JP2002033128A - Lithium polymer secondary battery - Google Patents

Lithium polymer secondary battery

Info

Publication number
JP2002033128A
JP2002033128A JP2000215522A JP2000215522A JP2002033128A JP 2002033128 A JP2002033128 A JP 2002033128A JP 2000215522 A JP2000215522 A JP 2000215522A JP 2000215522 A JP2000215522 A JP 2000215522A JP 2002033128 A JP2002033128 A JP 2002033128A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
secondary battery
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000215522A
Other languages
Japanese (ja)
Other versions
JP4830182B2 (en
Inventor
Nobuo Eda
信夫 江田
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000215522A priority Critical patent/JP4830182B2/en
Publication of JP2002033128A publication Critical patent/JP2002033128A/en
Application granted granted Critical
Publication of JP4830182B2 publication Critical patent/JP4830182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To solve a problem that heat stability is insufficient due to large heat generation when overcharging beyond the normal charging termination voltage is performed in addition to a problem that a large quantity of gas is generated when a lithium polymer secondary battery is stored at a high temperature. SOLUTION: Six-silane lithium fluoride (Li2SiF6) is formed on the surface of a negative electrode active material during preservation to suppress generation of gas in high temperature preservation by arranging vinylidene fluoride system copolymer film adding fine powder of silicon dioxide on a surface facing a negative electrode as an isolation member. Heat generation from a positive electrode is absorbed and excellent heat stability and safety of a battery can be secured, even when a battery charger fails and charging is not controlled by arranging a microporous polyethylene film on a surface facing the positive electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル状ポリマー電
解質を隔離部材として正極と負極の間に配したリチウム
ポリマー二次電池に関する。詳しくは、隔離部材の構成
と配置の改良に関するものである。
The present invention relates to a lithium polymer secondary battery in which a gel polymer electrolyte is disposed between a positive electrode and a negative electrode as an isolating member. More specifically, the present invention relates to an improvement in the configuration and arrangement of the isolation member.

【0002】[0002]

【従来の技術】リチウムイオンを可逆的に収納・脱離し
うるリチウム含有金属酸化物を正極材料とし、該正極材
料から脱離するリチウムイオンを充電時に可逆的に収納
しうる負極材料からなる非水電解質二次電池、いわゆる
リチウム二次電池の薄型化と安全性向上の方策として、
一般的なセパレータの代わりに非水電解液を吸収し保持
固定しうるポリマー材料、例えばポリフッ化ビニリデン
(PVDF)に電解液を吸収保持させたゲル状ポリマー
電解質を用いることが既に提案されている(例えば、米
国特許第5,296,318号明細書または特表平8−
507407号公報)。この構成になる電池は、発電要
素を簡易な外装体、すなわちアルミニウム箔と樹脂フィ
ルムとの積層ラミネートフィルムを用いて密封したもの
が代表的であり、現在その商品化への取り組みが積極的
に行われている。
2. Description of the Related Art A lithium-containing metal oxide capable of reversibly storing and releasing lithium ions is used as a positive electrode material, and a non-aqueous material comprising a negative electrode material capable of reversibly storing lithium ions released from the positive electrode material during charging. As measures to make electrolyte secondary batteries, so-called lithium secondary batteries thinner and improve safety,
It has already been proposed to use a polymer material capable of absorbing and holding and fixing a non-aqueous electrolyte solution, for example, a gel polymer electrolyte in which an electrolyte solution is absorbed and held in polyvinylidene fluoride (PVDF) instead of a general separator ( For example, U.S. Pat. No. 5,296,318 or Japanese Unexamined Patent Publication No.
507407). A battery having this configuration is typically a battery in which a power generation element is sealed using a simple exterior body, that is, a laminated laminate film of aluminum foil and a resin film. Currently, active efforts are being made to commercialize the battery. Have been done.

【0003】例えば、上記米国特許に開示され、多くの
会社で開発量産されている電池は、正極にLiCoO2
またはLiMn24を使用し、負極には黒鉛を始めとし
た炭素材料を、セパレータを兼ねる電解質にはフッ化ビ
ニリデン系ポリマーに非水電解液を吸収・ゲル化させた
ものからなっている。ゲル状ポリマー電解質はゲル化に
より形成されるポリマーの三次元網目構造内に電解液を
保持させたものであり、イオン導電性を確保するととも
に電解液の固定化により漏液がなくなる特徴を有してい
る。
[0003] For example, the battery disclosed in the above-mentioned US patent and developed and mass-produced by many companies has a positive electrode of LiCoO 2.
Alternatively, LiMn 2 O 4 is used, the negative electrode is made of a carbon material such as graphite, and the electrolyte also serving as a separator is made of a vinylidene fluoride-based polymer made of a non-aqueous electrolyte absorbed and gelled. The gel-like polymer electrolyte holds the electrolyte in a three-dimensional network structure of the polymer formed by gelation, and has the characteristics of ensuring ionic conductivity and eliminating liquid leakage by fixing the electrolyte. ing.

【0004】従来、このようなリチウムポリマー二次電
池を作製する方法としては、電解液と重合性化合物(モ
ノマー)と重合開始剤とを含む電解質溶液(プレゲル電
解質溶液)を正極及び/または負極に塗布または含浸さ
せた後、加熱もしくは紫外線、電子線等の照射により少
なくとも電極表面にゲル状ポリマー電解質膜を形成させ
る方法や、予め作製したゲル状ポリマー電解質膜もしく
は多孔質体に塗布してなるゲル状ポリマー電解質膜を正
極と負極との間に挟み込んで電池を構成する方法などが
提案されている。
Conventionally, as a method for producing such a lithium polymer secondary battery, an electrolyte solution (pregel electrolyte solution) containing an electrolyte solution, a polymerizable compound (monomer) and a polymerization initiator is used as a positive electrode and / or a negative electrode. After coating or impregnating, a method of forming a gel-like polymer electrolyte membrane on at least the electrode surface by heating or irradiation of ultraviolet rays, electron beams, etc., or a gel prepared by applying the gel-like polymer electrolyte membrane or porous body prepared in advance A method has been proposed in which a battery is formed by sandwiching a polymer electrolyte membrane between a positive electrode and a negative electrode.

