JP7236031B2 - sealed battery - Google Patents

sealed battery Download PDF

Info

Publication number
JP7236031B2
JP7236031B2 JP2019125942A JP2019125942A JP7236031B2 JP 7236031 B2 JP7236031 B2 JP 7236031B2 JP 2019125942 A JP2019125942 A JP 2019125942A JP 2019125942 A JP2019125942 A JP 2019125942A JP 7236031 B2 JP7236031 B2 JP 7236031B2
Authority
JP
Japan
Prior art keywords
case
gas
sealing portion
positive electrode
internal terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019125942A
Other languages
Japanese (ja)
Other versions
JP2021012804A (en
Inventor
智浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019125942A priority Critical patent/JP7236031B2/en
Publication of JP2021012804A publication Critical patent/JP2021012804A/en
Application granted granted Critical
Publication of JP7236031B2 publication Critical patent/JP7236031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、密閉型電池に関する。 The present invention relates to sealed batteries.

電極体および電解質がケース内に収容された密閉型電池が知られている。密閉型電池では、ケース内でガスが発生する場合がある。発生したガスによってケースの内圧が上昇すると、ケースの変形および破損等が生じる可能性がある。さらに、密閉型電池では、ケース内で複数種類のガスが発生する場合もある。従って、複数種類のガスの各々をケース外に排出することで、ケースの内圧の上昇を抑制することが望ましい。例えば、特許文献1に開示されている密閉型電池では、ケース内に電極体と電解液とが収容されている。ケースには、外部機器と接続される電極端子が設けられている。電極端子は、集電部材と封止部材を備える。封止部材は、ガス透過性樹脂によって構成されている。ケース内には、ガス変換触媒が配置されている。ガス変換触媒は、ケース内で発生したガスのうち、ガス透過性樹脂を透過し難い非透過性ガスを、ガス透過性樹脂を透過し易い透過性ガスに変換する。 A sealed battery in which an electrode body and an electrolyte are housed in a case is known. A sealed battery may generate gas in the case. If the generated gas increases the internal pressure of the case, the case may be deformed or damaged. Furthermore, in sealed batteries, multiple types of gases may be generated in the case. Therefore, it is desirable to suppress the rise in the internal pressure of the case by discharging each of the plurality of types of gas to the outside of the case. For example, in a sealed battery disclosed in Patent Document 1, an electrode assembly and an electrolytic solution are accommodated in a case. The case is provided with electrode terminals that are connected to an external device. The electrode terminal includes a collector member and a sealing member. The sealing member is made of gas permeable resin. A gas conversion catalyst is disposed within the case. The gas conversion catalyst converts an impermeable gas, which is difficult to permeate the gas-permeable resin, into a permeable gas, which is easy to permeate the gas-permeable resin, among the gases generated in the case.

特開2018-152164号公報JP 2018-152164 A

上記従来の密閉型電池では、ケース内におけるガス変換触媒を配置するスペースが必要となるので、エネルギー密度を向上させ難い。また、ガス変換触媒を用いるためのコストも必要である。よって、ガス変換触媒の有無に関わらず、ケース内で発生した複数種類のガスの各々をケース外に排出することが望ましい。 In the conventional sealed battery described above, it is difficult to improve the energy density because a space is required in the case for arranging the gas conversion catalyst. Also, there is the cost of using a gas conversion catalyst. Therefore, regardless of the presence or absence of a gas conversion catalyst, it is desirable to discharge each of the multiple types of gases generated within the case to the outside of the case.

本発明の典型的な目的は、ケース内で発生した複数種類のガスの各々を適切にケース外に排出することが可能な密閉型電池を提供することである。 A typical object of the present invention is to provide a sealed battery capable of appropriately discharging each of a plurality of types of gases generated within the case to the outside of the case.

かかる目的を実現すべく、ここに開示される一態様の密閉型電池は、電極体および電解質を収容するケースと、ガス透過性を有する高分子材料によって形成され、上記ケースの内部から外部に通じる隙間を封止する複数の封止部と、を備え、上記複数の封止部には、第1封止部と第2封止部が含まれており、上記第1封止部は、第1気体の透過率が上記第2封止部の材質よりも高い材質によって形成され、上記第2封止部は、上記第1気体とは異なる第2気体の透過率が上記第1封止部の材質よりも高い材質によって形成されることを特徴とする。ここで第1気体および第2気体は、いずれも当該密閉型電池のケース内部において発生し得る種類の気体である。 In order to achieve such an object, a sealed battery of one embodiment disclosed herein is formed of a case containing an electrode assembly and an electrolyte, and a gas-permeable polymer material. a plurality of sealing portions for sealing gaps, wherein the plurality of sealing portions includes a first sealing portion and a second sealing portion; the first sealing portion includes a second sealing portion; The second sealing portion is formed of a material having a higher permeability to one gas than the material of the second sealing portion, and the second sealing portion has a permeability to a second gas different from that of the first gas. characterized by being made of a material higher than the material of Here, both the first gas and the second gas are types of gas that can be generated inside the case of the sealed battery.

かかる密閉型電池では、第1封止部は、第2封止部よりも第1気体を透過させ、第2封止部は、第1気体とは異なる第2気体を、第1封止部よりも透過させる。これにより、ガス変換触媒の有無に関わらず、ケース内で発生した複数種類のガスの各々を、適切にケース外に排出することができる。 In such a sealed battery, the first sealing portion allows the first gas to pass through more than the second sealing portion, and the second sealing portion allows the second gas different from the first gas to pass through the first sealing portion. permeate more than As a result, regardless of the presence or absence of the gas conversion catalyst, each of the multiple types of gas generated within the case can be appropriately discharged outside the case.

密閉型電池1の構成を示す縦断面図である。1 is a longitudinal sectional view showing the configuration of a sealed battery 1; FIG. 図1に示す密閉型電池1の正極内部端子近傍の縦断面図である。2 is a vertical cross-sectional view of the vicinity of the positive electrode internal terminal of the sealed battery 1 shown in FIG. 1. FIG. 第1試験例におけるケース内圧の測定結果を示すグラフである。4 is a graph showing measurement results of case internal pressure in the first test example. 第2試験例におけるケース内圧の測定結果を示すグラフである。7 is a graph showing measurement results of case internal pressure in the second test example.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。 One typical embodiment of the present disclosure will be described in detail below with reference to the drawings. Matters other than those specifically referred to in this specification that are necessary for implementation can be grasped as design matters for those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. In the drawings below, members and portions having the same function are denoted by the same reference numerals. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)を包含する。以下、リチウムイオン二次電池を例示して、本開示に係る密閉型電池について詳細に説明する。ただし、本開示に係る密閉型電池を、以下の実施形態に記載されたものに限定することを意図したものではない。 As used herein, the term “battery” is a general term for power storage devices from which electrical energy can be extracted, and is a concept that includes primary batteries and secondary batteries. "Secondary battery" generally refers to an electricity storage device that can be repeatedly charged and discharged, and includes so-called storage batteries (ie, chemical batteries ) such as lithium ion secondary batteries, nickel-hydrogen batteries, and nickel-cadmium batteries. Hereinafter, the sealed battery according to the present disclosure will be described in detail by taking a lithium ion secondary battery as an example. However, the sealed battery according to the present disclosure is not intended to be limited to those described in the following embodiments.

図1を参照して、本開示に係る密閉型電池1の全体構成について説明する。図1に例示する密閉型電池1はリチウムイオン二次電池であり、ケース2、電極体3、および電解質の一例である電解液35を備える。ケース2は、電極体3および電解液35を内部に密閉した状態で収容する。本実施形態におけるケース2の形状は、扁平な角形である。ケース2は、一端に開口部を有する箱型の本体21と、該本体21の開口部を塞ぐ板状の蓋部材22を備える。本体21と蓋部材22は、溶接等によって一体とされる。ケース2の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料等を用いることができる。一例として、本実施形態における電極体3には、長尺状の正極体、負極体、およびセパレータが重ね合わされて捲回された捲回電極体が用いられている。本実施形態における電解液35には、リチウム塩を含む非水電解液が用いられている。 An overall configuration of a sealed battery 1 according to the present disclosure will be described with reference to FIG. A sealed battery 1 illustrated in FIG. 1 is a lithium ion secondary battery, and includes a case 2, an electrode body 3, and an electrolytic solution 35 that is an example of an electrolyte. The case 2 accommodates the electrode assembly 3 and the electrolytic solution 35 in a hermetically sealed state. The shape of the case 2 in this embodiment is a flat square. The case 2 includes a box-shaped main body 21 having an opening at one end and a plate-like lid member 22 that closes the opening of the main body 21 . The main body 21 and the lid member 22 are integrated by welding or the like. As the material of the case 2, for example, a metal material such as aluminum which is lightweight and has good thermal conductivity can be used. As an example, the electrode body 3 in the present embodiment uses a wound electrode body in which a long positive electrode body, a negative electrode body, and a separator are superimposed and wound. A non-aqueous electrolyte containing a lithium salt is used as the electrolyte 35 in this embodiment.

ケース2における蓋部材22の形状は、矩形板状である。蓋部材22の長手方向(図1における左右方向)の両端部には、一対の電極端子部材4(正極端子部材4Aおよび負極端子部材4B)が設けられている。詳細には、蓋部材22の長手方向の一端部(図1における左端部)には正極端子部材4Aが設けられており、他端部(図1における右端部)には負極端子部材4Bが設けられている。 The shape of the lid member 22 in the case 2 is a rectangular plate. A pair of electrode terminal members 4 (a positive electrode terminal member 4A and a negative electrode terminal member 4B) are provided at both ends of the lid member 22 in the longitudinal direction (horizontal direction in FIG. 1). Specifically, a positive electrode terminal member 4A is provided at one longitudinal end (left end in FIG. 1) of the lid member 22, and a negative electrode terminal member 4B is provided at the other longitudinal end (right end in FIG. 1). It is

正極端子部材4Aは、正極接続端子5A、正極外部端子6A、正極内部端子7A、および正極集電端子8Aを備える。正極接続端子5Aは、ケース2の外部に配置されて、正極側の外部接続端子となる。正極外部端子6Aは、ケース2の外部に配置されて、正極接続端子5Aと正極内部端子7Aに接続される。正極内部端子7Aは、ケース2の内部に配置されると共に、ケース2に設けられた貫通孔23A(図2参照)を通じて正極外部端子6Aに接続される。正極集電端子8Aは、ケース2の内部において、電極体3の正極3Aと正極内部端子7Aに接続される。 The positive terminal member 4A includes a positive connecting terminal 5A, a positive external terminal 6A, a positive internal terminal 7A, and a positive collector terminal 8A. The positive electrode connection terminal 5A is arranged outside the case 2 and serves as an external connection terminal on the positive electrode side. The positive external terminal 6A is arranged outside the case 2 and connected to the positive connecting terminal 5A and the positive internal terminal 7A. The positive electrode internal terminal 7A is arranged inside the case 2 and connected to the positive electrode external terminal 6A through a through hole 23A (see FIG. 2) provided in the case 2 . The positive collector terminal 8A is connected inside the case 2 to the positive electrode 3A of the electrode body 3 and the positive electrode internal terminal 7A.

負極端子部材4Bは、負極接続端子5B、負極外部端子6B、負極内部端子7B、および負極集電端子8Bを備える。負極接続端子5Bは、ケース2の外部に配置されて、負極側の外部接続端子となる。負極外部端子6Bは、ケース2の外部に配置されて、負極接続端子5Bと負極内部端子7Bに接続される。負極内部端子7Bは、ケース2の内部に配置されると共に、ケース2に設けられた貫通孔を通じて負極外部端子6Bに接続される。負極集電端子8Bは、ケース2の内部において、電極体3の負極3Bと負極内部端子7Bに接続される。正極端子部材4Aおよび負極端子部材4Bを構成する各部材は、高い導電性を有する金属等によって適宜形成される。 The negative terminal member 4B includes a negative connecting terminal 5B, a negative external terminal 6B, a negative internal terminal 7B, and a negative collector terminal 8B. The negative connection terminal 5B is arranged outside the case 2 and serves as an external connection terminal on the negative electrode side. The negative external terminal 6B is arranged outside the case 2 and connected to the negative connecting terminal 5B and the negative internal terminal 7B. The negative internal terminal 7B is arranged inside the case 2 and connected to the negative external terminal 6B through a through hole provided in the case 2 . The negative collector terminal 8B is connected to the negative electrode 3B of the electrode body 3 and the negative electrode internal terminal 7B inside the case 2 . Each member constituting the positive electrode terminal member 4A and the negative electrode terminal member 4B is appropriately formed of a metal or the like having high conductivity.

図2を参照して、密閉型電池1における電極端子部材4の正極内部端子7A近傍および負極内部端子7B近傍の構成について説明する。なお、本実施形態における正極内部端子7Aと負極内部端子7Bの構造は、密閉型電池1の長手方向の中央を中心として略対称な構造に形成されている。従って、以下では正極内部端子7A近傍の構成について詳細な説明を行い、負極内部端子7B近傍の構成の詳細な説明は省略する。 The configuration of the electrode terminal member 4 in the vicinity of the positive internal terminal 7A and the negative internal terminal 7B in the sealed battery 1 will be described with reference to FIG. The structures of the positive electrode internal terminal 7A and the negative electrode internal terminal 7B in this embodiment are formed in a substantially symmetrical structure with the center in the longitudinal direction of the sealed battery 1 as the center. Therefore, the configuration near the positive internal terminal 7A will be described in detail below, and the detailed description of the configuration near the negative internal terminal 7B will be omitted.

正極内部端子7A近傍には、正極外部端子6A、ケース2の蓋部材22、および封止部9が設けられている。正極外部端子6Aの外形形状は、板状の部材が屈曲されて形成された階段形状である(図1参照)。正極外部端子6Aには、正極内部端子7Aが挿通される貫通孔62Aが形成されている。 The positive electrode external terminal 6A, the lid member 22 of the case 2, and the sealing portion 9 are provided in the vicinity of the positive electrode internal terminal 7A. The external shape of the positive electrode external terminal 6A is a stepped shape formed by bending a plate-like member (see FIG. 1). A through hole 62A through which the positive electrode internal terminal 7A is inserted is formed in the positive electrode external terminal 6A.

封止部9は、ガス透過性を有する高分子材料によって形成され、ケース2の内部から外部に通じる隙間を封止する。本実施形態の封止部9は、絶縁部91とシール部92を備える。絶縁部91は、正極外部端子6Aと蓋部材22の間に配置される。絶縁部91は、絶縁性を有する材質によって形成されている。絶縁部91には、正極内部端子7Aが挿通される貫通孔911が形成されている。ケース2(本実施形態では、ケース2の蓋部材22)には、正極内部端子7Aが挿通される貫通孔23Aが設けられている。 The sealing portion 9 is made of a polymer material having gas permeability, and seals a gap from the inside of the case 2 to the outside. The sealing portion 9 of this embodiment includes an insulating portion 91 and a sealing portion 92 . The insulating portion 91 is arranged between the positive electrode external terminal 6</b>A and the lid member 22 . The insulating portion 91 is made of an insulating material. A through hole 911 through which the positive electrode internal terminal 7A is inserted is formed in the insulating portion 91 . The case 2 (in this embodiment, the lid member 22 of the case 2) is provided with a through hole 23A through which the positive electrode internal terminal 7A is inserted.

正極内部端子7Aは、大径部71A、リベット75A、およびかしめ部76Aを備える。大径部71Aは、略板状(本実施形態では略円板形状)に形成されている。リベット75Aは柱状(本実施形態では円柱状)であり、大径部71Aの板面から垂直に(図2における上方に)延びる。リベット75Aの径は、大径部71Aの径よりも小さい。リベット75Aは、ケース2に設けられている貫通孔23Aに、内側(図2における下側)から外側(図2における上側)へ挿通される。かしめ部76Aは、リベット75Aの先端部(図2における上端部)が外側からかしめられることで形成される。 The positive electrode internal terminal 7A includes a large diameter portion 71A, a rivet 75A, and a crimped portion 76A. The large diameter portion 71A is formed in a substantially plate shape (substantially disk shape in this embodiment). The rivet 75A is columnar (columnar in this embodiment) and extends vertically (upward in FIG. 2) from the plate surface of the large-diameter portion 71A. The diameter of the rivet 75A is smaller than the diameter of the large diameter portion 71A. The rivet 75A is inserted through the through hole 23A provided in the case 2 from the inside (lower side in FIG. 2) to the outside (upper side in FIG. 2). The crimped portion 76A is formed by crimping the tip portion (upper end portion in FIG. 2) of the rivet 75A from the outside.

正極内部端子7Aとケース2(本実施形態では蓋部材22)の内面25Aとの間には、シール部92が挟持される。シール部92は、弾性、絶縁性、および耐電解液性を有する材質によって形成されている。シール部92は、正極内部端子7Aとケース2の内面25Aの間で圧縮されることで、両者の間をシールする。また、シール部92は、正極内部端子7Aとケース2の間を絶縁する。シール部92は、貫通孔が形成された略平板状の基部と、貫通孔の周縁部からケース2の外方へ向けて突出する筒部を備える。シール部92の筒部は、蓋部材22に設けられた貫通孔23Aに嵌めこまれる。 A seal portion 92 is sandwiched between the positive electrode internal terminal 7A and the inner surface 25A of the case 2 (the lid member 22 in this embodiment). The seal portion 92 is made of a material having elasticity, insulation, and electrolyte resistance. The sealing portion 92 is compressed between the positive electrode internal terminal 7A and the inner surface 25A of the case 2 to seal between them. Moreover, the sealing portion 92 insulates between the positive electrode internal terminal 7A and the case 2 . The seal portion 92 includes a substantially flat plate-shaped base portion in which a through hole is formed, and a cylindrical portion that protrudes outward from the case 2 from the peripheral portion of the through hole. The tubular portion of the seal portion 92 is fitted into the through hole 23A provided in the lid member 22 .

本実施形態に係る密閉型電池1において、封止部9(絶縁部91およびシール部92)は、ガス透過性樹脂によって構成されている。ガス透過性樹脂は、充放電の際にケース2内で主に発生するガスの種類に応じて適宜選択することができる。密閉型電池1には、第1封止部と第2封止部を含む複数の封止部が設けられる。例えば、本実施形態では、密閉型電池1には、第1封止部と第2封止部が設けられる。詳細には、第1封止部として、封止部9が正極内部端子7Aの近傍に設けられる。第2封止部は、負極内部端子7Bの近傍に設けられる。第2封止部は、封止部9(第1封止部)と同様、高分子材料によって形成されている。本実施形態では、第2封止部は、封止部9(第1封止部)と同様、絶縁部とシール部を備える。なお、第2封止部は、封止部9(第1封止部)と異なる形状を有していてもよい。 In the sealed battery 1 according to this embodiment, the sealing portion 9 (the insulating portion 91 and the sealing portion 92) is made of gas permeable resin. The gas-permeable resin can be appropriately selected according to the type of gas that is mainly generated within the case 2 during charging and discharging. The sealed battery 1 is provided with a plurality of sealing portions including a first sealing portion and a second sealing portion. For example, in the present embodiment, the sealed battery 1 is provided with a first sealing portion and a second sealing portion. Specifically, a sealing portion 9 is provided in the vicinity of the positive electrode internal terminal 7A as a first sealing portion. The second sealing portion is provided near the negative electrode internal terminal 7B. The second sealing portion is made of a polymeric material, like the sealing portion 9 (first sealing portion). In this embodiment, the second sealing portion includes an insulating portion and a sealing portion, like the sealing portion 9 (first sealing portion). The second sealing portion may have a shape different from that of the sealing portion 9 (first sealing portion).

第1封止部は、第1気体の透過率が第2封止部の材質よりも高い材質によって形成される。第2封止部は、第1気体とは異なる第2気体の透過率が第1封止部の材質よりも高い材質によって形成される。従って、正極内部端子7Aの近傍に設けられた封止部9(第1封止部)と負極内部端子7Bの近傍に設けられた封止部(第2封止部)とでは、第1気体および第2気体の透過率が異なる。例えば、第1気体と第2気体は、ケース2内で発生する可能性のある複数種類の気体(例えば、二酸化炭素(CO)、一酸化炭素(CO)、メタン(CH)か、エタン(C)等)から適宜選択される。 The first sealing portion is made of a material having a higher permeability to the first gas than the material of the second sealing portion. The second sealing portion is formed of a material having a higher permeability to the second gas, which is different from the first gas, than the material of the first sealing portion. Therefore, in the sealing portion 9 (first sealing portion) provided near the positive electrode internal terminal 7A and the sealing portion (second sealing portion) provided near the negative electrode internal terminal 7B, the first gas and the permeability of the second gas are different. For example, the first gas and the second gas may be multiple types of gases that may be generated within the case 2 (for example, carbon dioxide (CO 2 ), carbon monoxide (CO), methane (CH 4 ), ethane (C 2 H 6 ), etc.).

封止部を用いることで、封止部にガス排出経路Pが形成される。ガス排出経路Pを経て、ケース2内の所定の気体が、ケース2外に排出される。封止部におけるガスの透過速度は、例えば、以下の式に基づいて算出することができる。下記式中の「ガス透過係数」は、JIS K 7126に基づいた差圧法に基づいて算出することができる。
透過速度=ガス透過係数×圧力差×(封止部材の断面積/ガス排出経路の長さ)
このようにして、密閉型電池1では、第1封止部は、第1気体を透過させて、ケース2の外側に排出し、第2封止部は、第1気体とは異なる第2気体を透過させて、ケース2の外側に排出する。これにより、密閉型電池1は、ガス変換触媒の有無に関わらず、ケース2内で発生した複数種類のガスの各々を、適切にケース外に排出することができる。
By using the sealing portion, a gas discharge path P is formed in the sealing portion. A predetermined gas inside the case 2 is discharged to the outside of the case 2 through the gas discharge path P. The gas permeation rate in the sealed portion can be calculated, for example, based on the following formula. The "gas permeability coefficient" in the following formula can be calculated based on the differential pressure method based on JIS K7126.
Permeation rate = gas permeability coefficient x pressure difference x (cross-sectional area of sealing member/length of gas discharge path)
Thus, in the sealed battery 1, the first sealing portion allows the first gas to permeate and is discharged to the outside of the case 2, and the second sealing portion allows the second gas different from the first gas. is permeated and discharged to the outside of the case 2. Thereby, the sealed battery 1 can appropriately discharge each of the plurality of types of gases generated within the case 2 to the outside of the case regardless of the presence or absence of the gas conversion catalyst.

例えば、リチウムイオン二次電池では、充放電中のSEI皮膜形成反応などによってCOが主に発生する。また、充放電中に、COが発生することがある。この場合、第1封止部は、COの透過率が第2封止部の材質よりも高い材質によって形成され、第2封止部は、COの透過率が第1封止部の材質よりも高い材質によって形成されてもよい。COガスを好適に透過させる樹脂としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂や、ペルフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂などが挙げられる。これらのうちのいずれかの樹脂材料から第1封止部を形成すればよく、同様に、これらのうちから第1封止部を形成した樹脂よりもCOの透過率が高い樹脂材料を用いて第2封止部を形成すればよい。 For example, in a lithium-ion secondary battery, CO 2 is mainly generated due to the SEI film formation reaction during charging and discharging. In addition, CO may be generated during charging and discharging. In this case, the first sealing portion is made of a material having a higher CO2 permeability than the material of the second sealing portion, and the second sealing portion is made of a material having a higher CO2 permeability than the first sealing portion. It may be made of a material higher than the Examples of resins that preferably permeate CO 2 gas include polyolefin resins such as polyethylene and polypropylene, and fluorine resins such as perfluoroalkoxyalkane (PFA) and polytetrafluoroethylene (PTFE). The first sealing portion may be formed from any one of these resin materials. A second sealing portion may be formed.

次に、図3および図4を参照して、第1試験例および第2試験例を用いた試験結果を説明する。第1試験例では、第1封止部と第2封止部の2種類の封止部を用いた。詳細には、正極内部端子近傍の封止部および負極内部端子近傍の封止部の一方に第1封止部、他方に第2封止部を用いて、電極端子部材を作製した。作製した電極端子部材を、電極体および電解液が収容されていない空のケースに取り付けて、試験用パックを作製した。試験用パックのケースをガス供給装置と接続し、ガス供給装置から所定の流量でケース内に2種類の気体(第1気体と第2気体)を導入した。ここで、第2気体の流入速度は、第1気体の流入速度の0.8倍とした。第1封止部については、第2気体の透過率に対し、第1気体の透過率が5倍であった。第2封止部については、第1気体の透過率に対し、第2気体の透過率が5倍であった。 Next, test results using the first test example and the second test example will be described with reference to FIGS. 3 and 4. FIG. In the first test example, two types of sealing portions, a first sealing portion and a second sealing portion, were used. Specifically, the electrode terminal member was produced by using the first sealing portion for one of the sealing portion near the positive electrode internal terminal and the sealing portion near the negative electrode internal terminal, and using the second sealing portion for the other. The prepared electrode terminal member was attached to an empty case in which no electrode body and electrolytic solution were contained to prepare a test pack. The case of the test pack was connected to a gas supply device, and two kinds of gases (first gas and second gas) were introduced into the case from the gas supply device at predetermined flow rates. Here, the inflow velocity of the second gas was set to 0.8 times the inflow velocity of the first gas. Regarding the first sealing portion, the permeability of the first gas was five times the permeability of the second gas. Regarding the second sealing portion, the transmittance of the second gas was five times the transmittance of the first gas.

第2試験例では、第1封止部と同様の1種類の封止部を用いた。試験例2では、正極内部端子近傍の封止部および負極内部端子近傍の封止部の一方に第1封止部を用いて、電極端子部材を作製した。第1試験例と同様に、作製した電極端子部材を空のケースに取り付けて、試験用パックを作製した。第2試験例の試験用パックにも、第1試験例と同様に、ケース内に2種類の気体(第1気体と第2気体)を導入した。 In the second test example, one type of sealing portion similar to the first sealing portion was used. In Test Example 2, an electrode terminal member was produced using the first sealing portion as one of the sealing portion near the positive electrode internal terminal and the sealing portion near the negative electrode internal terminal. As in the first test example, the prepared electrode terminal member was attached to an empty case to prepare a test pack. Also in the test pack of the second test example, two kinds of gases (first gas and second gas) were introduced into the case in the same manner as in the first test example.

上記の通り、第1試験例の試験用パックと第2試験例の試験用パックにガスを導入しながら、各々の試験用パックのケース内圧を測定して、ケースの内圧上昇率を調べた。第1試験例におけるケース内圧の内圧上昇率を図3、第2試験例におけるケース内圧の内圧上昇率の測定結果を図4に示す。 As described above, gas was introduced into the test pack of the first test example and the test pack of the second test example, and the internal pressure increase rate of the case was examined by measuring the case internal pressure of each test pack. FIG. 3 shows the internal pressure increase rate of the case internal pressure in the first test example, and FIG. 4 shows the measurement result of the internal pressure increase rate of the case internal pressure in the second test example.

図3において、N1は、封止部を用いずに試験用パックを密閉した場合の、試験用パックに導入された気体全体による内圧を示す。一方、N2は、第1試験例における試験用パックの内圧を示す。第1試験例では、2種類の気体を導入中、最初は、内圧が上昇したが、徐々に内圧が下降した。 In FIG. 3, N1 indicates the internal pressure of the entire gas introduced into the test pack when the test pack is sealed without using a sealing portion. On the other hand, N2 indicates the internal pressure of the test pack in the first test example. In the first test example, the internal pressure initially increased during the introduction of the two types of gases, but the internal pressure gradually decreased.

図4において、N1は、図3と同様、封止部を用いずに試験用パックを密閉した場合の、試験用パックに導入された気体全体による内圧を示す。一方、N3は、第2試験例における試験用パックの内圧を示す。第2試験例では、2種類の気体を導入中、内圧が上昇した後、徐々に内圧が下降した。しかし、第2試験例では、第1試験例と比較して、内圧の下降速度は遅かった。 In FIG. 4, N1 indicates the internal pressure of the entire gas introduced into the test pack when the test pack is sealed without using a sealing portion, as in FIG. On the other hand, N3 indicates the internal pressure of the test pack in the second test example. In the second test example, the internal pressure gradually decreased after the internal pressure increased while the two types of gases were being introduced. However, in the second test example, the decrease speed of the internal pressure was slower than in the first test example.

第1試験例および第2試験例についての内圧上昇率の測定結果から、第1試験例の試験用パックでは、第2試験例の試験用パックよりも、内圧の下降速度が速かった。これにより、第1試験例の試験用パックでは、第2試験例の試験用パックよりも、ケース内の気体を適切にケース外に排出できたことが確認された。このことから、第1試験例の試験用パックでは、ケース内の2種類の気体の両方を適切にケース外に排出できたと考えられる。 From the measurement results of the internal pressure increase rates for the first test example and the second test example, the test pack of the first test example showed a faster decrease speed of the internal pressure than the test pack of the second test example. As a result, it was confirmed that the test pack of the first test example was able to discharge the gas inside the case to the outside of the case more appropriately than the test pack of the second test example. From this, it is considered that in the test pack of the first test example, both of the two types of gases inside the case could be appropriately discharged to the outside of the case.

上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、上記実施形態では、第1封止部(封止部9)が正極内部端子7Aの近傍に設けられ、第2封止部が負極内部端子7Bの近傍に設けられる。しかし、第1封止部と第2封止部の配置位置は、第1封止部と第2封止部の各々がケース2の内部から外部に通じる隙間を封止する限り、限定されない。例えば、第1封止部と第2封止部の少なくとも1つが電極内部端子(正極内部端子7Aおよび負極内部端子7B)近傍以外の位置に配置されてもよい。例えば、ケース2に、ケース2の内部に電解液を供給するための注入口が設けられ、第1封止部と第2封止部の少なくとも1つが、注入口に配置されてもよい。例えば、電極内部端子(正極内部端子7Aおよび負極内部端子7B)近傍以外の位置に封止部が配置される場合、封止部は、ガス透過性を有する高分子材料によって形成されていればよく、絶縁性等の性質を有していなくてもよい。 The technology disclosed in the above embodiment is merely an example. Therefore, it is also possible to modify the techniques exemplified in the above embodiments. For example, in the above embodiment, the first sealing portion (sealing portion 9) is provided near the positive electrode internal terminal 7A, and the second sealing portion is provided near the negative electrode internal terminal 7B. However, the arrangement positions of the first sealing portion and the second sealing portion are not limited as long as each of the first sealing portion and the second sealing portion seals the gap communicating from the inside of the case 2 to the outside. For example, at least one of the first sealing portion and the second sealing portion may be arranged at a position other than the vicinity of the electrode internal terminals (the positive electrode internal terminal 7A and the negative electrode internal terminal 7B). For example, the case 2 may be provided with an injection port for supplying the electrolytic solution to the inside of the case 2, and at least one of the first sealing portion and the second sealing portion may be arranged in the injection port. For example, when the sealing portion is arranged at a position other than the vicinity of the electrode internal terminals (the positive electrode internal terminal 7A and the negative electrode internal terminal 7B), the sealing portion may be formed of a polymer material having gas permeability. , and may not have properties such as insulating properties.

上記実施形態では、第1封止部と第2封止部は、離間する位置に配置されている。しかし、第1封止部と第2封止部は、隣接して配置されてもよい。上記実施形態では、密閉型電池1に第1封止部と第2封止部の2つの封止部を設ける例を示した。しかし、密閉型電池1に3つ以上の封止部が設けられてもよい。 In the above embodiment, the first sealing portion and the second sealing portion are arranged at separated positions. However, the first sealing portion and the second sealing portion may be arranged adjacent to each other. In the above-described embodiment, an example in which the sealed battery 1 is provided with two sealing portions, the first sealing portion and the second sealing portion, is shown. However, the sealed battery 1 may be provided with three or more sealing portions.

1 密閉型電池
2 ケース
3 電極体
9 封止部

1 sealed battery 2 case 3 electrode body 9 sealing part

Claims (1)

正極および負極を有する電極体と、
電解質と、
複数の貫通孔を有し、前記電極体および前記電解質を収容するケースと、
前記ケースの内部で前記正極と電気的に接続される大径部と、前記貫通孔に挿通される円柱状のリベットとを有し、一部が前記ケースの外部に露出する正極内部端子と、
前記ケースの外部に配置されて、前記正極内部端子と接続する正極外部端子と、
前記ケースの内部で前記負極と電気的に接続される大径部と、前記貫通孔に挿通される円柱状のリベットとを有し、一部が前記ケースの外部に露出する負極内部端子と、
前記ケースの外部に配置されて、前記負極内部端子に接続される負極外部端子と、
ガス透過性を有する高分子材料によって形成され、複数の前記貫通孔それぞれ封止する複数の封止部と、
を備える密閉型電池であって、
複数の前記封止部には、前記正極内部端子が挿通される前記貫通孔を封止する第1封止部と、前記負極内部端子が挿通される前記貫通孔を封止する第2封止部と、が含まれており、
前記第1封止部は、
前記ケースの外面と前記正極外部端子とを絶縁する絶縁部と、前記ケースの内面と前記正極内部端子の前記大径部とを絶縁する基部、および前記正極内部端子が挿通される前記貫通孔に嵌めこまれて前記ケースと前記正極内部端子の前記リベットとを絶縁する筒部を有するシール部と、を含み、
第1気体の透過率が前記第2封止部の材質よりも高い材質によって形成され、
前記第1気体を透過させて、前記ケースの外側に排出するように構成されており、
前記第2封止部は、
前記ケースの外面と前記負極外部端子とを絶縁する絶縁部と、前記ケースの内面と前記負極内部端子の前記大径部とを絶縁する基部、および前記負極内部端子が挿通される前記貫通孔に嵌めこまれて前記ケースと前記負極内部端子の前記リベットとを絶縁する筒部を有するシール部と、を含み、
前記第1気体とは異なる第2気体の透過率が前記第1封止部の材質よりも高い材質によって形成され、
前記第2気体を透過させて、前記ケースの外側に排出するように構成されており、
ここで前記第1気体および第2気体は、いずれも当該密閉型電池の前記ケース内部において発生し得る種類の気体である、密閉型電池。
an electrode body having a positive electrode and a negative electrode;
an electrolyte;
a case having a plurality of through holes and containing the electrode body and the electrolyte;
a positive electrode internal terminal having a large-diameter portion electrically connected to the positive electrode inside the case and a cylindrical rivet inserted through the through hole, a portion of which is exposed to the outside of the case;
a positive electrode external terminal disposed outside the case and connected to the positive electrode internal terminal;
a negative electrode internal terminal having a large-diameter portion electrically connected to the negative electrode inside the case and a cylindrical rivet inserted through the through hole, a portion of which is exposed outside the case;
a negative electrode external terminal disposed outside the case and connected to the negative electrode internal terminal;
a plurality of sealing portions each formed of a polymer material having gas permeability and sealing the plurality of through-holes ;
A sealed battery comprising
The plurality of sealing portions includes a first sealing portion that seals the through hole through which the positive electrode internal terminal is inserted, and a second sealing portion that seals the through hole through which the negative electrode internal terminal is inserted. and contains
The first sealing portion is
An insulating portion for insulating the outer surface of the case from the positive electrode external terminal, a base portion for insulating the inner surface of the case from the large diameter portion of the positive electrode internal terminal, and the through hole through which the positive electrode internal terminal is inserted. a seal portion having a cylindrical portion that is fitted to insulate the case and the rivet of the positive electrode internal terminal;
made of a material having a higher permeability to the first gas than the material of the second sealing portion,
configured to permeate the first gas and discharge it to the outside of the case,
The second sealing portion is
An insulating portion for insulating the outer surface of the case from the negative electrode external terminal, a base portion for insulating the inner surface of the case from the large diameter portion of the negative electrode internal terminal, and the through hole through which the negative electrode internal terminal is inserted. a seal portion having a cylindrical portion that is fitted to insulate the case and the rivet of the negative electrode internal terminal;
made of a material having a higher permeability to a second gas different from the first gas than the material of the first sealing part,
configured to permeate the second gas and discharge it to the outside of the case,
The sealed battery, wherein the first gas and the second gas are both types of gases that can be generated inside the case of the sealed battery.
JP2019125942A 2019-07-05 2019-07-05 sealed battery Active JP7236031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019125942A JP7236031B2 (en) 2019-07-05 2019-07-05 sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125942A JP7236031B2 (en) 2019-07-05 2019-07-05 sealed battery

Publications (2)

Publication Number Publication Date
JP2021012804A JP2021012804A (en) 2021-02-04
JP7236031B2 true JP7236031B2 (en) 2023-03-09

Family

ID=74227752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125942A Active JP7236031B2 (en) 2019-07-05 2019-07-05 sealed battery

Country Status (1)

Country Link
JP (1) JP7236031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401494B2 (en) * 2021-09-15 2023-12-19 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and method for manufacturing the secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033128A (en) 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2014017051A (en) 2012-07-05 2014-01-30 Toyota Industries Corp Power storage device
JP2015018711A (en) 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method of manufacturing sealed battery
JP2018147849A (en) 2017-03-09 2018-09-20 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018152164A (en) 2017-03-10 2018-09-27 トヨタ自動車株式会社 Sealed battery
JP2018181544A (en) 2017-04-10 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033128A (en) 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2014017051A (en) 2012-07-05 2014-01-30 Toyota Industries Corp Power storage device
JP2015018711A (en) 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method of manufacturing sealed battery
JP2018147849A (en) 2017-03-09 2018-09-20 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018152164A (en) 2017-03-10 2018-09-27 トヨタ自動車株式会社 Sealed battery
JP2018181544A (en) 2017-04-10 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2021012804A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US9099734B2 (en) Prismatic secondary battery
JP4470124B2 (en) battery
JP6446239B2 (en) Secondary battery
JP2005129524A (en) Lithium ion secondary battery
KR101841340B1 (en) Sealed battery
JP6350865B2 (en) battery
JP2006269420A (en) Lithium secondary battery
JP6768199B2 (en) Sealed battery
US9012064B2 (en) Current collecting plate and secondary battery including current collecting plate
JP7236031B2 (en) sealed battery
JP2010089156A (en) Joining method and utilization thereof
JP6757500B2 (en) Non-aqueous electrolyte secondary battery
JP6403644B2 (en) Secondary battery
WO2016088505A1 (en) Rectangular secondary cell
KR101787636B1 (en) Battery cell and device comprising thereof
KR101174919B1 (en) Lithium rechargeable battery
US20220271347A1 (en) Secondary battery and method for manufacturing secondary battery
JP6802978B2 (en) Non-aqueous electrolyte secondary battery
EP4156397A1 (en) Secondary battery
KR101757527B1 (en) Electro-chemical energy storage having gas permeable membrane disposed within multiple case
JP6802980B2 (en) Non-aqueous electrolyte secondary battery
JP2018081860A (en) Secondary battery
KR102460352B1 (en) Coin cell
JP2019140100A (en) Power storage element
JP2015106490A (en) Secondary battery with safety valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R151 Written notification of patent or utility model registration

Ref document number: 7236031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151