合成する際の
焼成温度を500℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
<Example 11> A coin-type test cell was produced in the same manner as in Example 9 except that the sintering temperature at the time of synthesizing the positive electrode active material was set at 500 ° C.

【0130】<実施例12>正極活物質を合成する際の
焼成温度を600℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Example 12 A coin-type test cell was produced in the same manner as in Example 9, except that the firing temperature at the time of synthesizing the positive electrode active material was set at 600 ° C.

【0131】<実施例13>正極活物質を合成する際の
焼成温度を700℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Example 13 A coin-type test cell was produced in the same manner as in Example 9, except that the firing temperature at the time of synthesizing the positive electrode active material was 700 ° C.

【0132】<実施例14>正極活物質を合成する際の
焼成温度を800℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Example 14 A coin-type test cell was produced in the same manner as in Example 9 except that the sintering temperature at the time of synthesizing the positive electrode active material was 800 ° C.

【0133】<実施例15>正極活物質を合成する際の
焼成温度を900℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Example 15 A coin-type test cell was manufactured in the same manner as in Example 9, except that the firing temperature at the time of synthesizing the positive electrode active material was 900 ° C.

【0134】<比較例3>正極活物質を合成する際の焼
成温度を300℃としたこと以外は、実施例9と同様に
してコイン型テストセルを作製した。
Comparative Example 3 A coin-type test cell was produced in the same manner as in Example 9, except that the firing temperature at the time of synthesizing the positive electrode active material was 300 ° C.

【0135】<比較例4>正極活物質を合成する際の焼
成温度を1000℃としたこと以外は、実施例9と同様
にしてコイン型テストセルを作製した。
Comparative Example 4 A coin-type test cell was produced in the same manner as in Example 9 except that the sintering temperature at the time of synthesizing the positive electrode active material was 1000 ° C.

【0136】上記において実施例9乃至実施例15、比
較例3及び比較例4で合成した正極活物質に対してX線
回折測定を行った。その結果を表3に示す。なお、表3
においては、JCPDS−No.401499に記載さ
れる粉末X線回折線と適合し、且つ他の回折線が確認さ
れないものをLiFePO4炭素複合体の単相合成が行
われたものとして○を記した。そして、JCPDS−N
o.401499に記載される粉末X線回折線と適合し
ない、又は適合しても他の回折線が確認されたものは、
LiFePO4炭素複合体の単相合成が行われなかった
ものとして×を記した。
The positive electrode active materials synthesized in Examples 9 to 15 and Comparative Examples 3 and 4 were subjected to X-ray diffraction measurement. Table 3 shows the results. Table 3
In JCPDS-No. Compatible with the powder X-ray diffraction lines described in 401,499, and single-phase synthesis of what other diffraction line is not observed LiFePO 4 carbon composite material describing the ○ as having been performed. And JCPDS-N
o. Those which are not compatible with the powder X-ray diffraction line described in No. 401499, or whose other diffraction lines have been confirmed even if matched,
The symbol x indicates that the single-phase synthesis of the LiFePO 4 carbon composite was not performed.

【0137】[0137]

【表3】 [Table 3]

【0138】表3より、焼成温度が350℃以上である
実施例9乃至実施例15及び比較例4では、JCPDS
−No.401499に記載される粉末X線回折線と適
合し、且つ他の回折線が確認されておらず、LiFeP
4炭素複合体の単相合成が行われたことが判る。
As shown in Table 3, in Examples 9 to 15 and Comparative Example 4 in which the firing temperature was 350 ° C. or higher, JCPDS
-No. LiFeP conforms to the powder X-ray diffraction line described in No. 401499, and no other diffraction lines have been confirmed.
It can be seen that a single-phase synthesis of the O 4 carbon composite was performed.