【0005】[0005]

【発明が解決しようとする課題】上記のゲル状ポリマー
電解質のみからなる電池系は、電解液がポリマー材料に
よって固定化されているため可燃性である有機溶媒の蒸
気圧が低下し引火性が改善されて、充電された正負極材
料と有機溶媒との反応性が抑制されるため発熱速度と量
の点においてある程度の耐熱性の向上が認められる。し
かし電池外部にある電子回路面での第1段目の安全デバ
イスである充電器や第2段目の安全デバイスである充電
器内の安全回路が故障した場合の安全性には課題が残っ
ている。例えば、ゲル状のポリマー電解質のみからなる
電池系には電流遮断機能がなく、その上過充電により電
池の温度が上昇すると、ゲルの硬度が低下するためイオ
ンが易動化できて電流が流れやすくなり、安全性確保に
は一層難しさが増加する。他方、通常の電解液を用いた
電池の場合には、遮断効果を持たせた単層あるいは多層
のポリオレフィン製セパレータを配置して上記の課題を
解決している。
In the battery system comprising only the gel polymer electrolyte described above, the flammability is improved by reducing the vapor pressure of the flammable organic solvent because the electrolyte is fixed by the polymer material. Then, since the reactivity between the charged positive and negative electrode materials and the organic solvent is suppressed, some improvement in heat resistance in terms of the heat generation rate and amount is recognized. However, there remains a problem in the safety when the charger as the first-stage safety device or the safety circuit in the second-stage safety device in the electronic circuit outside the battery breaks down. I have. For example, a battery system consisting only of a gel-like polymer electrolyte does not have a current interruption function. In addition, when the temperature of the battery increases due to overcharging, the hardness of the gel decreases, so that ions can be mobilized and current flows easily. As a result, it becomes more difficult to secure safety. On the other hand, in the case of a battery using a normal electrolytic solution, the above-mentioned problem is solved by disposing a single-layer or multilayer polyolefin separator having a blocking effect.

【0006】リチウムイオン系電池の課題は、過充電に
至った場合の安全性確保のほかに、信頼性、特に長期保
存時のガス発生による電池の膨れや最終的には電池ケー
スのベント(開口)の問題がある。特に充電された負極
は金属リチウムと同程度に反応性が高いだけに、負極と
接している電解液は還元分解され、多量のガス発生に至
る。とくに電池が薄型化を指向していく場合に、一般的
に採用されるアルミラミネート外装体は金属外装缶に比
べて機械的強度に欠け膨張変形しやすいので、このガス
発生は致命的なものとなっている。
[0006] Lithium-ion batteries have a problem in that, in addition to ensuring safety in the event of overcharging, reliability, especially battery swelling due to gas generation during long-term storage and ultimately venting (opening) of the battery case. ) Problem. In particular, the charged negative electrode is only as reactive as metallic lithium, and the electrolyte in contact with the negative electrode is reduced and decomposed, resulting in a large amount of gas generation. In particular, when batteries are going to be thinner, this type of gas generation is fatal because commonly used aluminum laminate outer bodies lack mechanical strength and are more likely to expand and deform than metal outer cans. Has become.

【0007】本発明は上記したような課題を解決するも
のであり、リチウムポリマー二次電池の安全性と信頼性
を同時に確保することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to simultaneously secure safety and reliability of a lithium polymer secondary battery.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明のリチウムポリマー二次電池は、まず充電器お
よび安全回路が故障して充電に規制がかからなくなった
場合の安全性確保を目標として、その熱暴走反応を誘起
する因子を検討解析した。この結果、充電された正極と
電解液との反応が、110℃付近からの最初の大きな発
熱をもたらす原因であることを解明した。この発熱に引
き続き、充電された負極と電解液とが反応して制止の効
かない熱暴走反応に至ることが判明した。このとき、最
初の正極と電解液との反応による発熱を放散または何ら
かの形で吸収してやると、引き続く負極と電解液との反
応を阻止でき、致命的な熱暴走を阻止できることも判明
した。そこで正極での発熱を吸収抑制するために検討を
重ねた結果、100℃付近から融解をはじめるポリエチ
レンの膜や微粒子を正極中またはその近傍に配置するこ
とが有効であることが判明した。電池製造を考慮する
と、特にポリエチレンの微多孔膜が最も簡便で効果的で
ある。
Means for Solving the Problems In order to achieve the above object, a lithium polymer secondary battery of the present invention secures safety when charging is no longer restricted due to failure of a charger and a safety circuit. As a goal, the factors that induce the thermal runaway reaction were investigated and analyzed. As a result, it was clarified that the reaction between the charged positive electrode and the electrolytic solution was the cause of the first large heat generation around 110 ° C. Following this heat generation, it was found that the charged negative electrode and the electrolytic solution reacted, leading to an uncontrollable thermal runaway reaction. At this time, it was also found that if the heat generated by the first reaction between the positive electrode and the electrolytic solution was dissipated or absorbed in some way, the subsequent reaction between the negative electrode and the electrolytic solution could be prevented, and fatal thermal runaway could be prevented. Therefore, as a result of repeated studies to suppress heat generation in the positive electrode, it has been found that it is effective to arrange a polyethylene film or fine particles that start melting at around 100 ° C. in or near the positive electrode. In consideration of battery production, a microporous polyethylene membrane is particularly simple and effective.

【0009】2番目の課題である保存中のガス発生につ
いては、発生したガスの成分と組成分析を行うともに、
充電した正、負極それぞれを電解液とともにアルミラミ
ネート製の袋に個別に保存し、ガス発生の状況を観察し
ながら量や成分を測定分析した。この結果、ガス発生は
主に充電された負極と電解液との反応によるものである
ことが判明した。負極表面でのガス発生を抑制するに
は、負極と電解液を遮断または隔離することが有効であ
るが、解決策の1つとして負極表面に皮膜を形成してや
ることがある。ただし、この皮膜は充放電に際して負極
から出入りするリチウムイオンを透過しうることが必要
である。つまりリチウムイオン伝導性のものでなくては
ならない。現在、この皮膜形成には電解液中にビニレン
カーボネートやエチレンサルファイトなどの添加が有効
であると報告されている。しかし、負極表面に6フッ化
シランリチウム(Li2SiF6)を形成すると、非常に
有効であることが今回新たに判明した。この場合、電池
内部に極微量の水分が共存することが重要因子である。
分析結果から類推する反応機構の概略を下記に示す。
Regarding the second problem, gas generation during storage, the components and composition of the generated gas are analyzed and
Each of the charged positive electrode and negative electrode was separately stored in an aluminum laminate bag together with the electrolytic solution, and the amounts and components were measured and analyzed while observing the state of gas generation. As a result, it was found that gas generation was mainly due to the reaction between the charged negative electrode and the electrolyte. In order to suppress gas generation on the surface of the negative electrode, it is effective to cut off or isolate the electrolyte from the negative electrode. One of the solutions is to form a film on the surface of the negative electrode. However, this film needs to be able to transmit lithium ions coming in and out of the negative electrode during charge and discharge. That is, it must be lithium ion conductive. At present, it has been reported that the addition of vinylene carbonate, ethylene sulfite, or the like to the electrolyte is effective in forming this film. However, it has now been found that forming lithium hexafluorosilane (Li 2 SiF 6 ) on the negative electrode surface is very effective. In this case, the coexistence of a very small amount of water inside the battery is an important factor.
The outline of the reaction mechanism inferred from the analysis results is shown below.

