JP2018152164A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2018152164A
JP2018152164A JP2017045542A JP2017045542A JP2018152164A JP 2018152164 A JP2018152164 A JP 2018152164A JP 2017045542 A JP2017045542 A JP 2017045542A JP 2017045542 A JP2017045542 A JP 2017045542A JP 2018152164 A JP2018152164 A JP 2018152164A
Authority
JP
Japan
Prior art keywords
case
gas
sealed battery
sealing member
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017045542A
Other languages
Japanese (ja)
Other versions
JP6768199B2 (en
Inventor
松浦 智浩
Tomohiro Matsuura
智浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017045542A priority Critical patent/JP6768199B2/en
Publication of JP2018152164A publication Critical patent/JP2018152164A/en
Application granted granted Critical
Publication of JP6768199B2 publication Critical patent/JP6768199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery which can inhibit increase of a case internal pressure caused by a gas occurring during charing/discharging without reducing the cubic volume of an electrode body relative to the internal capacity of a case.SOLUTION: In a sealed battery 100 disclosed herein, an electrode terminal 30 is provided at a case 10. The electrode terminal 30 of the sealed battery 100 includes: a collector member 32 in which a lower end 32a is electrically connected with an electrode body 20 in the case 10 and an upper end 32b is exposed to the outside of the case 10; and an insulative sealing member 38 which is disposed between the collector member 32 and the case 10 and seals the interior of the case 10. In the sealed battery 100 disclosed herein, the sealing member 38 is formed by a gas permeability resin. A gas conversion catalyst 40 which converts a non-permeable gas to a permeable gas is disposed in the case.SELECTED DRAWING: Figure 1

Description

本発明は、ケース内に電極体と電解液とが収容され、当該ケースに電極端子が設けられた密閉型電池に関する。   The present invention relates to a sealed battery in which an electrode body and an electrolytic solution are accommodated in a case, and an electrode terminal is provided in the case.

リチウムイオン二次電池やニッケル水素電池などの二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。かかる二次電池は、例えば、電極体と電解液とがケース内に収容され、当該ケースに電極端子が設けられた密閉型電池として構築される。   Secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. Such a secondary battery is constructed, for example, as a sealed battery in which an electrode body and an electrolytic solution are accommodated in a case, and electrode terminals are provided in the case.

この密閉型電池では、充放電中に電解液の一部が分解され、当該分解物からなるSEI被膜が負極の表面に形成されると共にガスが発生するSEI被膜形成反応が生じることがある。かかるSEI被膜形成反応が生じると、発生したガスによってケースの内圧が上昇してケースの変形や破損が生じる可能性がある。このため、充放電中にケース内でガスが発生した場合であっても、ケースの変形や破損を防止できるような技術が従来から種々提案されている。   In this sealed battery, a part of the electrolytic solution is decomposed during charging and discharging, and an SEI film forming reaction in which gas is generated while an SEI film made of the decomposition product is formed on the surface of the negative electrode may occur. When such a SEI film forming reaction occurs, the generated gas may increase the internal pressure of the case and cause deformation or breakage of the case. For this reason, various techniques have been conventionally proposed that can prevent deformation and breakage of the case even when gas is generated in the case during charging and discharging.

例えば、特許文献1には、電解液内にホスホノアセテート類化合物を含ませるとともに、ケースの側面に内方に向かって凹む凹部を設ける技術が開示されている。かかる特許文献1に記載の技術では、ホスホノアセテート類化合物によってガスの発生を抑制することができ、さらに、ケースの側面の凹部によって当該ケースの変形を抑制することができる。また、特許文献2には、ケース内にガスポケットを設け、充放電で生じたガスをガスポケットに送ってケースの変形を抑制する技術が開示されている。   For example, Patent Document 1 discloses a technique in which a phosphonoacetate compound is included in an electrolytic solution, and a recess that is recessed inward is provided on the side surface of the case. In the technique described in Patent Document 1, the generation of gas can be suppressed by the phosphonoacetate compound, and the deformation of the case can be suppressed by the concave portion on the side surface of the case. Patent Document 2 discloses a technique in which a gas pocket is provided in a case, and gas generated by charging / discharging is sent to the gas pocket to suppress deformation of the case.

特許第5913611号Patent 5913611 特開2016−9677号公報Japanese Patent Laid-Open No. 2006-9679

しかしながら、上記した凹部やガスポケットを形成する技術の場合、ケースの内容量に対する電極体の体積を小さくする必要があるため、エネルギー密度などの電池性能が低下するという問題が生じていた。
本発明は、かかる点に鑑みてなされたものであり、その主な目的は、ケースの内容量に対する電極体の体積を小さくすることなく、充放電中のガスの発生によるケース内圧の上昇を抑制することができる密閉型電池を提供することを目的とする。
However, in the case of the technology for forming the recesses and gas pockets as described above, it is necessary to reduce the volume of the electrode body with respect to the internal capacity of the case, which causes a problem that battery performance such as energy density is lowered.
The present invention has been made in view of such points, and its main purpose is to suppress an increase in case internal pressure due to the generation of gas during charge and discharge without reducing the volume of the electrode body relative to the case internal capacity. It is an object of the present invention to provide a sealed battery that can be used.

上記目的を実現するべく、本発明によって以下の構成の密閉型電池が提供される。   In order to achieve the above object, the present invention provides a sealed battery having the following configuration.

ここで開示される密閉型電池は、ケース内に電極体と電解液とが収容されており、外部機器と接続される電極端子がケースに設けられている密閉型電池である。
そして、かかる密閉型電池の電極端子は、一方の端部がケース内の電極体と電気的に接続され、他方の端部がケースの外部に露出している集電部材と、集電部材とケースとの間に配置され、ケース内を封止する絶縁性の封止部材とを備えている。
ここで、上記した密閉型電池では、封止部材がガス透過性樹脂によって構成されており、充放電で生じたガスのうち、ガス透過性樹脂を透過し難い非透過性ガスを、ガス透過性樹脂を透過し易い透過性ガスに変換する変換触媒がケース内に配置されている。
The sealed battery disclosed here is a sealed battery in which an electrode body and an electrolytic solution are accommodated in a case, and electrode terminals connected to external devices are provided in the case.
The electrode terminal of the sealed battery has a current collecting member having one end electrically connected to the electrode body in the case and the other end exposed to the outside of the case, a current collecting member, And an insulating sealing member that is disposed between the case and seals the inside of the case.
Here, in the above-described sealed battery, the sealing member is made of a gas permeable resin, and a gas permeable to a non-permeable gas that hardly permeates the gas permeable resin out of the gas generated by charging and discharging. A conversion catalyst that converts the resin into a permeable gas that easily permeates is disposed in the case.

本発明者は、上記した課題に対して、充放電で生じたガスをケースの外部に排出できれば、従来の技術と異なり、電極体の体積を小さくすることなく、充放電中のガスの発生によるケースの変形を防止することができると考えた。
そして、ケース内のガスを適切に排出できるような構造について種々の検討を行った結果、電極端子に取り付けられる封止部材にガス透過性樹脂を用いることに思い至った。
具体的には、密閉型電池の電極端子には、集電部材とケースとを絶縁すると共に、ケース内の電解液が外部に漏出することを防止する封止部材が取り付けられている。本発明者は、この封止部材にガスを透過させることができるガス透過性樹脂を用いれば、当該封止部材を通ってケース内のガスを外部に排出させることができるようになり、ケース内圧の上昇を抑制できると考えた。
In contrast to the conventional technique, the present inventor, for the above-mentioned problems, can discharge the gas generated during charging / discharging without reducing the volume of the electrode body, as long as the gas generated by charging / discharging can be discharged to the outside of the case. We thought that deformation of the case could be prevented.
As a result of various studies on a structure that can appropriately discharge the gas in the case, the inventors have come to think that a gas permeable resin is used for the sealing member attached to the electrode terminal.
Specifically, a sealing member is attached to the electrode terminal of the sealed battery to insulate the current collecting member from the case and prevent the electrolyte in the case from leaking outside. If the inventor uses a gas permeable resin that allows gas to pass through the sealing member, the gas inside the case can be discharged to the outside through the sealing member. It was thought that the rise in

しかし、実際にガス透過性樹脂からなる封止部材を有した密閉型電池を作製して実験を行ったところ、ケース内のガスが効率的に排出されず、ケース内圧の上昇を十分に抑制できないという結果が得られた。
本発明者は、かかる問題の原因についてさらに検討した結果、充放電で生じるガスには、ガス透過性樹脂を透過し難いガス(非透過性ガス)が含まれていることがあり、当該非透過性ガスが多量に発生すると、封止部材にガス透過性樹脂を用いているにも関わらず、ケース内のガスを効率的に排出できなくなることを見出した。
However, when a sealed battery having a sealing member made of a gas permeable resin was actually manufactured and tested, the gas in the case was not efficiently discharged, and the increase in the internal pressure of the case could not be sufficiently suppressed. The result was obtained.
As a result of further examination of the cause of the problem, the present inventor may include a gas (non-permeable gas) that is difficult to permeate the gas-permeable resin in the gas generated by charging / discharging. It has been found that when a large amount of reactive gas is generated, the gas in the case cannot be efficiently discharged even though the gas permeable resin is used for the sealing member.

ここで開示される密閉型電池は、上記した知見に基づいてなされたものであり、ガス透過性樹脂を透過し難い非透過性ガスを、ガス透過性樹脂を透過し易い透過性ガスに変換するガス変換触媒が電池ケース内に取り付けられている。
これによって、充放電で非透過性ガスが発生した場合であっても、当該非透過性ガスを透過性ガスに変換し、封止部材を通ってケース内のガスを外部へ効率良く排出させることができるため、充放電中のガスの発生によるケース内圧の上昇を適切に抑制できる
The sealed battery disclosed here is based on the above-described knowledge, and converts a non-permeable gas that does not easily pass through the gas-permeable resin into a permeable gas that easily passes through the gas-permeable resin. A gas conversion catalyst is mounted in the battery case.
Thereby, even when non-permeable gas is generated by charging / discharging, the non-permeable gas is converted to permeable gas, and the gas in the case is efficiently discharged to the outside through the sealing member. Can increase the internal pressure of the case due to the generation of gas during charging and discharging.

例えば、充放電において二酸化炭素(CO)と一酸化炭素(CO)とが生じるような密閉型電池においては、COガスを透過させるガス透過性樹脂として、ポリエチレンやペルフルオロアルコキシアルカンなどが用いられる。そして、COガスをCOガスに変換するガス変換触媒としてPt/SnOなどが用いられる。 For example, in a sealed battery in which carbon dioxide (CO 2 ) and carbon monoxide (CO) are generated during charging and discharging, polyethylene, perfluoroalkoxyalkane, or the like is used as a gas-permeable resin that allows CO 2 gas to permeate. . Pt / SnO 2 or the like is used as a gas conversion catalyst that converts CO gas into CO 2 gas.

本発明の一実施形態に係る密閉型電池を模式的に示す図である。It is a figure which shows typically the sealed battery which concerns on one Embodiment of this invention. 図1に示す密閉型電池の電極端子近傍の断面図である。It is sectional drawing of the electrode terminal vicinity of the sealed battery shown in FIG. 試験例1におけるケース内圧の測定結果を示すグラフである。6 is a graph showing measurement results of case internal pressure in Test Example 1; 試験例2におけるケース内圧の測定結果を示すグラフである。6 is a graph showing a measurement result of a case internal pressure in Test Example 2. 試験例3におけるケース内圧の測定結果を示すグラフである。10 is a graph showing measurement results of case internal pressure in Test Example 3.

以下、本発明の一実施形態に係る密閉型電池の一例としてリチウムイオン二次電池を説明する。なお、以下の説明で参照する図面では、同じ作用を奏する部材・部位に同じ符号を付している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、電極体や電解液の構成など)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Hereinafter, a lithium ion secondary battery will be described as an example of a sealed battery according to an embodiment of the present invention. In the drawings referred to in the following description, the same reference numerals are given to members / parts having the same action. In addition, the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, the configuration of the electrode body and the electrolytic solution) can be obtained by those skilled in the art based on the prior art in this field. It can be grasped as a design matter.

1.全体構成
図1は本実施形態に係る密閉型電池を模式的に示す図である。図1に示すように、本実施形態に係る密閉型電池100では、角型のケース10の内部に電極体20と電解液(図示省略)とが収納されている。かかる密閉型電池100のケース10は、上面が開口した扁平な角型のケース本体12と、当該ケース本体12の上面の開口部を塞ぐ板状の蓋体14とから構成されている。また、蓋体14には、電解液をケース10内に注液するための注液口15が設けられている。なお、ケース10は、アルミニウムなどの軽量で熱伝導性の良い金属材料を主体に構成されていることが好ましい。
1. Overall Configuration FIG. 1 is a diagram schematically showing a sealed battery according to this embodiment. As shown in FIG. 1, in the sealed battery 100 according to this embodiment, an electrode body 20 and an electrolytic solution (not shown) are accommodated in a rectangular case 10. The case 10 of the sealed battery 100 includes a flat rectangular case main body 12 having an open upper surface and a plate-like lid body 14 that closes the opening on the upper surface of the case main body 12. In addition, the lid body 14 is provided with a liquid injection port 15 for injecting an electrolytic solution into the case 10. In addition, it is preferable that the case 10 is mainly composed of a metal material that is lightweight and has good thermal conductivity, such as aluminum.

具体的な図示は省略するが、本実施形態における電極体20は、箔状の正極集電体の表面に正極合材層が付与された長尺シート状の正極と、箔状の負極集電体の表面に負極合材層が付与された長尺シート状の負極とを備えており、かかるシート状の正極と負極とをセパレータを介して積層させ、該積層体を捲回することによって形成されている。なお、幅方向Xにおける電極体20の中央部には、正極および負極の合材層が対向する捲回コア部20Aが形成されており、両側縁部には、合材層が付与されていない集電体が巻き重ねられた端子接続部20Bが形成されている。   Although not specifically illustrated, the electrode body 20 in the present embodiment includes a long sheet-like positive electrode in which a positive electrode mixture layer is provided on the surface of a foil-like positive electrode current collector, and a foil-like negative electrode current collector. Formed by laminating the sheet-like positive electrode and the negative electrode through a separator, and winding the laminate. Has been. In addition, a wound core portion 20A is formed in the center portion of the electrode body 20 in the width direction X so that the positive electrode and negative electrode mixture layers face each other, and no mixture layer is provided on both side edges. A terminal connection portion 20B around which the current collector is wound is formed.

なお、本実施形態に係る密閉型電池100において、電極体20を構成する各部材(例えば正極、負極およびセパレータ等)の材料は、従来の一般的なリチウムイオン二次電池に用いられるものと同様のものを制限なく使用可能であり、本発明を特徴づけるものではないため、詳細な説明を省略する。また、電解液に用いられる溶媒や支持塩についても同様に、一般的な材料を特に制限なく使用できるため詳細な説明は省略する。   In the sealed battery 100 according to the present embodiment, the material of each member (for example, the positive electrode, the negative electrode, and the separator) constituting the electrode body 20 is the same as that used for a conventional general lithium ion secondary battery. The present invention can be used without limitation, and does not characterize the present invention. Similarly, with respect to the solvent and supporting salt used in the electrolytic solution, since a general material can be used without any particular limitation, detailed description thereof is omitted.

そして、本実施形態に係る密閉型電池100では、ケース10の上面をなす蓋体14に、モーターなどの外部機器と電気的に接続される電極端子30が設けられている。以下、本実施形態における電極端子30の具体的な構造について説明する。   In the sealed battery 100 according to this embodiment, the electrode terminal 30 that is electrically connected to an external device such as a motor is provided on the lid body 14 that forms the upper surface of the case 10. Hereinafter, a specific structure of the electrode terminal 30 in the present embodiment will be described.

2.電極端子
図2は図1に示す密閉型電池の電極端子近傍の断面図である。図1および図2に示すように、本実施の形態に係る密閉型電池100の電極端子30は、集電部材32と、ボルト34と、外部接続部材36と、封止部材38とを備えている。以下、電極端子30を構成する各部材について説明する。
2. Electrode Terminal FIG. 2 is a cross-sectional view of the vicinity of the electrode terminal of the sealed battery shown in FIG. As shown in FIGS. 1 and 2, the electrode terminal 30 of the sealed battery 100 according to the present embodiment includes a current collecting member 32, a bolt 34, an external connection member 36, and a sealing member 38. Yes. Hereinafter, each member which comprises the electrode terminal 30 is demonstrated.

(1)集電部材
集電部材32は、密閉型電池100の高さ方向Zに延びる長尺の導電性部材である。かかる集電部材32の下端32aはケース10内で電極体20の端子接続部20Bと電気的に接続されており、上端32bはケース10の外部に露出している。具体的には、図2に示すように、集電部材32の上端32bは、蓋体14、封止部材38、外部接続部材36の各々を貫通してケース10の外部に露出している。そして、集電部材32の上端32bをかしめることによって、封止部材38と外部接続部材36とがケース10の蓋体14に固定されている。かかる集電部材32に用いられる導電性材料としては、例えば、アルミニウムなどが挙げられる。
(1) Current Collection Member The current collection member 32 is a long conductive member that extends in the height direction Z of the sealed battery 100. The lower end 32 a of the current collecting member 32 is electrically connected to the terminal connection portion 20 </ b> B of the electrode body 20 in the case 10, and the upper end 32 b is exposed to the outside of the case 10. Specifically, as shown in FIG. 2, the upper end 32 b of the current collecting member 32 penetrates each of the lid body 14, the sealing member 38, and the external connection member 36 and is exposed to the outside of the case 10. The sealing member 38 and the external connection member 36 are fixed to the lid 14 of the case 10 by caulking the upper end 32 b of the current collecting member 32. Examples of the conductive material used for the current collecting member 32 include aluminum.

(2)ボルト
図1に示すように、ボルト34は、ケース10外部において密閉型電池100の高さ方向Zに立設する柱状の導電性部材である。かかる柱状のボルト34の外周面にはネジ溝(図示省略)が形成され、外部機器と接続できるように構成されている。なお、ボルト34には、上記した集電部材32と同種の材料を好ましく用いることができる。
(2) Bolt As shown in FIG. 1, the bolt 34 is a columnar conductive member erected in the height direction Z of the sealed battery 100 outside the case 10. A thread groove (not shown) is formed on the outer peripheral surface of the columnar bolt 34 so that it can be connected to an external device. The bolt 34 can be preferably made of the same material as that of the current collecting member 32 described above.

(3)外部接続部材
外部接続部材36は、ケース10の外部において、集電部材32とボルト34とを電気的に接続する板状の導電性部材である。具体的には、外部接続部材36は、集電部材32とボルト34とを電気的に接続するように密閉型電池の幅方向X(図1参照)に沿って延びている。なお、外部接続部材36についても、上記した集電部材32と同種の導電性材料を用いることができる。
(3) External Connection Member The external connection member 36 is a plate-like conductive member that electrically connects the current collecting member 32 and the bolt 34 outside the case 10. Specifically, the external connection member 36 extends along the width direction X (see FIG. 1) of the sealed battery so as to electrically connect the current collecting member 32 and the bolt 34. For the external connection member 36, the same kind of conductive material as that of the current collecting member 32 can be used.

(4)封止部材
封止部材38は、図2に示すように、集電部材32とケース10(蓋体14)との間に配置され、ケース10内を封止する絶縁性の部材である。本実施形態における封止部材38は、絶縁ホルダ37と内部シール材39とから構成されている。
具体的には、絶縁ホルダ37は、蓋体14の上面に配置されており、上記した各々の導電性部材(集電部材32、ボルト34、外部接続部材36)がケース10の蓋体14と通電することを防止している。かかる絶縁ホルダ37には、集電部材32の上端32bを挿通させる第1挿通孔37aが形成されている。
一方、内部シール材39は、ケース10の内部(蓋体14の下側)において蓋体14と集電部材32との間に配置されている。かかる内部シール材39には、集電部材32の上端32bを挿通させる第2挿通孔39aが形成されており、当該第2挿通孔39aの周囲に円筒状の突起39bが設けられている。かかる内部シール材39の突起39bは、蓋体14の第3挿通孔14aに挿入され、絶縁ホルダ38の底面に圧着される。これによって、集電部材32と蓋体14とを絶縁するとともにケース10内を封止する封止部材38が形成される。
(4) Sealing member As shown in FIG. 2, the sealing member 38 is an insulating member that is disposed between the current collecting member 32 and the case 10 (lid 14) and seals the inside of the case 10. is there. The sealing member 38 in the present embodiment includes an insulating holder 37 and an internal sealing material 39.
Specifically, the insulating holder 37 is disposed on the upper surface of the lid body 14, and each of the conductive members (the current collecting member 32, the bolt 34, and the external connection member 36) described above is connected to the lid body 14 of the case 10. Preventing energization. The insulating holder 37 is formed with a first insertion hole 37a through which the upper end 32b of the current collecting member 32 is inserted.
On the other hand, the inner sealing material 39 is disposed between the lid body 14 and the current collecting member 32 inside the case 10 (below the lid body 14). The inner sealing material 39 is formed with a second insertion hole 39a through which the upper end 32b of the current collecting member 32 is inserted, and a cylindrical protrusion 39b is provided around the second insertion hole 39a. The protrusion 39 b of the inner seal material 39 is inserted into the third insertion hole 14 a of the lid body 14 and is crimped to the bottom surface of the insulating holder 38. Thus, a sealing member 38 that insulates the current collecting member 32 and the lid body 14 and seals the inside of the case 10 is formed.

そして、本実施形態に係る密閉型電池100においては、封止部材38(絶縁ホルダ37および内部シール材39)がガス透過性樹脂によって構成されている。
かかるガス透過性樹脂は、充放電の際にケース10内で主に発生するガスの種類に応じて適宜選択することができる。例えば、リチウムイオン二次電池の場合には、充放電中のSEI皮膜形成反応などによって二酸化炭素(CO)が主に発生するため、ガス透過性樹脂には、当該COガスを好適に透過させることができるような樹脂材料が用いられる。かかるCOガスを好適に透過させるガス透過性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂や、ペルフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂などが挙げられる。
And in the sealed battery 100 which concerns on this embodiment, the sealing member 38 (the insulation holder 37 and the internal sealing material 39) is comprised with the gas-permeable resin.
Such a gas permeable resin can be appropriately selected according to the type of gas mainly generated in the case 10 during charging and discharging. For example, in the case of a lithium ion secondary battery, carbon dioxide (CO 2 ) is mainly generated by the SEI film formation reaction during charging / discharging, and therefore the gas permeable resin suitably transmits the CO 2 gas. A resin material that can be used is used. Examples of the gas permeable resin that suitably transmits CO 2 gas include polyolefin resins such as polyethylene and polypropylene, and fluorine resins such as perfluoroalkoxyalkane (PFA) and polytetrafluoroethylene (PTFE).

上記したガス透過性樹脂を封止部材38に用いた場合、図2に示すように、封止部材38にガス排出経路Aが形成され、当該ガス排出経路Aを経てケース10内のCOガスがケース10外に排出される。なお、かかる封止部材38内におけるガスの透過速度は、以下の式に基づいて算出することができる。なお、下記式中の「ガス透過係数」とは、JIS K 7126に基づいた差圧法に基づいて算出することができる。
透過速度=ガス透過係数×圧力差×(封止部材の断面積/ガス排出経路の長さ)
When the gas permeable resin described above is used for the sealing member 38, as shown in FIG. 2, a gas discharge path A is formed in the sealing member 38, and the CO 2 gas in the case 10 passes through the gas discharge path A. Is discharged out of the case 10. The gas permeation speed in the sealing member 38 can be calculated based on the following equation. The “gas permeability coefficient” in the following formula can be calculated based on a differential pressure method based on JIS K 7126.
Permeation speed = gas permeation coefficient x pressure difference x (cross-sectional area of sealing member / length of gas discharge path)

(5)ガス変換触媒
さらに、図1に示すように、本実施形態に係る密閉型電池100では、ケース10内にガス変換触媒40が配置されている。かかるガス変換触媒40は、充放電で生じたガスのうち、非透過性ガスを透過性ガスに変換する金属触媒を含んでいるため、充放電で生じたガスを、封止部材38を介してケース10外に好適に排出させることができる。このため、充放電中にケース10内圧が上昇して当該ケース10が変形・破損することを好適に防止することができる。
(5) Gas Conversion Catalyst Furthermore, as shown in FIG. 1, in the sealed battery 100 according to the present embodiment, a gas conversion catalyst 40 is disposed in the case 10. Since the gas conversion catalyst 40 includes a metal catalyst that converts a non-permeable gas into a permeable gas among the gases generated by charging and discharging, the gas generated by charging and discharging is passed through the sealing member 38. It can be suitably discharged out of the case 10. For this reason, it can prevent suitably that case 10 internal pressure rises during charging / discharging, and the said case 10 deform | transforms and breaks.

上記したガス変換触媒40に用いられる触媒金属は、充放電の際にケース10内で発生する非透過性ガスの種類に応じて適宜選択することができる。例えば、リチウムイオン二次電池の充放電においては、上記した二酸化炭素(CO)以外に、一酸化炭素(CO)が発生することがあり、このCOガスはポリオレフィン系樹脂やフッ素系樹脂などのガス透過性樹脂を透過し難い。このような場合、ガス変換触媒40には、非透過性ガスであるCOガスを、透過性ガスであるCOガスに変換できるような金属触媒が用いられる。かかるCOガスをCOガスに変換する金属触媒としては、例えば、貴金属と易還元性金属酸化物との複合材料(Pt/SnO、Pd/CeO等)や、金ナノ粒子触媒(Au/TiO、Au/Fe等)などが挙げられる。 The catalytic metal used for the gas conversion catalyst 40 described above can be appropriately selected according to the type of the non-permeable gas generated in the case 10 during charging and discharging. For example, in charging / discharging of a lithium ion secondary battery, carbon monoxide (CO) may be generated in addition to the above-described carbon dioxide (CO 2 ), and this CO gas may be a polyolefin resin or a fluorine resin. Hard to permeate gas permeable resin. In such a case, a metal catalyst that can convert CO gas, which is a non-permeable gas, into CO 2 gas, which is a permeable gas, is used for the gas conversion catalyst 40. Examples of the metal catalyst for converting the CO gas into CO 2 gas include, for example, a composite material (Pt / SnO 2 , Pd / CeO 2, etc.) of a noble metal and an easily reducible metal oxide, a gold nanoparticle catalyst (Au / TiO 2, Au / Fe 2 O 3 , etc.) and the like.

なお、ケース10内に収容された電解液(図示省略)とガス変換触媒40とが接触すると、ガス変換効率の低下などの問題が生じる原因となるため、ガス変換触媒40と電解液とが接触しないような種々の構造を設けると好ましい。例えば、ガス変換触媒40は、図1に示すように、ケース10上面の蓋体14に取り付ける方が好ましい。   Note that contact between the electrolytic solution (not shown) accommodated in the case 10 and the gas conversion catalyst 40 may cause problems such as reduction in gas conversion efficiency, and thus the gas conversion catalyst 40 and the electrolytic solution are in contact with each other. It is preferable to provide various structures that do not. For example, the gas conversion catalyst 40 is preferably attached to the lid 14 on the upper surface of the case 10 as shown in FIG.

また、ガス変換触媒40と電解液との接触を防止するために、ガス変換触媒40を樹脂フィルムで被覆してもよい。かかる樹脂フィルムには、電解液を遮断し、かつ、透過性ガスと非透過性ガスを透過させることができるように構成されたフィルムが用いられる。このような樹脂フィルムには、例えば、ポリエチレンやポリプロピレンなどの樹脂材料が用いられる。なお、樹脂フィルムの厚みは10μm〜200μmの範囲内に設定することが好ましい。   Moreover, in order to prevent the contact between the gas conversion catalyst 40 and the electrolytic solution, the gas conversion catalyst 40 may be covered with a resin film. As such a resin film, a film is used that is configured to block the electrolytic solution and allow the permeable gas and the non-permeable gas to permeate. For such a resin film, for example, a resin material such as polyethylene or polypropylene is used. In addition, it is preferable to set the thickness of a resin film in the range of 10 micrometers-200 micrometers.

3.他の態様
以上、ここで開示される密閉型電池の一実施形態について説明したが、本発明は、上記した実施形態に限定されず、種々の構造を変更することができる。
3. Other Embodiments Although one embodiment of the sealed battery disclosed herein has been described, the present invention is not limited to the above-described embodiment, and various structures can be changed.

例えば、上記した実施形態においては、ここで開示される密閉型電池の一例としてリチウムイオン二次電池を説明したが、ここで開示される密閉型電池はリチウムイオン二次電池に限定されず、例えば、ニッケル水素電池などであってもよい。リチウムイオン二次電池以外の電池に本発明を適用する場合には、充放電中に発生するガスの種類に応じて、封止部材38を構成するガス透過性樹脂と、ガス変換触媒40に使用される金属触媒とを種々変更することが好ましい。   For example, in the above-described embodiment, the lithium ion secondary battery has been described as an example of the sealed battery disclosed herein. However, the sealed battery disclosed herein is not limited to the lithium ion secondary battery. A nickel metal hydride battery may be used. When the present invention is applied to a battery other than a lithium ion secondary battery, the gas permeable resin constituting the sealing member 38 and the gas conversion catalyst 40 are used according to the type of gas generated during charging and discharging. It is preferable to variously change the metal catalyst.

[試験例]
以下、本発明に関係する試験を説明するが、以下の説明は本発明を限定することを意図したものではない。
[Test example]
Hereinafter, tests related to the present invention will be described. However, the following description is not intended to limit the present invention.

1.各試験例
(1)試験例1
試験例1では、電極端子の封止部材にペルフルオロアルコキシアルカン(PFA)を用いた電極端子を作製し、当該作製した電極端子を、電極体および電解液が収容されていない空のケースに取り付けて試験用パックを作製した。そして、かかる試験用パックのケースをガス供給装置と接続し、ガス供給装置から所定の流量でケース内にCOガスを6ヶ月間導入した。なお、ここでのガス流量は、図3に示すようにガス導入開始から6ヶ月後に、ケース内圧が250%になるような流量に設定した。
1. Each test example (1) Test example 1
In Test Example 1, an electrode terminal using perfluoroalkoxyalkane (PFA) as a sealing member for the electrode terminal was produced, and the produced electrode terminal was attached to an empty case in which the electrode body and the electrolytic solution were not accommodated. A test pack was prepared. Then, the case of the test pack was connected to a gas supply device, and CO gas was introduced into the case at a predetermined flow rate from the gas supply device for 6 months. Note that the gas flow rate here was set to a flow rate at which the internal pressure of the case was 250% six months after the start of gas introduction, as shown in FIG.

(2)試験例2
試験例2では、試験例1と同様に、電極端子の封止部材にPFAが用いられた試験用パックを作製した。そして、試験例2の試験用パックには、COとCOとを1:1の割合で混合した混合ガスを試験例1と同じ流量でケース内に6ヶ月間導入した。
(2) Test example 2
In Test Example 2, as in Test Example 1, a test pack in which PFA was used as the electrode terminal sealing member was produced. In the test pack of Test Example 2, a mixed gas in which CO and CO 2 were mixed at a ratio of 1: 1 was introduced into the case for 6 months at the same flow rate as in Test Example 1.

(3)試験例3
試験例3では、COガスをCOガスに変換するガス変換触媒(Au/Fe)をケース内に配置したことを除いて、試験例1や試験例2と同様の条件で試験用パックを作製した。そして、試験例2と同様に、COとCOとを1:1の割合で混合した混合ガスをケース内に導入した。
(3) Test example 3
In Test Example 3, the gas conversion catalyst (Au / Fe 2 O 3 ) that converts CO gas into CO 2 gas was placed in the case, and the test was performed under the same conditions as Test Example 1 and Test Example 2. A pack was made. Then, as in Test Example 2, a mixed gas in which CO and CO 2 were mixed at a ratio of 1: 1 was introduced into the case.

2.評価試験
上記したガス導入期間(6ヶ月)の間、各々の試験用パックのケース内圧を毎日測定してケースの内圧上昇率を調べた。試験例1におけるケース内圧の内圧上昇率を図3、試験例2における内圧上昇率の測定結果を図4、試験例3における内圧上昇率の測定結果を図5に示す。なお、図3〜図5の縦軸の数値は、試験開始後1ヶ月目の試験例1の試験用パックのケース内圧を100%と設定した場合の割合を示している。
2. Evaluation Test During the above-described gas introduction period (6 months), the case internal pressure of each test pack was measured daily to examine the rate of increase in internal pressure of the case. FIG. 3 shows the internal pressure increase rate of the case internal pressure in Test Example 1, FIG. 4 shows the measurement result of the internal pressure increase rate in Test Example 2, and FIG. 5 shows the measurement result of the internal pressure increase rate in Test Example 3. In addition, the numerical value of the vertical axis | shaft of FIGS. 3-5 has shown the ratio at the time of setting the case internal pressure of the test pack of the test example 1 of the test example 1 month after a test start to 100%.

図3および図4に示すように、試験例1と試験例2とを比較すると、試験例2のケース内圧が若干低くなっていた。しかし、試験例2におけるケース内圧もケースに変形や破損が生じ得るような値であり、内圧の上昇が十分に抑制されていると言い難い結果であった。そして、試験例2のケース内のガス分圧を調べた結果、試験例2ではCOガスの圧力が低下している一方でCOガスの圧力が増加していた。これらの結果より、電極端子の封止部材にPFAを用いた場合、ケース内のCOガスを外部に排出することはできるが、COガスを排出できないことが確認された。 As shown in FIG. 3 and FIG. 4, comparing Test Example 1 and Test Example 2, the case internal pressure of Test Example 2 was slightly lower. However, the case internal pressure in Test Example 2 is also a value that may cause deformation or breakage in the case, and it is difficult to say that the increase in internal pressure is sufficiently suppressed. And as a result of examining the gas partial pressure in the case of Test Example 2, in Test Example 2, the pressure of CO 2 gas was increased while the pressure of CO 2 gas was decreased. From these results, it was confirmed that when PFA is used for the electrode terminal sealing member, the CO 2 gas in the case can be discharged to the outside, but the CO gas cannot be discharged.

一方、図5に示すように、試験例3では、ケース内圧の上昇が適切に抑制されており、内圧上昇による変形や破損が好適に防止されていた。そして、試験例3におけるガスの分圧を調べた結果、試験例3のケース内にはCOガスが存在しておらず、COガスがCOガスに変換されていた。このことから、ガス変換触媒であるAu/Feをケース内に配置することによってCOガスをCOガスに変換し、当該COガスをPFA製の封止部材から適切に排出できるため、ケース内圧上昇によるケースの変形・破損を好適に防止できることが分かった。 On the other hand, as shown in FIG. 5, in Test Example 3, the increase in the case internal pressure was appropriately suppressed, and deformation and breakage due to the increase in the internal pressure were suitably prevented. As a result of examining the partial pressure of the gas in Test Example 3, no CO gas was present in the case of Test Example 3, and the CO gas was converted to CO 2 gas. Therefore, the CO gas is converted to CO 2 gas by placing the Au / Fe 2 O 3 is a gas conversion catalyst into the case, since the CO 2 gas can be appropriately discharged from the sealing member made of PFA It has been found that deformation and breakage of the case due to an increase in the internal pressure of the case can be suitably prevented.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

10 ケース
12 ケース本体
14 蓋体
14a 第3挿通孔
15 注液口
20 電極体
20A 捲回コア部
20B 端子接続部
30 電極端子
32 集電部材
32a 集電部材の下端
32b 集電部材の上端
34 ボルト
36 外部接続部材
37 絶縁ホルダ
37a 第1挿通孔
38 封止部材
39 内部シール材
39a 第2挿通孔
39b 突起
40 ガス変換触媒
100 密閉型電池
A ガス排出経路
X 幅方向
Z 高さ方向
DESCRIPTION OF SYMBOLS 10 Case 12 Case main body 14 Cover body 14a 3rd insertion hole 15 Injection hole 20 Electrode body 20A Winding core part 20B Terminal connection part 30 Electrode terminal 32 Current collecting member 32a Lower end of current collecting member 32b Upper end of current collecting member 34 Bolt 36 External Connection Member 37 Insulating Holder 37a First Insertion Hole 38 Sealing Member 39 Internal Seal Material 39a Second Insertion Hole 39b Protrusion 40 Gas Conversion Catalyst 100 Sealed Battery A Gas Discharge Path X Width Direction Z Height Direction

Claims (1)

ケース内に電極体と電解液とが収容されており、外部機器と接続される電極端子が前記ケースに設けられている密閉型電池であって、
前記電極端子は、
一方の端部が前記ケース内の前記電極体と電気的に接続され、他方の端部が前記ケースの外部に露出している集電部材と、
前記集電部材と前記ケースとの間に配置され、前記ケース内を封止する絶縁性の封止部材と
を備えており、
ここで、前記封止部材がガス透過性樹脂によって構成されており、充放電で生じたガスのうち、前記ガス透過性樹脂を透過し難い非透過性ガスを、前記ガス透過性樹脂を透過し易い透過性ガスに変換するガス変換触媒が前記ケース内に配置されている、密閉型電池。
An electrode body and an electrolytic solution are accommodated in the case, and an electrode terminal connected to an external device is a sealed battery provided in the case,
The electrode terminal is
A current collecting member having one end electrically connected to the electrode body in the case and the other end exposed to the outside of the case;
An insulating sealing member disposed between the current collecting member and the case and sealing the inside of the case;
Here, the sealing member is made of a gas permeable resin, and a non-permeable gas that hardly permeates the gas permeable resin out of the gas generated by charging and discharging is transmitted through the gas permeable resin. A sealed battery in which a gas conversion catalyst that converts easily into a permeable gas is disposed in the case.
JP2017045542A 2017-03-10 2017-03-10 Sealed battery Active JP6768199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045542A JP6768199B2 (en) 2017-03-10 2017-03-10 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045542A JP6768199B2 (en) 2017-03-10 2017-03-10 Sealed battery

Publications (2)

Publication Number Publication Date
JP2018152164A true JP2018152164A (en) 2018-09-27
JP6768199B2 JP6768199B2 (en) 2020-10-14

Family

ID=63680964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045542A Active JP6768199B2 (en) 2017-03-10 2017-03-10 Sealed battery

Country Status (1)

Country Link
JP (1) JP6768199B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061209A (en) * 2018-10-05 2020-04-16 マツダ株式会社 Battery device
JP2020119731A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Battery pack
JP2020123434A (en) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP2021012804A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Sealed battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049038A (en) * 2010-08-27 2012-03-08 Toshiba Corp Secondary battery device
JP2012190639A (en) * 2011-03-10 2012-10-04 Sony Corp Nonaqueous electrolyte battery, battery pack and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049038A (en) * 2010-08-27 2012-03-08 Toshiba Corp Secondary battery device
JP2012190639A (en) * 2011-03-10 2012-10-04 Sony Corp Nonaqueous electrolyte battery, battery pack and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061209A (en) * 2018-10-05 2020-04-16 マツダ株式会社 Battery device
JP7147445B2 (en) 2018-10-05 2022-10-05 マツダ株式会社 battery device
JP2020119731A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Battery pack
JP2020123434A (en) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP7202526B2 (en) 2019-01-29 2023-01-12 トヨタ自動車株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
JP2021012804A (en) * 2019-07-05 2021-02-04 トヨタ自動車株式会社 Sealed battery
JP7236031B2 (en) 2019-07-05 2023-03-09 トヨタ自動車株式会社 sealed battery

Also Published As

Publication number Publication date
JP6768199B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
EP2833469B1 (en) Reversible fuel cell and reversible fuel cell system
JP2018152164A (en) Sealed battery
US8945775B2 (en) Battery having a porous insulating member
TWI508350B (en) Layer-built cell, battery pack including layer-built cell, and method for assembling layer-built cell
WO2017090219A1 (en) Cylindrical battery
JP2013546136A (en) Pouch and pouch-type secondary battery
JP4280014B2 (en) Electrochemical device equipped with a pressure control film
JP2008204754A (en) Sealed battery, and its manufacturing method
JP4826245B2 (en) Winding type secondary battery
JP6757500B2 (en) Non-aqueous electrolyte secondary battery
JP2004221129A (en) Electrochemical element having gas permeating function and destructive function
JPH10270097A (en) Bipolar charged battery
CN108346817A (en) Battery system
JP2009252397A (en) Battery
JP2010067450A (en) Nonaqueous electrolyte secondary battery
JP7236031B2 (en) sealed battery
EP4047704A1 (en) Secondary battery and method for manufacturing secondary battery
CN104332593A (en) Nano titanium dioxide lithium battery and preparing method thereof
JP7011782B2 (en) Secondary battery inspection method
JP2012230892A (en) Air cell
JP6802980B2 (en) Non-aqueous electrolyte secondary battery
JP2017098114A (en) Method for manufacturing sealed battery
JP6455726B2 (en) Non-aqueous electrolyte secondary battery
JP2003208879A (en) Secondary battery
WO2024093951A1 (en) Cylindrical lithium metal secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R151 Written notification of patent or utility model registration

Ref document number: 6768199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151