JP2000048862A - Charging method for nonaqueous secondary battery - Google Patents

Charging method for nonaqueous secondary battery

Info

Publication number
JP2000048862A
JP2000048862A JP11008244A JP824499A JP2000048862A JP 2000048862 A JP2000048862 A JP 2000048862A JP 11008244 A JP11008244 A JP 11008244A JP 824499 A JP824499 A JP 824499A JP 2000048862 A JP2000048862 A JP 2000048862A
Authority
JP
Japan
Prior art keywords
negative electrode
constant
charging
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008244A
Other languages
Japanese (ja)
Inventor
Yoji Takeuchi
要二 竹内
Fusayoshi Miura
房美 三浦
Masao Kanzaki
昌郎 神崎
Toru Saeki
徹 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11008244A priority Critical patent/JP2000048862A/en
Publication of JP2000048862A publication Critical patent/JP2000048862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a charging method for sufficiently exhibiting performance of an electrode by setting a constant voltage value in initial charging, producing suitable amount of protective films on a negative electrode, and preventing reduction of electrolyte. SOLUTION: In a charging method for a nonaqueous secondary battery, using carbonaceous material as a negative electrode active material capable of doping and de-doping lithium ion, when initial charging of the nonaqueous secondary battery is performed, a constant current value is set in the range of 0.02 to 1.0 CmA, a constant voltage value is set in the range of 1.0 to 3.8 V, and the constant-current and constant-voltage charge is performed. Moreover, a constant current value is set in the range of 0.02 to 0.5 mA/cm, a constant voltage value is so set that negative electrode potential is in the range of 0.5 to 1.5 Vvs. Carbon dioxide atmosphere of Li/Li+ is made, and the constant- current and constant-voltage charge is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質として
リチウムイオンをドープ、脱ドープし得る炭素質材料を
用いた非水系二次電池の充電方法に関する。
The present invention relates to a method for charging a non-aqueous secondary battery using a carbonaceous material which can be doped and dedoped with lithium ions as a negative electrode active material.

【0002】[0002]

【従来の技術】従来、負極活物質としてリチウムイオン
をドープ、脱ドープし得る炭素材料を用いた非水系二次
電池の充電方法としては、充電電流値の大きさを一定
(電流値Is)にする定電流領域Ziと充電圧値Eの大
きさを一定(電流値Es)にする定電圧領域Zvにより
充電するとともに、低電圧領域Zvにおける充電電流I
の大きさを検出し、電流検出値が予め設定した電流設定
値に達したら充電を終了する方法の開示がある(特開平
5−111184号公報)。
2. Description of the Related Art Conventionally, as a method for charging a non-aqueous secondary battery using a carbon material which can be doped and dedoped with lithium ions as a negative electrode active material, a charging current value is kept constant (current value Is). Charging in a constant current region Zi and a constant voltage region Zv in which the magnitude of the charging pressure value E is constant (current value Es), and the charging current I in the low voltage region Zv.
There is disclosed a method of detecting the magnitude of the current, and terminating charging when the detected current value reaches a preset current setting value (Japanese Patent Laid-Open No. 5-111184).

【0003】この方法は非水系の二次電池、特にリチウ
ムイオン二次電池の急速充電法として有効である。しか
し、電池内の電極が一度も使用されていない初回の充電
時には、定電流、定電圧充電時の電流値、電圧値を最適
化しないと電池の電極特性を充分引き出すことはできな
い。上記の方法で、初回から電極の理論容量に対しその
100%分充電することは電極に少なからず悪影響を与
えることが予想できる。その悪影響を具体的に挙げる
と、電解液が電極内部に充分含浸されないうちに、電極
を酸化および還元状態にすると、活物質の酸化還元に並
行して、少なからず電解液が酸化還元されることが予想
できる。本来、不均一な電極反応や電解液の酸化還元は
起こさないようにすべきである。
This method is effective as a rapid charging method for non-aqueous secondary batteries, especially lithium ion secondary batteries. However, at the time of the first charge in which the electrode in the battery is not used at all, the electrode characteristics of the battery cannot be sufficiently obtained unless the current value and the voltage value during the constant current and constant voltage charging are optimized. It can be expected that charging 100% of the theoretical capacity of the electrode from the first time with the above method will have a considerable adverse effect on the electrode. Specifically, when the electrode is oxidized and reduced before the electrolyte is sufficiently impregnated into the inside of the electrode, the electrolyte is notably reduced and oxidized in parallel with the oxidation and reduction of the active material. Can be expected. Originally, non-uniform electrode reactions and redox of the electrolyte should not occur.

【0004】特開平5−144472号公報には、過放
電後の容量劣化を抑制するために、負極の炭素材に予め
金属リチウムを貼付け、電位差等によりリチウムを炭素
材に供給し、負極炭素材に充電可能なリチウムを保持さ
せる開示がある。しかし、この方法では、活性で不安定
な金属リチウムを用いるため管理などがやっかいである
という不具合がある。
Japanese Patent Application Laid-Open No. 5-144472 discloses that in order to suppress capacity deterioration after overdischarge, lithium metal is pasted to a carbon material of a negative electrode in advance and lithium is supplied to the carbon material by a potential difference or the like. There is a disclosure that lithium can be charged. However, this method has a problem that management and the like are troublesome because active and unstable metal lithium is used.

【0005】一方、非水系二次電池、特にリチウムイオ
ン二次電池に使用されている電極活物質は、充電と放電
の状態の違いで、格子定数が変化したり(正極)、層間
距離が変化することが知られている(負極)。よって、
二次電池の電極全体でみると膨脹、収縮を起こしている
こととなる。初回充電されるまでは、電解液は電極の細
孔に物理的性質にのみ依存して含浸している状況であ
る。この物理的な含浸状態から電極理論容量に対してそ
の100%分充電するよりは、最初に浅い充放電を行
い、電極を膨脹、収縮させ、電解液を電極活物質になじ
ませ、その後、前回よりも深い充電を行うのが、活物質
に与える負担は少ないと予想される。
On the other hand, the electrode active material used in non-aqueous secondary batteries, particularly lithium ion secondary batteries, has a different lattice constant (positive electrode) and a different interlayer distance due to the difference between charge and discharge states. (Negative electrode). Therefore,
The entire electrode of the secondary battery expands and contracts. Until the first charge, the electrolyte is impregnating the pores of the electrode only depending on physical properties. Rather than charging from the physical impregnation state to 100% of the theoretical capacity of the electrode, first perform shallow charge / discharge, expand and contract the electrode, allow the electrolyte to adapt to the electrode active material, It is anticipated that a deeper charge than that will give less burden on the active material.

【0006】また、金属リチウムを負極に用いるリチウ
ム二次電池においては、初回の充電時、1.2〜0.8
Vvs.Li/Li+の負極電位において、電解液の還元
のため負極表面にパシベーション膜なる保護膜が形成さ
れることが報告されている(D.Aurbach,Y.Ein Eli,O.Ch
usid,Y.Carmerli,M.Babai and H.Yamin,J.Electrochem.
Soc.,141.603(1994))。
On the other hand, in a lithium secondary battery using metallic lithium as a negative electrode, the first charge is 1.2 to 0.8.
Vvs. At the negative electrode potential of Li / Li + , it has been reported that a protective film serving as a passivation film is formed on the negative electrode surface due to reduction of the electrolytic solution (D. Aurbach, Y. Ein Eli, O. Ch.
usid, Y. Carmerli, M. Babai and H. Yamin, J. Electrochem.
Soc., 141.603 (1994)).

【0007】このパシベーション膜は、負極表面の炭素
材と電解液とのさらなる反応を抑制し、負極上での反応
を安定させることが期待できる。しかし、先に述べたよ
うに、このパシベーション膜が生成されるのは、初回の
充電時、1.2〜0.8Vvs.Li/Li+の負極電位
であるため、初回充電時に定電圧値を設定し、適切な量
の上記のパシベーション膜を生成させることが有効であ
ると推測される。
The passivation film can be expected to suppress a further reaction between the carbon material on the negative electrode surface and the electrolytic solution and stabilize the reaction on the negative electrode. However, as described above, this passivation film is generated at the time of the first charge at 1.2 to 0.8 Vvs. Since it is the negative electrode potential of Li / Li + , it is presumed that it is effective to set a constant voltage value at the time of the first charge and generate an appropriate amount of the passivation film.

【0008】従来提案されている方法では、通常リチウ
ムイオン二次電池を上限電圧値を4.2Vの定電圧充電
値に設定して、初回充電を実施した場合、負極電位がパ
シベーション膜が生成する1.2〜0.8Vvs.Li/
Li+の条件でいられるのはごく短時間で、前記のパシ
ベーション膜が負極で十分形成されているとはいえな
い。
In the method proposed in the prior art, when the upper limit voltage value of a lithium ion secondary battery is set to a constant voltage charge value of 4.2 V and the first charge is performed, a passivation film is generated with the negative electrode potential. 1.2-0.8Vvs. Li /
The condition of Li + can be used for a very short time, and it cannot be said that the passivation film is sufficiently formed on the negative electrode.

【0009】また、同じく金属リチウムを負極に用いる
リチウム二次電池において、電解液中に炭酸ガスを吹き
込んだ場合、サイクル寿命が向上するという報告がある
(逢坂哲彌他、電気化学、62,451(199
4))。
[0009] Further, in a lithium secondary battery also using metallic lithium as a negative electrode, there is a report that the cycle life is improved when carbon dioxide gas is blown into an electrolytic solution (Tetsuya Osaka et al., Electrochemistry, 62, 451 ( 199
4)).

【0010】[0010]

【発明が解決しようとする課題】本願発明は、上記の事
情に鑑みてなされたもので、初回充電時に定電圧値を設
定し、上記の適切な量の保護被膜を負極に生成させて、
電解液の還元を防ぎ電極の性能を充分発揮させる充電方
法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and sets a constant voltage value at the time of initial charging, and forms the appropriate amount of the protective coating on the negative electrode,
It is an object of the present invention to provide a charging method for preventing reduction of an electrolyte solution and sufficiently exhibiting the performance of an electrode.

【0011】[0011]

【課題を解決するための手段】本発明の非水系二次電池
の充電方法は、負極活物質としてリチウムイオンをドー
プ、脱ドープし得る炭素質材料を用いた非水系二次電池
の充電方法であって、前記非水系二次電池の初回充電を
行う際に、定電流値を0.02〜1.0CmAに、定電
圧値を1.0〜3.8Vの範囲に規定し、定電流定電圧
充電を行うことを特徴とする。
The method for charging a non-aqueous secondary battery according to the present invention is a method for charging a non-aqueous secondary battery using a carbonaceous material which can be doped and de-doped with lithium ions as a negative electrode active material. When the non-aqueous secondary battery is charged for the first time, the constant current value is regulated to 0.02 to 1.0 CmA, the constant voltage value is regulated to 1.0 to 3.8 V, and the constant current constant is regulated. It is characterized by performing voltage charging.

【0012】前記非水系二次電池の初回充電を行う際
に、定電流値を0.02〜0.5mA/cm2、定電圧
値を負極電位が0.5〜1.5Vvs.Li/Li+
範囲になるように規定し、かつ電池内の雰囲気を二酸化
炭素として定電流定電圧充電を行うことを特徴とする。
本発明の非水系二次電池の充電方法は、リチウムイオン
をドープまたは脱ドープしうる炭素材料を負極活物質と
して用いた非水系の二次電池の初回充電を行うに際し
て、その充電条件を図3に示す充電経過グラフに従い定
電流値を0.02〜1.0CmA、定電圧値を1.0〜
3.8Vの範囲に特定して定電流充電を行い、その後定
電圧充電を行うものである。ここでCmAは該当電池の
公称容量を1時間で満充電にする電流値を意味する。
When the non-aqueous secondary battery is charged for the first time, the constant current value is 0.02 to 0.5 mA / cm 2 , and the constant voltage value is 0.5 to 1.5 V vs. negative electrode potential. It is characterized in that it is regulated to be in the range of Li / Li + and that constant-current constant-voltage charging is performed using carbon dioxide as the atmosphere in the battery.
The method for charging a non-aqueous secondary battery of the present invention uses the charging conditions shown in FIG. 3 when first charging a non-aqueous secondary battery using a carbon material capable of doping or undoping lithium ions as a negative electrode active material. The constant current value is 0.02 to 1.0 CmA and the constant voltage value is 1.0 to
The constant current charging is performed in a range of 3.8 V, and then the constant voltage charging is performed. Here, CmA means a current value at which the nominal capacity of the battery is fully charged in one hour.

【0013】この方法で製造された電池の初回充電をす
ることで、電池を構成している電極は、充放電が浅く電
極活物質が著しい酸化または還元状態にさらされること
なく、電池の充放電に伴う電極活物質の膨脹、収縮の効
果で電解液を電極活物質へ充分なじませることができ
る。この方法で充電することで、初回充電時、ごく小さ
い電流値で負極を上記の電位範囲に保ちながら充電する
ことになり、負極表面に従来より緻密な保護被膜が形成
される。この初回充電時、電池系内が炭酸ガスで満たさ
れていたならば、被膜は炭酸リチウム(Li2CO3)成
分が従来よりも多く形成される。この被膜が従来と異な
る成分で緻密であることで、混入水分などによる負極の
劣化を抑制でき、負極電圧を長期間安定に保つことがで
きる。
[0013] By charging the battery manufactured by this method for the first time, the electrodes constituting the battery are charged and discharged shallowly, and the electrode active material is not exposed to a remarkable oxidation or reduction state. Due to the expansion and contraction of the electrode active material accompanying the above, the electrolyte solution can be sufficiently mixed with the electrode active material. By charging by this method, at the time of initial charging, the negative electrode is charged with a very small current value while maintaining the above potential range, and a denser protective film is formed on the surface of the negative electrode than before. At the time of the first charge, if the inside of the battery system is filled with carbon dioxide gas, the film is formed with more lithium carbonate (Li 2 CO 3 ) components than before. Since this coating is dense with components different from those of the related art, deterioration of the negative electrode due to mixed moisture and the like can be suppressed, and the negative electrode voltage can be kept stable for a long time.

【0014】したがって、電池内特に電解液を炭酸ガス
を充分含んだ雰囲気として初回充電を行うことが好まし
い。この初回充電方法で処理した電池は、電池容量が増
加し、充放電サイクル試験時の容量維持率が向上し、高
い信頼性を提供できる。また本発明の初回充電方法で処
理した電池は、保存後の容量劣化が少なくなり、高い信
頼性を確保できる。
[0014] Therefore, it is preferable to perform the first charge in the battery, particularly in an atmosphere in which the electrolytic solution contains a sufficient amount of carbon dioxide gas. The battery treated by this initial charging method has an increased battery capacity, an improved capacity retention rate during a charge / discharge cycle test, and high reliability. In addition, the battery treated by the first charging method of the present invention has a small capacity deterioration after storage and can ensure high reliability.

【0015】[0015]

【発明の実施の形態】本発明の二次電池は非水系であ
り、原理的にはセパレータを介して正極活物質と負極活
物質を有し、正極活物質における集電体が正極、負極活
物質における集電体が負極となる。正極活物質は、リチ
ウムイオンを脱ドープし得る物質であればよく、リチウ
ムコバルト酸化物、リチウムニッケル酸化物、リチウム
マンガン酸化物、リチウムクロム酸化物、リチウムモリ
ブデン酸化物、リチウムチタン酸化物などが利用でき
る。特に好ましいのはリチウムマンガン酸化物、リチウ
ムコバルト酸化物が利用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The secondary battery of the present invention is non-aqueous and has a positive electrode active material and a negative electrode active material via a separator in principle, and the current collector in the positive electrode active material is a positive electrode and a negative electrode active material. The current collector in the substance becomes the negative electrode. The positive electrode active material may be any material capable of dedoping lithium ions. For example, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium chromium oxide, lithium molybdenum oxide, lithium titanium oxide, etc. are used. it can. Particularly preferred are lithium manganese oxide and lithium cobalt oxide.

【0016】負極活物質は、リチウムイオンをドープま
たは脱ドープし得る炭素質材料、例えばグラファイト、
熱分解炭素、ピッチコークス、ニードルコークス、石油
コークス、有機高分子の焼成体などが利用できる。正極
活物質と負極活物質はそれぞれ粒子状とし、金属箔を用
いた集電体にそれそれ塗工する。そしてセパレータを介
して渦巻き状に巻回し、さらに、電池缶に収容してリー
ド線を取り付けるとともに、電解質溶液を含浸して封止
する。
The negative electrode active material is a carbonaceous material capable of doping or undoping lithium ions, for example, graphite,
Pyrolytic carbon, pitch coke, needle coke, petroleum coke, and baked organic polymers can be used. Each of the positive electrode active material and the negative electrode active material is made into a particle shape, and is applied to a current collector using a metal foil. Then, it is spirally wound through a separator, further housed in a battery can, attached with a lead wire, and impregnated with an electrolyte solution and sealed.

【0017】非水系電解質溶液の電解質としては、例え
ばLiClO4、LiAsF6、LiBF4、CH3SO3
Li、CF3SO3Li、(CF3SO22NLiなどの
リチウム塩のいずれか1種または2種以上を混合して使
用する。また、電解質溶液の溶媒は、例えば、プロピレ
ンカーボネート、エチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、1,2−ジメトキシ
エタン、1,2−ジエトキシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、スルホラン、メチルスルホ
ラン、アセトニトリル、プロピオニトリル、蟻酸メチ
ル、蟻酸エチル、酢酸メチル、酢酸エチルなどのいずれ
か1種または2種以上を混合して使用できる。
As the electrolyte of the non-aqueous electrolyte solution, for example, LiClO 4 , LiAsF 6 , LiBF 4 , CH 3 SO 3
Any one or more of lithium salts such as Li, CF 3 SO 3 Li, and (CF 3 SO 2 ) 2 NLi are used in combination. The solvent of the electrolyte solution is, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, Any one or a mixture of two or more of 3-dioxolan, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate and the like can be used.

【0018】セパレータは、ポリエチレン、ポリプロピ
レンなどの微多孔膜の一種または二種以上を貼り合わせ
膜、ポリオレフィン、ポリエステル、ポリアミド、セル
ロースなどの不織布の単独膜または前記微多孔質膜との
貼り合わせ膜を使用する。なお、特に好ましいのはポリ
エチレン製の微多孔質膜である。
The separator may be a laminated film of one or more of microporous films of polyethylene, polypropylene, etc., a single film of nonwoven fabric of polyolefin, polyester, polyamide, cellulose or the like, or a laminated film of the above-mentioned microporous film. use. Particularly preferred is a polyethylene microporous membrane.

【0019】[0019]

【実施例】以下、実施例により具体的に説明する。な
お、本発明がこれに限定されるものでは無いことは言う
までもない。図1に本実施例で用いた円筒形リチウム二
次電池の断面斜視図を示す。電池の正極板1は、活物質
のリチウムマンガンスピネル(LiMn24、平均粒径
7μm、90重量部)、導電助材のケッチェンブラック
(7重量部)および結着剤のポリフッ化ビニリデン粉末
(7重量部)をNーメチルピロリドン中で混合してペー
スト化し20μmの圧延アルミニウム箔(正極集電体)
に塗布乾燥後の片面が70μmになるように圧延した。
The present invention will be specifically described below with reference to examples. It goes without saying that the present invention is not limited to this. FIG. 1 shows a cross-sectional perspective view of a cylindrical lithium secondary battery used in this example. The positive electrode plate 1 of the battery includes lithium manganese spinel (LiMn 2 O 4 , average particle diameter 7 μm, 90 parts by weight) as an active material, ketjen black (7 parts by weight) as a conductive additive, and polyvinylidene fluoride powder as a binder. (7 parts by weight) in N-methylpyrrolidone to form a paste and form a 20 μm rolled aluminum foil (positive electrode current collector)
The coating was rolled so that one side after drying was 70 μm.

【0020】負極2は活物質の人造黒鉛(平均粒径25
μm、90重量部)と結着剤のポリフッ化ビニリデン粉
末(10重量部)とをN−メチルピロリドン中で混合し
てペースト化し、厚さ20μmの銅箔(負極集電体)上
に塗布乾燥の後、片面厚さ40μmになるように圧延し
た。これら帯状の電極とポリエチレン製多孔質セパレー
タ3(厚さ25μm)とを円状に巻回して電極群を形成
した。
The negative electrode 2 is made of artificial graphite (having an average particle size of 25) as an active material.
μm, 90 parts by weight) and polyvinylidene fluoride powder (10 parts by weight) as a binder are mixed in N-methylpyrrolidone to form a paste, which is coated on a 20 μm-thick copper foil (negative electrode current collector) and dried. Then, it was rolled to a thickness of 40 μm on one side. These band-shaped electrodes and a polyethylene porous separator 3 (25 μm in thickness) were wound in a circle to form an electrode group.

【0021】電解液は含水量を50pp以下に調製した
エチレンカーボネートとジエチルカーボネートとの体積
比1:1の混合物に、六フッ化燐酸リチウムを溶解して
調製した。上記の電極群を図1に示すように、ニッケル
メッキを施した鉄製負極缶4に装填した。その際、負極
板2中銅に接続しておいたリード線7bを上記負極缶4
の底部に、一方正極板1中のアルミニウム箔に接続して
おいたリード線7aをニッケルメッキを施した鉄製正極
キャップ5にそれぞれ溶接した。次いで、この負極缶4
内に正極キャップ5を被せて絶縁体6封止してかしめ、
円筒形リチウム二次電池を作製した。この電池の公称容
量は130mAhである。
The electrolytic solution was prepared by dissolving lithium hexafluorophosphate in a mixture of ethylene carbonate and diethyl carbonate at a water content of 50 pp or less at a volume ratio of 1: 1. As shown in FIG. 1, the above-mentioned electrode group was loaded in a nickel-plated iron negative electrode can 4. At this time, the lead wire 7b connected to the copper in the negative electrode plate 2 is connected to the negative electrode can 4
The lead wire 7a connected to the aluminum foil in the positive electrode plate 1 was welded to the nickel-plated iron positive electrode cap 5 at the bottom of the positive electrode plate 1, respectively. Next, this negative electrode can 4
The inside is covered with the positive electrode cap 5 and the insulator 6 is sealed and caulked,
A cylindrical lithium secondary battery was manufactured. The nominal capacity of this battery is 130 mAh.

【0022】(実施例1)上記方法で形成した電池を、
以下の初回充放電をおこなった。充放電条件として、環
境温度20℃、1/3CmAの定電流、3.8Vの定電
圧で4時間、定電流定電圧充電した後、1/3CmAで
3.0Vまで定電流放電した電池を実施例とした。
Example 1 A battery formed by the above method was
The following initial charge / discharge was performed. As the charge and discharge conditions, a battery was charged at a constant current of constant voltage of 3.8 V, constant current of 3.8 V for 4 hours at a constant current of 1/3 CmA, and discharged at a constant current of 1/3 CmA to 3.0 V at 1/3 CmA. Example.

【0023】同じく上記の方法で形成した電池を、初回
充放電条件として、環境温度20℃、1/3CmAの定
電流、4.2Vの定電圧で4時間、定電流定電圧充電し
た後、1/3CmAで3.0Vまで定電流放電した電池
を比較例とした。実施例と比較例について、初回充放電
を行った後、環境温度20℃、1/3CmAの定電流、
4.2Vの定電圧で4時間、定電流定電圧充電した後、
1/3CmAで3.0Vまで定電流放電するサイクルを
1回(通算2回目)、その後、環境温度20℃、1Cm
Aの定電流で電池電圧が4.2Vに達したら充電終了、
放電は、1CmAで3.0Vまで定電流放電するサイク
ルを80回(初回からの通算82回)実施するサイクル
評価でその効果を確認した。
Similarly, the battery formed by the above method was charged at a constant current and constant voltage for 4 hours at an ambient temperature of 20 ° C., a constant current of 3 CmA, a constant voltage of 4.2 V for 4 hours as initial charging and discharging conditions. A battery discharged at a constant current of 3.0 CmA to 3.0 V was used as a comparative example. After the first charge / discharge for the example and the comparative example, an ambient temperature of 20 ° C., a constant current of 3 CmA,
After charging at a constant voltage of 4.2 V for 4 hours at a constant current and a constant voltage,
One cycle of constant current discharge to 3.0 V at 1/3 CmA (the second time in total), and then an ambient temperature of 20 ° C. and 1 Cm
When the battery voltage reaches 4.2 V at the constant current of A, charging is completed,
The effect of the discharge was confirmed by a cycle evaluation in which a constant current discharge cycle of 3.0 V at 1 CmA was performed 80 times (82 times from the first time).

【0024】表1に実施例と比較例の初回、2回目の放
電容量を示す。また、図2に2回目の放電容量を100
とした際のサイクル毎の容量変化を縦軸に容量維持率、
横軸に充放電サイクル数をとり、サイクルの増加に伴う
電池の容量維持率をグラフで示した。表1に示すように
実施例では2回目の放電容量が124.6で比較例のそ
れの118.7より大きくなっている。また、図2から
明らかなように、実施例の電池の容量維持率は、比較例
の場合よりも各サイクル数において高い維持率を示して
いることが分かる。
Table 1 shows the first and second discharge capacities of the example and the comparative example. FIG. 2 shows that the second discharge capacity is 100
The vertical axis shows the capacity change for each cycle when
The number of charge / discharge cycles is plotted on the horizontal axis, and the capacity retention rate of the battery as the cycle increases is shown in a graph. As shown in Table 1, in the example, the second discharge capacity is 124.6, which is larger than 118.7 of the comparative example. Further, as is clear from FIG. 2, the capacity retention rate of the battery of the example shows a higher retention rate at each cycle number than that of the comparative example.

【0025】[0025]

【表1】 放電容量 (実施例2)上記方法で得た電池を、初回充電条件とし
て、環境温度20℃、0.05mA/cm2の定電流、
3.0Vの定電圧で4時間定電流定電圧充電した後、電
流値を0.5mA/cm2に設定し、4.2V定電圧で
6時間定電流定電圧充電した。その後3.0Vまで0.
5mA/cm2で定電流放電した電池を実施例2とす
る。実施例2の初回充電時における負極の電位を参照極
に金属リチウムを用いて観察した結果を図4に示す。こ
の図4より0.05mA/cm2、3.0Vの定電流定
電圧状態のときは負極の電位が、リチウムに対し、1V
付近に保持されていることが分かる。
[Table 1] Discharge capacity (Example 2) The battery obtained by the above method was used as an initial charging condition at an ambient temperature of 20 ° C, a constant current of 0.05 mA / cm 2 ,
After charging at a constant voltage of 3.0 V for 4 hours at a constant current and constant voltage, the current value was set to 0.5 mA / cm 2, and charging was performed at a constant current and constant voltage of 4.2 V for 6 hours. After that, it is set to 0.
A battery discharged at a constant current of 5 mA / cm 2 is referred to as Example 2. FIG. 4 shows the result of observing the potential of the negative electrode at the time of the first charge in Example 2 using metallic lithium as the reference electrode. According to FIG. 4, in the case of a constant current and constant voltage state of 0.05 mA / cm 2 and 3.0 V, the potential of the negative electrode is 1 V with respect to lithium.
It can be seen that it is held near.

【0026】用いる非水系電解質溶液に二酸化炭素をバ
ブリングさせ、電解液含浸作業と電池の封缶作業を二酸
化炭素雰囲気で行う以外、全く同様の手順で作製した電
池を実施例3とする。比較例2には、上記の方法で得た
電池を、初回充放電条件として、環境温度20℃、0.
5mA/cm2の定電流、4.2Vの定電圧で6時間、
定電流定電圧充電した後、0.5mA/cm2で3.0
Vまで定電流放電した電池を用いた。
Example 3 A battery manufactured in exactly the same procedure as in Example 3 except that carbon dioxide was bubbled through the non-aqueous electrolyte solution to be used, and the operation of impregnating the electrolyte and sealing the battery was performed in a carbon dioxide atmosphere. In Comparative Example 2, the battery obtained by the above method was used as an initial charge / discharge condition at an environmental temperature of 20 ° C.
6 hours at a constant current of 5 mA / cm 2 and a constant voltage of 4.2 V
After charging at a constant current and a constant voltage, 3.0 at 0.5 mA / cm 2 .
A battery discharged at a constant current up to V was used.

【0027】実施例2と同様に、比較例2についても、
初回充電時における負極の電位を参照極に金属リチウム
を用いて観察した結果を図5に示す。実施例2と異な
り、負極の電位は充電開始1時間経過付近から、リチウ
ムに対して0.5V程度まで下がるのが分かる。実施例
2、3と比較例2について初回充放電行った後、電池の
基準容量を測定した。充放電条件は、環境温度20℃、
1mA/cm2の定電流、4.2Vの定電圧で4時間、
定電流定電圧充電した後、0.5mA/cm2で3.0
Vまで定電流放電するサイクルを5回実施した。その5
回目(通算6回目)の放電容量を保存前の基準容量とし
た。
Similarly to Example 2, Comparative Example 2
FIG. 5 shows the result of observing the potential of the negative electrode at the time of the first charge using metallic lithium as the reference electrode. Unlike Example 2, it can be seen that the potential of the negative electrode drops to about 0.5 V with respect to lithium from about one hour after the start of charging. After the first charge / discharge of Examples 2 and 3 and Comparative Example 2, the reference capacity of the battery was measured. The charging and discharging conditions are as follows: an ambient temperature of 20 ° C.
Constant current of 1 mA / cm 2 , constant voltage of 4.2 V for 4 hours,
After charging at a constant current and a constant voltage, 3.0 at 0.5 mA / cm 2 .
The cycle of constant current discharge to V was performed five times. Part 5
The discharge capacity at the sixth time (a total of six times) was defined as a reference capacity before storage.

【0028】基準容量測定の後、環境温度20℃、1m
A/cm2の定電圧で4時間、定電流定電圧充電した
後、60℃の恒温槽に21日間保存した。保存後、環境
温度20℃、0.5mA/cm2で3.0Vまで定電流
放電し、保存期間の容量維持率を測定した。その後、先
に基準容量を測定した条件で再び5回充放電を繰り返
し、5回目の放電容量を保存後容量とした。下記の表2
に実施例2、3と比較例2の容量維持率、保存前後の容
量変化率を示す。なお、容量維持率、変化率は基準容量
を100とした相対比で表した。
After measuring the reference capacity, the ambient temperature is 20 ° C., 1 m
The battery was charged at a constant voltage of A / cm 2 for 4 hours at a constant current and a constant voltage, and then stored in a thermostat at 60 ° C. for 21 days. After storage, the battery was discharged at a constant current of 3.0 V at an environmental temperature of 20 ° C. and 0.5 mA / cm 2 , and the capacity retention rate during the storage period was measured. Thereafter, charge and discharge were repeated five times again under the conditions for measuring the reference capacity previously, and the fifth discharge capacity was defined as the capacity after storage. Table 2 below
Shows the capacity retention rates of Examples 2 and 3 and Comparative Example 2, and the rate of change in capacity before and after storage. The capacity retention rate and the change rate are represented by relative ratios with reference capacity being 100.

【0029】表2から明らかなように、本発明により保
存による特性変化の小さい電池を提供できる。
As is clear from Table 2, the present invention can provide a battery having a small change in characteristics due to storage.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】上述したように本発明の非水系二次電池
の充電方法では、初回充電時に負極電位が1.2〜0.
8Vvs.Liで電解液溶媒が還元され、負極表面上に
保護被膜が形成され、この保護被膜はリチウムイオン伝
導性はあるが電子伝導性はなく電解液の還元を抑制でき
る。
As described above, in the method for charging a non-aqueous secondary battery according to the present invention, the negative electrode potential is 1.2 to 0.
8Vvs. The electrolyte solution solvent is reduced by Li to form a protective film on the surface of the negative electrode. This protective film has lithium ion conductivity but has no electron conductivity and can suppress reduction of the electrolyte solution.

【0032】本発明の充電方法では、従来の充電上限電
圧の4.2Vに比し3.8V以下と初回は浅い充放電に
したので、上記の保護被膜を適切に形成することができ
る。また負極活物質は著しい酸化・還元状態にさらされ
ることなく活物質の膨潤・収縮により電解液を電極にな
じませることができる。よって、本願発明の電池は、電
池容量が増加し放充電サイクル試験の容量維持率が向上
し、高い信頼性の二次電池を得ることできる。
According to the charging method of the present invention, the charge / discharge is initially performed at a shallower voltage of 3.8 V or less than the conventional upper limit voltage of 4.2 V, so that the above protective film can be appropriately formed. In addition, the negative electrode active material can adapt the electrolyte to the electrode by swelling and shrinking of the active material without being exposed to a remarkable oxidation / reduction state. Therefore, the battery of the present invention can increase the battery capacity, improve the capacity retention rate of the discharge / charge cycle test, and obtain a highly reliable secondary battery.

【0033】本発明の請求項2に記載の充電方法は、高
温保存後の容量劣化が少なく、高い信頼性を有する。こ
れは初回充電時、ごく小さな電流値で負極を特定の電位
範囲で充電するので負極表面に従来より緻密な保護被膜
が形成される。この初回充電時に電池系内が二酸化炭素
で満たされているので保護膜の炭酸リチウム成分が従来
より増え、混入水分などによる負極の劣化を抑制でき、
負極電圧を長期間安定に保つことが可能となる。
The charging method according to the second aspect of the present invention has a small capacity deterioration after high-temperature storage and has high reliability. This means that the negative electrode is charged in a specific potential range with a very small current value at the time of the initial charging, so that a denser protective film is formed on the negative electrode surface than before. Since the battery system is filled with carbon dioxide at the time of the first charge, the lithium carbonate component of the protective film is increased compared to the conventional case, and the deterioration of the negative electrode due to mixed water and the like can be suppressed.
It is possible to keep the negative electrode voltage stable for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で充電試験に用いた二次電池の断面模
式図である。
FIG. 1 is a schematic cross-sectional view of a secondary battery used in a charging test in this example.

【図2】実施例および比較例の充放電サイクル数と電池
容量維持率の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of charge / discharge cycles and the battery capacity retention rate in Examples and Comparative Examples.

【図3】本電池の充電条件の電圧・電流の経過を説明す
るグラフである。
FIG. 3 is a graph illustrating the progress of voltage and current under charging conditions of the present battery.

【図4】実施例2の電池の初回充電時の負極電位の経過
を示すグラフである。
FIG. 4 is a graph showing the progress of the negative electrode potential at the time of initial charging of the battery of Example 2.

【図5】比較例2の電池の初回充電時の負極電位の経過
を示すグラフである。
FIG. 5 is a graph showing the progress of the negative electrode potential when the battery of Comparative Example 2 is initially charged.

【符号の説明】[Explanation of symbols]

1.正極板、2.負極板、3.セパレータ、4.負極
缶、5.正極キャップ、6.絶縁体、7a.正極リー
ド、7b.負極リード
1. 1. positive electrode plate; 2. negative electrode plate; Separator, 4. Negative electrode can, 5. 5. positive electrode cap, Insulator, 7a. Positive electrode lead, 7b. Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神崎 昌郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 佐伯 徹 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Kanzaki 41-Cho, Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Institute, Inc. 41, Yokomichi, Toyota Central Research Institute, Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負極活物質としてリチウムイオンをドー
プ、脱ドープし得る炭素質材料を用いた非水系二次電池
の充電方法であって、 前記非水系二次電池の初回充電を行う際に、定電流値を
0.02〜1.0CmAに、定電圧値を1.0〜3.8
Vの範囲に規定し、定電流定電圧充電を行うことを特徴
とする非水系二次電池の充電方法。
1. A method for charging a non-aqueous secondary battery using a carbonaceous material which can be doped with lithium ions and de-doped as a negative electrode active material, wherein the non-aqueous secondary battery is charged for the first time. The constant current value is set to 0.02 to 1.0 CmA, and the constant voltage value is set to 1.0 to 3.8.
A method for charging a non-aqueous secondary battery, wherein the charging is performed at a constant current and a constant voltage specified in a range of V.
【請求項2】負極活物質としてリチウムイオンをドー
プ、脱ドープし得る炭素質材料を用いた非水系二次電池
の充電方法であって、 前記非水系二次電池の初回充電を行う際に定流電値を
0.02〜0.5mA/cm2、定電圧値を負極電位が
0.5〜1.5Vvs.Li/Li+の範囲になるよう
に規定し、かつ電池内を二酸化炭素雰囲気として定電流
定電圧充電を行うことを特徴とする非水系二次電池の充
電方法。
2. A method for charging a non-aqueous secondary battery using a carbonaceous material which can be doped and de-doped with lithium ions as a negative electrode active material, comprising: The current value is 0.02 to 0.5 mA / cm 2 , and the constant voltage value is 0.5 to 1.5 V vs. negative electrode potential. A method for charging a non-aqueous secondary battery, wherein the charging is performed so as to be in the range of Li / Li + , and the battery is charged with a constant current and a constant voltage in a carbon dioxide atmosphere.
JP11008244A 1998-05-28 1999-01-14 Charging method for nonaqueous secondary battery Pending JP2000048862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008244A JP2000048862A (en) 1998-05-28 1999-01-14 Charging method for nonaqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14744398 1998-05-28
JP10-147443 1998-05-28
JP11008244A JP2000048862A (en) 1998-05-28 1999-01-14 Charging method for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2000048862A true JP2000048862A (en) 2000-02-18

Family

ID=26342720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008244A Pending JP2000048862A (en) 1998-05-28 1999-01-14 Charging method for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2000048862A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
KR100416150B1 (en) * 2001-12-03 2004-01-24 삼성에스디아이 주식회사 Method of preparing lithium secondary battery and lithium secondary battery prepared by same
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JP2014002055A (en) * 2012-06-19 2014-01-09 Hitachi Ltd Inspection system, charger/discharger, and inspection method for secondary battery
CN104868170A (en) * 2014-02-25 2015-08-26 丰田自动车株式会社 Manufacturing Method For Nonaqueous Electrolyte Secondary Battery
CN107064812A (en) * 2017-03-02 2017-08-18 深圳拓邦新能源技术有限公司 Method for testing moisture content in battery
JP2020123434A (en) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2003022804A (en) * 2001-07-06 2003-01-24 Kansai Research Institute Nonaqueous secondary battery and manufacturing method therefor
JP2003115326A (en) * 2001-10-03 2003-04-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
KR100416150B1 (en) * 2001-12-03 2004-01-24 삼성에스디아이 주식회사 Method of preparing lithium secondary battery and lithium secondary battery prepared by same
WO2012057311A1 (en) * 2010-10-29 2012-05-03 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
JPWO2012057311A1 (en) * 2010-10-29 2014-05-12 旭化成イーマテリアルズ株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
US9893378B2 (en) 2010-10-29 2018-02-13 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution and non-aqueous secondary battery
JP2014002055A (en) * 2012-06-19 2014-01-09 Hitachi Ltd Inspection system, charger/discharger, and inspection method for secondary battery
CN104868170A (en) * 2014-02-25 2015-08-26 丰田自动车株式会社 Manufacturing Method For Nonaqueous Electrolyte Secondary Battery
CN107064812A (en) * 2017-03-02 2017-08-18 深圳拓邦新能源技术有限公司 Method for testing moisture content in battery
JP2020123434A (en) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP7202526B2 (en) 2019-01-29 2023-01-12 トヨタ自動車株式会社 Method for manufacturing non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR100975773B1 (en) Positive electrode and non-aqueous electrolyte cell
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US11811055B2 (en) Multi-layered anode containing silicon-based compound and lithium secondary battery including the same
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP2001176558A (en) Non-aqueous electrolyte secondary battery
US11936037B2 (en) Multi-layered anode containing silicon-based compound and lithium secondary battery including the same
JP2012009458A (en) Lithium secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP2012174546A (en) Nonaqueous electrolyte secondary battery
CN111052484A (en) Liquid electrolyte additive for lithium secondary battery, non-aqueous liquid electrolyte comprising the same, and lithium secondary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2009134970A (en) Nonaqueous electrolytic battery
JP6057644B2 (en) Lithium ion battery
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JP2000048862A (en) Charging method for nonaqueous secondary battery
CN114026729B (en) Lithium battery and use of urea-based additive as electrolyte additive therein
JP2003115324A (en) Nonaqueous electrolyte battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
US20230013446A1 (en) Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
JP2004158213A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JPH1125982A (en) Negative electrode material for non-aqueous electrolyte battery
JP4166295B2 (en) Non-aqueous electrolyte battery