【0010】 LiPF6+H2O → LiF+2HF+POF3 4HF+SiO2 → SiF4+2H2O SiF4+2LiF → Li2SiF6 この膜の形成方法を検討した結果では、負極合剤中に二
酸化ケイ素の微粉末を添するのが最も簡便であるが、そ
の効果にバラツキがあった。むしろ負極の対向面に予め
上記微粉末を配置し、ここで四フッ化シランガスを発生
させて、拡散により充電した負極表面で反応させて膜を
形成させたほうがバラツキも無く、効果も大きいことが
判明した。この機構を具現化するには、負極の対向面に
二酸化ケイ素の微粉末を添加したフィルムを設ける必要
があるが、単なるフィルムでは効果が小さい。本発明者
らは、電解液を吸収しゲル化する材料が好ましく、ゲル
化機能を有するフッ化ビニリデン共重合体からなるフィ
ルム中に二酸化ケイ素の微粉末を分散させる方法を見出
した。その製造プロセスや目的とするところは異なる
が、最終的に得られる膜自体は、米国特許第5,54
0,741号明細書または特表平10−511216号
公報に類似している。
LiPF 6 + H 2 O → LiF + 2HF + POF 3 4HF + SiO 2 → SiF 4 + 2H 2 O SiF 4 + 2LiF → Li 2 SiF 6 As a result of studying the method of forming this film, it was found that a fine powder of silicon dioxide was added to the negative electrode mixture. It is the simplest to do this, but the effects varied. Rather, it is better to arrange the fine powder on the opposite surface of the negative electrode in advance, generate silane tetrafluoride gas here, and react on the negative electrode surface charged by diffusion to form a film without variation and greater effect. found. In order to realize this mechanism, it is necessary to provide a film to which fine powder of silicon dioxide is added on the opposite surface of the negative electrode, but a simple film has little effect. The present inventors have found a method of dispersing a fine powder of silicon dioxide in a film made of a vinylidene fluoride copolymer having a gelling function, preferably a material that absorbs an electrolyte and gels. Although the manufacturing process and the purpose are different, the finally obtained film itself is disclosed in US Pat.
It is similar to the specification of Japanese Patent No. 0,741 or Japanese Patent Application Laid-Open No. 10-511216.

【0011】本発明では新たな電池構成として、正極の
近傍にポリエチレンの微多孔膜を配置し、かつ負極活物
質の表面に6フッ化シランリチウム(Li2SiF6)を
形成したものである。
In the present invention, as a new battery configuration, a microporous polyethylene film is disposed near the positive electrode, and lithium hexafluorosilane (Li 2 SiF 6 ) is formed on the surface of the negative electrode active material.

【0012】これにより充電器や安全回路が故障して充
電に規制が掛からなくなっても電池の安全性を確保で
き、加えて長期保存においてもガス発生を問題の無いレ
ベルにまで抑制できることになり、結果として優れた性
能を有するリチウムポリマー二次電池を提供することが
可能となる。
As a result, the safety of the battery can be ensured even if the charger or safety circuit breaks down and charging is no longer regulated, and gas generation can be suppressed to a level that does not cause any problem even during long-term storage. As a result, it is possible to provide a lithium polymer secondary battery having excellent performance.

【0013】[0013]

【発明の実施の形態】図1は本発明のラミネート材料か
らなる外装体で密封したリチウムポリマー二次電池の構
成を示す。図1において、1は正極、2は負極、3は正
極と対向するポリエチレン製微多孔膜、4は負極と対向
するゲル状ポリマー電解質膜、5は正極リード、6は負
極リード、7はラミネート材からなる外装体、8および
9はそれぞれ上下の熱接着シール部、10はリード用絶
縁保護フィルムである。微多孔膜3、ゲル状ポリマー電
解質膜4、負極2および正極1は最終的には積層捲回さ
れた形で外装体7内に収容されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a structure of a lithium polymer secondary battery sealed with an outer package made of a laminate material of the present invention. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a microporous polyethylene membrane facing the positive electrode, 4 is a gel polymer electrolyte membrane facing the negative electrode, 5 is a positive electrode lead, 6 is a negative electrode lead, and 7 is a laminate material. , 8 and 9 are upper and lower thermal adhesive seal portions, respectively, and 10 is a lead insulating protective film. The microporous membrane 3, the gel-like polymer electrolyte membrane 4, the negative electrode 2, and the positive electrode 1 are finally housed in the outer package 7 in a laminated and wound form.

【0014】この電池の発電要素の作製方法について説
明する。正極1は、正極活物質LiCoO2にアセチレ
ンブラック導電材とポリテトラフルオロエチレン(PT
FE)分散系結着剤を混合しペースト化した後、これを
Al箔製集電体の両面にダイコーターで均一に塗布し、
乾燥圧延の後、所定の大きさに切断して得た。この正極
1には正極リード5を集電体の端部に溶接した。負極2
は、黒鉛の負極活物質に導電材と水系結着剤を混合して
ペースト化した後、Cu箔製集電体の両面にダイコータ
ーで均一に塗布し、乾燥圧延の後、所定の大きさに切断
して得た。この負極2には負極リード6を集電体の端部
に溶接した。セパレータ3は通常市販されているポリエ
チレン製微多孔膜である。ゲル状ポリマー電解質膜4
は、フッ化ビニリデンと6フッ化プロピレンからなる共
重合体と二酸化ケイ素微粒子をN−メチルピロリドン溶
媒に添加し、攪拌して溶解分散させたペーストをフィル
ム状に展開し乾燥させたものである。セパレータ3の種
類によってはこの面上にゲルポリマーを塗布展開でき、
ゲル状ポリマー電解質膜とポリエチレン製微多孔膜とを
積層しなくてもそのままで使用できる効果がある。電解
液は炭酸エチレンと炭酸ジエチルの等体積混合溶媒に6
フッ化リン酸リチウム塩を濃度1M/lに調整したもの
を用いた。上記の正極1と負極2の間に、微多孔膜3お
よびゲル状ポリマー電解質膜4を一緒に重ね合わせて配
置し、図1に示すような楕円状に捲回した。
A method for manufacturing a power generating element of this battery will be described. The positive electrode 1 is made of a positive active material LiCoO2 and acetylene black conductive material and polytetrafluoroethylene (PT
FE) After the dispersion binder is mixed and made into a paste, the paste is uniformly applied to both surfaces of an Al foil current collector with a die coater.
After drying and rolling, it was obtained by cutting to a predetermined size. A positive electrode lead 5 was welded to the positive electrode 1 at the end of the current collector. Negative electrode 2
Is prepared by mixing a conductive material and an aqueous binder into a graphite negative electrode active material, forming a paste, applying the paste uniformly to both surfaces of a Cu foil current collector with a die coater, and drying and rolling to a predetermined size. And obtained by cutting. A negative electrode lead 6 was welded to the negative electrode 2 at the end of the current collector. The separator 3 is a commercially available polyethylene microporous membrane. Gel-like polymer electrolyte membrane 4
Is obtained by adding a copolymer of vinylidene fluoride and propylene hexafluoride and silicon dioxide fine particles to an N-methylpyrrolidone solvent, stirring, dissolving and dispersing the paste into a film, and drying the paste. Depending on the type of the separator 3, a gel polymer can be applied and developed on this surface,
There is an effect that the gel polymer electrolyte membrane and the polyethylene microporous membrane can be used as they are without being laminated. The electrolytic solution is a 6 volume mixed solvent of ethylene carbonate and diethyl carbonate.
A solution prepared by adjusting the concentration of lithium fluorophosphate to 1 M / l was used. A microporous membrane 3 and a gel-like polymer electrolyte membrane 4 were placed together between the positive electrode 1 and the negative electrode 2 and wound into an ellipse as shown in FIG.

【0015】上記の発電要素を収納する外装体7は、A
l箔を中間の1層とし、その内側にポリプロピレンフィ
ルムを、外側にポリエチレンテレフタレートフィルムを
それぞれ配置し一体化したAlラミネート材の袋を使用
した。上記の捲回された発電要素を収納した後、正極リ
ード5と負極リード6の先端部が外部に突出した状態で
外装体7の上シール部8を封口した。リードの上シール
部8に接する部分には絶縁保護フィルム10を貼りつけ
ている。この絶縁保護フィルム10は、正極リード5、
負極リード6部分での気密性を確保するために設けた部
材である。
The exterior body 7 that houses the above-mentioned power generating element is
1 foil was used as an intermediate one layer, and a polypropylene film was disposed on the inner side and a polyethylene terephthalate film was disposed on the outer side. After storing the wound power generating element, the upper seal portion 8 of the exterior body 7 was sealed with the tips of the positive electrode lead 5 and the negative electrode lead 6 protruding outside. An insulating protective film 10 is attached to a portion of the lead that contacts the upper seal portion 8. The insulating protective film 10 is provided with a positive electrode lead 5,
This is a member provided to ensure airtightness in the negative electrode lead 6 portion.

【0016】電池としては、発電要素が収容された外装
体7を上記のように既に封口した上シール部8を下にし
て、まだ開口している下シール部9から所定量の電解液
を注入した後、熱溶着により下シール部9を封口して電
池を完成させる。
As the battery, a predetermined amount of electrolyte is injected from the lower seal 9 which is still open, with the upper seal 8 already closing the outer package 7 accommodating the power generating element as described above. After that, the lower seal portion 9 is sealed by heat welding to complete the battery.

【0017】[0017]

【実施例】次に実施例により本発明を詳細に説明する。Next, the present invention will be described in detail with reference to examples.

【0018】(実施例1) 1.正極の作製 正極1は、正極活物質LiCoO2100重量部にアセ
チレンブラック導電材4部と水系のポリテトラフルオロ
エチレン(PTFE)分散系結着剤5部を混合し、ペー
スト化した後、これを集電体(Al箔)の両面に単位面
積当たり所定の重量および厚みになるようダイコーター
で均一に塗布し、乾燥圧延の後、所定の大きさに切断し
て得た。この正極1には、正極リード5を集電体端部に
溶接した。
(Embodiment 1) 1. Preparation of Positive Electrode The positive electrode 1 was prepared by mixing 4 parts of an acetylene black conductive material and 5 parts of a water-based polytetrafluoroethylene (PTFE) dispersion binder with 100 parts by weight of a positive electrode active material LiCoO 2, and forming a paste. The product was uniformly coated on both surfaces of the body (Al foil) with a die coater so as to have a predetermined weight and thickness per unit area, dried and rolled, and then cut into a predetermined size. A positive electrode lead 5 was welded to the positive electrode 1 at the end of the current collector.

【0019】2.負極の作製 負極2は、球状黒鉛粉末100重量部に繊維状黒鉛導電
材5部とスチレンブタジエンゴム系(SBR)の水系結
着剤5部を混合し、ペースト化した後、集電体(Cu
箔)の両面に単位面積当たり所定の重量および厚みにな
るようダイコーターで均一に塗布し、乾燥圧延の後、所
定の大きさに切断して得た。負極2には負極リード6を
集電体端部に溶接した。
2. Preparation of Negative Electrode The negative electrode 2 was prepared by mixing 5 parts of a fibrous graphite conductive material and 5 parts of a styrene-butadiene rubber-based (SBR) aqueous binder with 100 parts by weight of spherical graphite powder, and forming a paste.
The foil was uniformly applied to both surfaces of the foil so as to have a predetermined weight and thickness per unit area by a die coater, dried and rolled, and then cut into a predetermined size. A negative electrode lead 6 was welded to the negative electrode 2 at the end of the current collector.

【0020】3.セパレータ セパレータ3には通常市販されている空孔率約40%、
厚さ15μmのポリエチレン製微多孔膜を用いた。
3. Separator The separator 3 generally has a porosity of about 40% which is commercially available,
A 15 μm thick polyethylene microporous membrane was used.

【0021】4.ゲル状ポリマー電解質膜 ゲル状ポリマー電解質膜4は、フッ化ビニリデン88モ
ル%と6フッ化プロピレン12%からなる共重合体10
0重量部と一次粒子径20nmの二酸化ケイ素50部と
をN−メチルピロリドン溶媒に添加し、攪拌して溶解分
散させたペーストをフィルム状に展開し、10μmの厚
みに乾燥させたものを用いた。正確に言えば、この乾燥
膜に電解液を含浸させ、高温で所定時間保持させること
により初めてゲル状の電解質膜となるものである。
4. Gel Polymer Electrolyte Membrane The gel polymer electrolyte membrane 4 is composed of a copolymer 10 composed of 88 mol% of vinylidene fluoride and 12% of propylene hexafluoride.
A paste prepared by adding 0 parts by weight and 50 parts of silicon dioxide having a primary particle diameter of 20 nm to an N-methylpyrrolidone solvent, stirring and dissolving and dispersing the mixture into a film, and drying the paste to a thickness of 10 μm was used. . To be precise, the dried membrane is impregnated with an electrolytic solution and held at a high temperature for a predetermined period of time to become a gel electrolyte membrane.

【0022】5.電解液の調製 電解液は炭酸エチレンと炭酸ジエチルの等体積混合溶媒
に6フッ化リン酸リチウム塩を濃度1M/lに調整した
ものを用いた。
5. Preparation of Electrolyte Solution The electrolyte solution was prepared by adjusting the concentration of lithium hexafluorophosphate to a concentration of 1 M / l in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.

【0023】6.リチウムポリマー二次電池の作製と初
期化 上記の方法で作製した正極1と負極2との間に、ポリエ
チレン製の微多孔膜3とゲル状ポリマー電解質膜4を配
置し、全体を重ね合わせ捲回して楕円状の発電要素を作
製した。捲回に際してはゲル状ポリマー電解質膜4を負
極2に、ポリエチレン製の微多孔膜3を正極1にそれぞ
れ対向させた形にした。この発電要素をAlラミネート
材からなる外装体7に挿入し、正極リード5、負極リー
ド6の先端部が外部に突出した状態で外装体7の上シー
ル部8を封口した。
6. Preparation and Initialization of Lithium Polymer Secondary Battery Between the positive electrode 1 and the negative electrode 2 prepared by the above method, a microporous polyethylene film 3 and a gel polymer electrolyte film 4 are arranged, and the whole is overlapped and wound. Thus, an elliptical power generating element was manufactured. At the time of winding, the gel polymer electrolyte membrane 4 was made to face the negative electrode 2 and the polyethylene microporous membrane 3 was made to face the positive electrode 1. This power generating element was inserted into an exterior body 7 made of an Al laminate material, and the upper seal portion 8 of the exterior body 7 was sealed with the tips of the positive electrode lead 5 and the negative electrode lead 6 protruding outside.

【0024】次に、封口した上シール部8を下にした状
態で外装体7の内部に上記電解液を2.5g注入した。
正、負極リードが外部に突出したシール部8と正反対位
置にある外装体の下シール部9をゆとりを残して熱溶着
してシールした。このあと室温にて電池を0.1CmA
(電池を10時間で充電できる電流値)で2.5時間充
電し、続いて1C(1時間で放電が完了する電流値)で
3.0Vまで放電した。この後、上記のゆとりのある下
シール部9の一部を開口して、初期充電で発生したエチ
レンガスを放出し、その後減圧にした状態で電池を下シ
ール部9のすぐ内側を再度熱溶着して電池としての密封
を完了した。引き続き90℃にて1時間加熱して電解質
膜をゲル化させ、リチウムポリマー二次電池を作製し
た。この電池は容量が800mAhで、サイズは厚み5
mm、幅34mm、長さ50mmである。この電池を電
池Aとする。
Next, 2.5 g of the above electrolyte was injected into the exterior body 7 with the sealed upper seal portion 8 facing down.
The lower seal portion 9 of the outer package body at the position directly opposite to the seal portion 8 where the positive and negative electrode leads protruded to the outside was sealed by heat welding with leaving a margin. After this, the battery was charged at room temperature
(Current value at which the battery can be charged in 10 hours) was charged for 2.5 hours, and then discharged at 1 C (current value at which discharge was completed in 1 hour) to 3.0 V. Thereafter, a part of the lower seal portion 9 having a space is opened to release ethylene gas generated during the initial charging, and then the battery is heat-sealed immediately inside the lower seal portion 9 under reduced pressure. Then, sealing as a battery was completed. Subsequently, the mixture was heated at 90 ° C. for 1 hour to gel the electrolyte membrane, thereby producing a lithium polymer secondary battery. This battery has a capacity of 800 mAh and a size of 5
mm, width 34 mm, length 50 mm. This battery is referred to as battery A.

【0025】7.高温保存特性 作製した電池を室温にて定電流560mA(0.7C)
で4.2Vまで充電した後、4.2Vの定電圧にて充電
電流が50mAに低下するまで充電した。その後、90
℃にて4日間保存し、その温度にて発生したガス量を測
定した。
[7] High-temperature storage characteristics The prepared battery was subjected to constant current of 560 mA (0.7 C) at room temperature.
Then, the battery was charged at a constant voltage of 4.2 V until the charging current dropped to 50 mA. Then 90
C. for 4 days, and the amount of gas generated at that temperature was measured.

【0026】8.熱安定性特性 充電器の故障が起こり安全回路の上限値にまで電池が充
電される想定の下で検討を行った。作製した電池は室温
にて定電流560mA(0.7C)で、充電器の電圧規
制値を超えて安全回路の上限値である4.35Vまで充
電した。充電した電池を恒温加熱槽に移し、1分間5℃
の加熱昇温速度で槽全体を150℃まで昇温し、150
℃で2時間放置して電池の耐熱性を試験した。試験には
5セルの電池を供した。
8. Thermal stability characteristics The study was performed under the assumption that the charger failed and the battery was charged to the upper limit of the safety circuit. The produced battery was charged at room temperature with a constant current of 560 mA (0.7 C) to exceed the voltage regulation value of the charger to 4.35 V which is the upper limit value of the safety circuit. Transfer the charged battery to a constant temperature heating tank,
The entire vessel was heated to 150 ° C. at a heating rate of 150 ° C.
The battery was tested for heat resistance by standing at 2 ° C. for 2 hours. For the test, a 5-cell battery was used.

【0027】作製したリチウムポリマー二次電池の90
℃での高温保存性と150℃での熱安定性の特性結果を
(表1)に示す。
The manufactured lithium polymer secondary battery 90
Table 1 shows the characteristic results of the high-temperature storage stability at 150 ° C. and the thermal stability at 150 ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)ゲル状ポリマー電解質膜4を
正極1に、ポリエチレン製の微多孔膜3を負極2にそれ
ぞれ対向させた(実施例1とは逆の配置)以外は、実施
例1と全く同じに電池を構成した。この電池を電池Bと
する。高温保存特性および熱安定性試験とも実施例1と
同じ条件にて実施した。
Example 2 Example 1 was the same as Example 1 except that the gelled polymer electrolyte membrane 4 was opposed to the positive electrode 1 and the microporous membrane 3 made of polyethylene was opposed to the negative electrode 2 (an arrangement opposite to that of Example 1). The battery was constructed exactly as described. This battery is referred to as battery B. Both high-temperature storage characteristics and thermal stability tests were performed under the same conditions as in Example 1.

【0030】(実施例3)実施例1において、正極と負
極の間には10μm〜25μmに厚みを増加させたゲル
状ポリマー電解質膜のみを用いた以外は、実施例1と全
く同じとして電池を構成した。この電池を電池Cとす
る。高温保存性および熱安定性試験とも実施例1と同じ
条件にて実施した。
Example 3 A battery was prepared in the same manner as in Example 1 except that only a gel polymer electrolyte membrane having a thickness increased from 10 μm to 25 μm was used between the positive electrode and the negative electrode. Configured. This battery is referred to as battery C. Both high-temperature storage stability and thermal stability tests were performed under the same conditions as in Example 1.

【0031】(実施例4)実施例1において、正極と負
極の間には、添加材である二酸化ケイ素微粉末の代わり
に一次粒子径50nmの酸化アルミニウム(Al23
を用いた以外は全く同じ仕様からなるゲルポリマー電解
質膜のみを用いた以外は、実施例1と全く同じに電池を
構成した。この電池を電池Dとする。高温保存性および
熱安定性試験とも実施例1と同じ条件にて実施した。
Example 4 In Example 1, aluminum oxide (Al 2 O 3 ) having a primary particle diameter of 50 nm was provided between the positive electrode and the negative electrode instead of the silicon dioxide fine powder as an additive.
A battery was constructed in exactly the same manner as in Example 1 except that only a gel polymer electrolyte membrane having exactly the same specifications as above was used. This battery is referred to as Battery D. Both high-temperature storage stability and thermal stability tests were performed under the same conditions as in Example 1.

【0032】(実施例5)実施例1において、正極と負
極の間には25μmの厚みのポリエチレン製微多孔膜の
みを使用した以外は、実施例1と全く同じに電池を構成
した。この電池を電池Eとする。高温保存性および熱安
定性試験とも実施例1と同じ条件にて実施した。
Example 5 A battery was constructed in the same manner as in Example 1, except that only a 25 μm-thick polyethylene microporous membrane was used between the positive electrode and the negative electrode. This battery is referred to as battery E. Both high-temperature storage stability and thermal stability tests were performed under the same conditions as in Example 1.

【0033】これら実施例2〜5の特性結果も(表1)
にまとめて示した。
The characteristic results of Examples 2 to 5 are also shown in Table 1.
Are shown together.

【0034】(表1)に示したように、100%充電し
た電池を90℃4日間高温保存すると、ガス発生に対し
て対策を行っていない電池は大量のガス発生に伴い外装
体が大きく膨れあがり既に電池の形状ではなかった。一
方、これまで述べてきたように本発明のような対策をと
った電池では、ガス発生量は問題のないレベルまで低減
改善されている。発生したガス分析でも対策を取った電
池では二酸化炭素ガス(CO2)がほとんどであり、正
極と電解液との反応に起因するものであるのに対し、対
策を取ってない電池では上記二酸化炭素ガスのみなら
ず、多量の一酸化炭素(CO)やメタンガス(CH4
など負極から発生するガスが存在した。これらのことか
ら本発明になる方策の効果が大きく評価できる。
As shown in Table 1, when a 100% charged battery is stored at a high temperature of 90 ° C. for 4 days, a battery which has not taken measures against gas generation has a large swelling due to a large amount of gas generation. It was not already the shape of the battery. On the other hand, as described above, in the battery in which measures such as the present invention are taken, the gas generation amount is reduced and improved to a level that does not cause any problem. In the batteries in which measures were taken even in the analysis of the generated gas, most of the carbon dioxide gas (CO 2 ) was caused by the reaction between the positive electrode and the electrolyte. Not only gas but also a large amount of carbon monoxide (CO) and methane gas (CH 4 )
There was a gas generated from the negative electrode. From these, the effect of the measure according to the present invention can be greatly evaluated.

【0035】また、150℃の熱安定性試験では当初の
考え通り、正極に対向する面に吸熱効果を有するポリエ
チレン製微多孔膜を配置した電池では全く発火が見られ
なかった。
In a thermal stability test at 150 ° C., no ignition was observed in a battery in which a microporous polyethylene membrane having an endothermic effect was disposed on the surface facing the positive electrode, as originally thought.

【0036】一方、正極にゲル電解質膜が対向している
電池では発火を生じ、明らかに課題を残している。
On the other hand, in a battery in which the gel electrolyte membrane faces the positive electrode, ignition occurs, which clearly leaves a problem.

【0037】なお、実施例では正極活物質にLiCoO
2を用いたが、LiCoO2のほかLiNiO2やLi
Mn2O4などのリチウム含有遷移金属酸化物を使用す
ることができる。また、負極活物質には球状の黒鉛粉末
を用いたが、リチウムイオンを吸蔵・放出し得るカーボ
ン材料やリチウム吸蔵合金なども使用することができ
る。
In the examples, LiCoO was used as the positive electrode active material.
2, LiNiO2, LiCoO2 and LiNiO2
A transition metal oxide containing lithium such as Mn2O4 can be used. Further, spherical graphite powder is used as the negative electrode active material, but a carbon material or a lithium storage alloy that can store and release lithium ions can also be used.

【0038】さらに、二酸化ケイ素の微粉末を添加した
フッ化ビニリデン共重合体膜とポリエチレン微多孔膜を
積層状態で用いたが、セパレータの種類によってはこの
セパレータ上に直接塗布展開でき、ゲル状ポリマー電解
質膜とポリエチレン製微多孔膜とを積層しなくても、そ
のままで使用できる。また、ポリエチレン製微多孔膜
は、その厚みにおいて従来からの25μmから、ゲル状
ポリマー電解質膜が積層され保護しているので、現状最
も薄い8μmまでのものが使用できる。
Further, a vinylidene fluoride copolymer film to which fine powder of silicon dioxide is added and a microporous polyethylene film are used in a laminated state, but depending on the type of separator, it can be directly applied and developed on this separator to form a gel polymer. Even if the electrolyte membrane and the polyethylene microporous membrane are not laminated, they can be used as they are. Further, the polyethylene microporous membrane can be used from the conventional thickness of 25 μm to the thinnest 8 μm at present because the gel polymer electrolyte membrane is laminated and protected.

【0039】ゲル状ポリマー電解質膜には、フッ化ビニ
リデン88モル%と6フッ化プロピレン12モル%から
なる最も一般的な共重合体を用いたが、電解液に溶解性
のない6フッ化プロピレンの量が15モル%以下であれ
ば、ゲル化させるプロセスの煩雑さ(工数)および出来
あがった電池の性能の両面において問題がなかった。
For the gel polymer electrolyte membrane, the most common copolymer consisting of 88 mol% of vinylidene fluoride and 12 mol% of propylene hexafluoride was used. If the amount is 15 mol% or less, there is no problem in both the complexity (man-hours) of the gelation process and the performance of the completed battery.

【0040】ゲル状ポリマー電解質膜に添加した二酸化
ケイ素には通常の無機二酸化ケイ素を用いたが、そのガ
ス発生を抑制する機構を示したように、二酸化ケイ素が
存在すればよく、表面の少なくとも一部が有機官能基で
修飾された二酸化ケイ素粉末であっても効果は変わらな
かった。また、この二酸化ケイ素粉末には乾燥重量で5
0%のものを用いたが、実験の範囲では20重量%以上
含有していればガス発生の抑制に効果が見られた。
As the silicon dioxide added to the gel polymer electrolyte membrane, ordinary inorganic silicon dioxide was used. However, as shown by the mechanism for suppressing the gas generation, it is sufficient that silicon dioxide is present, and at least one of The effect did not change even if the part was a silicon dioxide powder modified with an organic functional group. The silicon dioxide powder has a dry weight of 5%.
Although 0% was used, the effect of suppressing gas generation was observed if the content was 20% by weight or more in the range of the experiment.

【0041】さらに電解液には炭酸エチレンと炭酸ジエ
チルの等体積混合溶媒に6フッ化リン酸リチウム塩を濃
度1M/lに調整したものを用いた。このほかに炭酸エ
チレン(EC)、炭酸プロピレン(PC)、炭酸ビニレ
ン(VC)などの環状カーボネート類と炭酸ジメチル
(DMC)、炭酸ジエチル(DEC)、炭酸エチルメチ
ル(EMC)などの鎖状カーボネート類との混合有機溶
媒中にLiPF6やLiClO4、LiBF4などの電
解質を溶解させたものを用いてもよい。
Further, as the electrolytic solution, a solution prepared by adjusting the concentration of lithium hexafluorophosphate to 1 M / l in a mixed solvent of equal volumes of ethylene carbonate and diethyl carbonate was used. In addition, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC) and chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) May be used in which an electrolyte such as LiPF6, LiClO4, or LiBF4 is dissolved in an organic solvent mixed with.

【0042】[0042]

【発明の効果】以上のことから、正極に対向する面にポ
リエチレンの微多孔膜を配置することにより、充電器が
故障して充電に規制が掛からなくなっても熱安定性の面
では電池の安全性を確保できる。加えて負極の対向面に
二酸化ケイ素の微粉末を添加したフッ化ビニリデン共重
合体膜を配置することにより保存中に負極活物質の表面
に6フッ化シランリチウム(Li2SiF6)が形成さ
れ、高温保存においても問題のないレベルにまでガス発
生を抑制できた。この両点から本発明は優れた性能を有
するリチウムポリマー二次電池を提供できるものであ
る。
As described above, by arranging a microporous polyethylene film on the surface facing the positive electrode, even if the charger breaks down and charging is no longer regulated, the safety of the battery can be improved in terms of thermal stability. Nature can be secured. In addition, by disposing a vinylidene fluoride copolymer film to which fine powder of silicon dioxide is added on the opposite surface of the negative electrode, lithium hexafluorosilane (Li 2 SiF 6 ) is formed on the surface of the negative electrode active material during storage. The generation of gas could be suppressed to a level at which there was no problem even in high-temperature storage. From these two points, the present invention can provide a lithium polymer secondary battery having excellent performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウムポリマー二次電池の構成を示
すラミネート材料からなる外装体を切り開いた概略図
FIG. 1 is a schematic view of a lithium polymer secondary battery according to the present invention, in which a package made of a laminate material is cut open.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 ポリエチレン製微多孔膜 4 ゲル状ポリマー電解質膜 5 正極リード 6 負極リード 7 外装体 8 上シール部 9 下シール部 10 絶縁保護フィルム DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Polyethylene microporous membrane 4 Gel polymer electrolyte membrane 5 Positive electrode lead 6 Negative lead 7 Outer package 8 Upper seal part 9 Lower seal part 10 Insulation protection film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間にゲル状ポリマー電解
質を配置した発電要素を外装体内に密封したリチウムポ
リマー二次電池であって、 該ゲル状ポリマー電解質は、非水電解液を吸収してゲル
状となるとともに負極に対向しかつ内部に二酸化ケイ素
微粉末を分散させたポリフッ化ビニリデン系の薄い膜ま
たは層からなり、その正極と対向する面には微多孔性の
ポリオレフィン薄膜を配置した2層構成から形成されて
いるリチウムポリマー二次電池。
1. A lithium polymer secondary battery in which a power generating element having a gel polymer electrolyte disposed between a positive electrode and a negative electrode is sealed in an outer package, wherein the gel polymer electrolyte absorbs a non-aqueous electrolyte. It consists of a polyvinylidene fluoride thin film or layer in which silicon dioxide fine powder is dispersed inside, facing the negative electrode, and a microporous polyolefin thin film is arranged on the surface facing the positive electrode. A lithium polymer secondary battery formed from a two-layer structure.
【請求項2】 微多孔性のポリオレフィン薄膜は、厚さ
8〜25μmのポリエチレン製膜からなる請求項1記載
のリチウムポリマー二次電池。
2. The lithium polymer secondary battery according to claim 1, wherein the microporous polyolefin thin film is a polyethylene film having a thickness of 8 to 25 μm.
【請求項3】 ポリフッ化ビニリデン系の薄い層は、そ
れを構成するポリマー材料の少なくとも85モル%がフ
ッ化ビニリデン単位からなる請求項1記載のリチウムポ
リマー二次電池。
3. The lithium polymer secondary battery according to claim 1, wherein the polyvinylidene fluoride thin layer comprises at least 85 mol% of the polymer material constituting the thin layer made of polyvinylidene fluoride.
【請求項4】 二酸化ケイ素粉末は、通常の無機二酸化
ケイ素および表面の少なくとも一部が有機官能基で修飾
された二酸化ケイ素粉末から選ばれた少なくとも1つか
らなる請求項1記載のリチウムポリマー二次電池。
4. The lithium polymer secondary according to claim 1, wherein the silicon dioxide powder comprises at least one selected from ordinary inorganic silicon dioxide and silicon dioxide powder having at least a part of its surface modified with an organic functional group. battery.
【請求項5】 ポリフッ化ビニリデン系の薄い層は、内
部に二酸化ケイ素微粉末を20〜50重量%含んでいる
請求項1〜4項のいずれかに記載のリチウムポリマー二
次電池。
5. The lithium polymer secondary battery according to claim 1, wherein the polyvinylidene fluoride thin layer contains 20 to 50% by weight of silicon dioxide fine powder inside.
JP2000215522A 2000-07-17 2000-07-17 Lithium polymer secondary battery Expired - Fee Related JP4830182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215522A JP4830182B2 (en) 2000-07-17 2000-07-17 Lithium polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215522A JP4830182B2 (en) 2000-07-17 2000-07-17 Lithium polymer secondary battery

Publications (2)

Publication Number Publication Date
JP2002033128A true JP2002033128A (en) 2002-01-31
JP4830182B2 JP4830182B2 (en) 2011-12-07

Family

ID=18710932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215522A Expired - Fee Related JP4830182B2 (en) 2000-07-17 2000-07-17 Lithium polymer secondary battery

Country Status (1)

Country Link
JP (1) JP4830182B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011614A (en) * 2003-06-18 2005-01-13 Teijin Ltd Separator for nonaqueous system secondary battery and nonaqueous system secondary battery
JPWO2004088671A1 (en) * 2003-03-31 2006-07-06 トレキオン株式会社 Composite polyelectrolyte composition
CN101872861A (en) * 2009-04-27 2010-10-27 Ls美创有限公司 The active material of positive electrode of lithium secondary battery and contain the lithium secondary battery of this material
CN102270759A (en) * 2010-06-03 2011-12-07 索尼公司 Cathode, lithium ion secondary battery, electric power tool and electrical vehicle
JP2021012804A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Sealed battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922726A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Solid polymer electrolyte secondary battery with safety for heat
JP2000164254A (en) * 1998-11-26 2000-06-16 Sony Corp Gel electrolyte and gel electrolyte battery
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922726A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Solid polymer electrolyte secondary battery with safety for heat
JP2000164254A (en) * 1998-11-26 2000-06-16 Sony Corp Gel electrolyte and gel electrolyte battery
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004088671A1 (en) * 2003-03-31 2006-07-06 トレキオン株式会社 Composite polyelectrolyte composition
JP4674660B2 (en) * 2003-03-31 2011-04-20 パイオトレック株式会社 Composite polymer electrolyte composition
JP2005011614A (en) * 2003-06-18 2005-01-13 Teijin Ltd Separator for nonaqueous system secondary battery and nonaqueous system secondary battery
JP4606705B2 (en) * 2003-06-18 2011-01-05 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
CN101872861A (en) * 2009-04-27 2010-10-27 Ls美创有限公司 The active material of positive electrode of lithium secondary battery and contain the lithium secondary battery of this material
JP2010257982A (en) * 2009-04-27 2010-11-11 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
KR101091546B1 (en) * 2009-04-27 2011-12-13 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
CN102270759A (en) * 2010-06-03 2011-12-07 索尼公司 Cathode, lithium ion secondary battery, electric power tool and electrical vehicle
JP2011253762A (en) * 2010-06-03 2011-12-15 Sony Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle, and power storage system
JP2021012804A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Sealed battery
JP7236031B2 (en) 2019-07-05 2023-03-09 トヨタ自動車株式会社 sealed battery

Also Published As

Publication number Publication date
JP4830182B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US7563539B2 (en) Non-aqueous electrolyte secondary battery
JP4802188B2 (en) Electrochemical element having electrode lead with built-in protective element
US20090181305A1 (en) Non-Aqueous Electrolyte Secondary Battery
WO2009157507A1 (en) Lithium ion secondary cell
JP2000100399A (en) Manufacture of polymer lithium secondary battery
JP3554155B2 (en) Lithium secondary battery and method of manufacturing the same
JP7166265B2 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
JP4104363B2 (en) Sealed battery
JP2005011540A (en) Nonaqueous electrolyte secondary battery
JP2002245988A (en) Thin battery
JP2001084984A (en) Battery
JPH11102674A (en) Thin secondary battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP4830182B2 (en) Lithium polymer secondary battery
JPH11102673A (en) Thin secondary battery
WO2012147783A1 (en) Nonaqueous electrolyte secondary cell
JPH11162436A (en) Thin secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2002042872A (en) Lithium polymer secondary battery
JP2003288880A (en) Separator for battery and battery
JP2000294202A (en) Thin battery
JP2000277092A (en) Non-aqueous electrolyte secondary battery
JPH11250898A (en) Organic electrolyte secondary battery
JP2001060453A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees