JP4826245B2 - Winding type secondary battery - Google Patents

Winding type secondary battery Download PDF

Info

Publication number
JP4826245B2
JP4826245B2 JP2005359836A JP2005359836A JP4826245B2 JP 4826245 B2 JP4826245 B2 JP 4826245B2 JP 2005359836 A JP2005359836 A JP 2005359836A JP 2005359836 A JP2005359836 A JP 2005359836A JP 4826245 B2 JP4826245 B2 JP 4826245B2
Authority
JP
Japan
Prior art keywords
shaft core
secondary battery
battery
negative electrode
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359836A
Other languages
Japanese (ja)
Other versions
JP2007165115A (en
Inventor
拓是 森川
佳正 小石川
貴之 三谷
祐一 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005359836A priority Critical patent/JP4826245B2/en
Publication of JP2007165115A publication Critical patent/JP2007165115A/en
Application granted granted Critical
Publication of JP4826245B2 publication Critical patent/JP4826245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は捲回式二次電池に係り、特に、集電体に合剤をそれぞれ塗着した正負極板が軸芯の外側に捲回された電極群を有する捲回式二次電池に関する。   The present invention relates to a wound secondary battery, and more particularly, to a wound secondary battery having an electrode group in which positive and negative electrode plates each coated with a mixture are wound on the outside of a shaft core.

従来、集電体に合剤をそれぞれ塗着した正負極板が捲回された電極群を有する捲回式二次電池は、さまざまな用途で使用されている。中でも、捲回式リチウム二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノート型パソコン、携帯電話等のポータブル機器に使用されている。一方、電気自動車用や電力貯蔵用として高容量、高出力、更には高出力密度を目的とする大型の捲回式リチウム二次電池の研究開発が活発に行われている。特に、自動車産業界においては、環境問題に対応すべく、動力源としてモータのみを用いる方式の電気自動車や内燃機関とモータとの両方を用いるハイブリッド方式の電気自動車の開発が進められており、その一部は既に実用化されている。   2. Description of the Related Art Conventionally, a wound secondary battery having an electrode group in which positive and negative electrode plates each having a mixture coated on a current collector are wound has been used in various applications. Among these, wound lithium secondary batteries are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. On the other hand, research and development of large wound lithium secondary batteries for high capacity, high output, and high output density for electric vehicles and power storage are being actively conducted. In particular, in the automobile industry, development of electric vehicles using only a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor is underway in order to deal with environmental problems. Some have already been put to practical use.

一般に、小型の捲回式リチウム二次電池では、電極群の捲回中心に軸芯は使用されていない。ところが、大型の捲回式リチウム二次電池では、電極面積の大型化が図られているため、電極群が大きくなると共に、安全性を確保するために安全機構等が配置されるので、電池全体が非常に重くなる。これに伴い、電池にかかる振動、衝撃等が電極群に及ぼす影響が大きくなるため、電極群を固定しておくことが重要となる。電極群の固定には、例えば、中空状の軸芯を用いる技術が開示されている(例えば、特許文献1参照)。この技術では、軸芯が中空状のため、電極群の軽量化を図ることができる。また、電極群の作製時には、軸芯の中空部分に捲回装置の捲回軸を挿入することで、軸芯の外側に正負極板をトルクをかけながら捲回することができ正負極板の捲きズレを抑制することができる。更に、軸芯の中空部分から電解液を注液することで、電解液に電極群を容易に浸潤させることもできる。   In general, in a small wound lithium secondary battery, an axis is not used at the winding center of an electrode group. However, in a large-sized wound lithium secondary battery, since the electrode area is increased, the electrode group becomes larger, and a safety mechanism or the like is arranged to ensure safety. Becomes very heavy. As a result, the influence of vibration, impact, etc. on the battery on the electrode group increases, so it is important to fix the electrode group. For example, a technique using a hollow shaft core is disclosed for fixing the electrode group (see, for example, Patent Document 1). In this technique, since the shaft core is hollow, the weight of the electrode group can be reduced. Moreover, when the electrode group is manufactured, the positive and negative electrode plates can be wound while applying torque to the outside of the shaft core by inserting the winding shaft of the winding device into the hollow portion of the shaft core. Dispersion can be suppressed. Furthermore, by injecting the electrolytic solution from the hollow portion of the shaft core, the electrode group can be easily infiltrated into the electrolytic solution.

特開2001−126769号公報。JP 2001-126769 A.

しかしながら、中空状の軸芯を用いた捲回式リチウム二次電池が外部からの圧力で一定量以上変形した場合には、電極群の変形と軸芯の変形とが併行して起こる。このため、電極群の変形に伴い軸芯がつぶれるので、つぶれた軸芯のエッジがセパレータ及び正負極板を切断し短絡が発生する。この短絡箇所では、正負極板が、折り曲げられた状態又は切断された状態でセパレータを貫通して対極に突き刺さるため、突き刺さった部分の合剤が滑落し集電体同士が接触する。このため、短絡箇所の抵抗が小さくなり、また、捲回式リチウム二次電池が高容量、高出力であることから、短絡箇所に大電流が流れて発熱し温度が上昇する。この結果、電池構成物質の蒸発(気化)や熱分解によるガス化を連鎖的に起こすため、内圧が加速度的に上昇する、という問題がある。   However, when a wound lithium secondary battery using a hollow shaft core is deformed by a certain amount or more by external pressure, the electrode group and the shaft core are deformed in parallel. For this reason, the shaft core is crushed along with the deformation of the electrode group, so that the edge of the crushed shaft core cuts the separator and the positive and negative electrode plates to cause a short circuit. At this short-circuited location, the positive and negative electrode plates penetrate the separator and stab into the counter electrode in a folded or cut state, so that the mixture at the stabbed portion slides down and the current collectors come into contact with each other. For this reason, the resistance of the short-circuited portion is reduced, and since the wound lithium secondary battery has a high capacity and a high output, a large current flows through the short-circuited portion to generate heat and the temperature rises. As a result, there is a problem that the internal pressure rises at an accelerated rate because the vaporization (vaporization) of the battery constituent material and gasification due to thermal decomposition occur in a chained manner.

本発明は上記事案に鑑み、外部からの圧力により電池が変形する電池異常時の挙動を穏やかにすることができる捲回式二次電池を提供することを課題とする。   An object of the present invention is to provide a wound type secondary battery that can moderate the behavior at the time of battery abnormality in which the battery deforms due to external pressure.

上記課題を解決するため、本発明は、集電体に合剤をそれぞれ塗着した正負極板が軸芯の外側に捲回された電極群を有する捲回式二次電池において、前記軸芯は、円形又は非円形の中空部が形成された円管状であり、前記軸芯の中空部には、該中空部の横断面積より小さい横断面積を有し、かつ、前記軸芯の剛性と等しいか又はその剛性より大きい剛性を有する支持部材が前記軸芯の長さ全体に亘るように挿入されていることを特徴とする。 In order to solve the above problems, the present invention provides a wound secondary battery having an electrode group in which positive and negative electrode plates each coated with a mixture are wound on the outside of the shaft core. Is a circular tube formed with a circular or non-circular hollow portion, and the hollow portion of the shaft core has a cross-sectional area smaller than the cross-sectional area of the hollow portion and is equal to the rigidity of the shaft core. Or a support member having a rigidity larger than that of the shaft core is inserted over the entire length of the shaft core .

本発明の捲回式二次電池では、支持部材の横断面積が軸芯の中空部の横断面積より小さいため、支持部材の軸芯への挿入を容易に行うことができ、軸芯の中空部に、軸芯の剛性と等しいか又はその剛性より大きい剛性を有する支持部材が軸芯の長さ全体に亘るように挿入されているため、軸芯の長さのほぼ全体が支持部材で占められるので、外部からの圧力で変形しても、軸芯が支持部材で支持され軸芯の破損が抑制されることから、軸芯の破損に伴って集電体同士の接触による短絡が抑制されるので、電池異常時の挙動を穏やかにすることができる。 In the wound secondary battery of the present invention, since the cross-sectional area of the support member is smaller than the cross-sectional area of the hollow portion of the shaft core, the support member can be easily inserted into the shaft core. In addition, since the support member having rigidity equal to or greater than the rigidity of the shaft core is inserted over the entire length of the shaft core, almost the entire length of the shaft core is occupied by the support member. Therefore, even if it is deformed by pressure from the outside, the shaft core is supported by the support member and the shaft core is prevented from being damaged, so that the short circuit due to the contact between the current collectors is suppressed along with the shaft core being damaged. Therefore, the behavior when the battery is abnormal can be made gentle.

この場合において、支持部材を合成樹脂又は金属としてもよい。また、支持部材を中実棒状とすれば、支持部材の内部に空間が形成されていないので、外部からの圧力が増大しても軸芯を支持することができる。更に、支持部材の外周面が軸芯の内周面に沿う形状を有していれば、軸芯の中空部のほぼ全体に支持部材が配されるので、外部のいずれの方向らの圧力に対しても軸芯を支持することができる。 In this case, the support member may be a synthetic resin or a metal. Further, if the support member is a solid rod, no space is formed inside the support member, so that the shaft core can be supported even when the pressure from the outside increases. Furthermore, if the outer peripheral surface of the support member has a shape along the inner peripheral surface of the shaft core, the support member is disposed on almost the entire hollow portion of the shaft core. Ru can be used to support the axis also for.

本発明によれば、支持部材の横断面積が軸芯の中空部の横断面積より小さいため、支持部材の軸芯への挿入を容易に行うことができ、軸芯の中空部に、軸芯の剛性と等しいか又はその剛性より大きい剛性を有する支持部材が軸芯の長さ全体に亘るように挿入されているため、軸芯の長さのほぼ全体が支持部材で占められるので、外部からの圧力で変形しても、軸芯が支持部材で支持され軸芯の破損が抑制されることから、集電体同士の接触による短絡が抑制されるので、電池異常時の挙動を穏やかにすることができる、という効果を得ることができる。 According to the present invention, since the cross-sectional area of the support member is smaller than the cross-sectional area of the hollow portion of the shaft core, the support member can be easily inserted into the shaft core. Since the support member having a rigidity equal to or greater than the rigidity is inserted so as to extend over the entire length of the shaft core, almost the entire length of the shaft core is occupied by the support member . Even if it is deformed by pressure, the shaft core is supported by the support member and damage to the shaft core is suppressed, so short-circuiting due to contact between current collectors is suppressed, so the behavior during battery abnormalities is moderated The effect of being able to be obtained can be obtained.

以下、図面を参照して、本発明を適用した円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、ニッケルメッキが施されたスチール製で有底円筒状であり、底部に内圧上昇時に作動する開裂溝(安全機構)が形成された電池容器7及び帯状の正負極板がセパレータを介して断面渦巻状に捲回された電極群6を有している。
(Constitution)
As shown in FIG. 1, a cylindrical lithium ion secondary battery 20 of this embodiment is made of steel with nickel plating and has a bottomed cylindrical shape, and has a cleavage groove (safety mechanism) that operates when the internal pressure rises at the bottom. The battery case 7 in which is formed and the belt-like positive and negative electrode plates have an electrode group 6 wound in a spiral shape in cross section via a separator.

電極群6の捲回中心には、ポリプロピレン樹脂製で中空円筒状の軸芯1が使用されている。軸芯1の中空部には、ポリプロピレン樹脂製で中実(略円柱状)の支持部材としての棒状部材21が挿入されている。本例では、軸芯1の寸法は、外径9mm、内径7mm、高さ114.3mmに設定されており、棒状部材21の寸法は、直径6.5mm、高さ114mmに設定されている。図2に示すように、棒状部材21の外周面は、軸芯1の内周面に沿って配置されており、棒状部材21の外周面及び軸芯1の内周面間には間隙が形成されている。このため、棒状部材21の横断面積S1は、軸芯1の中空部の横断面積S2より小さくなる。棒状部材21及び軸芯1に同じ材質を用いても、棒状部材21の直径が軸芯1の内径より小さいため、棒状部材21の剛性が軸芯1の剛性より大きくなる。   A hollow cylindrical shaft core 1 made of polypropylene resin is used at the winding center of the electrode group 6. A rod-like member 21 as a solid (substantially cylindrical) support member made of polypropylene resin is inserted into the hollow portion of the shaft core 1. In this example, the dimensions of the shaft core 1 are set to an outer diameter of 9 mm, an inner diameter of 7 mm, and a height of 114.3 mm, and the bar-shaped member 21 is set to a diameter of 6.5 mm and a height of 114 mm. As shown in FIG. 2, the outer peripheral surface of the rod-shaped member 21 is disposed along the inner peripheral surface of the shaft core 1, and a gap is formed between the outer peripheral surface of the rod-shaped member 21 and the inner peripheral surface of the shaft core 1. Has been. For this reason, the cross-sectional area S1 of the rod-shaped member 21 is smaller than the cross-sectional area S2 of the hollow portion of the shaft core 1. Even if the same material is used for the rod-shaped member 21 and the shaft core 1, since the diameter of the rod-shaped member 21 is smaller than the inner diameter of the shaft core 1, the rigidity of the rod-shaped member 21 is larger than the rigidity of the shaft core 1.

図1に示すように、電極群6の上側には、軸芯1のほぼ延長線上に正極板からの電位を集電するためのアルミニウム製の正極集電リング4が配置されている。正極集電リング4は、軸芯1の上端部に固定されている。正極集電リング4の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片2の端部が超音波溶接で接合されている。正極集電リング4の上方には、正極外部端子となる円盤状の電池蓋が配置されている。電池蓋は、蓋ケース12と、蓋キャップ13と、気密を保つ弁押え14と、内圧上昇により開裂する開裂弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメ固定することで組立てられている。正極集電リング4の上部には複数枚のアルミニウム製リボンを重ね合わせて構成した2本の正極リード9のうち1本の一端が固定されており、蓋ケース12の下面には他の1本の一端が溶接されている。2本の正極リード9の他端同士は溶接で接合されている。   As shown in FIG. 1, on the upper side of the electrode group 6, an aluminum positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed on a substantially extension line of the shaft core 1. The positive electrode current collecting ring 4 is fixed to the upper end portion of the shaft core 1. The edge part of the positive electrode lead piece 2 led out from the positive electrode plate is joined by ultrasonic welding to the peripheral edge of the flange part integrally protruding from the periphery of the positive electrode current collecting ring 4. A disc-shaped battery lid serving as a positive electrode external terminal is disposed above the positive electrode current collecting ring 4. The battery lid includes a lid case 12, a lid cap 13, a valve retainer 14 that keeps airtightness, and a cleavage valve 11 that is cleaved by an increase in internal pressure, and these are laminated to fix the periphery of the lid case 12 by caulking. It is assembled by doing. One end of two positive electrode leads 9 formed by superposing a plurality of aluminum ribbons is fixed to the upper portion of the positive electrode current collecting ring 4, and another one is fixed to the lower surface of the lid case 12. One end is welded. The other ends of the two positive electrode leads 9 are joined by welding.

一方、電極群6の下側には負極板からの電位を集電するための銅製の負極集電リング5が配置されている。負極集電リング5の内周面には軸芯1の下端部外周面が固定されている。負極集電リング5の外周縁には、負極板から導出された負極リード片3の端部が溶接で接合されている。負極集電リング5の下部には電気的導通のための銅製の負極リード板8が溶接されており、負極リード板8は電池容器7の内底部に溶接で接合されている。電池容器7の寸法は、本例では、外径40mm、内径39mmに設定されている。   On the other hand, a copper negative electrode current collecting ring 5 for collecting a potential from the negative electrode plate is disposed below the electrode group 6. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 5. The end of the negative electrode lead piece 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 5 by welding. A negative electrode lead plate 8 made of copper for electrical conduction is welded to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 is joined to the inner bottom portion of the battery container 7 by welding. In this example, the dimensions of the battery container 7 are set to an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋は、絶縁性及び耐熱性のEPDM樹脂製ガスケット10を介して電池容器7の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池容器7内には、非水電解液が注液されている。非水電解液には、エチレンカーボネートとジメチルカーボネートとの体積比1:1の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The battery lid is caulked and fixed to the upper part of the battery container 7 via an insulating and heat resistant EPDM resin gasket 10. For this reason, the inside of the lithium ion secondary battery 20 is sealed. In addition, a non-aqueous electrolyte is injected into the battery container 7. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt in a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 is used. .

電極群6は、正極板と負極板とが、これら両極板が直接接触しないようにセパレータを介し、軸芯1の周囲(外側)に捲回されている。セパレータには、本例では、幅107.5mm、厚さ40μmの多孔質ポリエチレン製フィルムが使用されている。正極リード片2と負極リード片3とは、それぞれ電極群6の互いに反対側の両端面に配置されている。電極群6及び正極集電リング4の鍔部周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から電極群6外周面に亘って一重以上巻かれている。正極板、負極板、セパレータの長さを調整することで、電極群6の直径が38±0.1mmに設定されている。   In the electrode group 6, the positive electrode plate and the negative electrode plate are wound around the outer periphery (outside) of the shaft core 1 through a separator so that the two electrode plates do not directly contact each other. In this example, a porous polyethylene film having a width of 107.5 mm and a thickness of 40 μm is used as the separator. The positive electrode lead piece 2 and the negative electrode lead piece 3 are disposed on both end surfaces of the electrode group 6 opposite to each other. Insulation coating is applied to the entire circumference of the collar surface of the electrode group 6 and the positive electrode current collector ring 4. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The pressure-sensitive adhesive tape is wound one or more times from the peripheral surface of the collar portion to the outer peripheral surface of the electrode group 6. By adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator, the diameter of the electrode group 6 is set to 38 ± 0.1 mm.

電極群6を構成する負極板は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質としてリチウムイオンを吸蔵、放出可能な非晶質炭素粉末を含む負極合剤が塗着されている。負極合剤には、例えば、非晶質炭素粉末の90重量部に対して、バインダ(結着材)のポリフッ化ビニリデン(以下、PVDFと略記する。)の10重量部が配合されている。圧延銅箔に負極合剤を塗着するときには、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと略記する。)が用いられる。圧延銅箔の長寸方向一側の側縁には、幅30mmの負極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で負極リード片3が形成されている。隣り合う負極リード片3の間隔が50mm、負極リード片3の幅が5mmに設定されている。負極板は、乾燥後、厚さ70μmとなるように、加熱可能なロールプレス機でプレス加工され、幅105mmに裁断されている。   The negative electrode plate constituting the electrode group 6 has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. A negative electrode mixture containing amorphous carbon powder capable of occluding and releasing lithium ions as a negative electrode active material is coated on both surfaces of the rolled copper foil. In the negative electrode mixture, for example, 10 parts by weight of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) is blended with 90 parts by weight of amorphous carbon powder. When applying the negative electrode mixture to the rolled copper foil, a dispersion solvent N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is used. An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil. The uncoated part is notched in a comb shape, and the negative electrode lead piece 3 is formed in the notch remaining part. The interval between the adjacent negative electrode lead pieces 3 is set to 50 mm, and the width of the negative electrode lead piece 3 is set to 5 mm. The negative electrode plate is pressed with a heatable roll press so as to have a thickness of 70 μm after being dried, and is cut into a width of 105 mm.

一方、正極板は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質としてリチウム遷移金属複酸化物を含む正極合剤が塗着されている。正極合剤には、例えば、リチウム遷移金属複酸化物の100重量部に対して、導電材の鱗片状黒鉛の10重量部及びバインダのPVDFの5重量部が配合されている。アルミニウム箔に正極合剤を塗着するときには、分散溶媒のNMPが用いられる。アルミニウム箔の長寸方向一側の側縁には、負極板と同様に幅30mmの正極合剤の未塗着部が形成されており、正極リード片2が形成されている。隣り合う正極リード片2の間隔が50mm、正極リード片2の幅が5mmに設定されている。正極板は、乾燥後、厚さ90μmとなるように、負極板と同様にプレス加工され、幅99mmに裁断されている。   On the other hand, the positive electrode plate has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. A positive electrode mixture containing a lithium transition metal double oxide as a positive electrode active material is applied to both surfaces of the aluminum foil. In the positive electrode mixture, for example, 10 parts by weight of flaky graphite as a conductive material and 5 parts by weight of PVDF as a binder are blended with 100 parts by weight of lithium transition metal double oxide. When applying the positive electrode mixture to the aluminum foil, a dispersion solvent NMP is used. An uncoated portion of a positive electrode mixture with a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the aluminum foil, and a positive electrode lead piece 2 is formed. The interval between the adjacent positive electrode lead pieces 2 is set to 50 mm, and the width of the positive electrode lead piece 2 is set to 5 mm. The positive electrode plate, after drying, is pressed in the same manner as the negative electrode plate so as to have a thickness of 90 μm, and is cut into a width of 99 mm.

(電池組立)
リチウムイオン二次電池20の組立は以下の手順で行う。まず、正負極板をセパレータを介して軸芯1の周囲に捲回装置で捲回し電極群6を作製する。このとき、捲回装置の捲回軸を軸芯1の中空部に挿入して、軸芯1にトルクをかけながら捲回する。電極群6の両端面からそれぞれ導出されている正極リード片2及び負極リード片3を正極集電リング4及び負極集電リング5にそれぞれ溶接した後、電池容器7内に電極群6を挿入する。負極集電リング5に予め溶接した負極リード板8を電池容器7の内底部に溶接し、正極集電リング4及び電池蓋を正極リード9で接続する。電池容器7内に非水電解液を軸芯1の中空部から注液して電極群6を非水電解液に浸潤させた後、軸芯1の中空部に棒状部材21を挿入する。非水電解液の注液量は棒状部材21の体積分を考慮して設定する。その後、電池蓋を電池容器7の上部にかしめ固定することで、リチウムイオン二次電池20の組立を完成させる。
(Battery assembly)
The lithium ion secondary battery 20 is assembled in the following procedure. First, the positive and negative electrode plates are wound around the shaft core 1 with a winding device through a separator to produce the electrode group 6. At this time, the winding shaft of the winding device is inserted into the hollow portion of the shaft core 1 and wound while applying torque to the shaft core 1. After the positive electrode lead piece 2 and the negative electrode lead piece 3 respectively led out from both end faces of the electrode group 6 are welded to the positive electrode current collecting ring 4 and the negative electrode current collecting ring 5, the electrode group 6 is inserted into the battery container 7. . A negative electrode lead plate 8 pre-welded to the negative electrode current collecting ring 5 is welded to the inner bottom portion of the battery container 7, and the positive electrode current collecting ring 4 and the battery lid are connected by the positive electrode lead 9. After pouring a non-aqueous electrolyte into the battery container 7 from the hollow portion of the shaft core 1 to infiltrate the electrode group 6 into the non-aqueous electrolyte solution, the rod-shaped member 21 is inserted into the hollow portion of the shaft core 1. The injection amount of the non-aqueous electrolyte is set in consideration of the volume of the rod-shaped member 21. Thereafter, the battery lid is caulked and fixed to the upper part of the battery container 7 to complete the assembly of the lithium ion secondary battery 20.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

従来リチウムイオン二次電池では、電極群の捲回中心に中空状の軸芯が使用されており、軸芯の中空部には非水電解液が満たされている。この電池が側面からの外力で一定量以上変形した場合、電池内部では電極群の変形と軸芯の変形とが併行して起こる。図3に示すように、電極群36の変形に伴い中空状の軸芯31が変形してつぶれ、つぶれた軸芯31のエッジがセパレータ及び正負極板を圧迫し切断することで短絡が発生する。すなわち、外力がかかる方向を垂直(図3の矢印A方向)としたときに、短絡は水平方向で軸芯31の両側の短絡箇所P1で発生する。短絡箇所P1では、正負極板が折れ曲がった状態又は切断された状態でセパレータを貫通し対極に突き刺さる。突き刺さった正負極板では、セパレータ及び対極に突き刺さる際に正負極合剤が滑落するため、正負極集電体同士が接触する。このため、短絡箇所P1での抵抗が小さくなり、大電流が流れ短絡箇所P1の温度が急激に上昇する。温度上昇に伴い、電池構成物質の蒸発(気化)や熱分解によるガス化が連鎖的に起こるため、電池が熱暴走状態に到り電池内圧が急激に上昇する。リチウムイオン二次電池には、通常、内圧開放を目的とした安全弁が取り付けられているものの、電池内部のガス発生スピードが安全弁の能力を上回ると電池内容物を激しく放出することとなる。   In the conventional lithium ion secondary battery, a hollow shaft core is used at the center of winding of the electrode group, and the hollow portion of the shaft core is filled with a nonaqueous electrolyte. When the battery is deformed by a certain amount or more by an external force from the side surface, the deformation of the electrode group and the deformation of the shaft core occur in parallel within the battery. As shown in FIG. 3, the hollow shaft core 31 is deformed and crushed along with the deformation of the electrode group 36, and the edge of the crushed shaft core 31 presses and cuts the separator and the positive and negative electrode plates to cause a short circuit. . That is, when the direction in which the external force is applied is vertical (the direction of arrow A in FIG. 3), a short circuit occurs at the short circuit points P1 on both sides of the shaft core 31 in the horizontal direction. In the short circuit location P1, the positive and negative electrode plates are bent or cut and penetrate the separator and pierce the counter electrode. In the pierced positive and negative electrode plates, the positive and negative electrode mixture slides when piercing the separator and the counter electrode, so that the positive and negative electrode current collectors come into contact with each other. For this reason, the resistance at the short-circuited portion P1 is reduced, a large current flows, and the temperature of the short-circuited portion P1 rapidly increases. As the temperature rises, evaporation (vaporization) of the battery constituent material and gasification due to thermal decomposition occur in a chain, so that the battery reaches a thermal runaway state and the internal pressure of the battery rapidly increases. A lithium ion secondary battery is usually provided with a safety valve for releasing the internal pressure. However, if the gas generation speed inside the battery exceeds the capacity of the safety valve, the battery contents are violently released.

これに対して、本実施形態のリチウムイオン二次電池20では、中空状の軸芯1に棒状部材21が挿入されており、棒状部材21及び軸芯1に同じ材質のポリプロピレン樹脂が使用されている。棒状部材21の直径が軸芯1の内径より小さいことから、棒状部材21及び軸芯1が同じ材質でも、棒状部材21の剛性が軸芯1の剛性より大きくなる。このため、リチウムイオン二次電池20が側面からの外力で変形しても、軸芯1が棒状部材21で支持されるので、軸芯1の変形が抑制される。これにより、正負極集電体同士の接触による短絡が抑制されるので、外力で変形する電池異常時でも電池挙動を穏やかに抑えることができる。   In contrast, in the lithium ion secondary battery 20 of the present embodiment, the rod-shaped member 21 is inserted into the hollow shaft core 1, and the same material polypropylene resin is used for the rod-shaped member 21 and the shaft core 1. Yes. Since the diameter of the rod-shaped member 21 is smaller than the inner diameter of the shaft core 1, even if the rod-shaped member 21 and the shaft core 1 are the same material, the rigidity of the rod-shaped member 21 is larger than the rigidity of the shaft core 1. For this reason, even if the lithium ion secondary battery 20 is deformed by an external force from the side surface, the shaft core 1 is supported by the rod-shaped member 21, so that the deformation of the shaft core 1 is suppressed. Thereby, since a short circuit due to contact between the positive and negative electrode current collectors is suppressed, the battery behavior can be gently suppressed even when the battery is deformed by an external force.

図4に示すように、本実施形態のリチウムイオン二次電池20では、電極群6が変形しても軸芯1の変形が抑制されるため、軸芯1がつぶれるより先に、外力がかかる方向(図4の矢印A方向)で軸芯1の上下に位置するセパレータが変形して薄くなり絶縁を維持できなくなることで短絡が発生する。すなわち、軸芯1の上下の短絡箇所P2で短絡が発生する。セパレータの破損により短絡が発生するため、短絡箇所P2では正負極合剤同士のみが接触し正負極集電体同士は接触しない。このため、短絡箇所P2での抵抗が大きくなり、流れる電流が小さくなるので、棒状部材21を挿入していない場合と比較して、温度や内圧の上昇速度が遅くなる。従って、電池内部のガス発生スピードを安全弁の能力以下に抑えることができることから、安全弁の作動により内圧が穏やかに開放され電池の安全性を確保することができる。   As shown in FIG. 4, in the lithium ion secondary battery 20 of the present embodiment, even if the electrode group 6 is deformed, the deformation of the shaft core 1 is suppressed, so that an external force is applied before the shaft core 1 is crushed. When the separators located above and below the shaft core 1 in the direction (direction of arrow A in FIG. 4) are deformed and become thin and insulation cannot be maintained, a short circuit occurs. That is, a short circuit occurs at the upper and lower short circuit locations P2 of the shaft core 1. Since a short circuit occurs due to breakage of the separator, only the positive and negative electrode mixtures are in contact with each other and the positive and negative electrode current collectors are not in contact with each other at the short circuit point P2. For this reason, the resistance at the short-circuited portion P2 is increased and the flowing current is reduced, so that the rate of increase in temperature and internal pressure is reduced as compared with the case where the rod-shaped member 21 is not inserted. Accordingly, since the gas generation speed inside the battery can be suppressed below the capacity of the safety valve, the internal pressure is gently released by the operation of the safety valve, and the safety of the battery can be ensured.

また、本実施形態のリチウムイオン二次電池20では、棒状部材21の横断面積S1が軸芯1の中空部の横断面積S2より小さい1本の中実の部材が用いられており、棒状部材21の外周面が軸芯1の内周面に沿って配置されている。このため、軸芯1の中空部のほぼ全体が棒状部材で占められるので、外部のいずれの方向から圧力がかかっても軸芯1の変形を抑制することができる。また、棒状部材21は、横断面積S1が横断面積S2より小さく1本のため、軸芯1への挿入を容易に行うことができる。   Further, in the lithium ion secondary battery 20 of the present embodiment, one solid member is used in which the cross-sectional area S1 of the rod-shaped member 21 is smaller than the cross-sectional area S2 of the hollow portion of the shaft core 1. Are arranged along the inner peripheral surface of the shaft core 1. For this reason, since almost the entire hollow portion of the shaft core 1 is occupied by the rod-shaped member, the deformation of the shaft core 1 can be suppressed even when pressure is applied from any external direction. Moreover, since the cross-sectional area S1 is one smaller than the cross-sectional area S2, the rod-shaped member 21 can be easily inserted into the shaft core 1.

更に、本実施形態のリチウムイオン二次電池20では、非水電解液の注液後に棒状部材21が軸芯1の中空部に挿入される。このため、棒状部材21の体積分で非水電解液の使用量を減少させることができる。非水電解液がコスト高であることから、使用量を減少させた分でコスト低減を図ることができる。また、非水電解液の注液後に棒状部材21を挿入することで、軸芯1の中空部内から非水電解液が押し出されるため、電極群6内に非水電解液を略均等に浸潤させることができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the rod-shaped member 21 is inserted into the hollow portion of the shaft core 1 after the nonaqueous electrolytic solution is injected. For this reason, the usage-amount of nonaqueous electrolyte can be reduced by the volume of the rod-shaped member 21. FIG. Since the non-aqueous electrolyte solution is expensive, the cost can be reduced by reducing the amount used. Moreover, since the nonaqueous electrolyte solution is pushed out from the hollow portion of the shaft core 1 by inserting the rod-shaped member 21 after the nonaqueous electrolyte solution is injected, the nonaqueous electrolyte solution is infiltrated into the electrode group 6 substantially evenly. be able to.

なお、本実施形態のリチウムイオン二次電池20では、軸芯1の中空部に挿入する棒状部材21を、軸芯1と同じ材質のポリプロピレン樹脂製とする例を示したが、本発明はこれに限定されるものではない。軸芯1の材質は、ポリオレフィン樹脂等で剛性が軸芯1と等しいか又は大きい樹脂であればよく、剛性が軸芯1の剛性より大きい金属を用いてもよい。例えば、図5に示すように、棒状部材21に代えて、金属部材25を用いてもよい。金属部材25は、アルミニウム製の棒材22を有している。棒材22の寸法は、直径6.5mm、高さ112mmに設定されている。棒材22の両端には厚さ1mmのポリプロピレン板23が接着剤で貼り付けられている。このため、金属部材25の寸法は直径6.5mm、高さ114mmとなる。金属部材25は、軸芯1より剛性が大きいため、電池外部からかかる圧力が増大しても、軸芯1の変形を確実に抑制することができる。また、剛性を大きくすることで、比重が大きくなるため、金属部材25を軸芯1の中空部に挿入したときに(非水電解液中で)浮き上がることを防止することができ、電池作製に手間がかからない。更に、金属部材25の両端にポリプロピレン板23が貼り付けられているため、正極リード9、負極リード板8と接触しても電気的絶縁を確保することができる。   In the lithium ion secondary battery 20 of the present embodiment, the rod-shaped member 21 inserted into the hollow portion of the shaft core 1 is made of a polypropylene resin made of the same material as that of the shaft core 1. It is not limited to. The material of the shaft core 1 may be a polyolefin resin or the like having a rigidity equal to or larger than that of the shaft core 1, and a metal having a rigidity higher than that of the shaft core 1 may be used. For example, as shown in FIG. 5, a metal member 25 may be used instead of the rod-shaped member 21. The metal member 25 has an aluminum bar 22. The dimensions of the bar 22 are set to a diameter of 6.5 mm and a height of 112 mm. A polypropylene plate 23 having a thickness of 1 mm is attached to both ends of the bar 22 with an adhesive. For this reason, the metal member 25 has a diameter of 6.5 mm and a height of 114 mm. Since the metal member 25 has higher rigidity than the shaft core 1, even if the pressure applied from the outside of the battery increases, the deformation of the shaft core 1 can be surely suppressed. Further, since the specific gravity is increased by increasing the rigidity, it is possible to prevent the metal member 25 from floating (in the non-aqueous electrolyte) when the metal member 25 is inserted into the hollow portion of the shaft core 1. It does not take time and effort. Furthermore, since the polypropylene plates 23 are attached to both ends of the metal member 25, electrical insulation can be ensured even if they are in contact with the positive electrode lead 9 and the negative electrode lead plate 8.

また、本実施形態のリチウムイオン二次電池20では、円筒状の軸芯1を例示したが、本発明はこれに限定されるものではなく、軸芯1を、例えば、扁平状等の非円形状としてもよい。この場合には、棒状部材21に扁平状で外周面が中空部の内周面に沿うような部材を使用すればよい。更に、棒状部材21、金属部材25を中空部が形成された円筒状としてもよい。棒状部材21、金属部材25の外周面が軸芯1の中空部の内周面に沿っていれば、棒状部材21、金属部材25を円筒状としても、その剛性が軸芯1より大きくなるため、軸芯1を支持して外力による変形を抑制することができる。   Moreover, in the lithium ion secondary battery 20 of this embodiment, although the cylindrical axial core 1 was illustrated, this invention is not limited to this, For example, the axial core 1 is non-circular, such as a flat shape. It is good also as a shape. In this case, a member that is flat and has an outer peripheral surface that follows the inner peripheral surface of the hollow portion may be used as the rod-shaped member 21. Furthermore, the rod-shaped member 21 and the metal member 25 may be formed in a cylindrical shape in which a hollow portion is formed. If the outer peripheral surfaces of the rod-shaped member 21 and the metal member 25 are along the inner peripheral surface of the hollow portion of the shaft core 1, even if the rod-shaped member 21 and the metal member 25 are cylindrical, the rigidity is greater than that of the shaft core 1. The shaft core 1 can be supported and deformation due to external force can be suppressed.

更に、本実施形態では、軸芯1の中空部に挿入する棒状部材21、金属部材25を、その外周面が軸芯1の内周面に沿う形状とし、1本を挿入する例を示したが、本発明はこれに限定されるものではない。正極リード9等の損傷を防止するために、例えば、棒状部材21、金属部材25を軸芯1の中空部に挿入後、軸芯1の端部に栓材等を配置するようにしてもよい。更に、軸芯1の中空部に挿入する棒状部材21、金属部材25を複数本、例えば、2本としてもよい。 Furthermore, in this embodiment, the rod-shaped member 21 and the metal member 25 which are inserted into the hollow portion of the shaft core 1 have an outer peripheral surface that is shaped along the inner peripheral surface of the shaft core 1, and an example in which one is inserted is shown. but the invention is not name limited thereto. To prevent damage such as the positive electrode lead 9, for example, bar-shaped member 21, after inserting the metal member 25 in the hollow portion of the shaft 1, it is arranged a closure member such as the ends of the shaft 1 Good. Furthermore, it is good also considering the rod-shaped member 21 inserted in the hollow part of the shaft core 1, and the metal member 25 as two or more, for example, two.

また更に、本実施形態のリチウムイオン二次電池20では、正極活物質にリチウム遷移金属複酸化物、負極活物質に非晶質炭素、導電材に鱗片状黒鉛、非水電解液にエチレンカーボネートとジメチルカーボネートとの混合溶媒にLiPFを溶解させたものをそれぞれ例示したが、本発明はこれらに限定されるものではなく、通常リチウムイオン二次電池に使用される材料を用いてもよい。 Furthermore, in the lithium ion secondary battery 20 of the present embodiment, a lithium transition metal double oxide as a positive electrode active material, amorphous carbon as a negative electrode active material, scaly graphite as a conductive material, ethylene carbonate as a non-aqueous electrolyte, and While a mixed solvent of dimethyl carbonate obtained by dissolving a LiPF 6 in the illustrated respectively, the invention is not intended to be limited to, materials may be used that are ordinarily used in a lithium ion secondary battery.

更にまた、本実施形態では、円筒型リチウムイオン二次電池20を例示したが、本発明はこれに限定されるものではなく、正負極板が捲回された捲回式二次電池の一般に適用することが可能である。このような捲回式二次電池としては、例えば、ニッケル水素電池、鉛蓄電池、ニッケルカドミウム電池等を挙げることができる。更に、電池の形状についても特に制限されるものではなく、例えば、円筒型以外に角型等としてもよい。   Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 20 is exemplified, but the present invention is not limited to this, and is generally applied to a wound secondary battery in which the positive and negative electrode plates are wound. Is possible. Examples of such a wound secondary battery include a nickel hydride battery, a lead storage battery, and a nickel cadmium battery. Further, the shape of the battery is not particularly limited. For example, the battery may have a square shape in addition to the cylindrical shape.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
実施例1では、ポリプロピレン製で中実の棒状部材21を用いた。棒状部材21の寸法を直径6.5mm、高さ114mmとし、棒状部材21の横断面の形状を軸芯1の横断面の形状と相似形とした(図2参照)。棒状部材21の横断面積は、軸芯1の中空部の横断面積の86%に相当する。
Example 1
In Example 1, a solid rod-shaped member 21 made of polypropylene was used. The dimensions of the rod-shaped member 21 were 6.5 mm in diameter and 114 mm in height, and the shape of the cross-section of the rod-shaped member 21 was similar to the shape of the cross-section of the shaft 1 (see FIG. 2). The cross-sectional area of the rod-shaped member 21 corresponds to 86% of the cross-sectional area of the hollow portion of the shaft core 1.

(実施例2)
実施例2では、アルミニウム製の棒材22の両端に厚さ1mmのポリプロピレン板23を貼り付けた金属部材25を用いる以外は実施例1と同様にした。棒材22の寸法を直径6.5mm、高さ112mmとし、金属部材25の横断面の形状を軸芯1の横断面の形状と相似形とした(図5参照)。金属部材25の横断面積は、軸芯1の中空部の横断面積の86%に相当する。
(Example 2)
In Example 2, it carried out similarly to Example 1 except using the metal member 25 which affixed the polypropylene board 23 of thickness 1mm to the both ends of the rods 22 made from aluminum. The dimensions of the bar 22 were 6.5 mm in diameter and 112 mm in height, and the shape of the cross section of the metal member 25 was similar to the shape of the cross section of the shaft core 1 (see FIG. 5). The cross-sectional area of the metal member 25 corresponds to 86% of the cross-sectional area of the hollow portion of the shaft core 1.

(比較例1)
比較例1では、軸芯内に何も挿入しない以外は実施例1と同様にした。従って、比較例1のリチウムイオン二次電池は、軸芯の中空部が非水電解液で満たされた従来の電池である。
(Comparative Example 1)
Comparative Example 1 was the same as Example 1 except that nothing was inserted into the shaft core. Therefore, the lithium ion secondary battery of Comparative Example 1 is a conventional battery in which the hollow portion of the shaft core is filled with the nonaqueous electrolytic solution.

<試験・評価>
作製した実施例及び比較例の各電池について、以下の試験1、試験2を行い評価した。
<Test and evaluation>
Each battery of the produced example and comparative example was evaluated by performing the following Test 1 and Test 2.

(試験1)
実施例及び比較例の各電池を充電せずに変形させ、変形箇所を調査した。変形は充電していない電池を水平に寝かせて固定し、電池容器7の直径と等しい直径のステンレス製半円筒状圧壊治具を押し当てて、油圧プレス機で電池容器7の直径の1/2まで潰す圧壊による圧壊試験を実施した。変形させた電池の短絡点での抵抗(短絡抵抗)を測定した後、電極群6を取り出し、抵抗を測定しながら電極群6を捲き解き、短絡箇所を調査した。短絡点の抵抗の測定結果を下表1に示す。
(Test 1)
Each battery of the example and the comparative example was deformed without being charged, and the deformed portion was investigated. In the deformation, an uncharged battery is laid horizontally and fixed, and a stainless steel semi-cylindrical crushing jig having a diameter equal to the diameter of the battery container 7 is pressed against the battery container 7 by a hydraulic press machine. A crushing test was conducted by crushing until crushing. After measuring the resistance (short circuit resistance) at the short circuit point of the deformed battery, the electrode group 6 was taken out, the electrode group 6 was unrolled while measuring the resistance, and the short circuit location was investigated. The measurement results of the resistance at the short-circuit point are shown in Table 1 below.

比較例1のリチウムイオン二次電池では、圧壊試験後の短絡箇所が、圧壊方向を垂直としたときの水平方向で軸芯近傍に認められた(図3参照)。このときの短絡の原因は、軸芯の中空部がつぶれたことにより軸芯が大きく変形し、変形した軸芯のエッジが正負極板及びセパレータを突き破り、正負極集電体が接触したためであった。これに対して、実施例1、実施例2のリチウムイオン二次電池20では、短絡箇所が、圧壊方向の延長線上で軸芯近傍に認められた(図4参照)。このときの短絡の原因は、セパレータが変形、破断して正負極合剤が接触したためであった。軸芯1の中空部に棒状部材21、金属部材25が挿入されているため、軸芯1の変形が小さく、圧壊方向を垂直としたときの水平方向の軸芯近傍には短絡が認められなかった。   In the lithium ion secondary battery of Comparative Example 1, a short-circuited portion after the crush test was found near the axis in the horizontal direction when the crushing direction was vertical (see FIG. 3). The cause of the short circuit at this time is that the shaft core is greatly deformed due to the collapse of the hollow portion of the shaft core, the edge of the deformed shaft core breaks through the positive and negative electrode plates and the separator, and the positive and negative electrode current collectors are in contact. It was. On the other hand, in the lithium ion secondary battery 20 of Example 1 and Example 2, the short circuit location was recognized by the axial center vicinity on the extension line | wire of the crushing direction (refer FIG. 4). The cause of the short circuit at this time was that the separator was deformed and broken, and the positive and negative electrode mixture contacted. Since the rod-shaped member 21 and the metal member 25 are inserted in the hollow portion of the shaft core 1, the deformation of the shaft core 1 is small, and no short circuit is observed in the vicinity of the horizontal axis when the crushing direction is vertical. It was.

Figure 0004826245
Figure 0004826245

表1に示すように、比較例1のリチウムイオン二次電池では、短絡抵抗が1Ω以下であった。これに対して、実施例1、実施例2のリチウムイオン二次電池20では、短絡抵抗が10〜100Ωとなり、比較例1の電池より大きいことが確認された。この結果から、比較例1の電池では正極集電体のアルミニウム箔と負極集電体の圧延銅箔とが直接接触していたのに対し、実施例1、実施例2の電池では正負極集電体同士が直接接触しておらず、正極合剤と負極合剤とが接触して短絡が発生したと考えられる。これらのことから、軸芯1の中空部に棒状部材21、金属部材25を挿入することで、短絡箇所(短絡の発生する範囲)を制御することができることが判った。また、軸芯1の中空部に棒状部材21、金属部材25を挿入することで、短絡抵抗が大きくなり、短絡点を流れる電流を小さくすることができることが判明した。   As shown in Table 1, in the lithium ion secondary battery of Comparative Example 1, the short circuit resistance was 1Ω or less. On the other hand, in the lithium ion secondary battery 20 of Example 1 and Example 2, short circuit resistance became 10-100 ohms, and it was confirmed that it is larger than the battery of the comparative example 1. From this result, in the battery of Comparative Example 1, the aluminum foil of the positive electrode current collector and the rolled copper foil of the negative electrode current collector were in direct contact, whereas in the batteries of Example 1 and Example 2, the positive and negative electrode current collectors were in contact. It is considered that the electrical conductors were not in direct contact with each other, and a short circuit occurred due to contact between the positive electrode mixture and the negative electrode mixture. From these things, it turned out that a short circuit location (range which a short circuit generate | occur | produces) can be controlled by inserting the rod-shaped member 21 and the metal member 25 in the hollow part of the axial core 1. FIG. It has also been found that by inserting the rod-like member 21 and the metal member 25 into the hollow portion of the shaft core 1, the short-circuit resistance is increased and the current flowing through the short-circuit point can be reduced.

(試験2)
実施例及び比較例の各電池について、4.1Vまで充電した後、変形させたときの安全性を評価した。変形は、充電後の電池を水平に寝かせて固定し、電池容器7の直径と等しい直径のステンレス製半円筒状圧壊治具を押し当てて、油圧プレス機で電池容器7の直径の1/2まで潰す圧壊による圧壊試験を実施した。試験は、各電池について5回ずつ実施し、開裂弁(安全弁)11、底部の開裂溝のみが作動した場合を「破裂なし」とし、電池蓋のカシメ部がはずれたり電池容器7が開裂弁11、開裂溝以外の部分で裂けたりした場合を「破裂あり」として電池数を計数した。試験2の測定結果を下表2に示す。
(Test 2)
About each battery of an Example and a comparative example, after charging to 4.1V, the safety when deform | transforming was evaluated. For deformation, the battery after charging is horizontally laid and fixed, a stainless steel semi-cylindrical crushing jig having a diameter equal to the diameter of the battery container 7 is pressed, and the diameter of the battery container 7 is reduced by a hydraulic press. A crushing test was conducted by crushing until crushing. The test was carried out five times for each battery. When only the cleavage valve (safety valve) 11 and the cleavage groove at the bottom were operated, “no rupture”, the caulking part of the battery lid was detached or the battery container 7 was opened. The number of batteries was counted as “ruptured” when it was torn at a portion other than the cleavage groove. The measurement results of Test 2 are shown in Table 2 below.

Figure 0004826245
Figure 0004826245

表2に示すように、比較例1のリチウムイオン二次電池では、試験を行った電池の全数で破裂が発生したのに対し、実施例1、実施例2のリチウムイオン二次電池20では破裂、発火は確認されなかった。この結果から、軸芯1の中空部に棒状部材21、金属部材25を挿入することで、外部からの圧力で変形する電池異常時の安全性が向上することが判明した。   As shown in Table 2, in the lithium ion secondary battery of Comparative Example 1, bursting occurred in the total number of batteries tested, whereas in the lithium ion secondary battery 20 of Example 1 and Example 2, bursting occurred. No ignition was confirmed. From this result, it has been found that inserting the rod-like member 21 and the metal member 25 into the hollow portion of the shaft core 1 improves the safety when the battery is abnormally deformed by an external pressure.

本発明は外部からの圧力により電池が変形する電池異常時の挙動を穏やかにすることができる捲回式二次電池を提供するため、捲回式二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of wound secondary batteries in order to provide a wound secondary battery that can moderate the behavior of abnormal battery deformation due to external pressure. Has industrial applicability.

本発明を適用した実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態の円筒型リチウムイオン二次電池の軸芯の中空部に棒状部材が挿入された状態を示す断面図である。It is sectional drawing which shows the state by which the rod-shaped member was inserted in the hollow part of the axial center of the cylindrical lithium ion secondary battery of embodiment. 従来の円筒型リチウムイオン二次電池を圧壊したときの短絡箇所を示す断面図である。It is sectional drawing which shows a short circuit location when the conventional cylindrical lithium ion secondary battery is crushed. 実施形態の円筒型リチウムイオン二次電池を圧壊したときの短絡箇所を示す断面図である。It is sectional drawing which shows a short circuit location when the cylindrical lithium ion secondary battery of embodiment is crushed. 軸芯の中空部に挿入可能な金属部材の断面図である。It is sectional drawing of the metal member which can be inserted in the hollow part of an axial center.

符号の説明Explanation of symbols

1 軸芯
6 電極群
20 円筒型リチウムイオン二次電池(捲回式二次電池)
21 棒状部材(支持部材)
25 金属部材(支持部材)
1 Shaft core 6 Electrode group 20 Cylindrical lithium ion secondary battery (winding type secondary battery)
21 Bar-shaped member (support member)
25 Metal member (support member)

Claims (4)

集電体に合剤をそれぞれ塗着した正負極板が軸芯の外側に捲回された電極群を有する捲回式二次電池において、前記軸芯は、円形又は非円形の中空部が形成された円管状であり、前記軸芯の中空部には、該中空部の横断面積より小さい横断面積を有し、かつ、前記軸芯の剛性と等しいか又はその剛性より大きい剛性を有する支持部材が前記軸芯の長さ全体に亘るように挿入されていることを特徴とする捲回式二次電池。 In a wound secondary battery having a group of electrodes in which positive and negative electrode plates each coated with a mixture are wound on the outside of the shaft core, the shaft core is formed with a circular or non-circular hollow portion And a support member having a cross-sectional area smaller than a cross-sectional area of the hollow portion and having a rigidity equal to or greater than a rigidity of the shaft core. Is inserted so as to extend over the entire length of the shaft core . 前記支持部材は、合成樹脂又は金属であることを特徴とする請求項1に記載の捲回式二次電池。   The wound secondary battery according to claim 1, wherein the support member is a synthetic resin or a metal. 前記支持部材は、中実棒状であることを特徴とする請求項1又は請求項2に記載の捲回式二次電池。   The wound secondary battery according to claim 1 or 2, wherein the support member has a solid rod shape. 前記支持部材の外周面が前記軸芯の内周面に沿う形状を有していることを特徴とする請求項1乃至請求項3のいずれか1項に記載の捲回式二次電池。 Wound type secondary battery according to any one of claims 1 to 3, characterized in that the outer peripheral surface of the support member has a shape along the inner peripheral surface of the axis.
JP2005359836A 2005-12-14 2005-12-14 Winding type secondary battery Expired - Fee Related JP4826245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359836A JP4826245B2 (en) 2005-12-14 2005-12-14 Winding type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359836A JP4826245B2 (en) 2005-12-14 2005-12-14 Winding type secondary battery

Publications (2)

Publication Number Publication Date
JP2007165115A JP2007165115A (en) 2007-06-28
JP4826245B2 true JP4826245B2 (en) 2011-11-30

Family

ID=38247804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359836A Expired - Fee Related JP4826245B2 (en) 2005-12-14 2005-12-14 Winding type secondary battery

Country Status (1)

Country Link
JP (1) JP4826245B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947071B1 (en) * 2007-11-23 2010-03-12 삼성에스디아이 주식회사 Secondary battery
JP5767115B2 (en) * 2009-02-09 2015-08-19 ファルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery and method of manufacturing the same
CN103004002B (en) * 2010-07-03 2016-05-11 株式会社杰士汤浅国际 The manufacture method of battery and battery
JP5887776B2 (en) * 2010-12-10 2016-03-16 株式会社Gsユアサ Electricity storage element
WO2012153752A1 (en) * 2011-05-10 2012-11-15 新神戸電機株式会社 Wound secondary battery
JP6361969B2 (en) * 2013-11-15 2018-07-25 株式会社Gsユアサ Storage element and storage element module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197301A (en) * 1997-09-18 1999-04-09 Toyota Motor Corp Cylindrical capacitor member and its manufacture
JP4055307B2 (en) * 1999-11-15 2008-03-05 新神戸電機株式会社 Cylindrical lithium-ion battery
JP2006073285A (en) * 2004-09-01 2006-03-16 Shin Kobe Electric Mach Co Ltd Rolled secondary battery

Also Published As

Publication number Publication date
JP2007165115A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5774752B2 (en) Battery and battery pack
JP5917407B2 (en) Prismatic secondary battery
JP5261029B2 (en) Square battery
JP5445872B2 (en) Secondary battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
JP2010287408A (en) Square battery and battery pack using this
JP5135071B2 (en) Battery
JP5899495B2 (en) Cylindrical lithium-ion battery
JP4826245B2 (en) Winding type secondary battery
JP2004273139A (en) Lithium secondary battery
CN103733418A (en) Nonaqueous electrolyte secondary cell
JP5571318B2 (en) Cylindrical battery
JP5384071B2 (en) Sealed battery
JP2018060599A (en) Square secondary battery
JP2011129299A (en) Lithium ion secondary battery, vehicle, and battery loading equipment
JP2001357887A (en) Nonaqueous electrolytic solution secondary battery
KR20140012096A (en) Lithium-ion battery
JP6382336B2 (en) Prismatic secondary battery
KR20090105619A (en) Seal tape and secondary battery comprising the same
JP4688612B2 (en) Non-aqueous electrolyte secondary battery
JP2018160439A (en) Nonaqueous electrolyte secondary battery
JP2009187724A (en) Rolled lithium ion secondary battery
JP2017134957A (en) Square secondary battery
JP2019053824A (en) Power storage element, and method for manufacturing the same
JP2010080390A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees