JP2020123434A - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2020123434A
JP2020123434A JP2019012882A JP2019012882A JP2020123434A JP 2020123434 A JP2020123434 A JP 2020123434A JP 2019012882 A JP2019012882 A JP 2019012882A JP 2019012882 A JP2019012882 A JP 2019012882A JP 2020123434 A JP2020123434 A JP 2020123434A
Authority
JP
Japan
Prior art keywords
gas
battery case
aqueous electrolyte
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019012882A
Other languages
Japanese (ja)
Other versions
JP7202526B2 (en
Inventor
石井 勝
Masaru Ishii
勝 石井
哲男 原
Tetsuo Hara
哲男 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019012882A priority Critical patent/JP7202526B2/en
Publication of JP2020123434A publication Critical patent/JP2020123434A/en
Application granted granted Critical
Publication of JP7202526B2 publication Critical patent/JP7202526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a manufacturing method of a non-aqueous electrolyte secondary battery capable of effectively suppressing gas from remaining between electrodes in an electrode body even after a battery case is sealed even when gas is generated inside the battery during a charge/discharge step.SOLUTION: In a manufacturing method of a non-aqueous electrolyte secondary battery, a battery case is sealed in a state in which a filling gas mainly composed of a gas molecular species having high permeability to a sealing material that seals at least a part of the battery case is enclosed in the battery case containing an electrode body and a non-aqueous electrolyte.SELECTED DRAWING: Figure 1

Description

本発明は、密閉構造タイプの非水電解液二次電池を製造する方法に関する。 The present invention relates to a method of manufacturing a non-aqueous electrolyte secondary battery of a sealed structure type.

非水電解液二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源さらには車両駆動用電源として好ましく用いられている。非水電解液二次電池は、特に、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として、益々の普及が期待されている。 Since the non-aqueous electrolyte secondary battery is lighter in weight and has a higher energy density than existing batteries, in recent years, it has been preferably used as a so-called portable power source for personal computers, portable terminals and the like, and also as a vehicle driving power source. The non-aqueous electrolyte secondary battery is expected to become more and more popular as a high output power source for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV) and plug-in hybrid vehicles (PHV).

ところで、この種の非水電解液二次電池の一形態として、密閉構造の電池ケースの内部に予めガス成分を吸収する材料を配置したものが挙げられる。例えば、特許文献1には、電池外装体内に酸素吸収剤を配置した構成の密閉構造タイプのリチウムイオン二次電池が開示されている。かかる構成のリチウムイオン二次電池によると、電池外装体の内部に外部から侵入した酸素ガスを上記酸素吸収材で吸収させることにより、当該侵入した酸素(O)とリチウムイオン(Li)とが電池内部で反応してLiが消費されることを防止することができる。 By the way, as an example of this type of non-aqueous electrolyte secondary battery, there is one in which a material that absorbs a gas component is arranged in advance inside a battery case having a sealed structure. For example, Patent Document 1 discloses a sealed structure type lithium ion secondary battery having a configuration in which an oxygen absorbent is arranged in a battery exterior body. According to the lithium-ion secondary battery having such a configuration, the oxygen gas that has entered from the outside into the battery exterior body is absorbed by the oxygen absorbing material, so that the entered oxygen (O 2 ) and lithium ions (Li + ) Can be prevented from reacting inside the battery and consuming Li + .

特開2015−106481号公報JP, 2005-106481, A

ところで、この種の密閉構造タイプの非水電解液二次電池を製造する際、例えば、構築した二次電池組立体に対して初期充電およびエージング処理等を施す充放電工程において、電池ケース内で水素ガス等のガスが発生することがある。かかる発生ガスが電極体の電極間(正極および負極間のことをいう。以下同じ。)に残存すると、ガス圧によって極間距離(正極および負極間の距離のことをいう。以下同じ。)が大きくなる。そうすると、電池反応においては、極間距離が大きくなった箇所において局所的に抵抗が大きくなり、結果、当該部分において負極上に電荷担体(例えばLi)由来の物質が析出し易くなるため好ましくない。なお、上記特許文献1に記載される酸素吸収材は、外部から電池ケース内に侵入した酸素ガスを吸収する効果はあるが、このような充放電工程の際に電池ケース内部に発生したガス成分を効果的に吸収するものではない。
本発明は、かかる問題点に鑑みて創出されたものであり、初期充電およびエージング処理等の充放電工程において電池内部でガスが発生した場合であっても、このガスが、電池ケース封止後においても電極間に残存することを効果的に抑制し得る非水電解液二次電池を製造する方法の提供を目的とする。
By the way, when manufacturing a non-aqueous electrolyte secondary battery of this type of sealed structure, for example, in a charge/discharge step of performing initial charging and aging treatment on the constructed secondary battery assembly, in a battery case Gases such as hydrogen gas may be generated. When the generated gas remains between the electrodes of the electrode body (refers to between the positive electrode and the negative electrode; the same applies hereinafter), the interelectrode distance (refers to the distance between the positive electrode and the negative electrode. The same applies hereinafter) due to gas pressure. growing. Then, in the battery reaction, the resistance locally increases at the portion where the distance between the electrodes becomes large, and as a result, a substance derived from the charge carrier (eg, Li + ) is likely to be deposited on the negative electrode at the portion, which is not preferable. .. The oxygen absorbent described in Patent Document 1 has the effect of absorbing oxygen gas that has entered the battery case from the outside, but the gas components generated inside the battery case during such a charging/discharging process. Does not absorb effectively.
The present invention was created in view of such problems, and even when gas is generated inside the battery in the charge/discharge process such as initial charging and aging treatment, this gas is after the battery case is sealed. Even in the above, it is an object of the present invention to provide a method for producing a non-aqueous electrolyte secondary battery that can effectively suppress the remaining between the electrodes.

本発明者は、特許文献1に記載されるような、何らかのガス吸収材を電池ケース内部に配置する手段とは全く異なる視点から上記問題点を解決する手段を検討した。そして、非水電解液二次電池(具体的には初期充電処理前の電池組立体)を構築する際に、電池ケースに所定のガス分子種を主体とする充填用ガスを供給するとともに、該電池ケースを封止するシール材として、該ガス分子種を透過し易い材質のシール材を採用することを創出した。これにより、構築された非水電解液二次電池の内部を負圧化させることができ、充放電工程において電極体内部で発生したガスを速やかに該電極体の電極間から除去することが実現し、結果、負極における電荷担体(例えばLi)由来の物質の析出を効果的に抑制し得ることを見出し、本発明を完成するに至った。 The present inventor has studied means for solving the above-mentioned problems from a viewpoint completely different from the means for disposing some kind of gas absorbing material inside the battery case as described in Patent Document 1. Then, at the time of constructing the non-aqueous electrolyte secondary battery (specifically, the battery assembly before the initial charging process), while supplying a filling gas mainly containing a predetermined gas molecular species to the battery case, As a sealing material that seals the battery case, it has been created to use a sealing material that is a material that easily permeates the gas molecule species. As a result, the inside of the constructed non-aqueous electrolyte secondary battery can be made to have a negative pressure, and the gas generated inside the electrode body in the charging/discharging step can be promptly removed from between the electrodes of the electrode body. As a result, they have found that the deposition of substances derived from charge carriers (for example, Li + ) in the negative electrode can be effectively suppressed, and have completed the present invention.

即ち、ここに開示される非水電解液二次電池の製造方法は、
密閉可能な電池ケースと、該電池ケース内に収容される電極体および非水電解液と、該電池ケースの少なくとも一部をシールするシール材とを備える非水電解液二次電池の製造方法であって、
上記電極体および非水電解液を収容した上記電池ケースの内部に、上記シール材に対して高い透過性を有するガス分子種を主体とする充填用ガスを封入した状態で該電池ケースを封止することを特徴とする。
That is, the manufacturing method of the non-aqueous electrolyte secondary battery disclosed herein is
A method for manufacturing a non-aqueous electrolyte secondary battery, comprising: a battery case that can be sealed; an electrode body and a non-aqueous electrolyte solution that are housed in the battery case; and a sealant that seals at least a part of the battery case. There
The battery case containing the electrode body and the non-aqueous electrolyte is sealed in a state in which a filling gas mainly composed of gas molecular species having high permeability to the sealing material is sealed inside the battery case. It is characterized by doing.