【0139】一方、焼成温度が300℃である比較例3
では、Li3PO4等の、JCPDS−No.40149
9に記載される粉末X線回折線以外の回折線が確認され
たため、LiFePO4炭素複合体の単相合成が行われ
なかったことが判る。これは、焼成温度が低いため、L
iFePO4炭素複合体の合成反応が進行せず、焼成体
中に不純物が残留してしまったためであると考えられ
る。
Comparative Example 3 in which the firing temperature was 300 ° C.
In, such as Li 3 PO 4, JCPDS-No . 40149
Since diffraction lines other than the powder X-ray diffraction line described in No. 9 were confirmed, it can be seen that the single-phase synthesis of the LiFePO 4 carbon composite was not performed. This is because the firing temperature is low,
This is probably because the synthesis reaction of the iFePO 4 carbon composite did not proceed and impurities remained in the fired body.

【0140】以上のことより、上記のLiFePO4
素複合体を合成するに際しては、焼成温度を350℃以
上とすることによりLiFePO4炭素複合体の単相合
成を確実に行うことができるといえる。
[0140] From the above facts, when synthesizing the LiFePO 4 carbon composite material described above, it can be said that the firing temperature can be reliably performed by the single-phase synthesis of the LiFePO 4 carbon composite material by a 350 ° C. or higher.

【0141】また、実施例9乃至実施例15、比較例3
及び比較例4で作製したコイン型テストセルについて、
上記と同様にして充放電試験を行い、初期放電容量密度
を評価した。その結果を結果を表3合わせて示す。な
お、表3における電池評価は、初期放電容量密度が14
0mAh/g以上のものを実用推奨レベルとして○を記
し、初期放電容量密度110mAh/g以上140mA
h/g未満のものを実用可能レベルとして△を記し、初
期放電容量密度が110mAh/g未満のものを実用不
可として×を記した。
Examples 9 to 15 and Comparative Example 3
And about the coin-type test cell produced in Comparative Example 4,
A charge / discharge test was performed in the same manner as above to evaluate the initial discharge capacity density. The results are shown together with the results in Table 3. The battery evaluation in Table 3 indicates that the initial discharge capacity density was 14%.
A mark of 0 mAh / g or more is marked as "O" as a practical recommended level, and the initial discharge capacity density is 110 mAh / g or more and 140 mA or more.
Those with a h / g of less than 110 mAh / g were marked as unusable when the initial discharge capacity density was less than 110 mAh / g.

【0142】表3から判るように、LiFePO4炭素
複合体を合成する際の焼成温度が350℃〜900℃で
ある実施例9乃至実施例15では、初期放電容量密度
は、全てにおいて良好な値を示した。
As can be seen from Table 3, in Examples 9 to 15 in which the firing temperature at the time of synthesizing the LiFePO 4 carbon composite was 350 ° C. to 900 ° C., the initial discharge capacity density was a good value in all cases. showed that.

【0143】一方、LiFePO4炭素複合体を合成す
る際の焼成温度が300℃である比較例3では、初期放
電容量密度は103mAh/gと低い値を示した。これ
は、正極活物質であるLiFePO4炭素複合体が単相
合成されていないため、電池反応に寄与する正極活物質
量が少ないためであると考えられる。
On the other hand, in Comparative Example 3, in which the firing temperature at the time of synthesizing the LiFePO 4 carbon composite was 300 ° C., the initial discharge capacity density was as low as 103 mAh / g. This is considered to be because the amount of the positive electrode active material contributing to the battery reaction is small because the LiFePO 4 carbon composite as the positive electrode active material has not been synthesized in a single phase.

【0144】また、LiFePO4炭素複合体を合成す
る際の焼成温度が1000℃である比較例4でも、初期
放電容量密度は74mAh/gと低い値を示した。これ
は、焼成温度が高すぎるため、焼成中のLiFePO4
粒子の粒子成長が著しくなり、巨大な粒径を有するLi
FePO4炭素複合体が合成され導電材との接触面積が
減少したため、電子伝導性の減少により電池の閉回路時
の分極が大きくなり、その結果、容量減少が生じたため
であると考えられる。
In Comparative Example 4 in which the sintering temperature for synthesizing the LiFePO 4 carbon composite was 1000 ° C., the initial discharge capacity density was as low as 74 mAh / g. This is because the firing temperature is too high, and the LiFePO 4
The particle growth of the particles becomes remarkable, and Li having a huge particle size
This is considered to be because the FePO 4 carbon composite was synthesized and the contact area with the conductive material was reduced, so that the polarization at the time of the closed circuit of the battery was increased due to the decrease in the electronic conductivity, and as a result, the capacity was reduced.

【0145】以上のことより、LiFePO4炭素複合
体を合成する際の焼成温度は、350℃〜900℃とす
ることが好ましいといえる。しかし、電池特性の観点か
らは、正極活物質の初期放電容量密度は140mAh/
g以上であることが好ましく、このことよりLiFeP
4炭素複合体を合成する際の焼成温度は、400℃〜
800℃とすることがより好ましいといえる。
From the above, it can be said that the sintering temperature when synthesizing the LiFePO 4 carbon composite is preferably 350 ° C. to 900 ° C. However, from the viewpoint of battery characteristics, the initial discharge capacity density of the positive electrode active material is 140 mAh /
g or more, so that LiFeP
The firing temperature for synthesizing the O 4 carbon composite is 400 ° C.
It can be said that 800 ° C. is more preferable.

【0146】次に、ポリマー電池を作製し、特性を評価
した。
Next, a polymer battery was fabricated and its characteristics were evaluated.

【0147】<実施例16>まず、ゲル状電解質を以下
に示すようにして作製した。まず、ヘキサフルオロプロ
ピレンが6.9重量%の割合で共重合されたポリフッ化
ビニリデンと、非水電解液と、ジメチルカーボネートと
を混合し、撹拌、溶解させ、ゾル状の電解質溶液を調製
した。次いで、ゾル状の電解質溶液に、ビニレンカーボ
ネート(VC)を0.5重量%の割合で添加してゲル状
電解質溶液とした。なお、非水電解液として、エチレン
カーボネート(EC)と、プロピレンカーボネート(P
C)とを体積比で6:4の割合で混合した混合溶媒にL
iPF6を0.85mol/kgの割合で溶解させたも
のを使用した。
Example 16 First, a gel electrolyte was prepared as described below. First, polyvinylidene fluoride in which hexafluoropropylene was copolymerized at a ratio of 6.9% by weight, a non-aqueous electrolyte, and dimethyl carbonate were mixed, stirred, and dissolved to prepare a sol electrolyte solution. Next, vinylene carbonate (VC) was added to the sol electrolyte solution at a ratio of 0.5% by weight to obtain a gel electrolyte solution. In addition, ethylene carbonate (EC) and propylene carbonate (P
C) and L at a ratio of 6: 4 by volume.
The iPF 6 was used after dissolved in a proportion of 0.85 mol / kg.

【0148】次いで、正極を以下に示すようにして作製
した。まず、実施例12で作製したLiFePO4炭素
複合体を85重量部、導電剤としてグラファイトを10
重量部、結着剤としてフッ素樹脂粉末であるポリ(ビニ
リデンフルオロライド)5重量部とを混合して正極合剤
を調製した後、N−メチルピロリドンを加えてスラリー
状にしたものを準備した。次に、このスラリーを厚み2
0μmのアルミ箔に塗布、加熱乾燥後、加圧工程を経て
正極塗布箔を作製した。次に、この正極塗布箔の片面に
ゲル状電解質溶液を塗布後、乾燥して溶剤を除去した
後、セルの径に準じて直径15mmの円形に打ち抜き、
正極電極とした。
Next, a positive electrode was prepared as follows. First, 85 parts by weight of the LiFePO 4 carbon composite prepared in Example 12 and 10 parts of graphite as a conductive agent were used.
A positive electrode mixture was prepared by mixing 5 parts by weight of poly (vinylidene fluoride), which is a fluororesin powder, as a binder, and then a slurry was prepared by adding N-methylpyrrolidone. Next, this slurry was applied to a thickness of 2
After coating and heating and drying on an aluminum foil of 0 μm, a positive electrode coated foil was produced through a pressing step. Next, after applying a gel electrolyte solution to one side of the positive electrode coating foil, drying and removing the solvent, the sheet was punched into a circle having a diameter of 15 mm according to the diameter of the cell,
A positive electrode was used.

【0149】次いで、負極を以下に示すようにして作製
した。まず、黒鉛粉末にバインダーとしてフッ素樹脂粉
末を10重量%混合し、N−メチルピロリドンを加えて
スラリー状にしたものを準備した。次に、このスラリー
を銅箔に塗布、加熱乾燥後、加圧工程を経てセルの大き
さに準じて直径16.5mmの円形に打ち抜き、負極電
極とした。
Next, a negative electrode was manufactured as follows. First, a slurry was prepared by mixing 10% by weight of a fluororesin powder as a binder with graphite powder and adding N-methylpyrrolidone. Next, this slurry was applied to a copper foil, heated and dried, and then subjected to a pressing step to punch out a 16.5 mm diameter circle in accordance with the size of the cell to obtain a negative electrode.

【0150】以上のようにして得られた正極を正極缶に
収容し、負極を負極缶に収容し、正極と負極との間にセ
パレータを配した。そして、正極缶と負極缶とをかしめ
て固定することにより、直径20mm、厚み1.6mm
の2016型のコイン型リチウムポリマー電池を作製し
た。
The positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was disposed between the positive electrode and the negative electrode. Then, by caulking and fixing the positive electrode can and the negative electrode can, the diameter is 20 mm and the thickness is 1.6 mm.
No. 2016 coin-type lithium polymer battery was produced.

【0151】<実施例17>正極を作製する際に、実施
例13で作製したLiFePO4炭素複合体を用いたこ
と以外は、実施例16と同様にしてコイン型リチウムポ
リマー電池を作製した。
Example 17 A coin-type lithium polymer battery was produced in the same manner as in Example 16, except that the LiFePO 4 carbon composite produced in Example 13 was used when producing the positive electrode.

【0152】以上のようにして作製した実施例16及び
実施例17のコイン型リチウムポリマー電池について、
上記と同様にして充放電サイクル特性試験を行い、初期
放電容量密度及び30サイクル後の放電容量維持率を求
めた。その結果を表4に示す。
With respect to the coin-type lithium polymer batteries of Examples 16 and 17 manufactured as described above,
A charge / discharge cycle characteristic test was performed in the same manner as described above, and the initial discharge capacity density and the discharge capacity retention rate after 30 cycles were obtained. Table 4 shows the results.

【0153】[0153]

【表4】 [Table 4]

【0154】表4から判るように、初期放電容量密度、
30サイクル後の容量維持率ともに良好な値を示してい
る。このことから、本発明に係る製造方法により製造さ
れた正極活物質は、非水電解質として非水電解液の代わ
りにゲル状電解質を用いてポリマー電池を構成した場合
においても良好な電池特性を得ることができるといえ
る。
As can be seen from Table 4, the initial discharge capacity density,
The capacity retention rate after 30 cycles shows a good value. From this, the positive electrode active material manufactured by the manufacturing method according to the present invention obtains good battery characteristics even when a polymer battery is configured using a gel electrolyte instead of a nonaqueous electrolyte as a nonaqueous electrolyte. You can say that

【0155】[0155]

【発明の効果】本発明に係る正極活物質の製造方法は、
リチウム塩と鉄塩とを含有するリン酸水溶液に水溶性有
機還元剤を混合して混合水溶液を調製し、当該混合水溶
液にアルカリ溶液を混合してリチウムと鉄との複合リン
酸化物の共沈体を生成させる共沈工程と、共沈体を焼成
する焼成工程とを有するものである。
The method for producing a positive electrode active material according to the present invention comprises:
A mixed aqueous solution is prepared by mixing a water-soluble organic reducing agent with a phosphoric acid aqueous solution containing a lithium salt and an iron salt, and an alkaline solution is mixed with the mixed aqueous solution to co-precipitate a composite phosphorous oxide of lithium and iron. It has a co-precipitation step for producing a body and a firing step for firing the co-precipitate.

【0156】以上のような正極活物質の製造方法は、固
相反応による合成法でないため、正極活物質の合成原料
粉末を粉砕、混合する工程が不要とされるため、設備導
入によるコスト上昇がなく、また、簡便に正極活物質を
製造することが可能となる。
Since the above-described method for producing a positive electrode active material is not a synthesis method based on a solid-phase reaction, the step of pulverizing and mixing the raw material powder for the synthesis of the positive electrode active material is not required, so that the cost increase due to the introduction of equipment is increased. In addition, it is possible to easily produce a positive electrode active material.

【0157】また、正極活物質の合成原料としては、一
般的な材料を用いるため、原料コストが低く抑えること
ができる。
Further, since a general material is used as a raw material for synthesizing the positive electrode active material, the raw material cost can be kept low.

【0158】したがって、本発明によれば、製造コスト
が安価であり、且つ簡便な正極活物質の製造方法を提供
することが可能となる。
Therefore, according to the present invention, it is possible to provide a method for manufacturing a positive electrode active material which is inexpensive and easy to manufacture.

【0159】本発明に係る非水電解質二次電池の製造方
法は、正極活物質を有する正極と、負極活物質を有する
負極と、非水電解質とを備える非水電解質二次電池の製
造方法であって、リチウム塩と鉄塩とを含有するリン酸
水溶液に水溶性有機還元剤を混合し、さらにアルカリ溶
液を混合してリチウムと鉄との複合リン酸化物の共沈体
を生成させる共沈工程と、共沈体を焼成する焼成工程と
を経て上記正極活物質を製造するものである。
The method for manufacturing a nonaqueous electrolyte secondary battery according to the present invention is a method for manufacturing a nonaqueous electrolyte secondary battery including a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte. Then, a water-soluble organic reducing agent is mixed with a phosphoric acid aqueous solution containing a lithium salt and an iron salt, and an alkali solution is further mixed to form a coprecipitate of a composite phosphorous oxide of lithium and iron. The positive electrode active material is produced through a step and a firing step of firing the coprecipitate.

【0160】以上のような非水電解質二次電池の製造方
法では、固相反応による合成法でなく、共沈を用いた合
成法により正極活物質を製造することにより、正極活物
質の合成原料粉末を粉砕、混合する工程が不要とされる
ため、設備導入によるコスト上昇がなく、また、簡便に
非水電解質二次電池を製造することが可能となる。
In the method for manufacturing a non-aqueous electrolyte secondary battery as described above, the cathode active material is produced not by a solid phase reaction but by a synthesis method using co-precipitation, so that the raw material of the cathode active material is synthesized. Since the step of pulverizing and mixing the powder is not required, there is no increase in cost due to the introduction of equipment, and the nonaqueous electrolyte secondary battery can be easily manufactured.

【0161】また、正極活物質の合成原料としては、一
般的な材料を用いるため、原料コストが低く抑えること
ができる。
Further, since a general material is used as a raw material for synthesizing the positive electrode active material, the raw material cost can be kept low.

【0162】したがって、本発明によれば、製造コスト
が安価であり、且つ簡便な非水電解質二次電池の製造方
法を提供することが可能となる。
Therefore, according to the present invention, it is possible to provide a method for manufacturing a non-aqueous electrolyte secondary battery which is inexpensive and easy to manufacture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した非水電解質二次電池の一構成
例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a configuration example of a nonaqueous electrolyte secondary battery to which the present invention is applied.

【符号の説明】 1 非水電解質電池、2 負極、3 負極缶、4 正
極、5 正極缶、6 セパレータ、7 絶縁ガスケット
[Description of Signs] 1 Non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4 positive electrode, 5 positive electrode can, 6 separator, 7 insulating gasket

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ14 AK03 AL02 AL06 AL12 AL16 AM02 AM03 AM04 AM05 AM07 CJ02 CJ08 DJ09 HJ14 5H050 AA19 BA16 BA17 CA07 CB02 CB07 CB12 CB20 DA02 GA02 GA10 HA14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ14 AK03 AL02 AL06 AL12 AL16 AM02 AM03 AM04 AM05 AM07 CJ02 CJ08 DJ09 HJ14 5H050 AA19 BA16 BA17 CA07 CB02 CB07 CB12 CB20 DA02 GA02 GA10 HA14

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 リチウム塩と鉄塩とを含有するリン酸水
溶液に水溶性有機還元剤を混合して混合水溶液を調整
し、当該混合水溶液にアルカリ溶液を混合してリチウム
と鉄との複合リン酸化物の共沈体を生成させる共沈工程
と、 上記共沈体を焼成する焼成工程とを有することを特徴と
する正極活物質の製造方法。
An aqueous phosphoric acid solution containing a lithium salt and an iron salt is mixed with a water-soluble organic reducing agent to prepare a mixed aqueous solution, and an alkaline solution is mixed with the mixed aqueous solution to form a complex phosphorous mixture of lithium and iron. A method for producing a positive electrode active material, comprising: a coprecipitation step of generating a coprecipitate of an oxide; and a firing step of firing the coprecipitate.
【請求項2】 上記共沈工程と上記焼成工程との間に、
上記共沈体を乾燥させる乾燥工程を有することを特徴と
する請求項1記載の正極活物質の製造方法。
2. Between the co-precipitation step and the firing step,
The method for producing a positive electrode active material according to claim 1, further comprising a drying step of drying the coprecipitate.
【請求項3】 上記焼成工程における焼成温度が、35
0℃〜750℃であることを特徴とする請求項1記載の
正極活物質の製造方法。
3. The firing temperature in the firing step is 35.
The method for producing a positive electrode active material according to claim 1, wherein the temperature is 0C to 750C.
【請求項4】 上記共沈工程において、リチウム塩と鉄
塩とを含有するリン酸水溶液に水溶性有機還元剤を混合
し、さらに炭素材料を添加した後、アルカリ溶液を混合
してリチウムと鉄との複合リン酸化物の共沈体を生成さ
せることを特徴とする請求項1記載の正極活物質の製造
方法。
4. In the co-precipitation step, a water-soluble organic reducing agent is mixed with a phosphoric acid aqueous solution containing a lithium salt and an iron salt, a carbon material is added, and an alkali solution is mixed to form lithium and iron. The method for producing a positive electrode active material according to claim 1, wherein a coprecipitate of a composite phosphorous oxide is produced.
【請求項5】 上記焼成工程における焼成温度が、35
0℃〜900℃であることを特徴とする請求項4記載の
正極活物質の製造方法。
5. The firing temperature in the firing step is 35.
The method for producing a positive electrode active material according to claim 4, wherein the temperature is 0C to 900C.
【請求項6】 正極活物質を有する正極と、負極活物質
を有する負極と、非水電解質とを備える非水電解質二次
電池の製造方法であって、 リチウム塩と鉄塩とを含有するリン酸水溶液に水溶性有
機還元剤を混合し、さらにアルカリ溶液を混合してリチ
ウムと鉄との複合リン酸化物の共沈体を生成させる共沈
工程と、上記共沈体を焼成する焼成工程とを経て上記正
極活物質を製造することを特徴とする非水電解質二次電
池の製造方法。
6. A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte, comprising: a phosphorus containing a lithium salt and an iron salt. A coprecipitation step of mixing a water-soluble organic reducing agent with an acid aqueous solution, further mixing an alkaline solution to form a coprecipitate of a composite phosphorous oxide of lithium and iron, and a firing step of firing the coprecipitate; A method for producing a non-aqueous electrolyte secondary battery, comprising producing the above-mentioned positive electrode active material through the following.
【請求項7】 上記共沈工程後に、上記共沈体を乾燥さ
せる乾燥工程を有することを特徴とする請求項6記載の
非水電解質二次電池の製造方法。
7. The method for producing a nonaqueous electrolyte secondary battery according to claim 6, further comprising a drying step of drying the coprecipitate after the coprecipitation step.
【請求項8】 上記焼成工程における焼成温度が、35
0℃〜750℃であることを特徴とする請求項6記載の
非水電解質二次電池の製造方法。
8. The firing temperature in the firing step is 35.
The method for producing a non-aqueous electrolyte secondary battery according to claim 6, wherein the temperature is 0C to 750C.
【請求項9】 上記共沈工程において、リチウム塩と鉄
塩とを含有するリン酸水溶液に水溶性有機還元剤を混合
し、さらに炭素材料を添加した後、アルカリ溶液を混合
してリチウムと鉄との複合リン酸化物の共沈体を生成さ
せることを特徴とする請求項6記載の非水電解質二次電
池の製造方法。
9. In the coprecipitation step, a water-soluble organic reducing agent is mixed with a phosphoric acid aqueous solution containing a lithium salt and an iron salt, a carbon material is further added, and an alkali solution is mixed to form lithium and iron. 7. The method for producing a non-aqueous electrolyte secondary battery according to claim 6, wherein a coprecipitate of a composite phosphorous oxide is formed.
【請求項10】 上記焼成工程における焼成温度が、3
50℃〜900℃であることを特徴とする請求項9記載
の非水電解質二次電池の製造方法。
10. The firing temperature in the firing step is 3
The method for producing a non-aqueous electrolyte secondary battery according to claim 9, wherein the temperature is 50C to 900C.
【請求項11】 上記非水電解質が、液系電解質である
ことを特徴とする請求項6記載の非水電解質二次電池の
製造方法。
11. The method for producing a non-aqueous electrolyte secondary battery according to claim 6, wherein the non-aqueous electrolyte is a liquid electrolyte.
【請求項12】 上記非水電解質が、ポリマー電解質で
あることを特徴とする請求項6記載の非水電解質二次電
池の製造方法。
12. The method for producing a non-aqueous electrolyte secondary battery according to claim 6, wherein the non-aqueous electrolyte is a polymer electrolyte.
JP2000306879A 2000-10-05 2000-10-05 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery Expired - Lifetime JP4724912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306879A JP4724912B2 (en) 2000-10-05 2000-10-05 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306879A JP4724912B2 (en) 2000-10-05 2000-10-05 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002117831A true JP2002117831A (en) 2002-04-19
JP4724912B2 JP4724912B2 (en) 2011-07-13

Family

ID=18787489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306879A Expired - Lifetime JP4724912B2 (en) 2000-10-05 2000-10-05 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4724912B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083555A3 (en) * 2001-04-10 2003-05-30 Zsw Binary, ternary and quaternary lithium phosphates, method for the production thereof and use of the same
WO2004036671A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for secondary cell, and secondary cell
JP2004259470A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Positive electrode active material for lithium ion battery, and lithium ion battery having it
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials
JP2005533742A (en) * 2002-07-26 2005-11-10 ヴァレンス テクノロジー インコーポレーテッド Alkali metal hydrogen phosphate as a raw material for phosphoric acid-containing electrochemically active materials
KR100808446B1 (en) 2006-12-26 2008-03-03 건국대학교 산학협력단 Method for preparing lifepo4 powder of lithium cell
JP2009029663A (en) * 2007-07-27 2009-02-12 Nippon Chem Ind Co Ltd Method for producing lithium-iron-phosphorus compound oxide-carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP2009046383A (en) * 2007-07-24 2009-03-05 Nippon Chem Ind Co Ltd Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex, and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP2009054576A (en) * 2007-07-27 2009-03-12 Nippon Chem Ind Co Ltd Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
JPWO2008105490A1 (en) * 2007-02-28 2010-06-03 株式会社三徳 Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR101205456B1 (en) 2010-09-02 2012-11-28 국립대학법인 울산과학기술대학교 산학협력단 Method of preparing positive active material for rechargeable lithium battery using iron3 oxide, positive active material for rechargeable lithium battery prepared by using the method, and rechargeable lithium battery including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266882A (en) * 1999-05-10 2001-09-28 Hydro Quebec New lithium insertion electrode material based on orthosilicate derivatives
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266882A (en) * 1999-05-10 2001-09-28 Hydro Quebec New lithium insertion electrode material based on orthosilicate derivatives
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168150B2 (en) 2001-04-10 2012-05-01 Zentrum Fur Sonnenenergie-Und Wasserstoff-Forschung Baden-Wurttenberg, Gemeinnutzige Stiftung Binary, ternary and quaternary lithium phosphates, method for the production thereof and use of the same
WO2002083555A3 (en) * 2001-04-10 2003-05-30 Zsw Binary, ternary and quaternary lithium phosphates, method for the production thereof and use of the same
JP2010047471A (en) * 2002-05-17 2010-03-04 Valence Technology Inc Method for synthesizing metal compound useful as cathode active material
JP2012121801A (en) * 2002-05-17 2012-06-28 Valence Technology Inc Method for synthesizing metal compound useful as cathode active material
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials
JP2005533742A (en) * 2002-07-26 2005-11-10 ヴァレンス テクノロジー インコーポレーテッド Alkali metal hydrogen phosphate as a raw material for phosphoric acid-containing electrochemically active materials
WO2004036671A1 (en) * 2002-10-18 2004-04-29 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for secondary cell, and secondary cell
CN100359726C (en) * 2002-10-18 2008-01-02 国立九州大学 Method for preparing positive electrode material for secondary cell, and secondary cell
KR101061664B1 (en) * 2002-10-18 2011-09-01 미쯔이 죠센 가부시키가이샤 Method for producing positive electrode material for secondary battery, and secondary battery
JP2004259470A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Positive electrode active material for lithium ion battery, and lithium ion battery having it
KR100808124B1 (en) * 2003-10-31 2008-02-29 도요다 지도샤 가부시끼가이샤 Electrode active material and use thereof
JP2005158673A (en) * 2003-10-31 2005-06-16 Toyota Motor Corp Electrode active material, manufacturing method therefor and non-aqueous secondary battery
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
KR100808446B1 (en) 2006-12-26 2008-03-03 건국대학교 산학협력단 Method for preparing lifepo4 powder of lithium cell
JPWO2008105490A1 (en) * 2007-02-28 2010-06-03 株式会社三徳 Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2009046383A (en) * 2007-07-24 2009-03-05 Nippon Chem Ind Co Ltd Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex, and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP2009054576A (en) * 2007-07-27 2009-03-12 Nippon Chem Ind Co Ltd Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
JP2009029663A (en) * 2007-07-27 2009-02-12 Nippon Chem Ind Co Ltd Method for producing lithium-iron-phosphorus compound oxide-carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
KR101205456B1 (en) 2010-09-02 2012-11-28 국립대학법인 울산과학기술대학교 산학협력단 Method of preparing positive active material for rechargeable lithium battery using iron3 oxide, positive active material for rechargeable lithium battery prepared by using the method, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP4724912B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4491946B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4151210B2 (en) Positive electrode active material and method for producing the same, non-aqueous electrolyte battery and method for producing the same
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CA2796903C (en) Positive electrode active material and non-aqueous electrolyte cell
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2015531143A (en) Doped nickel acid compound
JP2012099482A (en) Positive electrode active material for lithium secondary battery, method of manufacturing positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20040033599A (en) Cathode material for lithium secondary batteries and method for manufacturing the Same
KR20120056674A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4848582B2 (en) Method for producing positive electrode active material
JP4207434B2 (en) Positive electrode active material and method for producing non-aqueous electrolyte battery
JP4491949B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4724912B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP4769995B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4491950B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
KR101100029B1 (en) Method of preparing positive active material for lithium secondary battery and rechargeable lithium battery
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR100718020B1 (en) Preparation method of lithium iron phosphate
JP2001058828A (en) Method for synthesizing lithium-manganese compound oxide and method for producing nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R151 Written notification of patent or utility model registration

Ref document number: 4724912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250