かかる構成の製造方法によると、充放電工程で電極体中からガスが発生した場合であっても、電池ケース内部が負圧化していることによって当該発生ガスを電極体中の電極間から速やかに除去することができる。これにより、電極間(典型的には負極表面)において、電荷担体(例えばLi)由来の物質が析出することを効果的に抑制できる。 According to the manufacturing method of such a configuration, even when gas is generated in the electrode body during the charging/discharging step, the generated gas is quickly generated from between the electrodes in the electrode body due to the negative pressure inside the battery case. Can be removed. This makes it possible to effectively suppress deposition of a substance derived from charge carriers (for example, Li + ) between the electrodes (typically, the negative electrode surface).

一実施形態に係る非水電解液二次電池の製造方法を説明するための製造フロー図である。FIG. 6 is a manufacturing flow diagram for explaining a method of manufacturing a non-aqueous electrolyte secondary battery according to an embodiment.

以下、適宜図面を参照しながら、本発明による一実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。 An embodiment according to the present invention will be described below with reference to the drawings as appropriate. Note that matters other than matters particularly referred to in the present specification and matters necessary for carrying out the present invention can be grasped as design matters for a person skilled in the art based on conventional technology in the field.

本明細書において「非水電解液二次電池」とは、電解液を構成する溶媒が非水系溶媒(即ち有機溶媒)を主として構成された二次電池をいう。ここで「二次電池」は、充放電可能で所定の電気エネルギーを繰り返し取り出し得る蓄電装置をいう。例えば、非水電解液中のアルカリ金属イオンが電荷の移動を担うリチウムイオン二次電池、ナトリウムイオン二次電池等は、ここでいう非水電解液二次電池に包含される典型例である。
「電極体」とは、正極、負極、および正負極間にセパレータとして機能し得る多孔質絶縁層を含む電池の主体を成す構造体をいう。「正極活物質」または「負極活物質」は、電荷担体となる化学種(例えば、リチウムイオン二次電池においてはリチウムイオン、ナトリウムイオン二次電池においてはナトリウムイオン)を可逆的に吸蔵および放出可能な化合物(正極活物質または負極活物質)をいう。
In the present specification, the “non-aqueous electrolyte secondary battery” refers to a secondary battery in which the solvent constituting the electrolytic solution is mainly a non-aqueous solvent (that is, an organic solvent). Here, the “secondary battery” refers to a power storage device that can be charged and discharged and that can repeatedly extract predetermined electric energy. For example, a lithium ion secondary battery, a sodium ion secondary battery, and the like, in which an alkali metal ion in the nonaqueous electrolytic solution transfers electric charges, are typical examples included in the nonaqueous electrolytic solution secondary battery.
The “electrode body” refers to a structure that mainly forms a battery and includes a porous insulating layer that can function as a separator between the positive electrode, the negative electrode, and the positive and negative electrodes. The “positive electrode active material” or “negative electrode active material” is capable of reversibly storing and releasing a chemical species that serves as a charge carrier (for example, lithium ion in a lithium ion secondary battery and sodium ion in a sodium ion secondary battery). Compound (a positive electrode active material or a negative electrode active material).

ここに開示される非水電解液二次電池の製造方法は、大まかにいって、図1に示されるように、電極体を収容した電池ケース内に非水電解液を注入する注入工程S10と、後述するシール材に対して高いガス透過性を示すガス分子種を主体とする充填用ガスを電池ケース内に充填するガス封入工程S20と、電池ケースを封止する封止工程S30とを包含する。以下、各工程について説明する。 The method of manufacturing a non-aqueous electrolyte secondary battery disclosed herein roughly includes an injection step S10 of injecting a non-aqueous electrolyte into a battery case accommodating an electrode body, as shown in FIG. A gas filling step S20 of filling a filling gas mainly containing gas molecular species having high gas permeability with respect to a sealing material described later into the battery case, and a sealing step S30 of sealing the battery case. To do. Hereinafter, each step will be described.

電解液注入工程S10では、具体的には、所定の形状の密閉可能な電池ケースに目的とする非水二次電池を構成するための正負極を備えるように予め構築された電極体を収容する。次いで、該電池ケース内部の気体を真空ポンプ等の適当な吸引装置を用いて引き去り、電池ケース内部を減圧する。
次に、減圧した電池ケース内に、後述する注入孔から適当な非水電解液を注入する。例えば、適当な電解液注入装置を注入孔に接続することにより、電解液を電池ケース内に注入することができる。
In the electrolytic solution injecting step S10, specifically, a sealable battery case having a predetermined shape is accommodated with an electrode body pre-constructed so as to include a positive electrode and a negative electrode for constituting a target non-aqueous secondary battery. .. Next, the gas inside the battery case is removed by using an appropriate suction device such as a vacuum pump to reduce the pressure inside the battery case.
Next, an appropriate non-aqueous electrolyte solution is injected into the depressurized battery case through an injection hole described later. For example, the electrolyte can be injected into the battery case by connecting an appropriate electrolyte injection device to the injection hole.

電池ケースは、詳細な図示は省略するが、典型的には直方体形状であり、その一面が開放された形状の電池ケース本体と、その開口部を塞ぐ矩形板状の蓋体とを備える。蓋体には、電極体と電気的に接続する外部接続用の電極端子を挿通する電極端子用開口部、および、電池ケースの内部に非水電解液を注入するための注入孔が設けられている。 Although not shown in detail, the battery case typically has a rectangular parallelepiped shape, and includes a battery case main body whose one surface is open, and a rectangular plate-shaped lid that closes the opening. The lid body is provided with an electrode terminal opening for inserting an electrode terminal for external connection to be electrically connected to the electrode body, and an injection hole for injecting the non-aqueous electrolyte into the battery case. There is.

電極端子用開口部には、シール材が配置されている。
シール材としては、非水電解液に対して耐食性を有し、上記充填用ガスの主体たるガス分子種に対して高いガス透過性を有する材質からなるものを好ましく用いることができる。
例えば、上記ガス分子種が二酸化炭素(CO)やヘリウム(He)である場合には、エチレンプロピレンジエンゴム(EPDM)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等がシール材の好適な材質として挙げられる。上記ガス分子種として二酸化炭素(CO)やヘリウム(He)を採用した場合においてシール材がこれらのゴム製部材からなることにより、電池内部に封入された充填用ガスが容易に当該シール材を介して電池ケース外部に放出され、結果、電池ケース内部を負圧化することができる。
A sealant is arranged in the electrode terminal opening.
As the sealant, a sealant made of a material having corrosion resistance to the non-aqueous electrolyte and having high gas permeability with respect to the gas molecular species as the main constituent of the filling gas can be preferably used.
For example, when the gas molecular species is carbon dioxide (CO 2 ) or helium (He), ethylene propylene diene rubber (EPDM), butadiene rubber (BR), styrene butadiene rubber (SBR), etc. are suitable sealing materials. Can be listed as a material. When carbon dioxide (CO 2 ) or helium (He) is adopted as the gas molecular species, the sealing material is made of these rubber members, so that the filling gas sealed inside the battery can easily change the sealing material. It is discharged to the outside of the battery case through the battery, and as a result, the inside of the battery case can be made negative pressure.

非水電解液としては、従来から種々の非水電解液二次電池の構築に用いられるものを特に制限なく使用することができる。具体的には、非水溶媒(有機溶媒)中に支持塩(即ち、電解質)を含有する非水電解液を用いることができる。
例えば、リチウムイオン二次電池を製造する場合の非水溶媒(有機溶媒)としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等のうちの1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えばLiPF、LiBF、LiClO等のリチウム化合物(リチウム塩)のうちの1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。特に好ましくは、LiPFを約1mol/lの濃度で用いる。
As the non-aqueous electrolyte, those conventionally used for constructing various non-aqueous electrolyte secondary batteries can be used without particular limitation. Specifically, a non-aqueous electrolytic solution containing a supporting salt (that is, an electrolyte) in a non-aqueous solvent (organic solvent) can be used.
For example, as a non-aqueous solvent (organic solvent) for manufacturing a lithium ion secondary battery, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. One kind of (EMC) and the like can be used alone, or two or more kinds thereof can be appropriately combined and used. As the supporting salt, for example, one of lithium compounds (lithium salt) such as LiPF 6 , LiBF 4 , and LiClO 4 can be used alone or in combination of two or more. Particularly preferably, LiPF 6 is used at a concentration of about 1 mol/l.

次に、ガス封入工程S20では、電池ケース内に、上記注入孔から所定の充填用ガスを封入する。例えば、電極体および非水電解液を収容した電池組立体を、当該充填用ガスによる雰囲気(環境)とした密閉空間中に配置し、その電池ケース内に当該充填用ガスを導入することにより、電池ケース内部に充填用ガスを封入することができる。
充填用ガスは、使用するシール材に対して高い透過性を有するガス分子種が主体であればよく、その他のガス種(例えば空気)を含んでいてもよい。電池ケースに封入される気体全体を100mol%とすると、使用するシール材に対して高い透過性を有するガス分子種の分圧比即ちモル比が50mol%以上であることが好ましく、70mol%以上または80mol%以上であることが、使用するシール材に対して高い透過性を有するガス分子種を主体とする充填用ガスとしてさらに好ましい。
Next, in the gas filling step S20, a predetermined filling gas is filled into the battery case through the injection hole. For example, a battery assembly containing an electrode body and a non-aqueous electrolyte is placed in a sealed space that is an atmosphere (environment) of the filling gas, and by introducing the filling gas into the battery case, A filling gas can be enclosed inside the battery case.
The filling gas may be mainly composed of gas molecular species having high permeability to the seal material used, and may contain other gas species (for example, air). When the total amount of the gas enclosed in the battery case is 100 mol %, the partial pressure ratio, that is, the molar ratio of the gas molecule species having high permeability to the sealing material used is preferably 50 mol% or more, and 70 mol% or more or 80 mol% % Or more is more preferable as a filling gas mainly composed of gas molecular species having high permeability with respect to the sealing material used.

なお、充填用ガスを構成する上記ガス分子種としては、使用するシール材のガス透過特性に応じて決定すればよく、特に限定されない。例えば、上述した種類のゴム製のシール材が採用される場合は、COおよびHeが好適例として挙げられる。なお、COおよびHeを組み合わせたものを充填用ガスとする場合は、該ガス中のHeおよびCOのモル比は特に制限されない。 It should be noted that the above-mentioned gas molecular species constituting the filling gas may be determined according to the gas permeation characteristics of the sealing material used, and is not particularly limited. For example, when a rubber seal material of the type described above is adopted, CO 2 and He are preferred examples. When a combination of CO 2 and He is used as the filling gas, the molar ratio of He and CO 2 in the gas is not particularly limited.

典型的には上記充填用ガスを電池ケース内部に封入した状態で、電池ケースを封止する。例えば、封止工程S30では、電池ケースの注入孔を所定の材質のシール材で封止することが含まれる。そして、公知の方法に従い、所定の条件で初期充電処理、エージング処理を施すことによって、使用可能状態の二次電池が製造される。 Typically, the battery case is sealed while the filling gas is sealed inside the battery case. For example, the sealing step S30 includes sealing the injection hole of the battery case with a sealing material made of a predetermined material. Then, according to a known method, an initial charging process and an aging process are performed under predetermined conditions to manufacture a usable secondary battery.

上述したように、ここで開示される製造方法では、電池ケース内に、使用されるシール材に対して高い透過性を有するガス分子種を主体とする充填用ガスを封入した後に電池ケースを封止する。このため、電池ケース封止後、充填用ガス中の上記ガス分子種がシール材を透過して電池ケース外部に排出されるため、該電池ケース内部が負圧になる。これにより、充放電工程で電極体から水素ガス等のガスが発生した場合であっても、該ガスは電極間から抜け出しやすくなる。電極間にガスが残存しなくなれば、当該電極間の距離は大きくならず、局所的な抵抗の増大を抑制することができる。そして、負極において電荷担体(例えばLi)由来の物質が析出することを抑制でき、優れた電池性能を有する非水電解液二次電池を提供することができる。 As described above, in the manufacturing method disclosed herein, the battery case is sealed after the filling gas mainly containing the gas molecular species having high permeability to the sealing material used is sealed in the battery case. Stop. Therefore, after the battery case is sealed, the gas molecular species in the filling gas permeate the sealing material and are discharged to the outside of the battery case, so that the inside of the battery case becomes negative pressure. Thereby, even when a gas such as hydrogen gas is generated from the electrode body in the charge/discharge step, the gas is likely to escape from between the electrodes. If the gas does not remain between the electrodes, the distance between the electrodes does not increase, and the local increase in resistance can be suppressed. Then, it is possible to suppress deposition of a substance derived from a charge carrier (for example, Li + ) on the negative electrode, and it is possible to provide a non-aqueous electrolyte secondary battery having excellent battery performance.

以下、本発明に関するいくつかの試験例を説明するが、本発明をかかる試験例に示すものに限定することを意図したものではない。 Hereinafter, some test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the test examples.

[サンプル電池の作製]
非水電解液二次電池としてリチウムイオン二次電池を選択し、以下に説明するプロセスにより、実施例1、実施例2、比較例1、および、比較例2に係るサンプル電池を作製した。
<実施例1>
従来公知の方法により、非水電解液を使用するリチウムイオン二次電池に一般的に用いられる電極体を作製して電池ケース内に収容した。次に、真空ポンプを用いて電池ケース内を減圧した。そして、減圧状態を保ったまま電解液注入装置を用い、該電池ケース蓋体に設けられた注入孔から電解液をケース内部に注入した。非水電解液の注入後、電池ケース内に、Heガスと、COガスとを含む充填用ガスを供給しながら電池ケース内の圧力を徐々に大気圧に開放した。ここで、充填用ガス中のCOおよびHe成分と空気成分との分圧比(モル比)はそれぞれ80mol%、および20mol%であった。そして、電池ケースの注入孔をEPDM製のシール材で封止した。その後、初期充電およびエージング処理を施して、実施例1に係るサンプル電池を得た。
<実施例2>
充填用ガス中のCOおよびHe成分と空気成分とのガス比(モル比)をそれぞれ50mol%および50mol%に調整したこと以外は実施例1と同様の方法によって、実施例2に係るサンプル電池を作製した。
<比較例1>
充填用ガス中のCOおよびHe成分と空気成分とのガス比(モル比)をそれぞれ20mol%および80mol%に調整したこと以外は実施例1と同様の方法によって、比較例1に係るサンプル電池を作製した。
<比較例2>
充填用ガスを100mol%空気としたこと以外は実施例1と同様の方法によって、比較例2に係るサンプル電池を作製した。
[Preparation of sample battery]
A lithium-ion secondary battery was selected as the non-aqueous electrolyte secondary battery, and sample batteries according to Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were produced by the process described below.
<Example 1>
By a conventionally known method, an electrode body generally used for a lithium ion secondary battery using a non-aqueous electrolyte was prepared and housed in a battery case. Next, the inside of the battery case was decompressed using a vacuum pump. Then, while maintaining the reduced pressure state, an electrolytic solution injecting device was used to inject the electrolytic solution into the inside of the case through an injection hole provided in the battery case lid. After the injection of the non-aqueous electrolyte, the pressure in the battery case was gradually released to the atmospheric pressure while supplying the filling gas containing He gas and CO 2 gas into the battery case. Here, the partial pressure ratios (molar ratios) of the CO 2 and He components in the filling gas and the air components were 80 mol% and 20 mol %, respectively. Then, the injection hole of the battery case was sealed with a sealing material made of EPDM. After that, initial charging and aging treatment were performed to obtain a sample battery according to Example 1.
<Example 2>
Sample battery according to Example 2 in the same manner as in Example 1 except that the gas ratios (molar ratios) of the CO 2 and He components and the air component in the filling gas were adjusted to 50 mol% and 50 mol %, respectively. Was produced.
<Comparative Example 1>
Sample battery according to Comparative Example 1 by the same method as in Example 1 except that the gas ratios (molar ratios) of the CO 2 and He components in the filling gas and the air components were adjusted to 20 mol% and 80 mol %, respectively. Was produced.
<Comparative example 2>
A sample battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that the filling gas was 100 mol% air.

[電池内圧の測定]
エージング処理後の上記4つのサンプル電池の電池内圧を測定した。結果を表1に示す。
[Measurement of battery internal pressure]
The battery internal pressures of the above four sample batteries after the aging treatment were measured. The results are shown in Table 1.

Figure 2020123434
Figure 2020123434

[試験結果]
表1から明らかなように、実施例1、実施例2、比較例1、および、比較例2に係るサンプル電池では、電池ケース内に封入する充填用ガス中のCOおよびHe成分の分圧比が大きくなるほど、電池製造後の電池ケース内のガス圧が低下することが確認された。そして、充填用ガス中のCOおよびHe成分の分圧比が50%以上である実施例1および実施例2に係るサンプル電池の電池ケース内のガス圧は、比較例1および比較例2に係るサンプル電池の電池ケース内のガス圧と比べて顕著に低かった。即ち、実施例1および実施例2に係るサンプル電池の電池ケース内部では、減圧状態が維持されていた。このことは、充放電工程においてガスが発生したとしても、電極体の極板間から、ガスが抜け出し
やすくなっていることを示している。
以上の結果から、非水電解液二次電池の製造において、シール材に対して高い透過性を有するガス分子種を主体とする充填用ガスにおける当該ガス分子種の比率は50mol%以上であることが好ましいことが認められた。
[Test results]
As is clear from Table 1, in the sample batteries according to Example 1, Example 2, Comparative Example 1 and Comparative Example 2, the partial pressure ratio of CO 2 and He components in the filling gas sealed in the battery case. It was confirmed that the gas pressure in the battery case after the battery was manufactured was decreased as the value of H was increased. The gas pressures in the battery cases of the sample batteries according to Example 1 and Example 2 in which the partial pressure ratio of CO 2 and He components in the filling gas is 50% or more depend on Comparative Example 1 and Comparative Example 2. It was significantly lower than the gas pressure in the battery case of the sample battery. That is, the reduced pressure state was maintained inside the battery cases of the sample batteries according to Example 1 and Example 2. This indicates that even if gas is generated in the charge/discharge step, the gas is likely to escape from between the electrode plates of the electrode body.
From the above results, in the production of the non-aqueous electrolyte secondary battery, the ratio of the gas molecular species in the filling gas mainly composed of the gas molecular species having high permeability to the sealing material is 50 mol% or more. Was found to be preferable.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、上述した例では非水電解液二次電池としてリチウムイオン二次電池を作製したが、これに限られず、ナトリウムイオン二次電池およびマグネシウムイオン二次電池等を構成する非水電解液二次電池であってもよい。この場合においても、以上に例示した効果と同様の効果が発揮され得る。 Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, in the above-described example, a lithium ion secondary battery was produced as a non-aqueous electrolyte secondary battery, but the invention is not limited to this, and a non-aqueous electrolyte secondary battery that constitutes a sodium ion secondary battery, a magnesium ion secondary battery, or the like. It may be a battery. In this case as well, the same effects as those exemplified above can be exhibited.

S10 電解液注入工程
S20 ガス封入工程
S30 封止工程
S10 Electrolyte injection step S20 Gas filling step S30 Sealing step

Claims (1)

密閉可能な電池ケースと、該電池ケース内に収容される電極体および非水電解液と、該電池ケースの少なくとも一部をシールするシール材とを備える非水電解液二次電池を製造する方法であって、
前記電極体および非水電解液を収容した前記電池ケースの内部に、前記シール材に対して高い透過性を有するガス分子種を主体とする充填用ガスを封入した状態で該電池ケースを封止することを特徴とする、非水電解液二次電池の製造方法。
Method of manufacturing non-aqueous electrolyte secondary battery including sealable battery case, electrode body and non-aqueous electrolyte solution housed in the battery case, and sealing material for sealing at least a part of the battery case And
The battery case containing the electrode body and the non-aqueous electrolyte is sealed in a state in which a filling gas mainly composed of a gas molecule species having high permeability to the sealing material is sealed inside the battery case. A method for manufacturing a non-aqueous electrolyte secondary battery, comprising:
JP2019012882A 2019-01-29 2019-01-29 Method for manufacturing non-aqueous electrolyte secondary battery Active JP7202526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012882A JP7202526B2 (en) 2019-01-29 2019-01-29 Method for manufacturing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012882A JP7202526B2 (en) 2019-01-29 2019-01-29 Method for manufacturing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2020123434A true JP2020123434A (en) 2020-08-13
JP7202526B2 JP7202526B2 (en) 2023-01-12

Family

ID=71992872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012882A Active JP7202526B2 (en) 2019-01-29 2019-01-29 Method for manufacturing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7202526B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033697A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Method for producing electricity storage element, and electricity storage element
WO2022176836A1 (en) * 2021-02-22 2022-08-25 株式会社Gsユアサ Power storage element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864246A (en) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd Sealed type nonaqueous electrolyte secondary battery
JPH1040958A (en) * 1996-07-19 1998-02-13 Fuji Photo Film Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method
JP2000048862A (en) * 1998-05-28 2000-02-18 Toyota Central Res & Dev Lab Inc Charging method for nonaqueous secondary battery
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
CN202423481U (en) * 2011-12-28 2012-09-05 上海空间电源研究所 Fully-sealed automatically-activated lithium sulphur battery pack
WO2013051273A1 (en) * 2011-10-07 2013-04-11 パナソニック株式会社 Electricity storage device and insulating composition used therein
JP2013134865A (en) * 2011-12-26 2013-07-08 Panasonic Corp Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
DE102012018128A1 (en) * 2012-09-13 2014-03-13 Daimler Ag Single cell e.g. lithium ion cell, for use in elliptic column-type non-aqueous electrolyte battery for electric car, has electrode film arrangement pressed against wall of cell housing by elastic element that is designed as hollow body
JP2015018711A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method of manufacturing sealed battery
JP2015185224A (en) * 2014-03-20 2015-10-22 日立マクセル株式会社 Sealed type battery
JP2018152164A (en) * 2017-03-10 2018-09-27 トヨタ自動車株式会社 Sealed battery
JP2018181544A (en) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864246A (en) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd Sealed type nonaqueous electrolyte secondary battery
JPH1040958A (en) * 1996-07-19 1998-02-13 Fuji Photo Film Co Ltd Non-aqueous electrolyte secondary battery and manufacturing method
JP2000048862A (en) * 1998-05-28 2000-02-18 Toyota Central Res & Dev Lab Inc Charging method for nonaqueous secondary battery
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
WO2013051273A1 (en) * 2011-10-07 2013-04-11 パナソニック株式会社 Electricity storage device and insulating composition used therein
JP2013134865A (en) * 2011-12-26 2013-07-08 Panasonic Corp Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN202423481U (en) * 2011-12-28 2012-09-05 上海空间电源研究所 Fully-sealed automatically-activated lithium sulphur battery pack
DE102012018128A1 (en) * 2012-09-13 2014-03-13 Daimler Ag Single cell e.g. lithium ion cell, for use in elliptic column-type non-aqueous electrolyte battery for electric car, has electrode film arrangement pressed against wall of cell housing by elastic element that is designed as hollow body
JP2015018711A (en) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 Method of manufacturing sealed battery
JP2015185224A (en) * 2014-03-20 2015-10-22 日立マクセル株式会社 Sealed type battery
JP2018152164A (en) * 2017-03-10 2018-09-27 トヨタ自動車株式会社 Sealed battery
JP2018181544A (en) * 2017-04-10 2018-11-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033697A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Method for producing electricity storage element, and electricity storage element
WO2022176836A1 (en) * 2021-02-22 2022-08-25 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JP7202526B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US9608293B2 (en) Method of manufacturing lithium-ion secondary battery
US10096860B2 (en) Method of manufacturing nonaqueous electrolyte secondary battery
CN103620853A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2015028875A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7202526B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
CN104518242A (en) Method of manufacturing nonaqueous electrolyte secondary battery
CN106654168B (en) Nonaqueous electrolyte secondary battery and method for producing same, and conductive assistant for nonaqueous electrolyte secondary battery and method for producing same
JP2021044171A (en) Lithium ion secondary battery and method for manufacturing the same
JP6722384B2 (en) Lithium ion secondary battery
CN110931860B (en) Nonaqueous electrolyte for lithium ion secondary battery
KR20190012359A (en) Regnerative method of cell
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP7334142B2 (en) Method for manufacturing sealed lithium-ion secondary battery
CN114583244B (en) Lithium ion secondary battery
JP7258005B2 (en) Non-aqueous electrolyte secondary battery
JP7325469B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP7079417B2 (en) How to recover the resistance characteristics of non-aqueous electrolyte secondary batteries
JP7198257B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP7282266B2 (en) Apparatus for prelithiation of negative electrode and method for prelithiation of negative electrode
US20210202994A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2013247103A (en) Metal air secondary battery
CN110429340B (en) Battery assembly and method for manufacturing nonaqueous electrolyte secondary battery
US20230327219A1 (en) Battery cell manufacturing method using electrolytic solution saturated with soluble gas
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2022182773A (en) Nonaqueous electrolyte secondary battery, and method for fabricating nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221207

R151 Written notification of patent or utility model registration

Ref document number: 7202526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151