WO2014207921A1 - Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell - Google Patents

Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell Download PDF

Info

Publication number
WO2014207921A1
WO2014207921A1 PCT/JP2013/067886 JP2013067886W WO2014207921A1 WO 2014207921 A1 WO2014207921 A1 WO 2014207921A1 JP 2013067886 W JP2013067886 W JP 2013067886W WO 2014207921 A1 WO2014207921 A1 WO 2014207921A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer shell
negative electrode
electrode active
active material
ion secondary
Prior art date
Application number
PCT/JP2013/067886
Other languages
French (fr)
Japanese (ja)
Inventor
西村 悦子
西村 勝憲
鈴木 修一
岡井 誠
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/067886 priority Critical patent/WO2014207921A1/en
Publication of WO2014207921A1 publication Critical patent/WO2014207921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material used for a negative electrode of a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the negative electrode active material.
  • lithium ion secondary batteries have a higher energy density than other secondary batteries, they are attracting attention as batteries for electric vehicles and power storage.
  • a zero-emission electric vehicle that uses a lithium ion secondary battery as a power source without an engine, or a hybrid electric vehicle that includes both an engine and a lithium ion secondary battery, or a lithium ion from a system power source.
  • Plug-in hybrid electric vehicles that charge secondary batteries are in practical use.
  • a lithium ion secondary battery used as a power source for an electric vehicle is desired to have a higher capacity in order to increase the travel distance of the electric vehicle.
  • the lithium ion secondary battery is expected to be used as a stationary power storage system that supplies power in an emergency when the power system is shut off.
  • a smaller system can be provided as the capacity density of the battery is higher.
  • the negative electrode active material is composed of either silicon or tin and at least one element selected from elements that do not react with lithium, and has pores in both the inner core and the outer periphery of the primary particles.
  • a negative electrode for a non-aqueous secondary battery has been developed in which a conductive material made of carbon is present on the surface of the active material and inside the pores (see Patent Document 1 below).
  • the volume change of the negative electrode active material primary particle itself is suppressed, and even if a part of the negative electrode active material primary particle structure collapses due to the stress caused by the volume change, The network is maintained, which improves cycle characteristics.
  • the conventional negative electrode active material has pores in both the inner core and the outer peripheral portion, the electrolyte does not penetrate into the inner core, and there is no conductive material on the surface of the active material particles. Does not contribute to capacity. That is, since the negative electrode active material has a relatively large volume that does not contribute to capacity, there is a limit to the improvement in capacity density of a lithium ion secondary battery using the negative electrode active material for the negative electrode.
  • the present invention has been made in view of the above problems, and the object of the present invention is to provide a negative electrode active material capable of improving the capacity density of a lithium ion secondary battery as compared with the prior art, and a method for producing the same, Another object is to provide a lithium ion secondary battery using the negative electrode active material.
  • the negative electrode active material of the present invention is a negative electrode active material for a lithium ion secondary battery, and includes a conductive outer shell and a plurality of silicon held on the inner surface of the outer shell and exposed to the inner space of the outer shell. Nanoparticles are included, and the outer shell has an opening that connects the outer space of the outer shell and the inner space.
  • the electrolytic solution penetrates from the outer space of the outer shell into the inner space through the opening of the outer shell, and the electrolytic solution contacts the outer surface and the inner surface of the outer shell.
  • the surface area of the outer shell of the contributing fine particles can be increased than before, the volume of the fine particles not contributing to the capacity can be reduced as compared with the conventional case, and the capacity density of the lithium ion secondary battery can be improved as compared with the conventional case.
  • 1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing fine particles according to the manufacturing method shown in FIG. 3.
  • the schematic of the module provided with the lithium ion secondary battery shown in FIG. Schematic of a battery system provided with the module shown in FIG.
  • the negative electrode 122 includes a current collector 122a and a negative electrode mixture layer 122b formed on the current collector 122a.
  • the negative electrode mixture layer 122b mainly includes the negative electrode active material 1, and includes, for example, polyvinylidene fluoride (PVDF) as a binder.
  • PVDF polyvinylidene fluoride
  • the negative electrode active material 1 is a material for the negative electrode 122 of the lithium ion secondary battery, and is mainly composed of the fine particles 10.
  • the fine particle 10 includes a conductive outer shell 11 and silicon nanoparticles 13 accommodated in the internal space 12.
  • the silicon nanoparticles 13 are exposed in the internal space 12 defined by the outer shell 11.
  • the outer shell 11 has an opening 11a.
  • the opening 11 a communicates the external space of the outer shell 11 and the internal space 12.
  • the number of openings 11a formed in the outer shell 11 may be one or plural.
  • the fine particles 10 may include flaky fine particles 10a shown in FIG. 1B.
  • the flaky fine particles 10a are formed by dividing the outer shell of the fine particles 10 into a flaky shape during the manufacturing process.
  • a fine particle 10 having a diameter when the opening 11a approximates a circle is equal to or larger than the average particle diameter of the granular fine particle 10 shown in FIG. 1A can be defined as a flaky fine particle 10a.
  • fine particles 10 having a diameter of the opening 11a smaller than the average particle diameter can be defined as granular fine particles 10b.
  • the diameter of the opening 11a is, for example, 1 ⁇ 2 or less, preferably 1/5 or less, more preferably 1/10 or less of the particle size of the outer shell 11. It is.
  • the diameter of the opening 11a is the maximum value of the opening width of the opening 11a. In the following, unless otherwise specified, the fine particles 10 are assumed to be granular fine particles 10b.
  • the material constituting the outer shell 11 of the fine particles 10 includes, for example, a material that reduces lithium ions to form an alloy or an intermetallic compound. Among them, silicon or an alloy of silicon and a light element such as aluminum, magnesium, boron, carbon, nitrogen and the like having a high capacity density of 500 mAh / g or more is particularly suitable as the material of the outer shell 11. is there.
  • the material of the outer shell 11 may be a conductive metal material such as copper.
  • the outer shell 11 of the present embodiment is made of a material containing silicon (Si) and occludes or releases lithium ions.
  • the conductivity of the outer shell 11 is realized when the material constituting the outer shell 11 mainly contains silicon or a silicon alloy.
  • the outer shell 11 may contain, for example, carbon powder, carbon fiber, or carbon nanotube (CNT) in addition to silicon or the like.
  • the outer surface of the outer shell 11 may have a coating layer made of, for example, fluoride, carbide, nitride, or sulfide.
  • a highly conductive material having higher conductivity than the outer shell 11 such as carbon powder, carbon fiber, or CNT may be held on the outer surface of the outer shell 11.
  • you may have both a coating layer and a highly conductive material in the outer surface of the outer shell 11.
  • the silicon nanoparticles 13 are held on the inner surface of the outer shell 11 and exposed to the inner space 12.
  • the material constituting the silicon nanoparticles 13 includes silicon (Si).
  • Si silicon
  • three silicon nanoparticles 13 are accommodated in the inner space 12 of the outer shell 11, but the number of silicon nanoparticles 13 depends on the volume of the inner space 12 of the outer shell 11 or the inner surface of the outer shell 11. It can be set to an arbitrary number according to the area.
  • the volume of the silicon nanoparticles 13 increases due to the charging of the lithium ion secondary battery. Therefore, if the filling rate of the silicon nanoparticles 13 in the inner space 12 of the outer shell 11 is too high, the outer shell 11 may be destroyed as the volume of the silicon nanoparticles 13 increases. Therefore, it is necessary to limit the volume occupation rate of the silicon nanoparticles 13 with respect to the volume of the internal space 12 of the outer shell 11.
  • the average internal volume of the outer shell 11, that is, the average volume of the internal space 12 is C
  • the number of silicon nanoparticles 13 accommodated in the internal space 12 is n
  • the average particle diameter of the silicon nanoparticles 13 is 1 ⁇ 2. That is, the radius of the silicon nanoparticles 13 is r
  • the volume increase ratio of the silicon nanoparticles 13 after charging the lithium ion secondary battery is ⁇ V.
  • a filling rate when the volume of the silicon nanoparticles 13 after the volume increase is closest packed in the internal space 12 is defined as a.
  • a condition for the silicon nanoparticles 13 having an increased volume to be accommodated in the internal space 12 of the outer shell 11 is expressed by the following formula (1). n ⁇ (4 ⁇ r 3/3) ⁇ ⁇ V ⁇ a ⁇ C ... (1)
  • Vc is a volume occupation ratio of the silicon nanoparticles 13 with respect to the internal space 12 of the outer shell 11 and is represented by the following formula (3).
  • Vc n ⁇ (4 ⁇ r 3/ 3) ⁇ ⁇ V / C ... (3)
  • the outer shell 11 is destroyed even if the volume of the silicon nanoparticles 13 accommodated in the inner space 12 of the outer shell 11 is increased by charging the lithium ion secondary battery. Can be prevented.
  • the volume occupancy Vc of the silicon nanoparticles 13 is preferably 0.20 or more.
  • FIG. 2 is a partial cross-sectional view of the lithium ion secondary battery 100 of the present embodiment.
  • the lithium ion secondary battery 100 is an electrochemical device that can store or use electrical energy by occlusion / release of lithium ions by electrodes in a non-aqueous electrolyte.
  • the lithium ion secondary battery 100 includes a battery container 110 and an electrode group 120 accommodated in the battery container 110.
  • the shape of the battery case 110 can be formed in an arbitrary shape such as a cylindrical shape, a flat oval shape, a rectangular shape, or the like according to the shape of the electrode group 120.
  • the material of the battery container 110 is selected from materials that are corrosion resistant to the non-aqueous electrolyte L, such as aluminum, stainless steel, steel, nickel-plated steel, and the like.
  • the battery container 110 includes a cylindrical part 111 having an opening 111a at the top, a positive battery cover 112a that seals the opening 111a of the cylindrical part 111, and a bottom 112b that seals the bottom of the cylindrical part 111.
  • the positive battery cover 112a also serves as a positive external terminal
  • the container bottom 112b also serves as a negative external terminal.
  • the upper part of the cylindrical part 111 has an annular part 111c around the opening 111a.
  • the annular portion 111 c is provided in a ring shape around the opening 111 a, and extends from the side wall end of the cylindrical portion 111 to constitute a part of the upper surface of the battery case 110.
  • the positive electrode battery lid 112a is arranged so that the peripheral edge thereof overlaps the inside of the annular portion 111c of the cylindrical portion 111 with the gasket 113 interposed therebetween.
  • the positive battery lid 112a is joined to the cylindrical portion 111 by an appropriate method such as caulking, welding, or welding, and seals the opening 111a.
  • a structure similar to that of the positive battery cover 112a may be formed on the bottom surface 112b, and the negative battery cover may be installed.
  • an internal pressure release valve 114 that ruptures and releases the internal pressure of the battery container 110 when the internal pressure of the battery container 110 rises above a predetermined value.
  • a positive temperature coefficient (PTC: Positive Temperature Coefficient) resistance element 115 and an inner lid 116 are provided inside the positive battery lid 112a.
  • the PTC resistance element 115 stops the charging / discharging of the lithium ion secondary battery 100 when the temperature inside the battery container 110 becomes high, and protects the lithium ion secondary battery 100.
  • the positive battery cover 112a, the gasket 113, the internal pressure release valve 114, the PTC resistance element 115, and the internal cover 116 are configured as an integrally structured battery cover unit.
  • the electrode group 120 is configured by laminating a positive electrode 121 and a negative electrode 122 with a separator 123 interposed therebetween.
  • the electrode group 120 may be a wound electrode group in which a positive electrode 121 and a negative electrode 122 that are stacked via a separator 123 are wound around a winding axis.
  • the electrode group 120 is a wound electrode group, it can be wound into an arbitrary shape such as a flat shape.
  • the electrode group 120 can be formed in various shapes such as a strip shape.
  • the positive electrode 121 includes, for example, an aluminum foil that is a positive electrode current collector and a positive electrode mixture layer formed on the current collector.
  • the negative electrode 122 includes a negative electrode current collector 122a and a negative electrode mixture layer 122b formed on the current collector 122a.
  • the negative electrode mixture layer 122b constituting the negative electrode 122 mainly contains the negative electrode active material 1 of the present embodiment.
  • the negative electrode active material 1 constituting the negative electrode mixture layer 122b is held by the conductive outer shell 11, the inner space 12 defined by the outer shell 11, and the inner surface of the outer shell 11, and is contained inside. Fine particles 10 including a plurality of silicon nanoparticles 13 exposed in the space 12 are included.
  • the outer shell 11 has an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12.
  • the negative electrode mixture layer 122b may contain a conventional negative electrode active material in addition to the negative electrode active material 1 of the present embodiment.
  • that the negative electrode mixture layer 122b mainly includes the negative electrode active material 1 is that the capacity of the negative electrode active material 1 of the present embodiment with respect to the entire capacity density of the negative electrode active material included in the negative electrode mixture layer 122b. It means that the density is greater than 50%.
  • the capacity of the negative electrode 122 can be increased.
  • the density of the negative electrode mixture layer 122b is increased by compressing the negative electrode active material 1 in order to increase the filling property of the fine particles 10 in the negative electrode mixture layer 122b
  • the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is obtained. May be destroyed, and the silicon nanoparticles 13 may fall off the outer shell 11.
  • the porosity Va of the negative electrode mixture layer 122b excluding the internal space 12 is defined. It is preferable to adjust so that it may become in the range of (4). 0.2 ⁇ Va ⁇ 0.5 (4)
  • the true negative electrode porosity is the porosity of the negative electrode mixture layer 122b in consideration of the internal space 12 of the fine particles 10 of the negative electrode active material 1. That is, the true negative electrode porosity is determined by considering the void ratio Va of the negative electrode mixture layer 122b obtained by considering the outer shell 11 of the fine particles 10 as a closed particle and excluding the internal space 12, and the ratio of the internal space 12 in the fine particles 10. It can be calculated from The negative electrode active material 1 may include flaky fine particles 10a in addition to the granular fine particles 10b as the fine particles 10, and the porosity of the negative electrode mixture layer 122b, that is, the true negative electrode porosity is 0.72 or more and 0.82. The following range is preferable.
  • the negative electrode porosity is more preferably in the range of 0.74 or more and 0.81 or less. If the negative electrode porosity is within the above range, the retention amount of the electrolytic solution L in the negative electrode 122 is prevented from being reduced, and the electrical contact between the fine particles 10 of the negative electrode active material 1 is prevented from being impaired. It is possible to prevent the initial capacity density and capacity retention rate of the ion secondary battery 100 from decreasing.
  • the separator 123 may be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a multilayer structure sheet in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. Is possible. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 123 so that the separator 123 does not shrink when the temperature of the lithium ion secondary battery 100 increases. The separator 123 needs to allow lithium ions to pass therethrough during charge / discharge of the battery, so that it can be used if the pore diameter is generally 0.01 to 10 ⁇ m and the porosity is 20 to 90%.
  • a single-layer separator made of polyethylene having a thickness of 25 ⁇ m, a pore diameter of 0.5 ⁇ m, and a porosity of 45% is used.
  • the separator 123 is also disposed between the electrode group 120 and the battery container 110 when the electrode group 120 is accommodated in the battery container 110, and the positive electrode 121 and the negative electrode 122 are connected to the battery container 110. Do not short circuit through.
  • the positive electrode 121 is connected to the inner lid 116 via the positive electrode current collecting tab 131.
  • the negative electrode 122 is connected to the container bottom surface 112 b through the negative electrode current collecting tab 132.
  • the current collecting tabs 131 and 132 can take any shape such as a wire shape or a plate shape.
  • the current collecting tabs 131 and 132 have dimensions, shapes, and structures that can reduce ohmic loss when an electric current is passed, and are made of a material that does not react with the electrolyte L, depending on the structure of the battery case 110. Can be arbitrarily selected.
  • the positive electrode current collecting tab 131 and the negative electrode current collecting tab 132 are affected by corrosion of the inner lid 116 and the negative electrode battery lid 112b or alloying with lithium ions in the portion in contact with the non-aqueous electrolyte L. Select the lead wire material so that it does not occur.
  • the battery container 110 is filled with an electrolytic solution L made of an electrolyte and a non-aqueous solvent, and the electrolytic solution L is held on the surfaces of the separator 123, the positive electrode 121, and the negative electrode 122 and inside the pores.
  • an electrolytic solution L made of an electrolyte and a non-aqueous solvent
  • the electrolytic solution L is held on the surfaces of the separator 123, the positive electrode 121, and the negative electrode 122 and inside the pores.
  • a solvent in which dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate or the like is mixed with ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or borofluoride as an electrolyte is used.
  • LiPF 6 lithium hexafluorophosphate
  • borofluoride borofluoride
  • the lithium ion secondary battery 100 of the present embodiment is not limited to the type of solvent, electrolyte, and solvent mixing ratio, and other electrolytes can be used.
  • the electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride (PVDF) or polyethylene oxide. In this case, the separator 123 becomes unnecessary.
  • Solvents that can be used for the electrolyte L are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, There are non-aqueous solvents such as 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like. Other solvents may be used as long as they do not decompose on the positive electrode 121 or the negative electrode 122 built in the
  • the electrolyte the chemical formula LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or multi such imide lithium salts represented by lithium trifluoromethane sulfonimide
  • a nonaqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as the battery electrolytic solution L.
  • An electrolyte other than this may be used as long as it does not decompose on the positive electrode 121 or the negative electrode 122 built in the lithium ion secondary battery 100 of the present embodiment.
  • an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide can be used as the electrolyte.
  • an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide.
  • an ionic liquid can be used as the electrolytic solution L.
  • EMI-BF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • a combination that does not decompose at the positive electrode 121 and the negative electrode 122 from imide anions (exemplified by bis (fluorosulfonyl) imide). It can be used for the secondary battery 100.
  • a solid polymer electrolyte (polymer electrolyte) or a gel electrolyte can be used.
  • a known polymer electrolyte such as polyethylene oxide or a mixture (gel electrolyte) of polyvinylidene fluoride and a nonaqueous electrolytic solution can be used.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the mixing ratio of EC and EMC can be set to 1: 2 by volume ratio, for example.
  • 1% vinylene carbonate may be added to the electrolytic solution L.
  • the outer shell 11 of the fine particles 10 has conductivity. Since the outer shell 11 has conductivity, the adjacent outer shells 11 are electrically connected to each other, and a conductive network of the entire negative electrode 122 of the lithium ion secondary battery 100 is formed. As a result, the entire negative electrode 122 can uniformly occlude or release lithium ions, and the lithium ion secondary battery 100 can be efficiently charged and discharged.
  • the outer shell 11 of the fine particles 10 has an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12. Therefore, the electrolytic solution L of the lithium ion secondary battery 100 penetrates into the internal space 12 through the opening 11a of the outer shell 11, and the internal space 12 of the fine particles 10 is filled with the electrolytic solution L. Thereby, the electrolyte solution L contacts the outer surface and inner surface of the outer shell 11 and the area which contributes to the capacity
  • the electrolytic solution L penetrates into the internal space 12 through the opening 11a of the outer shell 11, and the internal space 12 of the fine particles 10 is filled with the electrolytic solution L, so that lithium ions pass through the outer shell through the opening 11a. 11 freely move between the external space and the internal space 12.
  • the fine particles X that do not have the openings 11a in the outer shell 11 shown in FIG. 7
  • lithium ions are more likely to be occluded in the inner surface of the outer shell 11 and the silicon nanoparticles 13 that are exposed in the internal space 12.
  • the lithium ions occluded in the inner surface of the outer shell 11 and the silicon nanoparticles 13 are easily released. Therefore, as compared with a lithium ion secondary battery using a conventional negative electrode active material as a negative electrode material, a lithium ion secondary battery 100 capable of high rate charge / discharge can be obtained.
  • the outer shell 11 of the fine particles 10 included in the negative electrode active material 1 has the opening 11a, the stress at the time of expansion and contraction of the outer shell 11 due to charging / discharging of the lithium ion secondary battery 100 is caused by the opening 11a. Is alleviated by. Therefore, it is possible to prevent the outer shell 11 of the fine particles 10 of the negative electrode active material 1 from being destroyed along with expansion and contraction.
  • the volume occupation rate Vc of the silicon nanoparticle 13 with respect to the internal space 12 of the microparticle 10 which comprises the negative electrode active material 1 shall be 0.74 or less, for example, and the outer shell 11 Even if the volume of the silicon nanoparticles 13 accommodated in the internal space 12 is increased by charging the lithium ion secondary battery, the outer shell 11 can be prevented from being broken. Therefore, the conductivity of the silicon nanoparticles 13 is maintained by the outer shell 11, and it is possible to provide a long-life negative electrode 122.
  • the volume occupancy Vc of the silicon nanoparticles 13 to the internal space 12 of the outer shell 11 to be 0.2 or more, it is possible to prevent a decrease in the negative electrode capacity density and to secure a sufficient negative electrode capacity density. .
  • the negative electrode active material 1 includes the flaky fine particles 10a in which the silicon nanoparticles 13 are held on the flaky outer shell 11, the diffusion of lithium ions is further facilitated. That is, the presence of the flaky fine particles 10a can improve the charge / discharge performance of the lithium ion secondary battery 100. Further, the granular fine particles 10b maintaining the structure of the outer shell 11 and the flaky fine particles 10a can coexist, and the high-rate charge / discharge of the fine particles 10 can be performed while forming a channel of the electrolytic solution L of the entire negative electrode 122. In the present embodiment, it is essential that the fine particles 10 of the negative electrode active material 1 include granular fine particles 10b in which the structure of the outer shell 11 is maintained.
  • the porosity Va of the negative electrode active material 1 is in the range of 0.2 or more and 0.5 or less, the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is prevented from being broken. Therefore, it is possible to provide the high capacity negative electrode 122.
  • the negative electrode porosity in the negative mix layer 122b exists in the range of 0.72 or more and 0.82 or less, More preferably, it exists in the range of 0.74 or more and 0.81 or less. It is possible to provide a high capacity negative electrode 122 that is well retained by the negative electrode mixture layer 122b.
  • FIG. 3 is a flowchart showing an example of the manufacturing process of the negative electrode active material 1.
  • 4A to 4C are schematic cross-sectional views showing the production process of the fine particles 10 contained in the negative electrode active material 1
  • FIG. 4A is a cross-sectional view of the first precursor 10A
  • FIG. 4B is a view of the second precursor 10B
  • FIG. 4C is a cross-sectional view of the manufactured fine particles 10.
  • the manufacturing method of the negative electrode active material 1 of the present embodiment includes a first precursor manufacturing step S1, a second precursor manufacturing step S2, a fine particle manufacturing step S3, and a negative electrode active material preparing step S4 shown in FIG. Have.
  • first, for example, resin beads B shown in FIG. 4A are prepared as granular materials that are thermally decomposed at a temperature lower than the melting point of the outer shell 11.
  • a material that is decomposed or melted in a temperature range in which the current collector 122a of the lithium ion secondary battery 100 is not oxidized and the mechanical strength does not decrease is selected.
  • the current collector 122a of the negative electrode 122 is made of copper
  • a material that decomposes or melts at a temperature of 300 ° C. or lower is suitable as the material of the resin beads B.
  • a material for such resin beads B for example, a mixture of one or more materials selected from polyethylene, polyurethane, and ethylene-butadiene copolymer can be used.
  • the shape of the resin beads B is, for example, a sphere.
  • the range of the particle size of the resin beads B is desirably, for example, 1 ⁇ 2 or less of the thickness of the negative electrode mixture layer 122b, and the range of the average particle size is desirably, for example, 0.01 ⁇ m or more and 10 ⁇ m or less.
  • polyurethane resin beads B having an average particle diameter of 1 ⁇ m are used.
  • the silicon nanoparticles 13 are added to the powder made of the resin beads B and mixed.
  • silicon nanoparticles 13 having an average particle diameter of 100 nm can be suitably used.
  • the composition ratio of the silicon nanoparticles 13 to be mixed and the resin beads B can be set to, for example, 10: 1 (volume ratio).
  • the obtained mixture is processed by a known mechanical fusion device to hold the plurality of silicon nanoparticles 13 on the surface of the resin beads B. Thereby, the 1st precursor 10A in which the some silicon nanoparticle 13 adhered to the surface of the resin bead B is obtained.
  • the number n of silicon nanoparticles 13 deposited on the surface of the resin beads B of the first precursor 10A can be measured, for example, by the following procedure. First, the number of adhered silicon nanoparticles 13 per unit surface area is measured based on a photomicrograph taken with a scanning electron microscope. Next, the number of adhesion of the silicon nanoparticles 13 per unit surface area is converted into the number n of adhesion on the surface area of the resin beads B. In this embodiment, the average value n of the number n of silicon nanoparticles 13 on the surface of the resin beads B of the first precursor 10A is, for example, in the range of about 200 to about 250, for example, about 230. .
  • the outer shell 11 is formed by forming a layer made of a material constituting the outer shell 11 on the surface of the first precursor 10A. 2 precursor 10B is manufactured. In the present embodiment, the outer shell 11 is formed by forming a layer made of silicon (Si) over the entire surface of the first precursor 10A.
  • the powder composed of the first precursor 10A is accommodated in an apparatus capable of performing heat treatment and plasma CVD (chemical vapor deposition) on the powder, such as a rotary kiln furnace.
  • a layer made of silicon (Si) is formed on the entire surface of the first precursor 10A by the plasma CVD method, and the outer shell 11 is formed.
  • the thickness of the layer made of silicon that is, the thickness of the outer shell 11 can be set to 100 ⁇ 10 nm, for example.
  • the 2nd precursor 10B by which the some silicon nanoparticle 13 adhered to the surface of the resin bead B and was hold
  • the second precursor 10B is heated to manufacture the fine particles 10 shown in FIG. 4C.
  • the second precursor 10B is heated in a heat-treatable apparatus such as a rotary kiln furnace to thermally decompose the resin beads B.
  • the second precursor 10B is heated to 300 ° C. in a vacuum atmosphere, for example, and is subjected to heat treatment for about 3 hours, for example.
  • the resin beads B are thermally decomposed and gasified, whereby the internal pressure of the outer shell 11 is increased, and a part of the outer shell 11 is broken to form the opening 11a.
  • generated by the thermal decomposition of the resin bead B is discharged
  • an internal space 12 is formed in the outer shell 11, and the destroyed portion of the outer shell 11 becomes an opening 11 a.
  • the silicon nanoparticles 13 are held on the inner surface of the outer shell 11 and are exposed to the internal space 12.
  • the fine particles 10 including the conductive outer shell 11 and the plurality of silicon nanoparticles 13 held on the inner surface of the outer shell 11 and exposed to the inner space 12 are obtained. Further, the outer shell 11 of the fine particle 10 is formed with an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12.
  • the resin beads B are thermally decomposed while destroying a part of the outer shell 11. It disappears and not only the granular fine particles 10b having one or more openings 11a are formed, but also the openings 11a extend over the entire outer shell 11 so that the granular fine particles 10b are split to form flaky particles 10a. Is done.
  • the negative electrode active material preparation step S4 the negative electrode active material 1 is prepared by assembling the fine particles 10 or the like, or mixing the fine particles 10 or the like with other materials such as a conventional negative electrode active material. . Thereby, the negative electrode active material 1 mainly containing the fine particles 10 is obtained. Note that a high conductive material forming step S4a or a coating layer forming step S4b may be included before the negative electrode active material preparing step S4.
  • a high conductive material having higher conductivity than the outer shell 11 is formed on the outer surface of the outer shell 11 of the fine particles 10.
  • powder that is an aggregate of the fine particles 10 is accommodated in a known vapor deposition apparatus, and several tens of ppm of iron catalyst is vapor-deposited on the surface of the outer shell 11 of the fine particles 10.
  • propane is supplied to grow carbon nanotubes (CNT) on the surface of the outer shell 11 of the fine particles 10.
  • the amount of CNTs relative to the weight of the powder that is an aggregate of the fine particles 10 can be set to 1% by weight, for example.
  • a coating layer is formed on the outer surface of the outer shell 11 of the fine particles 10.
  • a powder as an aggregate of the fine particles 10 is accommodated in a known rotary annular furnace, and the fine particles 10 are brought into contact with the fluorine gas to form a fluoride layer as a coating layer on the surface of the outer shell 11.
  • the fine particle 10 accommodated in the rotary annular furnace is brought into contact with, for example, propane gas, and subjected to heat treatment at, for example, about 900 ° C. or more and about 1000 ° C. or less, thereby forming a carbide layer (carbide) as a coating layer on the surface of the outer shell 11.
  • ammonia gas is brought into contact with the fine particles 10 accommodated in the rotary annular furnace to form a nitride layer as a coating layer on the surface of the outer shell 11.
  • propane sultone is added to the electrolytic solution L of the lithium ion secondary battery 100 having the negative electrode 122 using the negative electrode active material 1, and charging and discharging of the lithium ion secondary battery 100 are performed.
  • a sulfide layer may be formed on the shell 11 as a coating layer.
  • the thickness of the coating layer can be about 5 nm, for example.
  • the lithium ion secondary battery 100 can be disassembled after the initial charge / discharge, and the surface composition of the outer shell 11 of the fine particles 10 can be analyzed by X-ray photoelectron spectroscopy. Moreover, the surface composition of the silicon nanoparticle 13 can be analyzed by analyzing the silicon nanoparticle 13 of the flaky fine particle 10a. The thickness of the coating layer can be measured by performing argon etching.
  • the specific surface area of the negative electrode active material 1 manufactured by the manufacturing method of the present embodiment is, for example, about 190 m 2 / g.
  • the specific surface area can be measured, for example, by the BET (Brunauer-Emmett-Teller) method using nitrogen gas.
  • the specific surface area of the negative electrode active material 1 is preferably, for example, 50 m 2 / g or more and 230 m 2 / g or less.
  • the coating layer forming step S4b is performed after the high conductive material forming step S4a, or the coating layer forming step S4b is performed after the high conductive material forming step S4a, so that the high conductivity material is formed on the outer surface of the outer shell 11. And both coating layers may be formed.
  • the resin beads B and the silicon nanoparticles 13 are spheres having a radius R and a radius r, respectively. Then, consider the relationship between the radius R of the resin beads B, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 attached to the surface of the resin beads B. The number n of the silicon nanoparticles 13 is maximized when the silicon nanoparticles 13 are arranged on the surface of the resin beads B in a close-packed manner.
  • the maximum number n of silicon nanoparticles 13 the maximum number n that can be arranged on the surface of a sphere having a radius (R + r) without overlapping a circle having a radius r may be obtained. Since the surface area of the sphere having the radius (R + r) is 4 ⁇ ⁇ (R + r) 2 and the area of the circle having the radius r is ⁇ r 2 , assuming that the maximum occupancy ratio of the circle on the surface is 0.91, the following formula (5 ) Is obtained. n ⁇ ⁇ r 2 ⁇ 0.91 ⁇ 4 ⁇ ⁇ (R + r) 2 (5)
  • Sc is an area occupancy ratio of the silicon nanoparticles 13 with respect to the surface of the resin beads B, that is, an area occupancy ratio of the silicon nanoparticles 13 with respect to the inner surface of the outer shell 11 and is represented by the following formula (7).
  • Sc n ⁇ r 2 / ⁇ 4 ⁇ (R + r) 2 ⁇ (7)
  • the equation (9) is substantially the same as the equation (7), but if this equation is used, the inner radius Ri of the outer shell 11, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 will be described. From the above, the area occupation ratio Sc of the silicon nanoparticles 13 with respect to the inner surface of the outer shell 11 can be calculated. Further, the inner radius Ri of the outer shell 11, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 can be determined based on the predetermined area occupation ratio Sc.
  • resin beads B are used as granular materials that are thermally decomposed at a temperature lower than the melting point of the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1. Therefore, by forming the first precursor 10A in which the silicon nanoparticles 13 are arranged around the resin beads B as a nucleus, and forming the thin outer shell 11 covering the surface of the first precursor 10A, the outer shell 11 is formed. The silicon nanoparticles 13 can be held on the inner surface of the substrate.
  • the particle size of the resin beads B it is possible to freely adjust the particle size of the manufactured fine particles 10. Further, by adjusting the particle size of the resin beads B, the average volume C of the internal space 12 of the outer shell 11 can be adjusted. Therefore, by adjusting the average volume C of the outer shell of the fine particles 10 based on the above formulas (1) to (3), even if the silicon nanoparticles 13 expand when the lithium ion secondary battery 100 is charged, The silicon nanoparticles 13 can be accommodated in the internal space 12. Therefore, the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is prevented from being destroyed when the lithium ion secondary battery 100 is charged, and the life of the lithium ion secondary battery 100 can be extended as compared with the conventional case. .
  • the specific surface area of the negative electrode active material 1 can be made sufficiently large by setting the average particle diameter of the resin beads B in the range of 0.01 ⁇ m or more and 10 ⁇ m or less, for example. Therefore, in the lithium ion secondary battery 100 using the negative electrode active material 1 of the present embodiment as the negative electrode material, the contact area between the negative electrode active material 1 and the electrolyte L can be increased as compared with the conventional case, and the lithium ion secondary battery 100 high rate charge / discharge becomes possible.
  • the conductivity between the fine particles 10 of the negative electrode active material 1. The initial capacity and capacity retention rate of the lithium ion secondary battery 100 can be improved.
  • the coating layer is formed on the outer side of the outer shell 11. However, if the coating layer is formed on the inner side of the outer shell 11, the decomposition amount of the electrolytic solution can be reduced, which is more desirable.
  • the aforementioned nitride or the like can be formed by decomposing the reaction gas on the surface of the silicon outer shell.
  • the reaction gas low molecular hydrocarbons such as ammonia, fluorine, and propane, hydrogen sulfide, and the like can be used. When these gases are brought into contact with silicon particles and the reaction gas is decomposed on the silicon surface, the above-described coating layer is formed.
  • the reaction gas is preferably diluted with an inert gas such as nitrogen or argon to a concentration of 1 to 10% and brought into contact with silicon.
  • the reaction temperature can be adjusted in the range of 300 to 900 ° C.
  • the area occupancy Sc of the silicon nanoparticles 13 by the above formulas (5) to (9), the area occupancy Sc can be reduced to a predetermined value or less, and due to the expansion of the silicon nanoparticles 13 It becomes possible to prevent the outer shell 11 from being broken.
  • a negative electrode slurry in which the negative electrode active material 1, the binder, and the organic solvent are mixed is manufactured.
  • a negative electrode material containing 95% by weight of negative electrode active material 1 and 5% by weight of PVDF (polyvinylidene fluoride) binder is kneaded using NMP (1-methyl-2-pyrrolidone) as a solvent to produce a negative electrode slurry.
  • NMP 1-methyl-2-pyrrolidone
  • a known kneader such as a planetary mixer or a disperser can be used.
  • the solvent is not particularly limited as long as it dissolves the binder, and can be appropriately selected according to the material of the binder.
  • NMP is used as a solvent in order to dissolve the PVDF binder.
  • a metal foil for negative electrode that is a current collector 122a is prepared.
  • the negative electrode metal foil for example, a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. can be used.
  • a material other than copper for example, stainless steel, titanium, nickel and the like are also applicable.
  • the current collector 122a for the negative electrode can be used as the metal foil for the negative electrode without changing such as dissolution and oxidation during use of the lithium ion secondary battery, the material, shape, and manufacturing method are: There is no particular limitation. In the present embodiment, a rolled copper foil having a thickness of 10 ⁇ m is used.
  • a negative electrode slurry is applied on the current collector 122a by a doctor blade method, a dipping method, a spray method, or the like, and is dried at a temperature of about 120 ° C., for example.
  • a layer made of the negative electrode active material 1 formed by drying the negative electrode slurry is compressed by, for example, a roll press and subjected to pressure molding to form the negative electrode mixture layer 122b having a predetermined porosity.
  • the negative electrode 122 for the lithium ion secondary battery 100 in which the negative electrode mixture layer 122b is formed on the current collector 122a is obtained.
  • the thickness of the negative electrode slurry applied on the current collector 122a can be, for example, about 10 ⁇ m.
  • the porosity of the negative electrode mixture layer 122b can be set to 72%, for example.
  • the density of the negative electrode mixture layer 122b can be set to, for example, 0.6 g / cm 3 .
  • the application of the negative electrode slurry onto the current collector 122a is performed only once by the doctor blade method. However, the application from the negative electrode slurry to the drying is performed a plurality of times to thereby apply the negative electrode slurry onto the current collector 122a. It is also possible to form a multilayer mixture layer.
  • step S3 is omitted, and the negative electrode active material particles (second precursor) in which the resin beads B are not removed and the openings 11a are not formed are used.
  • Step S3 may be performed after the mixture layer is formed on the current collector 122a.
  • a positive electrode slurry in which a positive electrode active material, a binder, and an organic solvent are mixed is manufactured.
  • Typical examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the particle size of the positive electrode active material is specified to be equal to or less than the thickness of the positive electrode mixture layer.
  • the positive electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer, the coarse particles are previously removed by sieving classification, wind classification, etc. Sort particles of diameter.
  • the positive electrode active material is made of an oxide-based material and has a high electric resistance. Therefore, a conductive additive made of carbon powder that supplements the electrical conductivity of the positive electrode active material is used.
  • a conductive assistant for example, a carbon material such as acetylene black, carbon black, graphite, and amorphous carbon can be used.
  • the particle diameter of the conductive auxiliary agent is preferably smaller than the average particle diameter of the positive electrode active material and not more than 1/10 of the average particle diameter. Since the positive electrode active material and the conductive additive are both powders, a binder is mixed with the powders to bond the powders together.
  • a positive electrode slurry containing 89% by weight of the positive electrode active material, 4% by weight of acetylene black and 7% by weight of PVDF binder is kneaded using NMP as a solvent to produce a positive electrode slurry.
  • NMP as a solvent
  • a planetary mixer can be used as in the kneading of the negative electrode material.
  • a positive electrode metal foil as a current collector is prepared.
  • the positive electrode metal foil include an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.11 to 10 mm, an expanded metal, a foam metal plate, and the like. Can be used.
  • a material other than aluminum for example, stainless steel, titanium, and the like are also applicable.
  • the current collector for the positive electrode can be used as a metal foil for the positive electrode without changing such as dissolution and oxidation during use of the lithium ion secondary battery, the material, shape, and manufacturing method are as follows. There is no particular limitation. In this embodiment, a 20 ⁇ m thick aluminum rolled foil is used.
  • the positive electrode slurry is applied on the current collector for the positive electrode 121, dried, compressed and pressure-molded to form a positive electrode mixture layer.
  • the positive electrode 121 for a lithium ion secondary battery in which the positive electrode mixture layer is formed on the current collector is obtained.
  • the application of the positive electrode slurry on the current collector is performed only once by the doctor blade method, but the multilayer mixture layer is formed on the current collector by performing a plurality of times from the application of the positive electrode slurry to the drying. It is also possible to form
  • the electrode group 120 is manufactured by laminating the positive electrode 121 and the negative electrode 122 manufactured by the above-described process with a separator 123 as an insulator interposed therebetween.
  • the electrode group 120 is manufactured by winding the positive electrode 121 and the negative electrode 122 laminated with the separator 123 interposed therebetween around the winding axis.
  • the positive battery cover 112a, the gasket 113, the internal pressure release valve 114, the PTC resistance element 115, and the inner cover 116 are assembled as an integrally structured battery cover unit.
  • the electrode group 120 is accommodated in the cylindrical portion 111 of the battery container 110 with the separator 123 disposed around the electrode group 120.
  • the positive electrode 121 is connected to the positive battery cover 112a by the positive current collecting tab 131
  • the negative electrode 122 is connected to the negative battery cover 112b
  • the opening 111a of the cylindrical portion 111 is sealed by the positive battery cover 112a and the negative battery cover 112b. Stop.
  • the electrolyte L is injected into the battery container 110.
  • the electrolytic solution L is injected from above the opening 111a of the cylindrical portion 111 before attaching the positive battery cover 112a. Thereafter, the positive battery cover 112a is attached, and the cylindrical portion 111 is sealed.
  • the electrolyte may be supplied from a liquid inlet provided in advance in the battery lid 112a, and the liquid inlet may be sealed by laser welding or the like. As described above, the lithium ion secondary battery 100 of the present embodiment is obtained.
  • FIG. 5 is a schematic diagram of a module (assembled battery) 200 in which eight lithium ion secondary batteries 100 shown in FIG. 2 are connected in series.
  • a positive external terminal 201 and a negative external terminal 202 are connected to the module 200, and the positive external terminal 201 and the negative external terminal 202 are connected to the charge / discharge circuit 301 via a power line 304.
  • the charge / discharge circuit 301 is connected to an arithmetic control unit 302 via a signal line 305 and to a power supply load power source 303 via an external power cable 306.
  • the power supply load power supply 303 has both power supply and consumption functions, and is installed in place of an external power supply or an external load in order to confirm the effectiveness of the module 200. That is, the power supply load power supply 303 receives electric power from the module 200 via the charging / discharging circuit 301 and the power cable 306, or an electric vehicle such as an electric vehicle that supplies power to the module 200, a machine tool, or a distributed power storage system. And a backup power supply system.
  • the arithmetic control unit 302 switches the charge / discharge circuit 301 to the charging mode when the power supply load power supply 303 supplies power to the module 200, and discharges the charge / discharge circuit 301 when the module 200 supplies power to the power supply load power supply 303. Switch to mode.
  • the charge / discharge circuit 301 supplies the charging current from the power supply load power supply 303 to the module 200 in the charging mode, and supplies the discharge current from the module 200 to the power supply load power supply 303 in the discharge mode.
  • the module 200 of the present embodiment includes the above-described lithium ion secondary battery 100. Therefore, the capacity density of the module 200 can be increased. Further, even when the module 200 repeatedly performs charging / discharging in relation to the power supply load power supply 303, a decrease in the capacity maintenance rate of the module 200 is suppressed, and the cycle life of the module 200 can be improved.
  • FIG. 6 is a schematic diagram of a battery system 400 using the module 200 shown in FIG.
  • the battery system 400 includes two modules 200A and 200B connected in series and a charge / discharge controller 410.
  • Modules 200A and 200B have the same configuration as module 200 shown in FIG.
  • the negative external terminal 202A of the module 200A is connected to the negative input terminal of the charge / discharge controller 410 by the power cable 401.
  • the positive external terminal 201A of the battery module 200A is connected to the negative external terminal 202B of the battery module 200B via the power cable 402.
  • the positive external terminal 201B of the battery module 200B is connected to the positive input terminal of the charge / discharge controller 410 by the power cable 403. With such a wiring configuration, the two battery modules 200A and 200B can be charged or discharged.
  • the charge / discharge controller 410 exchanges power with the external device 500 via the power cables 404 and 405.
  • the external device 500 includes an external power source for supplying power to the charge / discharge controller 410 and various electric devices such as a regenerative motor, and an inverter, a converter, and a load that supply power from the system.
  • An inverter or the like can be provided in accordance with the types of AC and DC that the external device 500 supports. As these devices, known devices can be arbitrarily applied.
  • a power generation device 420 that simulates the operating conditions of a wind power generator is installed as a device that generates renewable energy, and is connected to the charge / discharge controller 410 via power cables 406 and 407.
  • the charge / discharge controller 410 shifts to the charge mode, supplies power to the external device 500 and charges the battery modules 200A and 200B with surplus power.
  • the charge / discharge controller 410 operates to discharge the battery modules 200 ⁇ / b> A and 200 ⁇ / b> B when the power generation amount of the power generation apparatus 420 simulating a wind power generator is smaller than the required power of the external device 500.
  • the power generation device 420 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator.
  • the charge / discharge controller 410 stores a program that can be automatically operated so as to perform the above-described operation.
  • the battery system 400 of the present embodiment includes the lithium ion secondary battery 100 described above. Therefore, the capacity density of the battery system 400 can be increased as compared with the conventional case. In addition, even when the battery system 400 repeatedly performs charge and discharge in relation to the power generation device 420 and the external device 500, a decrease in the capacity maintenance rate of the battery system 400 is suppressed, and the cycle life of the battery system 400 can be improved. .
  • the number of batteries, the number of series, and the number of parallel are not limited to this embodiment, According to the electric energy required by the consumer side, it is possible to increase / decrease the number of series and the number of parallel.
  • the battery container of a lithium ion secondary battery may have a bottomed cylindrical or boxed battery can, and a battery container of any shape can be used.
  • the manufacturing method of a lithium ion secondary battery is not limited to the above-mentioned embodiment.
  • the compositions of the negative electrode slurry and the positive electrode slurry are changed according to the type of material, specific surface area, particle size distribution, and the like, and are not limited to the exemplified compositions.
  • the battery module can be used as a power source for consumer electronics such as portable electronic devices, mobile phones, and electric tools, as well as electric vehicles, trains, storage batteries for storing renewable energy, unmanned mobile vehicles, nursing care devices, etc. .
  • the lithium ion secondary battery of the present embodiment can be applied to a power supply of a logistics train for searching for the moon, Mars, and the like.
  • the lithium ion secondary battery of this embodiment is a space suit, a space station, a building or living space on earth or other celestial body (regardless of sealed or open state), a spacecraft for interplanetary movement. It can be used for various power sources such as air conditioning, temperature control, purification of sewage and air, and power for planetary rover, underwater or underwater sealed space, submarine, fish observation equipment.
  • Example 1 First, the negative electrode active materials of Samples 1 to 4 shown in Table 1 were manufactured by the manufacturing method described in the above embodiment.
  • the thickness of the outer shell of the fine particles contained in the negative electrode active material is all 100 nm, and the average particle diameter of the silicon nanoparticles is different in the range of 100 nm to 30 nm. Moreover, a highly conductive material and a coating layer were not formed on the surface of the outer shell.
  • the average particle diameter and the average number of silicon nanoparticles, and the thickness of the outer shell were determined by embedding the negative electrode active material fine particles in a thermosetting resin, and then cutting out the cross section of the resin using a microtome. Estimated from electron micrographs. The average particle size of the fine particles can be estimated in the same manner. Further, based on the expressions (3) and (7) in the above-described embodiment, the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell and the area occupancy ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell are calculated. Calculated. The porosity Va is obtained from the average particle size of the second precursor in FIG.
  • Each volume can be estimated from an image of a cross-sectional photograph in which the particles of the second precursor are embedded in a thermosetting resin.
  • the specific surface area of the negative electrode active material was measured by the BET method using nitrogen gas.
  • the initial capacity density gradually increases from 2700 Ah / kg to 2910 Ah / kg as the particle diameter decreases, and the capacity is maintained.
  • the rate gradually increased from 85% to 90%.
  • Example 2 Next, the conditions for the initial aging treatment of the lithium ion secondary battery using the negative electrode active material of Sample 3 manufactured in Example 1 were changed. Specifically, the charging current of the battery was set to 0.4 A, the voltage was maintained when the voltage reached 4.2 V, and charging was continued until the current reached 0.01 A. Thereafter, a 30-minute rest period was provided, and discharging was started at 0.4 A. When the battery voltage reached 3.0 V, the discharge was stopped and a 30-minute pause was performed. Similarly, charging and discharging were repeated 5 times to complete the initial aging process of the battery. Thereafter, in the same manner as in Example 1, the initial capacity density and the capacity retention ratio were calculated. The results are shown in Table 3 below.
  • Example 1 Since the charge / discharge current value was reduced, the amount of Li occlusion in the negative electrode increased, and the capacity density increased compared to Example 1. In addition, since the current density was reduced, the negative electrode active material was uniformly charged and discharged, and the stress between the particles was relieved. Therefore, the capacity retention rate was also improved from the result of Example 1.
  • Example 3 Next, according to the manufacturing method described in the above-described embodiment, the average particle diameter and the average number of silicon nanoparticles and the thickness of the outer shell are set to be equal to those in Example 1, and the negative electrodes of Sample 5 to Sample 9 shown in Table 4 An active material was produced.
  • CNT carbon nanotubes
  • Samples 6 to 9 a fluoride layer, a carbide layer, a nitride layer, and a sulfide layer were formed as a coating layer on the surface of the outer shell of the negative electrode active material with a thickness of 5 nm, respectively.
  • the highly conductive material and each coating layer were formed by the method described in the above embodiment.
  • the lithium ion secondary battery using the negative electrode active material of sample 5 is made of the negative electrode active material by CNT which is a highly conductive material.
  • the conductivity between the fine particles was improved, and the initial capacity density and capacity retention were further improved.
  • the lithium ion secondary battery using the negative electrode active material of sample 3 has a smaller lithium charge / discharge capacity. Because of the presence of the layers, the initial capacity density was reduced to the same extent or slightly, but the capacity retention was improved because the decomposition of the electrolyte was effectively suppressed.
  • Example 4 Next, the average particle diameter and the average number of silicon nanoparticles and the thickness of the outer shell were made equal to those of the negative electrode active material of Sample 2 of Example 1, and the porosity Va was changed as shown in Table 6 below.
  • the negative electrode active materials of Samples 10 to 13 were manufactured. Since the pressure at the time of pressure-molding the negative electrode mixture layer and the negative electrode mixture density showed a monotonous relationship, Va could be changed by adjusting the pressure.
  • the monotonous relationship means a relationship in which, for example, the density increases as the pressure increases, so that the porosity decreases.
  • the initial capacity density and The capacity retention rate was equal to or greater than that of the lithium ion secondary battery using the negative electrode active material of Document 2 of Example 1. That is, the amount of electrolyte retained in the negative electrode of the lithium ion secondary battery was not reduced, and the electrical contact between the fine particles of the negative electrode active material was not impaired.
  • Example 5 a negative electrode active material in which the material of the outer shell of the fine particles was changed to copper was manufactured under the same conditions as the negative electrode active material of Sample 3 manufactured in Example 1. That is, a second precursor is manufactured by copper plating using a barrel sputtering apparatus with respect to the first precursor in the method for manufacturing a negative electrode active material described in the above-described embodiment, and the second precursor The negative electrode active material of the sample 14 shown in the following Table 8 was manufactured by heat-processing.
  • Example 6 Next, as shown in Table 10 below, the negative electrode active material of Sample 15 in which the particle size of the silicon nanoparticles was increased to 200 nm and the thickness of the outer shell were set to 200 nm by the manufacturing method described in the above embodiment. The negative electrode active material of Sample 16 increased in size was manufactured.
  • the thickness of the outer shell of the fine particles was 100 nm, and the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell was increased to 1.20. .
  • the thickness of the outer shell of the fine particles was 100 nm, and the area occupation ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell was 0.95, which was larger than 0.91 of Sample 17. .
  • the negative electrode active material of Sample 19 and Sample 20 is the same as the negative electrode active material of Sample 2 of Example 1.
  • the negative electrode active material of Sample 21 was the same as the negative electrode active material of Sample 15 of Example 6 except that the average particle size of the silicon nanoparticles was increased to 400 nm.
  • the negative electrode active material of Sample 22 was the same as the negative electrode active material of Sample 16 of Example 6 except that the thickness of the outer shell of the fine particles was increased to 400 nm.
  • lithium ion secondary batteries were manufactured using the negative electrode active materials of Sample 17 to Sample 22, respectively.
  • the negative electrode porosity of the battery using the negative electrode active material of Sample 2 of Example 1 was 0.74, but the negative electrode porosity of the battery using the negative electrode active material of Sample 19 was set to 0.66.
  • the negative electrode porosity was increased to 0.85.
  • the manufactured lithium ion secondary battery was subjected to the initial aging treatment, and the initial capacity density and the capacity retention rate were calculated. The results are shown in Table 13.
  • the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell of the fine particles constituting the negative electrode active material is preferably smaller than 1.20, and more preferably 0.74 or less. It was done.
  • the area occupation ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell of the fine particles constituting the negative electrode active material is preferably smaller than 0.95.
  • the negative electrode porosity is preferably larger than 0.66.
  • the negative electrode of sample 19 was increased due to the increased porosity.
  • the electrical contact between the fine particles of the negative electrode active material was impaired, the initial capacity density was reduced, and the capacity retention rate was particularly lowered.
  • the negative electrode porosity is preferably smaller than 0.78.
  • the average particle diameter of the silicon nanoparticles is preferably smaller than 400 nm.
  • the thickness of the outer shell is preferably smaller than 400 nm.
  • Example 8 Eight lithium ion secondary batteries 100 using the negative electrode active material of sample 12 of Example 4 were manufactured, and the module 200 (assembled battery) having the configuration shown in FIG. 5 described in the above embodiment was assembled. A charge test and a discharge test were conducted.
  • the charging / discharging circuit 301 supplies a charging current having a current value (3.5 A) corresponding to an hour rate to the positive external terminal 201 and the negative external terminal 202, and charging is performed for 1 hour at a constant voltage of 33.6V. Went.
  • the constant voltage value set here is eight times the constant voltage value 4.2 V of the lithium ion secondary battery in this example. Electric power necessary for charging / discharging the module 200 was supplied from a power supply load power source 303.
  • a reverse current was passed from the positive external terminal 201 and the negative external terminal 202 to the charge / discharge circuit 301, and power was consumed by the power supply load power source 303.
  • the discharge current was 1 hour rate (discharge current: 3.5 A), and discharging was performed until the voltage between the positive external terminal 201 and the negative external terminal 202 reached 24V.
  • the module 200 obtained initial performance with a charge capacity of 3.5 Ah and a discharge capacity of 3.4 to 3.5 Ah. Further, when a charge / discharge cycle test of 300 cycles was performed, the capacity maintenance rate of the module 200 was 94 to 95%.
  • the initial capacity of the module 200 is increased compared to the conventional case, the decrease in the capacity retention rate due to repeated charge and discharge is suppressed, and the cycle life of the module 200 is improved.
  • Example 9 Next, two battery modules 200A and 200B assembled in Example 8 were connected in series, and the battery system 400 having the configuration shown in FIG. 6 described in the above embodiment was manufactured.
  • the battery modules 200A and 200B are charged normally to obtain a rated capacity.
  • constant voltage charging of 4.2 V was performed for 0.5 hour at a charging current of 1 hour rate.
  • the charging conditions are determined by the design of the material type, amount of use, etc. of the lithium ion secondary battery. Therefore, the charging conditions are optimal for each battery specification.
  • the charge / discharge controller 410 was switched to the discharge mode to discharge each battery, and the discharge was stopped when a certain lower limit voltage was reached. Furthermore, when charging the lithium ion secondary battery, power is supplied from the external device 500 to the lithium ion secondary battery, and when discharging the lithium ion secondary battery, power is supplied from the lithium ion secondary battery to the external device 500. Power was consumed. In this example, charging was performed at a rate of 2 hours, discharging was performed at a rate of 1 hour, and the initial discharge capacity was obtained. As a result, a capacity of 99.1 to 99.6% of the design capacity 3.5 Ah of each battery module was obtained.
  • the remaining capacity of 1.75 Ah is charged with a current (1.75 A) at a rate of 2 hours until the voltage of each battery reaches 4.2 V, and after constant voltage charging for 1 hour is continued at that voltage, Was terminated. Then, it discharged until the voltage of each battery was set to 3.0V with the electric current (3.5A) of 1 hour rate.
  • a capacity of 88 to 89% of the initial discharge capacity was obtained. It has been found that the performance of the system 400 is hardly degraded when the battery is subjected to power acceptance and power supply current pulses. That is, since the battery system 400 includes the lithium ion secondary battery of this example, a decrease in capacity retention rate is suppressed even when charging and discharging are repeated, and the cycle life of the battery system 400 is improved.

Abstract

 Provided are a negative-electrode active substance (1) capable of making the energy density and capacity of a lithium-ion secondary cell superior to those of the prior art, a method for manufacturing said substance (1), and a lithium-ion secondary cell (100) in which said substance (1) is used. The negative-electrode active substance (1) includes microparticles (10) provided with an electroconductive outer shell (11) and a plurality of silicon nanoparticles (13) held on the inner surface of the outer shell (11) and exposed to the interior space (12) of the outer shell (11). The outer shell (11) has an opening section (11a) interconnecting the exterior space and the interior space (12) of the outer shell (11).

Description

負極活物質及びその製造方法並びにリチウムイオン二次電池Negative electrode active material, method for producing the same, and lithium ion secondary battery
 本発明は、リチウムイオン二次電池の負極に用いられる負極活物質及びその製造方法、並びに該負極活物質を用いたリチウムイオン二次電池に関する。 The present invention relates to a negative electrode active material used for a negative electrode of a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the negative electrode active material.
 リチウムイオン二次電池は、他の二次電池と比較して高いエネルギー密度を有しているため、電気自動車用や電力貯蔵用の電池として注目されている。特に、電気自動車では、エンジンを搭載せずリチウムイオン二次電池を電源として用いたゼロエミッション電気自動車、或いはエンジンとリチウムイオン二次電池の両方を搭載したハイブリッド電気自動車、さらには系統電源からリチウムイオン二次電池に充電するプラグインハイブリッド電気自動車等が実用に供されている。電気自動車の電源として用いられるリチウムイオン二次電池は、電気自動車の走行距離をより長くするために、さらなる高容量化が望まれている。 Since lithium ion secondary batteries have a higher energy density than other secondary batteries, they are attracting attention as batteries for electric vehicles and power storage. In particular, in an electric vehicle, a zero-emission electric vehicle that uses a lithium ion secondary battery as a power source without an engine, or a hybrid electric vehicle that includes both an engine and a lithium ion secondary battery, or a lithium ion from a system power source. Plug-in hybrid electric vehicles that charge secondary batteries are in practical use. A lithium ion secondary battery used as a power source for an electric vehicle is desired to have a higher capacity in order to increase the travel distance of the electric vehicle.
 また、リチウムイオン二次電池は、例えば、電力系統が遮断された非常時に電力を供給する定置式電力貯蔵システムとしての用途も期待されている。このような蓄電システムにおいては、電池の容量密度が高いほど、より小さなシステムを提供することができる。 Also, the lithium ion secondary battery is expected to be used as a stationary power storage system that supplies power in an emergency when the power system is shut off. In such a power storage system, a smaller system can be provided as the capacity density of the battery is higher.
 さらに、民生用途では、携帯電話やスマートフォン等のモバイル機器の使用電力量が増大しつつあり、リチウムイオン二次電池に対する高容量化の要求は非常に強くなっている。 Furthermore, in consumer applications, the amount of power used by mobile devices such as mobile phones and smartphones is increasing, and the demand for higher capacity for lithium-ion secondary batteries has become very strong.
 このような状況の下、リチウムイオン二次電池の正極、負極の材料開発が活発になっている。例えば、負極活物質がシリコンないしスズのいずれかと、リチウムと反応しない元素から選ばれた少なくとも一種との元素からなり、かつ、一次粒子内部の内部核と外周部とのいずれにも空孔を有し、かつ、前記活物質の表面及び前記空孔内部に炭素からなる導電性材料が存在する非水系二次電池用負極が開発されている(下記特許文献1を参照)。この非水系二次電池用負極によれば、負極活物質一次粒子自体の体積変化を抑制し、かつ、体積変化により生じる応力により負極活物質一次粒子構造の一部が崩壊しても、導電性ネットワークを維持し、これによってサイクル特性が向上するとしている。 Under such circumstances, development of materials for the positive and negative electrodes of lithium ion secondary batteries has become active. For example, the negative electrode active material is composed of either silicon or tin and at least one element selected from elements that do not react with lithium, and has pores in both the inner core and the outer periphery of the primary particles. In addition, a negative electrode for a non-aqueous secondary battery has been developed in which a conductive material made of carbon is present on the surface of the active material and inside the pores (see Patent Document 1 below). According to this negative electrode for a non-aqueous secondary battery, the volume change of the negative electrode active material primary particle itself is suppressed, and even if a part of the negative electrode active material primary particle structure collapses due to the stress caused by the volume change, The network is maintained, which improves cycle characteristics.
特開2012-94463号公報JP 2012-94463 A
 しかしながら、前記従来の負極活物質は、内部核と外周部とのいずれにも空孔を有するものの、内部核には電解液が浸透せず、活物質粒子の表面に導電性材料が存在しない部分は容量に寄与しない。すなわち、負極活物質が容量に寄与しない容積を比較的多く有しているため、該負極活物質を負極に用いたリチウムイオン二次電池の容量密度の向上に限界があった。 However, although the conventional negative electrode active material has pores in both the inner core and the outer peripheral portion, the electrolyte does not penetrate into the inner core, and there is no conductive material on the surface of the active material particles. Does not contribute to capacity. That is, since the negative electrode active material has a relatively large volume that does not contribute to capacity, there is a limit to the improvement in capacity density of a lithium ion secondary battery using the negative electrode active material for the negative electrode.
 本発明は、以上の課題に鑑みてなされたものであって、その目的とするところは、従来よりもリチウムイオン二次電池の容量密度を向上させることが可能な負極活物質及びその製造方法、並びに、該負極活物質を用いたリチウムイオン二次電池を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to provide a negative electrode active material capable of improving the capacity density of a lithium ion secondary battery as compared with the prior art, and a method for producing the same, Another object is to provide a lithium ion secondary battery using the negative electrode active material.
 本発明の負極活物質は、リチウムイオン二次電池用の負極活物質であって、導電性の外殻と、該外殻の内面に保持されて該外殻の内部空間に露出する複数のシリコンナノ粒子と、を備えた微粒子を含み、前記外殻は、該外殻の外部空間と前記内部空間とを連通する開口部を有することを特徴とする。 The negative electrode active material of the present invention is a negative electrode active material for a lithium ion secondary battery, and includes a conductive outer shell and a plurality of silicon held on the inner surface of the outer shell and exposed to the inner space of the outer shell. Nanoparticles are included, and the outer shell has an opening that connects the outer space of the outer shell and the inner space.
 本発明の負極活物質によれば、外殻の開口部を介して外殻の外部空間から内部空間に電解液が浸透し、外殻の外面と内面に電解液が接触することで、容量に寄与する微粒子の外殻の表面積を従来よりも増加させ、容量に寄与しない微粒子の容積を従来よりも減少させることができ、従来よりもリチウムイオン二次電池の容量密度を向上させることができる。 According to the negative electrode active material of the present invention, the electrolytic solution penetrates from the outer space of the outer shell into the inner space through the opening of the outer shell, and the electrolytic solution contacts the outer surface and the inner surface of the outer shell. The surface area of the outer shell of the contributing fine particles can be increased than before, the volume of the fine particles not contributing to the capacity can be reduced as compared with the conventional case, and the capacity density of the lithium ion secondary battery can be improved as compared with the conventional case.
本発明の負極活物質の一実施形態を示す模式断面図。The schematic cross section which shows one Embodiment of the negative electrode active material of this invention. 本発明の負極活物質の別の実施形態を示す模式断面図。The schematic cross section which shows another embodiment of the negative electrode active material of this invention. 本発明のリチウムイオン二次電池の一実施形態を示す模式断面図。1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery of the present invention. 本発明の負極活物質の製造方法の一実施形態を示すフロー図。The flowchart which shows one Embodiment of the manufacturing method of the negative electrode active material of this invention. 図3に示す製造方法に係る第1前駆体を示す模式断面図。The schematic cross section which shows the 1st precursor which concerns on the manufacturing method shown in FIG. 図3に示す製造方法に係る第2前駆体を示す模式断面図。The schematic cross section which shows the 2nd precursor which concerns on the manufacturing method shown in FIG. 図3に示す製造方法に係る微粒子を示す模式断面図。FIG. 4 is a schematic cross-sectional view showing fine particles according to the manufacturing method shown in FIG. 3. 図2に示すリチウムイオン二次電池を備えたモジュールの概略図。The schematic of the module provided with the lithium ion secondary battery shown in FIG. 図5に示すモジュールを備えた電池システムの概略図。Schematic of a battery system provided with the module shown in FIG. 比較例の負極活物質の模式断面図。The schematic cross section of the negative electrode active material of a comparative example.
(負極活物質)
 以下、図面を参照しながら本発明の負極活物質の一実施形態について説明する。図1A及び図1Bは、リチウムイオン二次電池に用いられる負極の構成を示す模式的な部分断面図である。負極122は、集電体122aと、集電体122a上に形成された負極合剤層122bとを有している。負極合剤層122bは、負極活物質1を主に含み、バインダとして、例えばポリフッ化ビニリデン(PVDF)を含んでいる。
(Negative electrode active material)
Hereinafter, an embodiment of the negative electrode active material of the present invention will be described with reference to the drawings. 1A and 1B are schematic partial cross-sectional views illustrating the configuration of a negative electrode used in a lithium ion secondary battery. The negative electrode 122 includes a current collector 122a and a negative electrode mixture layer 122b formed on the current collector 122a. The negative electrode mixture layer 122b mainly includes the negative electrode active material 1, and includes, for example, polyvinylidene fluoride (PVDF) as a binder.
 負極活物質1は、リチウムイオン二次電池の負極122用の材料であり、主に微粒子10により構成されている。微粒子10は、導電性の外殻11と、該内部空間12に収容されたシリコンナノ粒子13とを備えている。シリコンナノ粒子13は、外殻11により画成された内部空間12に露出している。外殻11は、開口部11aを有している。開口部11aは、外殻11の外部空間と内部空間12とを連通している。外殻11に形成される開口部11aの数は、1つであっても複数であってもよい。 The negative electrode active material 1 is a material for the negative electrode 122 of the lithium ion secondary battery, and is mainly composed of the fine particles 10. The fine particle 10 includes a conductive outer shell 11 and silicon nanoparticles 13 accommodated in the internal space 12. The silicon nanoparticles 13 are exposed in the internal space 12 defined by the outer shell 11. The outer shell 11 has an opening 11a. The opening 11 a communicates the external space of the outer shell 11 and the internal space 12. The number of openings 11a formed in the outer shell 11 may be one or plural.
 微粒子10は、図1Bに示す薄片状微粒子10aを含んでいてもよい。薄片状微粒子10aは、微粒子10の外殻が製造の過程で薄片状に分裂して形成されたものである。例えば、開口部11aを円に近似したときの直径が、図1Aに示す粒状の微粒子10の平均粒径以上となる微粒子10を、薄片状微粒子10aと定義することができる。一方、開口部11aの直径が、前記平均粒径よりも小さい微粒子10を、粒状微粒子10bと定義することができる。なお、本実施形態においては、微粒子10が粒状微粒子10bを含むことが必須である。 The fine particles 10 may include flaky fine particles 10a shown in FIG. 1B. The flaky fine particles 10a are formed by dividing the outer shell of the fine particles 10 into a flaky shape during the manufacturing process. For example, a fine particle 10 having a diameter when the opening 11a approximates a circle is equal to or larger than the average particle diameter of the granular fine particle 10 shown in FIG. 1A can be defined as a flaky fine particle 10a. On the other hand, fine particles 10 having a diameter of the opening 11a smaller than the average particle diameter can be defined as granular fine particles 10b. In the present embodiment, it is essential that the fine particles 10 include granular fine particles 10b.
 微粒子10が粒状微粒子10bである場合には、開口部11aの径は、例えば外殻11の粒径の1/2以下であり、好ましくは1/5以下であり、より好ましくは1/10以下である。なお、開口部11aの径とは、該開口部11aの開口幅の最大値である。以下では、特に説明のない場合には、微粒子10は、粒状微粒子10bであるものとする。 When the fine particles 10 are granular fine particles 10b, the diameter of the opening 11a is, for example, ½ or less, preferably 1/5 or less, more preferably 1/10 or less of the particle size of the outer shell 11. It is. The diameter of the opening 11a is the maximum value of the opening width of the opening 11a. In the following, unless otherwise specified, the fine particles 10 are assumed to be granular fine particles 10b.
 微粒子10の外殻11を構成する材料は、例えばリチウムイオンを還元し、合金や金属間化合物を形成するものを含む。その中でも、シリコン、またはアルミニウム、マグネシウム、ホウ素、炭素、窒素等の軽元素とシリコンとの合金であって、500mAh/g以上の高い容量密度を有するものが、外殻11の材料として特に好適である。また、外殻11の材質は、例えば銅など、導電性を有する金属材料であってもよい。本実施形態の外殻11は、シリコン(Si)を含む材料により構成され、リチウムイオンを吸蔵又は放出する。外殻11の導電性は、外殻11を構成する材料がシリコンまたはシリコン合金を主に含むことにより実現される。 The material constituting the outer shell 11 of the fine particles 10 includes, for example, a material that reduces lithium ions to form an alloy or an intermetallic compound. Among them, silicon or an alloy of silicon and a light element such as aluminum, magnesium, boron, carbon, nitrogen and the like having a high capacity density of 500 mAh / g or more is particularly suitable as the material of the outer shell 11. is there. The material of the outer shell 11 may be a conductive metal material such as copper. The outer shell 11 of the present embodiment is made of a material containing silicon (Si) and occludes or releases lithium ions. The conductivity of the outer shell 11 is realized when the material constituting the outer shell 11 mainly contains silicon or a silicon alloy.
 外殻11は、シリコン等の他に、例えば、炭素粉末、炭素繊維、或いはカーボンナノチューブ(CNT)を含んでいてもよい。外殻11の外面には、例えば、フッ化物、炭化物、窒化物又は硫化物からなる被覆層を有してもよい。或いは、外殻11の外面に、外殻11よりも導電性が高い高導電材、例えば炭素粉末、炭素繊維、或いはCNTが保持されていてもよい。また、外殻11の外面に、被覆層と高導電材の双方を有してもよい。 The outer shell 11 may contain, for example, carbon powder, carbon fiber, or carbon nanotube (CNT) in addition to silicon or the like. The outer surface of the outer shell 11 may have a coating layer made of, for example, fluoride, carbide, nitride, or sulfide. Alternatively, a highly conductive material having higher conductivity than the outer shell 11 such as carbon powder, carbon fiber, or CNT may be held on the outer surface of the outer shell 11. Moreover, you may have both a coating layer and a highly conductive material in the outer surface of the outer shell 11. FIG.
 シリコンナノ粒子13は、外殻11の内面に保持され、内部空間12に露出している。シリコンナノ粒子13を構成する材料は、シリコン(Si)を含む。図示の例では、外殻11の内部空間12に3個のシリコンナノ粒子13が収容されているが、シリコンナノ粒子13の個数は、外殻11の内部空間12の容積又は外殻11の内面の面積に応じた任意の個数とすることができる。 The silicon nanoparticles 13 are held on the inner surface of the outer shell 11 and exposed to the inner space 12. The material constituting the silicon nanoparticles 13 includes silicon (Si). In the illustrated example, three silicon nanoparticles 13 are accommodated in the inner space 12 of the outer shell 11, but the number of silicon nanoparticles 13 depends on the volume of the inner space 12 of the outer shell 11 or the inner surface of the outer shell 11. It can be set to an arbitrary number according to the area.
 シリコンナノ粒子13は、リチウムイオン二次電池の充電により体積が増加する。そのため、外殻11の内部空間12におけるシリコンナノ粒子13の充填率が高すぎると、シリコンナノ粒子13の体積増加に伴って、外殻11が破壊される虞がある。そのため、外殻11の内部空間12の体積に対するシリコンナノ粒子13の体積占有率を制限する必要がある。 The volume of the silicon nanoparticles 13 increases due to the charging of the lithium ion secondary battery. Therefore, if the filling rate of the silicon nanoparticles 13 in the inner space 12 of the outer shell 11 is too high, the outer shell 11 may be destroyed as the volume of the silicon nanoparticles 13 increases. Therefore, it is necessary to limit the volume occupation rate of the silicon nanoparticles 13 with respect to the volume of the internal space 12 of the outer shell 11.
 ここで、外殻11の平均内容積、すなわち内部空間12の平均容積をCとし、内部空間12に収容されるシリコンナノ粒子13の個数をn、シリコンナノ粒子13の平均粒径の1/2、すなわちシリコンナノ粒子13の半径をrとし、リチウムイオン二次電池の充電後におけるシリコンナノ粒子13の体積増加比をΔVとする。また、体積増加後のシリコンナノ粒子13が内部空間12に最密充填された時の充填率をaとする。このとき、体積が増加したシリコンナノ粒子13が外殻11の内部空間12内に収まるための条件は、以下の式(1)により表される。
     n・(4πr/3)・ΔV≦a・C  …(1)
Here, the average internal volume of the outer shell 11, that is, the average volume of the internal space 12 is C, the number of silicon nanoparticles 13 accommodated in the internal space 12 is n, and the average particle diameter of the silicon nanoparticles 13 is ½. That is, the radius of the silicon nanoparticles 13 is r, and the volume increase ratio of the silicon nanoparticles 13 after charging the lithium ion secondary battery is ΔV. In addition, a filling rate when the volume of the silicon nanoparticles 13 after the volume increase is closest packed in the internal space 12 is defined as a. At this time, a condition for the silicon nanoparticles 13 having an increased volume to be accommodated in the internal space 12 of the outer shell 11 is expressed by the following formula (1).
n · (4πr 3/3) · ΔV ≦ a · C ... (1)
 ここで、シリコンナノ粒子13の体積増加比ΔVを4、最密充填率aを0.74とすると、以下の式(2)が得られる。
     Vc≦0.74           …(2)
Here, when the volume increase ratio ΔV of the silicon nanoparticles 13 is 4 and the closest packing ratio a is 0.74, the following equation (2) is obtained.
Vc ≦ 0.74 (2)
 なお、Vcは、外殻11の内部空間12に対するシリコンナノ粒子13の体積占有率であり、以下の式(3)により表される。
     Vc=n・(4πr/3)・ΔV/C …(3)
Vc is a volume occupation ratio of the silicon nanoparticles 13 with respect to the internal space 12 of the outer shell 11 and is represented by the following formula (3).
Vc = n · (4πr 3/ 3) · ΔV / C ... (3)
 前記式(2)の条件を満たせば、外殻11の内部空間12に収容されたシリコンナノ粒子13の体積がリチウムイオン二次電池の充電により増加しても、外殻11が破壊されることを防止できる。一方、シリコンナノ粒子13の体積占有率Vcが小さくなると負極容量密度は低下するため、シリコンナノ粒子13の体積占有率Vcは0.20以上であることが好ましい。 If the condition of the above formula (2) is satisfied, the outer shell 11 is destroyed even if the volume of the silicon nanoparticles 13 accommodated in the inner space 12 of the outer shell 11 is increased by charging the lithium ion secondary battery. Can be prevented. On the other hand, since the negative electrode capacity density decreases when the volume occupancy Vc of the silicon nanoparticles 13 decreases, the volume occupancy Vc of the silicon nanoparticles 13 is preferably 0.20 or more.
(リチウムイオン二次電池)
 図2は、本実施形態のリチウムイオン二次電池100の部分断面図である。リチウムイオン二次電池100は、非水電解液中の電極によるリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵又は利用可能とする電気化学デバイスである。
(Lithium ion secondary battery)
FIG. 2 is a partial cross-sectional view of the lithium ion secondary battery 100 of the present embodiment. The lithium ion secondary battery 100 is an electrochemical device that can store or use electrical energy by occlusion / release of lithium ions by electrodes in a non-aqueous electrolyte.
 リチウムイオン二次電池100は、電池容器110と、該電池容器110に収容される電極群120とを有している。電池容器110の形状は、電極群120の形状に合わせ、例えば、円筒型、偏平長円形状、角型など、任意の形状に形成することができる。電池容器110の材質は、例えばアルミニウム、ステンレス鋼、鋼、ニッケルメッキ鋼など、非水電解液Lに対し耐食性のある材料から選択される。 The lithium ion secondary battery 100 includes a battery container 110 and an electrode group 120 accommodated in the battery container 110. The shape of the battery case 110 can be formed in an arbitrary shape such as a cylindrical shape, a flat oval shape, a rectangular shape, or the like according to the shape of the electrode group 120. The material of the battery container 110 is selected from materials that are corrosion resistant to the non-aqueous electrolyte L, such as aluminum, stainless steel, steel, nickel-plated steel, and the like.
 電池容器110は、上部に開口部111aを有する筒状部111と、筒状部111の開口部111aを封止する正極電池蓋112aと、筒状部111の底部を封止する底面112bとを有している。本実施形態において、正極電池蓋112aは正極外部端子を兼ね、容器底面112bは負極外部端子を兼ねている。 The battery container 110 includes a cylindrical part 111 having an opening 111a at the top, a positive battery cover 112a that seals the opening 111a of the cylindrical part 111, and a bottom 112b that seals the bottom of the cylindrical part 111. Have. In the present embodiment, the positive battery cover 112a also serves as a positive external terminal, and the container bottom 112b also serves as a negative external terminal.
 筒状部111の上方は、開口部111aの周囲に円環部111cを有している。円環部111cは開口部111aの周囲にリング状に設けられ、筒状部111の側壁端部から延在して電池容器110の上面の一部を構成している。 The upper part of the cylindrical part 111 has an annular part 111c around the opening 111a. The annular portion 111 c is provided in a ring shape around the opening 111 a, and extends from the side wall end of the cylindrical portion 111 to constitute a part of the upper surface of the battery case 110.
 正極電池蓋112aは、その周縁部がガスケット113を介して筒状部111の円環部111cの内側に重なるように配置されている。正極電池蓋112aは、かしめ、溶接、溶着などの適宜の方法により筒状部111に接合され、開口部111aを密閉している。正極電池蓋112aと同様の構造を底面112bに形成し、負極電池蓋を設置しても良い。 The positive electrode battery lid 112a is arranged so that the peripheral edge thereof overlaps the inside of the annular portion 111c of the cylindrical portion 111 with the gasket 113 interposed therebetween. The positive battery lid 112a is joined to the cylindrical portion 111 by an appropriate method such as caulking, welding, or welding, and seals the opening 111a. A structure similar to that of the positive battery cover 112a may be formed on the bottom surface 112b, and the negative battery cover may be installed.
 正極電池蓋112aの中央部には、電池容器110の内圧が所定値よりも上昇した場合に破裂して、電池容器110の内圧を解放する内圧解放弁114が設けられている。正極電池蓋112aの内側には、正温度係数(PTC:Positive Temperature Coefficient)抵抗素子115と、内蓋116が設けられている。PTC抵抗素子115は、電池容器110の内部の温度が高くなったときにリチウムイオン二次電池100の充放電を停止させ、リチウムイオン二次電池100を保護する。正極電池蓋112a、ガスケット113、内圧解放弁114、PTC抵抗素子115及び内蓋116は、一体構造の電池蓋ユニットとして構成されている。 At the center of the positive battery lid 112a, there is provided an internal pressure release valve 114 that ruptures and releases the internal pressure of the battery container 110 when the internal pressure of the battery container 110 rises above a predetermined value. A positive temperature coefficient (PTC: Positive Temperature Coefficient) resistance element 115 and an inner lid 116 are provided inside the positive battery lid 112a. The PTC resistance element 115 stops the charging / discharging of the lithium ion secondary battery 100 when the temperature inside the battery container 110 becomes high, and protects the lithium ion secondary battery 100. The positive battery cover 112a, the gasket 113, the internal pressure release valve 114, the PTC resistance element 115, and the internal cover 116 are configured as an integrally structured battery cover unit.
 電極群120は、正極121と負極122とを、間にセパレータ123を介在させて積層することにより構成されている。電極群120は、セパレータ123を介して積層させた正極121と負極122を捲回軸周りに捲回した捲回電極群であってもよい。電極群120が捲回電極群である場合には、扁平状などの任意の形状に捲回することができる。また、電極群120は、短冊状など、種々の形状に形成することができる。 The electrode group 120 is configured by laminating a positive electrode 121 and a negative electrode 122 with a separator 123 interposed therebetween. The electrode group 120 may be a wound electrode group in which a positive electrode 121 and a negative electrode 122 that are stacked via a separator 123 are wound around a winding axis. When the electrode group 120 is a wound electrode group, it can be wound into an arbitrary shape such as a flat shape. The electrode group 120 can be formed in various shapes such as a strip shape.
 正極121は、例えば、正極用の集電体であるアルミニウム箔と、該集電体上に形成された正極合剤層とにより構成されている。 The positive electrode 121 includes, for example, an aluminum foil that is a positive electrode current collector and a positive electrode mixture layer formed on the current collector.
 負極122は、図1A、図1Bに示すように、負極用の集電体122aと、集電体122a上に形成された負極合剤層122bとにより構成されている。負極122を構成する負極合剤層122bは、本実施形態の負極活物質1を主に含んでいる。負極合剤層122bを構成する負極活物質1は、前述のように、導電性の外殻11と、外殻11により画成された内部空間12と、外殻11の内面に保持されて内部空間12に露出する複数のシリコンナノ粒子13とを備えた微粒子10を含んでいる。そして、外殻11は、外殻11の外部空間と内部空間12とを連通する開口部11aを有している。 As shown in FIGS. 1A and 1B, the negative electrode 122 includes a negative electrode current collector 122a and a negative electrode mixture layer 122b formed on the current collector 122a. The negative electrode mixture layer 122b constituting the negative electrode 122 mainly contains the negative electrode active material 1 of the present embodiment. As described above, the negative electrode active material 1 constituting the negative electrode mixture layer 122b is held by the conductive outer shell 11, the inner space 12 defined by the outer shell 11, and the inner surface of the outer shell 11, and is contained inside. Fine particles 10 including a plurality of silicon nanoparticles 13 exposed in the space 12 are included. The outer shell 11 has an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12.
 負極合剤層122bは、本実施形態の負極活物質1の他に、従来の負極活物質を含んでいてもよい。ここで、負極合剤層122bが負極活物質1を主に含むとは、負極合剤層122bに含まれる負極活物質の全体の容量密度に対して、本実施形態の負極活物質1の容量密度が50%より大きくなることを意味する。 The negative electrode mixture layer 122b may contain a conventional negative electrode active material in addition to the negative electrode active material 1 of the present embodiment. Here, that the negative electrode mixture layer 122b mainly includes the negative electrode active material 1 is that the capacity of the negative electrode active material 1 of the present embodiment with respect to the entire capacity density of the negative electrode active material included in the negative electrode mixture layer 122b. It means that the density is greater than 50%.
 負極合剤層122bにおいて、負極活物質1を構成する微粒子10の充填性を高めると、負極122の高容量化が可能になる。しかし、負極合剤層122bにおける微粒子10の充填性を高めるために、負極活物質1を圧縮して負極合剤層122bの密度を高めると、負極活物質1を構成する微粒子10の外殻11が破壊され、シリコンナノ粒子13が外殻11から脱落する可能性がある。これを防止するために、負極活物質1の微粒子10の外殻11が閉じた粒子とみなして、内部空間12を除いた負極合剤層122bの空隙率Vaを定義し、それが以下の式(4)の範囲内となるように調整することが好ましい。
     0.2≦Va≦0.5       …(4)
In the negative electrode mixture layer 122b, when the filling property of the fine particles 10 constituting the negative electrode active material 1 is increased, the capacity of the negative electrode 122 can be increased. However, when the density of the negative electrode mixture layer 122b is increased by compressing the negative electrode active material 1 in order to increase the filling property of the fine particles 10 in the negative electrode mixture layer 122b, the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is obtained. May be destroyed, and the silicon nanoparticles 13 may fall off the outer shell 11. In order to prevent this, assuming that the outer shell 11 of the fine particles 10 of the negative electrode active material 1 is closed, the porosity Va of the negative electrode mixture layer 122b excluding the internal space 12 is defined. It is preferable to adjust so that it may become in the range of (4).
0.2 ≦ Va ≦ 0.5 (4)
 真の負極空隙率は、負極活物質1の微粒子10の内部空間12を考慮した負極合剤層122bの空隙率である。すなわち、真の負極空隙率は、微粒子10の外殻11が閉じた粒子とみなして内部空間12を除いて求めた負極合剤層122bの空隙率Vaと、微粒子10における内部空間12の比率とから算出することができる。なお、負極活物質1は微粒子10として粒状微粒子10bの他に薄片状微粒子10aを含んでもよく、負極合剤層122bの空隙率、すなわち真の負極空隙率は、0.72以上かつ0.82以下の範囲であることが好ましい。さらに、負極空隙率は、0.74以上かつ0.81以下の範囲であることがより好ましい。負極空隙率が前記の範囲内であれば、負極122における電解液Lの保持量の減少が防止されると共に、負極活物質1の微粒子10間の電気的接触が損なわれることが防止され、リチウムイオン二次電池100の初期容量密度と容量維持率の低下を防止できる。 The true negative electrode porosity is the porosity of the negative electrode mixture layer 122b in consideration of the internal space 12 of the fine particles 10 of the negative electrode active material 1. That is, the true negative electrode porosity is determined by considering the void ratio Va of the negative electrode mixture layer 122b obtained by considering the outer shell 11 of the fine particles 10 as a closed particle and excluding the internal space 12, and the ratio of the internal space 12 in the fine particles 10. It can be calculated from The negative electrode active material 1 may include flaky fine particles 10a in addition to the granular fine particles 10b as the fine particles 10, and the porosity of the negative electrode mixture layer 122b, that is, the true negative electrode porosity is 0.72 or more and 0.82. The following range is preferable. Furthermore, the negative electrode porosity is more preferably in the range of 0.74 or more and 0.81 or less. If the negative electrode porosity is within the above range, the retention amount of the electrolytic solution L in the negative electrode 122 is prevented from being reduced, and the electrical contact between the fine particles 10 of the negative electrode active material 1 is prevented from being impaired. It is possible to prevent the initial capacity density and capacity retention rate of the ion secondary battery 100 from decreasing.
 セパレータ123としては、ポリエチレン、ポリプロピレンなどからなるポリオレフィン系高分子シート、或いはポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた多層構造のシートなどを使用することが可能である。リチウムイオン二次電池100の温度が高くなったときに、セパレータ123が収縮しないように、セパレータ123の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。セパレータ123は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、空隙率が20~90%であれば使用可能である。本実施形態では、厚さ25μm、細孔径0.5μm、空隙率45%のポリエチレン製の単層セパレータを用いている。図2では図示を省略するが、セパレータ123は、電極群120を電池容器110に収容する際に、電極群120と電池容器110との間にも配置され、正極121と負極122が電池容器110を通じて短絡しないようにしている。 The separator 123 may be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a multilayer structure sheet in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. Is possible. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 123 so that the separator 123 does not shrink when the temperature of the lithium ion secondary battery 100 increases. The separator 123 needs to allow lithium ions to pass therethrough during charge / discharge of the battery, so that it can be used if the pore diameter is generally 0.01 to 10 μm and the porosity is 20 to 90%. In this embodiment, a single-layer separator made of polyethylene having a thickness of 25 μm, a pore diameter of 0.5 μm, and a porosity of 45% is used. Although not shown in FIG. 2, the separator 123 is also disposed between the electrode group 120 and the battery container 110 when the electrode group 120 is accommodated in the battery container 110, and the positive electrode 121 and the negative electrode 122 are connected to the battery container 110. Do not short circuit through.
 正極121は、正極集電タブ131を介して内蓋116に接続されている。負極122は、負極集電タブ132を介して容器底面112bに接続されている。なお、集電タブ131、132は、ワイヤ状、板状などの任意の形状を採ることができる。集電タブ131、132は、電流を流したときにオーム損失を小さくすることのできる寸法、形状及び構造であり、かつ電解液Lと反応しない材質であれば、電池容器110の構造に応じて任意に選択することができる。また、正極集電タブ131及び負極集電タブ132は、非水電解液Lと接触している部分において、内蓋116及び負極電池蓋112bの腐食やリチウムイオンとの合金化による材料の変質が起こらないように、リード線の材料を選定する。 The positive electrode 121 is connected to the inner lid 116 via the positive electrode current collecting tab 131. The negative electrode 122 is connected to the container bottom surface 112 b through the negative electrode current collecting tab 132. The current collecting tabs 131 and 132 can take any shape such as a wire shape or a plate shape. The current collecting tabs 131 and 132 have dimensions, shapes, and structures that can reduce ohmic loss when an electric current is passed, and are made of a material that does not react with the electrolyte L, depending on the structure of the battery case 110. Can be arbitrarily selected. In addition, the positive electrode current collecting tab 131 and the negative electrode current collecting tab 132 are affected by corrosion of the inner lid 116 and the negative electrode battery lid 112b or alloying with lithium ions in the portion in contact with the non-aqueous electrolyte L. Select the lead wire material so that it does not occur.
 電池容器110内には電解質と非水溶媒からなる電解液Lが充填され、セパレータ123、正極121及び負極122の表面および細孔内部に電解液Lが保持されている。本実施形態で使用可能な電解液Lの代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどを混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF)、あるいはホウフッ化リチウム(LiBF)を溶解させた溶液が挙げられる。本実施形態のリチウムイオン二次電池100は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。電解質は、ポリフッ化ビニリデン(PVDF)、ポリエチレンオキサイドなどのイオン伝導性高分子に含有させた状態で使用することも可能である。この場合はセパレータ123が不要となる。 The battery container 110 is filled with an electrolytic solution L made of an electrolyte and a non-aqueous solvent, and the electrolytic solution L is held on the surfaces of the separator 123, the positive electrode 121, and the negative electrode 122 and inside the pores. As a typical example of the electrolytic solution L that can be used in this embodiment, a solvent in which dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate or the like is mixed with ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or borofluoride as an electrolyte is used. A solution in which lithium (LiBF 4 ) is dissolved may be used. The lithium ion secondary battery 100 of the present embodiment is not limited to the type of solvent, electrolyte, and solvent mixing ratio, and other electrolytes can be used. The electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride (PVDF) or polyethylene oxide. In this case, the separator 123 becomes unnecessary.
 なお、電解液Lに使用可能な溶媒は、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2‐ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネートなどの非水溶媒がある。本実施形態のリチウムイオン二次電池100に内蔵される正極121あるいは負極122上で分解しなければ、これ以外の溶媒を用いても良い。 Solvents that can be used for the electrolyte L are propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, There are non-aqueous solvents such as 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like. Other solvents may be used as long as they do not decompose on the positive electrode 121 or the negative electrode 122 built in the lithium ion secondary battery 100 of the present embodiment.
 また、電解質には、化学式でLiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、あるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩などの多種類のリチウム塩がある。これらの塩を、上述の溶媒に溶解してできた非水電解液を電池用電解液Lとして使用することができる。本実施形態のリチウムイオン二次電池100に内蔵される正極121あるいは負極122上で分解しなければ、これ以外の電解質を用いても良い。 Further, the electrolyte, the chemical formula LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or multi such imide lithium salts represented by lithium trifluoromethane sulfonimide There are different types of lithium salts. A nonaqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as the battery electrolytic solution L. An electrolyte other than this may be used as long as it does not decompose on the positive electrode 121 or the negative electrode 122 built in the lithium ion secondary battery 100 of the present embodiment.
 固体高分子電解質(ポリマー電解質)を用いる場合には、エチレンオキシド、アクリロニトリル、ポリフッ化ビニリデン、メタクリル酸メチル、ヘキサフルオロプロピレンのポリエチレンオキサイドなどのイオン導電性ポリマを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ123を省略することができる利点がある。 When a solid polymer electrolyte (polymer electrolyte) is used, an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, or hexafluoropropylene polyethylene oxide can be used as the electrolyte. When these solid polymer electrolytes are used, there is an advantage that the separator 123 can be omitted.
 さらに、電解液Lとして、イオン性液体を用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-BF)、リチウム塩LiN(SOCF(LiTFSI)とトリグライムとテトラグライムの混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)、イミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)から、正極121と負極122にて分解しない組み合わせを選択して、本実施形態のリチウムイオン二次電池100に用いることができる。 Furthermore, an ionic liquid can be used as the electrolytic solution L. For example, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4 ), lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), mixed complex of triglyme and tetraglyme, cyclic quaternary ammonium cation (N-methyl) -N-propylpyrrolidinium), and a combination that does not decompose at the positive electrode 121 and the negative electrode 122 from imide anions (exemplified by bis (fluorosulfonyl) imide). It can be used for the secondary battery 100.
 非水電解液Lの代わりに、固体高分子電解質(ポリマ電解質)あるいはゲル電解質を用いることもできる。固体高分子電解質は、ポリエチレンオキサイドなどの公知のポリマ電解質あるいはポリフッ化ビニリデンと非水電解液の混合物(ゲル電解質)を用いることも可能である。 Instead of the non-aqueous electrolyte L, a solid polymer electrolyte (polymer electrolyte) or a gel electrolyte can be used. As the solid polymer electrolyte, a known polymer electrolyte such as polyethylene oxide or a mixture (gel electrolyte) of polyvinylidene fluoride and a nonaqueous electrolytic solution can be used.
 本実施形態では、1モル濃度(1M=1mol/dm)のLiPFをエチレンカーボネート(ECと記す。)とエチルメチルカーボネート(EMCと記す。)の混合溶媒に溶解させた電解液Lを用いる。ECとEMCの混合割合は、例えば体積比率で1:2とすることができる。また、電解液Lに、例えば1%のビニレンカーボネートを添加してもよい。 In the present embodiment, an electrolytic solution L in which 1 mol concentration (1M = 1 mol / dm 3 ) of LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (denoted as EC) and ethyl methyl carbonate (denoted as EMC) is used. . The mixing ratio of EC and EMC can be set to 1: 2 by volume ratio, for example. Further, for example, 1% vinylene carbonate may be added to the electrolytic solution L.
 以下、本実施形態の負極活物質1及びリチウムイオン二次電池100の作用について説明する。本実施形態の負極活物質1は、微粒子10の外殻11が導電性を有している。外殻11が導電性を有することで、隣接する外殻11同士が電気的に連絡されて、リチウムイオン二次電池100の負極122全体の導電性ネットワークが形成される。これにより、負極122全体が、均一にリチウムイオンを吸蔵または放出することが可能となり、リチウムイオン二次電池100の効率的な充放電が可能となる。 Hereinafter, the operation of the negative electrode active material 1 and the lithium ion secondary battery 100 of the present embodiment will be described. In the negative electrode active material 1 of the present embodiment, the outer shell 11 of the fine particles 10 has conductivity. Since the outer shell 11 has conductivity, the adjacent outer shells 11 are electrically connected to each other, and a conductive network of the entire negative electrode 122 of the lithium ion secondary battery 100 is formed. As a result, the entire negative electrode 122 can uniformly occlude or release lithium ions, and the lithium ion secondary battery 100 can be efficiently charged and discharged.
 また、微粒子10の外殻11は、該外殻11の外部空間と内部空間12とを連通する開口部11aを有している。そのため、リチウムイオン二次電池100の電解液Lが外殻11の開口部11aを介して内部空間12に浸透し、微粒子10の内部空間12が電解液Lで満たされる。これにより、外殻11の外面と内面に電解液Lが接触して微粒子10の容量に寄与する面積が従来よりも増加する。また、微粒子10の容量に寄与しない体積が減少する。したがって、微粒子10を主に含む負極活物質1を用いたリチウムイオン二次電池100の容量密度を向上させることができる。 Further, the outer shell 11 of the fine particles 10 has an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12. Therefore, the electrolytic solution L of the lithium ion secondary battery 100 penetrates into the internal space 12 through the opening 11a of the outer shell 11, and the internal space 12 of the fine particles 10 is filled with the electrolytic solution L. Thereby, the electrolyte solution L contacts the outer surface and inner surface of the outer shell 11 and the area which contributes to the capacity | capacitance of the fine particle 10 increases from the past. Further, the volume that does not contribute to the capacity of the fine particles 10 is reduced. Therefore, the capacity density of the lithium ion secondary battery 100 using the negative electrode active material 1 mainly containing the fine particles 10 can be improved.
 また、電解液Lが外殻11の開口部11aを介して内部空間12に浸透し、微粒子10の内部空間12が電解液Lで満たされることで、リチウムイオンが開口部11aを介して外殻11の外部空間と内部空間12とを自由に移動する。その結果、図7に示す外殻11に開口部11aを有さない微粒子Xと比較して、内部空間12に露出した外殻11の内面及びシリコンナノ粒子13にリチウムイオンが吸蔵されやすくなると共に、外殻11の内面及びシリコンナノ粒子13に吸蔵されたリチウムイオンが放出されやすくなる。したがって、従来の負極活物質を負極材料として用いたリチウムイオン二次電池と比較して、高率充放電が可能なリチウムイオン二次電池100を得ることができる。 In addition, the electrolytic solution L penetrates into the internal space 12 through the opening 11a of the outer shell 11, and the internal space 12 of the fine particles 10 is filled with the electrolytic solution L, so that lithium ions pass through the outer shell through the opening 11a. 11 freely move between the external space and the internal space 12. As a result, as compared with the fine particles X that do not have the openings 11a in the outer shell 11 shown in FIG. 7, lithium ions are more likely to be occluded in the inner surface of the outer shell 11 and the silicon nanoparticles 13 that are exposed in the internal space 12. The lithium ions occluded in the inner surface of the outer shell 11 and the silicon nanoparticles 13 are easily released. Therefore, as compared with a lithium ion secondary battery using a conventional negative electrode active material as a negative electrode material, a lithium ion secondary battery 100 capable of high rate charge / discharge can be obtained.
 また、負極活物質1に含まれる微粒子10の外殻11が開口部11aを有することで、リチウムイオン二次電池100の充放電に伴う外殻11の膨張、収縮の際の応力が開口部11aによって緩和される。したがって、負極活物質1の微粒子10の外殻11が膨張、収縮に伴って破壊することを防止できる。 Further, since the outer shell 11 of the fine particles 10 included in the negative electrode active material 1 has the opening 11a, the stress at the time of expansion and contraction of the outer shell 11 due to charging / discharging of the lithium ion secondary battery 100 is caused by the opening 11a. Is alleviated by. Therefore, it is possible to prevent the outer shell 11 of the fine particles 10 of the negative electrode active material 1 from being destroyed along with expansion and contraction.
 また、外殻11の外面にカーボンナノチューブが形成されている場合など、外殻11の外面に外殻11よりも導電性が高い高導電材が保持されている場合には、外殻11全体の導電性がさらに向上すると共に、外殻11の機械的強度を向上させることができる。 Further, when a highly conductive material having higher conductivity than the outer shell 11 is held on the outer surface of the outer shell 11 such as when carbon nanotubes are formed on the outer surface of the outer shell 11, The electrical conductivity is further improved, and the mechanical strength of the outer shell 11 can be improved.
 また、前記式(2)に基づいて、負極活物質1を構成する微粒子10の内部空間12に対するシリコンナノ粒子13の体積占有率Vcを、例えば0.74以下とすることで、外殻11の内部空間12に収容されたシリコンナノ粒子13の体積がリチウムイオン二次電池の充電により増加しても、外殻11が破壊することを防止できる。したがって、シリコンナノ粒子13の導電性が外殻11により保持され、長寿命の負極122を提供することが可能になる。また、外殻11の内部空間12に対するシリコンナノ粒子13の体積占有率Vcを0.2以上とすることで、負極容量密度の低下を防止して、十分な負極容量密度を確保することができる。 Moreover, based on the said Formula (2), the volume occupation rate Vc of the silicon nanoparticle 13 with respect to the internal space 12 of the microparticle 10 which comprises the negative electrode active material 1 shall be 0.74 or less, for example, and the outer shell 11 Even if the volume of the silicon nanoparticles 13 accommodated in the internal space 12 is increased by charging the lithium ion secondary battery, the outer shell 11 can be prevented from being broken. Therefore, the conductivity of the silicon nanoparticles 13 is maintained by the outer shell 11, and it is possible to provide a long-life negative electrode 122. In addition, by setting the volume occupancy Vc of the silicon nanoparticles 13 to the internal space 12 of the outer shell 11 to be 0.2 or more, it is possible to prevent a decrease in the negative electrode capacity density and to secure a sufficient negative electrode capacity density. .
 また、負極活物質1が、薄片状の外殻11上にシリコンナノ粒子13が保持された薄片状微粒子10aを含む場合には、リチウムイオンの拡散がさらに容易になる。すなわち、薄片状微粒子10aが存在することで、リチウムイオン二次電池100の充放電の性能を向上させることができる。また、外殻11の構造を維持した粒状微粒子10bと薄片状微粒子10aが共存することにより、負極122全体の電解液Lのチャンネルを形成しつつ、微粒子10に対する高率充放電が可能となる。なお、本実施形態においては、負極活物質1の微粒子10が外殻11の構造を維持した粒状微粒子10bを含むことが必須である。粒状微粒子10bが存在することで、負極合剤層122bの表面から集電体122aまでの電解液Lのチャンネルが形成され、負極合剤層122b全体に低抵抗な電子伝導性ネットワークが保持されるので、負極122の厚さ方向において、均一な充放電が可能になるからである。 Further, when the negative electrode active material 1 includes the flaky fine particles 10a in which the silicon nanoparticles 13 are held on the flaky outer shell 11, the diffusion of lithium ions is further facilitated. That is, the presence of the flaky fine particles 10a can improve the charge / discharge performance of the lithium ion secondary battery 100. Further, the granular fine particles 10b maintaining the structure of the outer shell 11 and the flaky fine particles 10a can coexist, and the high-rate charge / discharge of the fine particles 10 can be performed while forming a channel of the electrolytic solution L of the entire negative electrode 122. In the present embodiment, it is essential that the fine particles 10 of the negative electrode active material 1 include granular fine particles 10b in which the structure of the outer shell 11 is maintained. Due to the presence of the granular fine particles 10b, a channel of the electrolytic solution L from the surface of the negative electrode mixture layer 122b to the current collector 122a is formed, and a low-resistance electron conductive network is maintained in the entire negative electrode mixture layer 122b. Therefore, uniform charge / discharge is possible in the thickness direction of the negative electrode 122.
 また、負極活物質1の空隙率Vaが、0.2以上かつ0.5以下の範囲である場合には、負極活物質1を構成する微粒子10の外殻11が破壊されることが防止され、高容量の負極122を提供することが可能になる。また、負極合剤層122bにおける負極空隙率が、0.72以上かつ0.82以下の範囲にあり、より好ましくは0.74以上かつ0.81以下の範囲にあることで、電解液Lが負極合剤層122bに良好に保持され、高容量の負極122を提供することが可能になる。 Further, when the porosity Va of the negative electrode active material 1 is in the range of 0.2 or more and 0.5 or less, the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is prevented from being broken. Therefore, it is possible to provide the high capacity negative electrode 122. Moreover, the negative electrode porosity in the negative mix layer 122b exists in the range of 0.72 or more and 0.82 or less, More preferably, it exists in the range of 0.74 or more and 0.81 or less. It is possible to provide a high capacity negative electrode 122 that is well retained by the negative electrode mixture layer 122b.
(負極活物質の製造方法)
 次に、本実施形態の負極活物質1の製造方法の一例について説明する。図3は、負極活物質1の製造工程の一例を示すフロー図である。図4A~図4Cは、負極活物質1に含まれる微粒子10の製造過程を示す模式的な断面図であり、図4Aは第1前駆体10Aの断面図、図4Bは第2前駆体10Bの断面図、図4Cは製造された微粒子10の断面図である。本実施形態の負極活物質1の製造方法は、図3に示す第1前駆体の製造工程S1、第2前駆体の製造工程S2、微粒子の製造工程S3、及び負極活物質の調製工程S4を有している。
(Method for producing negative electrode active material)
Next, an example of the manufacturing method of the negative electrode active material 1 of this embodiment is demonstrated. FIG. 3 is a flowchart showing an example of the manufacturing process of the negative electrode active material 1. 4A to 4C are schematic cross-sectional views showing the production process of the fine particles 10 contained in the negative electrode active material 1, FIG. 4A is a cross-sectional view of the first precursor 10A, and FIG. 4B is a view of the second precursor 10B. FIG. 4C is a cross-sectional view of the manufactured fine particles 10. The manufacturing method of the negative electrode active material 1 of the present embodiment includes a first precursor manufacturing step S1, a second precursor manufacturing step S2, a fine particle manufacturing step S3, and a negative electrode active material preparing step S4 shown in FIG. Have.
(第1前駆体の製造工程)
 第1前駆体10Aの製造工程S1では、まず、外殻11の融点よりも低い温度で熱分解する粒状物として、例えば、図4Aに示す樹脂ビーズBを用意する。樹脂ビーズBの材料としては、リチウムイオン二次電池100の集電体122aが酸化されず、かつ機械的強度が低下しない温度範囲で分解又は溶融する材料を選択する。負極122の集電体122aが銅製である場合には、例えば300℃以下の温度で分解又は溶融する材料が、樹脂ビーズBの材料として好適である。このような樹脂ビーズBの材料として、例えば、ポリエチレン、ポリウレタン、エチレン-ブタジエン共重合体から選択される1又は2以上の材料の混合物を用いることができる。
(Manufacturing process of the first precursor)
In the manufacturing process S1 of the first precursor 10A, first, for example, resin beads B shown in FIG. 4A are prepared as granular materials that are thermally decomposed at a temperature lower than the melting point of the outer shell 11. As the material of the resin beads B, a material that is decomposed or melted in a temperature range in which the current collector 122a of the lithium ion secondary battery 100 is not oxidized and the mechanical strength does not decrease is selected. In the case where the current collector 122a of the negative electrode 122 is made of copper, for example, a material that decomposes or melts at a temperature of 300 ° C. or lower is suitable as the material of the resin beads B. As a material for such resin beads B, for example, a mixture of one or more materials selected from polyethylene, polyurethane, and ethylene-butadiene copolymer can be used.
 樹脂ビーズBの形状は、例えば球形である。樹脂ビーズBの粒径の範囲は、例えば負極合剤層122bの厚さの1/2以下であることが望ましく、平均粒径の範囲が例えば0.01μm以上かつ10μm以下であることが望ましい。本実施形態においては、平均粒径が1μmのポリウレタン製の樹脂ビーズBを用いる。 The shape of the resin beads B is, for example, a sphere. The range of the particle size of the resin beads B is desirably, for example, ½ or less of the thickness of the negative electrode mixture layer 122b, and the range of the average particle size is desirably, for example, 0.01 μm or more and 10 μm or less. In the present embodiment, polyurethane resin beads B having an average particle diameter of 1 μm are used.
 次に、この樹脂ビーズBからなる粉末にシリコンナノ粒子13を添加して混合する。例えば、平均粒径が100nmのシリコンナノ粒子13を好適に用いることができる。混合するシリコンナノ粒子13と樹脂ビーズBの組成比は、例えば10:1(体積比)とすることができる。得られた混合物を公知のメカニカルフュージョン装置によって処理し、樹脂ビーズBの表面に複数のシリコンナノ粒子13を保持させる。これにより、樹脂ビーズBの表面に複数のシリコンナノ粒子13が付着した第1前駆体10Aが得られる。 Next, the silicon nanoparticles 13 are added to the powder made of the resin beads B and mixed. For example, silicon nanoparticles 13 having an average particle diameter of 100 nm can be suitably used. The composition ratio of the silicon nanoparticles 13 to be mixed and the resin beads B can be set to, for example, 10: 1 (volume ratio). The obtained mixture is processed by a known mechanical fusion device to hold the plurality of silicon nanoparticles 13 on the surface of the resin beads B. Thereby, the 1st precursor 10A in which the some silicon nanoparticle 13 adhered to the surface of the resin bead B is obtained.
 第1前駆体10Aの樹脂ビーズBの表面におけるシリコンナノ粒子13の付着数nは、例えば以下の手順により計測することができる。まず、走査型電子顕微鏡による顕微鏡写真に基づき、単位表面積当たりのシリコンナノ粒子13の付着数を計測する。次に、単位表面積当たりのシリコンナノ粒子13の付着数を、樹脂ビーズBの表面積における付着数nに換算する。本実施形態における、第1前駆体10Aの樹脂ビーズBの表面におけるシリコンナノ粒子13の付着数nの平均値は、例えば約200個~約250個の範囲内であり、例えば約230個である。 The number n of silicon nanoparticles 13 deposited on the surface of the resin beads B of the first precursor 10A can be measured, for example, by the following procedure. First, the number of adhered silicon nanoparticles 13 per unit surface area is measured based on a photomicrograph taken with a scanning electron microscope. Next, the number of adhesion of the silicon nanoparticles 13 per unit surface area is converted into the number n of adhesion on the surface area of the resin beads B. In this embodiment, the average value n of the number n of silicon nanoparticles 13 on the surface of the resin beads B of the first precursor 10A is, for example, in the range of about 200 to about 250, for example, about 230. .
(第2前駆体の製造工程)
 第2前駆体10Bの製造工程S2では、図4Bに示すように、第1前駆体10Aの表面に、外殻11を構成する材料からなる層を形成することで外殻11を形成し、第2前駆体10Bを製造する。本実施形態では、第1前駆体10Aの表面全体にシリコン(Si)からなる層を形成することで外殻11を形成する。
(Manufacturing process of the second precursor)
In the manufacturing process S2 of the second precursor 10B, as shown in FIG. 4B, the outer shell 11 is formed by forming a layer made of a material constituting the outer shell 11 on the surface of the first precursor 10A. 2 precursor 10B is manufactured. In the present embodiment, the outer shell 11 is formed by forming a layer made of silicon (Si) over the entire surface of the first precursor 10A.
 まず、第1前駆体10Aからなる粉体を、例えばロータリーキルン炉等、粉体に対する熱処理及びプラズマCVD(化学気相成長)法による処理が可能な装置内に収容する。そして、プラズマCVD法により第1前駆体10Aの表面全体にシリコン(Si)からなる層を形成して、外殻11を形成する。シリコンからなる層の厚さ、すなわち外殻11の厚さは、例えば100±10nmとすることができる。これにより、複数のシリコンナノ粒子13が樹脂ビーズBの表面に付着し、かつ外殻11の内面に保持された第2前駆体10Bが得られる。 First, the powder composed of the first precursor 10A is accommodated in an apparatus capable of performing heat treatment and plasma CVD (chemical vapor deposition) on the powder, such as a rotary kiln furnace. Then, a layer made of silicon (Si) is formed on the entire surface of the first precursor 10A by the plasma CVD method, and the outer shell 11 is formed. The thickness of the layer made of silicon, that is, the thickness of the outer shell 11 can be set to 100 ± 10 nm, for example. Thereby, the 2nd precursor 10B by which the some silicon nanoparticle 13 adhered to the surface of the resin bead B and was hold | maintained at the inner surface of the outer shell 11 is obtained.
(微粒子の製造工程)
 微粒子10の製造工程S3では、第2前駆体10Bを加熱して、図4Cに示す微粒子10を製造する。まず、第2前駆体10Bを、例えばロータリーキルン炉等、熱処理が可能な装置内で加熱して、樹脂ビーズBを熱分解させる。第2前駆体10Bを、例えば真空雰囲気で300℃まで加熱し、例えば約3時間の熱処理を行う。この熱処理によって、樹脂ビーズBが熱分解してガス化することで外殻11の内圧が増加し、外殻11の一部が破壊されて開口部11aが形成される。そして形成された開口部11aから、樹脂ビーズBの熱分解により生成された分解物であるガスが外部空間に放出され、樹脂ビーズBが消失する。これにより、外殻11に内部空間12が形成され、外殻11の破壊された部分は開口部11aとなる。また、シリコンナノ粒子13は、外殻11の内面に保持され、内部空間12に露出した状態になる。
(Production process of fine particles)
In the manufacturing step S3 of the fine particles 10, the second precursor 10B is heated to manufacture the fine particles 10 shown in FIG. 4C. First, the second precursor 10B is heated in a heat-treatable apparatus such as a rotary kiln furnace to thermally decompose the resin beads B. The second precursor 10B is heated to 300 ° C. in a vacuum atmosphere, for example, and is subjected to heat treatment for about 3 hours, for example. By this heat treatment, the resin beads B are thermally decomposed and gasified, whereby the internal pressure of the outer shell 11 is increased, and a part of the outer shell 11 is broken to form the opening 11a. And the gas which is the decomposition product produced | generated by the thermal decomposition of the resin bead B is discharged | emitted from the formed opening part 11a to external space, and the resin bead B lose | disappears. As a result, an internal space 12 is formed in the outer shell 11, and the destroyed portion of the outer shell 11 becomes an opening 11 a. In addition, the silicon nanoparticles 13 are held on the inner surface of the outer shell 11 and are exposed to the internal space 12.
 以上により、導電性の外殻11と、外殻11の内面に保持されて内部空間12に露出する複数のシリコンナノ粒子13と、を備えた微粒子10が得られる。また、微粒子10の外殻11には、外殻11の外部空間と内部空間12とを連通する開口部11aが形成される。 As described above, the fine particles 10 including the conductive outer shell 11 and the plurality of silicon nanoparticles 13 held on the inner surface of the outer shell 11 and exposed to the inner space 12 are obtained. Further, the outer shell 11 of the fine particle 10 is formed with an opening 11 a that communicates the outer space of the outer shell 11 and the inner space 12.
 例えば、樹脂ビーズBの大きさ及び組成、外殻11の厚さ及び強度、加熱処理の温度及び時間等の条件によっては、樹脂ビーズBが熱分解して外殻11の一部を破壊しながら消失し、1又は2以上の開口部11aを有する粒状微粒子10bが形成されるだけでなく、開口部11aが外殻11の全体に及ぶことで粒状微粒子10bが分裂して薄片状微粒子10aが形成される。 For example, depending on conditions such as the size and composition of the resin beads B, the thickness and strength of the outer shell 11, the temperature and time of the heat treatment, etc., the resin beads B are thermally decomposed while destroying a part of the outer shell 11. It disappears and not only the granular fine particles 10b having one or more openings 11a are formed, but also the openings 11a extend over the entire outer shell 11 so that the granular fine particles 10b are split to form flaky particles 10a. Is done.
(負極活物質の調製)
 負極活物質の調製工程S4では、前記の微粒子10等を集合させ、或いは、前記の微粒子10等を例えば従来の負極活物質等の他の物質と混合することで、負極活物質1を調製する。これにより、微粒子10を主に含む負極活物質1が得られる。なお、負極活物質の調製工程S4の前に、高導電材の形成工程S4a又は被覆層の形成工程S4bを有していてもよい。
(Preparation of negative electrode active material)
In the negative electrode active material preparation step S4, the negative electrode active material 1 is prepared by assembling the fine particles 10 or the like, or mixing the fine particles 10 or the like with other materials such as a conventional negative electrode active material. . Thereby, the negative electrode active material 1 mainly containing the fine particles 10 is obtained. Note that a high conductive material forming step S4a or a coating layer forming step S4b may be included before the negative electrode active material preparing step S4.
 高導電材の形成工程S4aにおいては、微粒子10の外殻11の外面に、外殻11よりも導電性が高い高導電材を形成する。例えば、公知の蒸着装置に微粒子10の集合体である粉体を収容し、微粒子10の外殻11の表面に数十ppmの鉄触媒を蒸着する。その後、プロパンを供給して、微粒子10の外殻11の表面にカーボンナノチューブ(CNT)を成長させる。微粒子10の集合体である粉体の重量に対するCNTの量は、例えば1重量%とすることができる。 In the high conductive material forming step S4a, a high conductive material having higher conductivity than the outer shell 11 is formed on the outer surface of the outer shell 11 of the fine particles 10. For example, powder that is an aggregate of the fine particles 10 is accommodated in a known vapor deposition apparatus, and several tens of ppm of iron catalyst is vapor-deposited on the surface of the outer shell 11 of the fine particles 10. Thereafter, propane is supplied to grow carbon nanotubes (CNT) on the surface of the outer shell 11 of the fine particles 10. The amount of CNTs relative to the weight of the powder that is an aggregate of the fine particles 10 can be set to 1% by weight, for example.
 一方、被覆層の形成工程S4bにおいては、微粒子10の外殻11の外面に被覆層を形成する。例えば、公知の回転式環状炉に微粒子10の集合体である粉体を収容し、微粒子10とフッ素ガスを接触させて、外殻11の表面に被覆層としてのフッ化物層を形成する。また、回転式環状炉に収容した微粒子10に、例えばプロパンガス接触させ、例えば約900℃以上かつ約1000℃以下で加熱処理することにより、外殻11の表面に被覆層として炭化物層(カーバイド)を形成する。また、回転式環状炉に収容した微粒子10に例えばアンモニアガスを接触させて、外殻11の表面に、被覆層として窒化物層を形成する。また、負極活物質1を用いた負極122を有するリチウムイオン二次電池100の電解液Lに、例えばプロパンスルトンを添加し、リチウムイオン二次電池100の充放電を行うことによって、微粒子10の外殻11に被覆層として硫化物層を形成してもよい。被覆層の厚さは、例えば約5nmとすることができる。 On the other hand, in the coating layer forming step S4b, a coating layer is formed on the outer surface of the outer shell 11 of the fine particles 10. For example, a powder as an aggregate of the fine particles 10 is accommodated in a known rotary annular furnace, and the fine particles 10 are brought into contact with the fluorine gas to form a fluoride layer as a coating layer on the surface of the outer shell 11. Further, the fine particle 10 accommodated in the rotary annular furnace is brought into contact with, for example, propane gas, and subjected to heat treatment at, for example, about 900 ° C. or more and about 1000 ° C. or less, thereby forming a carbide layer (carbide) as a coating layer on the surface of the outer shell 11. Form. Further, for example, ammonia gas is brought into contact with the fine particles 10 accommodated in the rotary annular furnace to form a nitride layer as a coating layer on the surface of the outer shell 11. Further, for example, propane sultone is added to the electrolytic solution L of the lithium ion secondary battery 100 having the negative electrode 122 using the negative electrode active material 1, and charging and discharging of the lithium ion secondary battery 100 are performed. A sulfide layer may be formed on the shell 11 as a coating layer. The thickness of the coating layer can be about 5 nm, for example.
 なお、初期充放電後にリチウムイオン二次電池100を解体し、X線光電子分光法により微粒子10の外殻11の表面組成を分析することができる。また、薄片状微粒子10aのシリコンナノ粒子13を分析することにより、シリコンナノ粒子13の表面組成を分析することができる。被覆層の厚さはアルゴンエッチングを行うことにより測定可能である。 In addition, the lithium ion secondary battery 100 can be disassembled after the initial charge / discharge, and the surface composition of the outer shell 11 of the fine particles 10 can be analyzed by X-ray photoelectron spectroscopy. Moreover, the surface composition of the silicon nanoparticle 13 can be analyzed by analyzing the silicon nanoparticle 13 of the flaky fine particle 10a. The thickness of the coating layer can be measured by performing argon etching.
 本実施形態の製造方法により製造した負極活物質1の比表面積は、例えば約190m/gである。比表面積の測定は、例えば、窒素ガスを用いたBET(Brunauer-Emmett-Teller)法により測定することができる。負極活物質1の比表面積は、例えば50m/g以上かつ230m/g以下であることが好ましい。 The specific surface area of the negative electrode active material 1 manufactured by the manufacturing method of the present embodiment is, for example, about 190 m 2 / g. The specific surface area can be measured, for example, by the BET (Brunauer-Emmett-Teller) method using nitrogen gas. The specific surface area of the negative electrode active material 1 is preferably, for example, 50 m 2 / g or more and 230 m 2 / g or less.
 なお、高導電材の形成工程S4aの後に被覆層の形成工程S4bを行うか、又は被覆層の形成工程S4bの後に高導電材の形成工程S4aを行って、外殻11の外面に高導電材と被覆層の双方を形成してもよい。 The coating layer forming step S4b is performed after the high conductive material forming step S4a, or the coating layer forming step S4b is performed after the high conductive material forming step S4a, so that the high conductivity material is formed on the outer surface of the outer shell 11. And both coating layers may be formed.
 (微粒子の外殻とシリコンナノ粒子との関係)
 次に、樹脂ビーズBとシリコンナノ粒子13との関係に基づいて、微粒子10における外殻11とシリコンナノ粒子13との関係について説明する。
(Relationship between outer shell of fine particles and silicon nanoparticles)
Next, the relationship between the outer shell 11 and the silicon nanoparticles 13 in the fine particles 10 will be described based on the relationship between the resin beads B and the silicon nanoparticles 13.
 図4Aに示すように、樹脂ビーズB及びシリコンナノ粒子13を、それぞれ半径R及び半径rの球と仮定する。そして、樹脂ビーズBの半径Rと、シリコンナノ粒子13の半径rと、樹脂ビーズBの表面に付着するシリコンナノ粒子13の数nとの関係を考える。シリコンナノ粒子13の数nが最大となるのは、樹脂ビーズBの表面にシリコンナノ粒子13を最密で配置した場合である。このシリコンナノ粒子13の最大の数nを求めるには、半径(R+r)の球の表面に、半径rの円を重なることなく配置可能な最大の数nを求めればよい。半径(R+r)の球の表面積は4π・(R+r)であり、半径rの円の面積はπrであるから、面における円の最大占有率を0.91とすると、以下の式(5)が得られる。
     n・πr≦0.91・4π・(R+r) …(5)
As shown in FIG. 4A, it is assumed that the resin beads B and the silicon nanoparticles 13 are spheres having a radius R and a radius r, respectively. Then, consider the relationship between the radius R of the resin beads B, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 attached to the surface of the resin beads B. The number n of the silicon nanoparticles 13 is maximized when the silicon nanoparticles 13 are arranged on the surface of the resin beads B in a close-packed manner. In order to obtain the maximum number n of silicon nanoparticles 13, the maximum number n that can be arranged on the surface of a sphere having a radius (R + r) without overlapping a circle having a radius r may be obtained. Since the surface area of the sphere having the radius (R + r) is 4π · (R + r) 2 and the area of the circle having the radius r is πr 2 , assuming that the maximum occupancy ratio of the circle on the surface is 0.91, the following formula (5 ) Is obtained.
n · πr 2 ≦ 0.91 · 4π · (R + r) 2 (5)
 式(5)から、以下の式(6)が得られる。
     Sc≦0.91             …(6)
From the equation (5), the following equation (6) is obtained.
Sc ≦ 0.91 (6)
 なお、Scは、樹脂ビーズBの表面に対するシリコンナノ粒子13の面積占有率、すなわち外殻11の内面に対するシリコンナノ粒子13の面積占有率であり、以下の式(7)により表される。
     Sc=n・r/{4・(R+r)}   …(7)
Note that Sc is an area occupancy ratio of the silicon nanoparticles 13 with respect to the surface of the resin beads B, that is, an area occupancy ratio of the silicon nanoparticles 13 with respect to the inner surface of the outer shell 11 and is represented by the following formula (7).
Sc = n · r 2 / {4 · (R + r) 2 } (7)
 また、図4Bに示す外殻11の内面から外殻11の中心までの距離、すなわち外殻11の内半径Riは、以下の式(8)により表される。
     Ri=R+2r             …(8)
Moreover, the distance from the inner surface of the outer shell 11 shown in FIG. 4B to the center of the outer shell 11, that is, the inner radius Ri of the outer shell 11 is expressed by the following equation (8).
Ri = R + 2r (8)
 式(7)と式(8)から、シリコンナノ粒子13の面積占有率Scは、シリコンナノ粒子13の数nと、シリコンナノ粒子13の半径rと、外殻11の内半径Riとを用いて、以下の式(9)により表される。
     Sc=n・r/{4・(Ri-r)}   …(9)
From the formulas (7) and (8), the area occupation ratio Sc of the silicon nanoparticles 13 uses the number n of the silicon nanoparticles 13, the radius r of the silicon nanoparticles 13, and the inner radius Ri of the outer shell 11. Is represented by the following equation (9).
Sc = n · r 2 / {4 · (Ri−r) 2 } (9)
 前記式(9)は式(7)と実質的に同じであるが、この式を用いれば、外殻11の内半径Riと、シリコンナノ粒子13の半径rと、シリコンナノ粒子13の数nとから、外殻11の内面に対するシリコンナノ粒子13の面積占有率Scを算出することができる。また、所定の面積占有率Scに基づいて、外殻11の内半径Riと、シリコンナノ粒子13の半径rと、シリコンナノ粒子13の数nを決定することができる。 The equation (9) is substantially the same as the equation (7), but if this equation is used, the inner radius Ri of the outer shell 11, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 will be described. From the above, the area occupation ratio Sc of the silicon nanoparticles 13 with respect to the inner surface of the outer shell 11 can be calculated. Further, the inner radius Ri of the outer shell 11, the radius r of the silicon nanoparticles 13, and the number n of the silicon nanoparticles 13 can be determined based on the predetermined area occupation ratio Sc.
 以下、本実施形態の負極活物質1の製造方法の作用について説明する。 Hereinafter, the operation of the method for producing the negative electrode active material 1 of the present embodiment will be described.
 本実施形態では、負極活物質1を構成する微粒子10の外殻11の融点よりも低い温度で熱分解する粒状物として、樹脂ビーズBを用いている。そのため、この樹脂ビーズBを核としてその周囲にシリコンナノ粒子13を配置した第1前駆体10Aを形成し、第1前駆体10Aの表面を覆う薄い外殻11を形成することで、外殻11の内面にシリコンナノ粒子13を保持させることができる。 In this embodiment, resin beads B are used as granular materials that are thermally decomposed at a temperature lower than the melting point of the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1. Therefore, by forming the first precursor 10A in which the silicon nanoparticles 13 are arranged around the resin beads B as a nucleus, and forming the thin outer shell 11 covering the surface of the first precursor 10A, the outer shell 11 is formed. The silicon nanoparticles 13 can be held on the inner surface of the substrate.
 さらに、複数のシリコンナノ粒子13が樹脂ビーズBの表面に付着し、かつ外殻11の内面に保持された第2前駆体10Bを加熱することで、外殻11に内部空間12と開口部11aとを同時に形成し、微粒子10を製造することができる。したがって、微粒子10の製造が容易になり、生産性を向上させることができる。 Further, by heating the second precursor 10B having a plurality of silicon nanoparticles 13 attached to the surface of the resin beads B and held on the inner surface of the outer shell 11, the inner space 12 and the opening 11a are formed in the outer shell 11. And the fine particles 10 can be manufactured. Therefore, the manufacture of the fine particles 10 is facilitated, and the productivity can be improved.
 また、樹脂ビーズBの粒径を調整することで、製造される微粒子10の粒径を自由に調整することが可能になる。また、樹脂ビーズBの粒径を調整することで、外殻11の内部空間12の平均容積Cを調整することができる。したがって、前記の式(1)~(3)に基づいて、微粒子10の外殻の平均容積Cを調整することで、リチウムイオン二次電池100の充電時にシリコンナノ粒子13が膨張しても、シリコンナノ粒子13が内部空間12に収まるようにすることができる。したがって、リチウムイオン二次電池100の充電時に負極活物質1を構成する微粒子10の外殻11が破壊されることが防止され、従来よりもリチウムイオン二次電池100の寿命を延長することができる。 Further, by adjusting the particle size of the resin beads B, it is possible to freely adjust the particle size of the manufactured fine particles 10. Further, by adjusting the particle size of the resin beads B, the average volume C of the internal space 12 of the outer shell 11 can be adjusted. Therefore, by adjusting the average volume C of the outer shell of the fine particles 10 based on the above formulas (1) to (3), even if the silicon nanoparticles 13 expand when the lithium ion secondary battery 100 is charged, The silicon nanoparticles 13 can be accommodated in the internal space 12. Therefore, the outer shell 11 of the fine particles 10 constituting the negative electrode active material 1 is prevented from being destroyed when the lithium ion secondary battery 100 is charged, and the life of the lithium ion secondary battery 100 can be extended as compared with the conventional case. .
 また、樹脂ビーズBの平均粒径を例えば0.01μm以上かつ10μm以下の範囲とすることで、負極活物質1の比表面積を十分に大きくすることができる。したがって、本実施形態の負極活物質1を負極材料として用いたリチウムイオン二次電池100において、従来よりも負極活物質1と電解液Lの接触面積を増加させることができ、リチウムイオン二次電池100の高率充放電が可能になる。 Moreover, the specific surface area of the negative electrode active material 1 can be made sufficiently large by setting the average particle diameter of the resin beads B in the range of 0.01 μm or more and 10 μm or less, for example. Therefore, in the lithium ion secondary battery 100 using the negative electrode active material 1 of the present embodiment as the negative electrode material, the contact area between the negative electrode active material 1 and the electrolyte L can be increased as compared with the conventional case, and the lithium ion secondary battery 100 high rate charge / discharge becomes possible.
 また、負極活物質1に含まれる微粒子10の外殻11の外面に、外殻11よりも導電性に優れた材料(導電材)を保持させることにより、負極活物質1の微粒子10間の導電性を向上させ、リチウムイオン二次電池100の初期容量と容量維持率を向上させることができる。 Further, by holding a material (conductive material) having a conductivity higher than that of the outer shell 11 on the outer surface of the outer shell 11 of the fine particles 10 included in the negative electrode active material 1, the conductivity between the fine particles 10 of the negative electrode active material 1. The initial capacity and capacity retention rate of the lithium ion secondary battery 100 can be improved.
 また、負極活物質1に含まれる微粒子10の外殻11の少なくとも外面に、電解液Lと反応しない被覆層を形成することにより、電解液Lの分解が抑制され、リチウムイオン二次電池100の容量維持率を向上させることができる。窒化シリコン、フッ化シリコン、炭化シリコン、硫化シリコンなどのシリコン化合物は、非水溶媒や電解質の還元分解に対して、シリコン金属よりも低い触媒活性を示すので、好適な被覆層になりうる。本実施例では、外殻11の外側に被覆層を形成したが、外殻11の内側に被覆層を形成すれば、電解液の分解量を低減できるので、より望ましい。 Further, by forming a coating layer that does not react with the electrolytic solution L on at least the outer surface of the outer shell 11 of the fine particles 10 contained in the negative electrode active material 1, decomposition of the electrolytic solution L is suppressed, and the lithium ion secondary battery 100 The capacity maintenance rate can be improved. Silicon compounds such as silicon nitride, silicon fluoride, silicon carbide, and silicon sulfide exhibit a lower catalytic activity than non-aqueous solvents and electrolytes for reductive decomposition, and thus can be suitable coating layers. In this embodiment, the coating layer is formed on the outer side of the outer shell 11. However, if the coating layer is formed on the inner side of the outer shell 11, the decomposition amount of the electrolytic solution can be reduced, which is more desirable.
 前述の窒化物等は、シリコン外殻表面にて反応ガスを分解させて、形成することができる。反応ガスには、アンモニア、フッ素、プロパン等の低分子炭化水素、硫化水素等を用いることができる。これらのガスをシリコン粒子に接触させ、反応ガスをシリコン表面で分解させると、前述の被覆層が形成される。反応ガスは、窒素やアルゴン等の不活性ガスで希釈し、1~10%の濃度にして、シリコンに接触させることが好ましい。反応ガス種類と被覆層の厚さによって、反応温度は300~900℃の範囲で調整ことができる。 The aforementioned nitride or the like can be formed by decomposing the reaction gas on the surface of the silicon outer shell. As the reaction gas, low molecular hydrocarbons such as ammonia, fluorine, and propane, hydrogen sulfide, and the like can be used. When these gases are brought into contact with silicon particles and the reaction gas is decomposed on the silicon surface, the above-described coating layer is formed. The reaction gas is preferably diluted with an inert gas such as nitrogen or argon to a concentration of 1 to 10% and brought into contact with silicon. Depending on the type of reaction gas and the thickness of the coating layer, the reaction temperature can be adjusted in the range of 300 to 900 ° C.
 また、前記式(5)~(9)によりシリコンナノ粒子13の面積占有率Scを求めることで、面積占有率Scを所定の値以下にすることが可能になり、シリコンナノ粒子13の膨張による外殻11の破壊を防止することが可能になる。 Further, by obtaining the area occupancy Sc of the silicon nanoparticles 13 by the above formulas (5) to (9), the area occupancy Sc can be reduced to a predetermined value or less, and due to the expansion of the silicon nanoparticles 13 It becomes possible to prevent the outer shell 11 from being broken.
(リチウムイオン二次電池の製造方法)
 次に、本実施形態のリチウムイオン二次電池100の製造方法について説明する。リチウムイオン二次電池100に用いられる負極122の製造工程においては、まず、前述の負極活物質1、バインダ、および有機溶媒を混合した負極スラリを製造する。例えば、負極活物質1を95重量%、PVDF(ポリフッ化ビニリデン)バインダを5重量%の比率で含む負極材料を、NMP(1-メチル-2-ピロリドン)を溶媒として混練し、負極スラリを製造する。負極材料の混練には、例えばプラネタリミキサ等の公知の混練機、分散機を用いることができる。なお、溶媒は、バインダを溶解させるものであれば特に限定されず、バインダの材質に応じて適宜選択することができる。本実施形態では、PVDFバインダを溶解させるために、溶媒としてNMPを用いている。
(Method for producing lithium ion secondary battery)
Next, the manufacturing method of the lithium ion secondary battery 100 of this embodiment is demonstrated. In the manufacturing process of the negative electrode 122 used in the lithium ion secondary battery 100, first, a negative electrode slurry in which the negative electrode active material 1, the binder, and the organic solvent are mixed is manufactured. For example, a negative electrode material containing 95% by weight of negative electrode active material 1 and 5% by weight of PVDF (polyvinylidene fluoride) binder is kneaded using NMP (1-methyl-2-pyrrolidone) as a solvent to produce a negative electrode slurry. To do. For the kneading of the negative electrode material, for example, a known kneader such as a planetary mixer or a disperser can be used. The solvent is not particularly limited as long as it dissolves the binder, and can be appropriately selected according to the material of the binder. In this embodiment, NMP is used as a solvent in order to dissolve the PVDF binder.
 次に、集電体122aである負極用金属箔を用意する。負極用金属箔としては、例えば、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などを用いることができ、銅以外の材質として、例えばステンレス鋼、チタン、ニッケルなども適用可能である。負極用の集電体122aは、リチウムイオン二次電池の使用中に溶解、酸化などの変化をせず、負極用金属箔として用いることができるものであれば、材質、形状、製造方法は、特に限定されない。本実施形態においては、厚さが10μmの圧延銅箔を用いる。 Next, a metal foil for negative electrode that is a current collector 122a is prepared. As the negative electrode metal foil, for example, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. can be used. As a material other than copper, for example, stainless steel, titanium, nickel and the like are also applicable. As long as the current collector 122a for the negative electrode can be used as the metal foil for the negative electrode without changing such as dissolution and oxidation during use of the lithium ion secondary battery, the material, shape, and manufacturing method are: There is no particular limitation. In the present embodiment, a rolled copper foil having a thickness of 10 μm is used.
 次に、例えば、ドクターブレード法、ディッピング法、スプレー法などにより、集電体122a上に負極スラリを塗布して、例えば約120℃の温度で乾燥させる乾燥処理を行う。その後、負極スラリが乾燥してできた負極活物質1からなる層を、例えばロールプレスにより圧縮して加圧成形することにより、所定の空隙率を有する負極合剤層122bを形成する。これにより、集電体122a上に負極合剤層122bが形成されたリチウムイオン二次電池100用の負極122が得られる。 Next, for example, a negative electrode slurry is applied on the current collector 122a by a doctor blade method, a dipping method, a spray method, or the like, and is dried at a temperature of about 120 ° C., for example. Thereafter, a layer made of the negative electrode active material 1 formed by drying the negative electrode slurry is compressed by, for example, a roll press and subjected to pressure molding to form the negative electrode mixture layer 122b having a predetermined porosity. Thereby, the negative electrode 122 for the lithium ion secondary battery 100 in which the negative electrode mixture layer 122b is formed on the current collector 122a is obtained.
 ここで、集電体122a上に塗布する負極スラリの厚さは、例えば約10μmとすることができる。また、負極合剤層122bの空隙率は、例えば72%とすることができる。負極合剤層122bの密度は、例えば0.6g/cmとすることができる。また、前記の乾燥処理においては、真空乾燥装置に負極スラリを塗布した集電体122aを収容し、例えば80℃の温度で加熱することでNMPを完全に除去することができる。なお、本実施形態では、集電体122a上への負極スラリの塗布は、ドクターブレード法により一回だけ行うが、負極スラリの塗布から乾燥までを複数回おこなうことにより、集電体122a上に多層合剤層を形成することも可能である。 Here, the thickness of the negative electrode slurry applied on the current collector 122a can be, for example, about 10 μm. The porosity of the negative electrode mixture layer 122b can be set to 72%, for example. The density of the negative electrode mixture layer 122b can be set to, for example, 0.6 g / cm 3 . In the drying process, the current collector 122a coated with the negative electrode slurry is accommodated in a vacuum drying apparatus, and the NMP can be completely removed by heating at a temperature of 80 ° C., for example. In the present embodiment, the application of the negative electrode slurry onto the current collector 122a is performed only once by the doctor blade method. However, the application from the negative electrode slurry to the drying is performed a plurality of times to thereby apply the negative electrode slurry onto the current collector 122a. It is also possible to form a multilayer mixture layer.
 また、図3に示す負極活物質1の製造工程において工程S3を省略し、樹脂ビーズBが除去されず、開口部11aが形成されていない負極活物質粒子(第2前駆体)を用いて負極合剤層を集電体122aに形成した後に、工程S3を実施しても良い。工程S3を負極合剤層の形成後に実施することにより、内部空間12における負極スラリの溶媒の残留量を低減して負極の長寿命化により有効である。 Further, in the manufacturing process of the negative electrode active material 1 shown in FIG. 3, the step S3 is omitted, and the negative electrode active material particles (second precursor) in which the resin beads B are not removed and the openings 11a are not formed are used. Step S3 may be performed after the mixture layer is formed on the current collector 122a. By carrying out step S3 after the formation of the negative electrode mixture layer, the residual amount of the solvent of the negative electrode slurry in the internal space 12 is reduced, which is effective for extending the life of the negative electrode.
 リチウムイオン二次電池100に用いられる正極121の製造工程においては、負極122の製造工程と同様に、まず、正極活物質、バインダ、および有機溶媒を混合した正極スラリを製造する。 In the manufacturing process of the positive electrode 121 used in the lithium ion secondary battery 100, as in the manufacturing process of the negative electrode 122, first, a positive electrode slurry in which a positive electrode active material, a binder, and an organic solvent are mixed is manufactured.
 正極活物質としては、LiCoO、LiNiO、及びLiMnが代表例である。他の例として、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-X(ただし、M=Co、Ni、Fe、Cr、Zn、Ta、X=0.01~0.2)、LiMnMO(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-XMn(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Ca、X=0.01~0.1)、LiNi1-X(ただし、M=Co、 Fe、Ga、X=0.01~0.2)、LiFeO、Fe(SO、LiCo1-X(ただし、M=Ni、Fe、Mn、X=0.01~0.2)、LiNi1-X(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mg、X=0.01~0.2)、Fe(MoO、FeF、LiFePO、LiMnPOなどを列挙することができる。なお、本実施形態の正極に用いられる正極活物質は、これらの材料に限定されない。本実施形態では、正極活物質として、LiNi1/3Mn1/3Co1/3を用いている。 Typical examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . Other examples include LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2 -X M X O 2 (where M = Co, Ni, Fe, Cr, Zn, Ta, X = 0.01-0.2), Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu, Zn), Li 1-X A X Mn 2 O 4 (where A = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, X = 0.01 to 0.1), LiNi 1-X M X O 2 (where M = Co, Fe, Ga, X = 0.01 to 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1-X M X O 2 (where M = Ni, Fe, Mn, X = 0.01 to 0.2), LiNi 1-X M X O 2 (M = Mn, Fe, Co, Al, Ga, Ca, Mg, X = 0 .01-0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4 and the like. In addition, the positive electrode active material used for the positive electrode of this embodiment is not limited to these materials. In this embodiment, LiNi 1/3 Mn 1/3 Co 1/3 O 2 is used as the positive electrode active material.
 正極活物質の粒径は、正極合剤層の厚さ以下になるように規定される。正極活物質の粉末中に正極合剤層の厚さ以上の粒径を有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去し、正極合剤層の厚さ以下の粒径の粒子を選別する。 The particle size of the positive electrode active material is specified to be equal to or less than the thickness of the positive electrode mixture layer. When the positive electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer, the coarse particles are previously removed by sieving classification, wind classification, etc. Sort particles of diameter.
 また、正極活物質は酸化物系の材料からなり、電気抵抗が高い。そのため、正極活物質の電気伝導性を補う炭素粉末からなる導電助剤を利用する。導電助剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛、非晶質炭素などの炭素材料を用いることができる。正極合剤層の内部に電子ネットワークを形成するために、導電助剤の粒径は、正極活物質の平均粒径よりも小さく、その平均粒径の1/10以下にすることが望ましい。正極活物質と導電助剤はともに粉末であるため、粉末にバインダを混合して粉末同士を結合させる。 Also, the positive electrode active material is made of an oxide-based material and has a high electric resistance. Therefore, a conductive additive made of carbon powder that supplements the electrical conductivity of the positive electrode active material is used. As the conductive assistant, for example, a carbon material such as acetylene black, carbon black, graphite, and amorphous carbon can be used. In order to form an electronic network inside the positive electrode mixture layer, the particle diameter of the conductive auxiliary agent is preferably smaller than the average particle diameter of the positive electrode active material and not more than 1/10 of the average particle diameter. Since the positive electrode active material and the conductive additive are both powders, a binder is mixed with the powders to bond the powders together.
 例えば、前記の正極活物質を89重量%、アセチレンブラックを4重量%、PVDFバインダを7重量%の比率で含む正極材料を、NMPを溶媒として混練し、正極スラリを製造する。正極材料の混練には、負極材料の混練と同様に、例えばプラネタリミキサを用いることができる。 For example, a positive electrode slurry containing 89% by weight of the positive electrode active material, 4% by weight of acetylene black and 7% by weight of PVDF binder is kneaded using NMP as a solvent to produce a positive electrode slurry. For the kneading of the positive electrode material, for example, a planetary mixer can be used as in the kneading of the negative electrode material.
 次に、集電体である正極用金属箔を用意する。正極用金属箔としては、例えば、厚さが10~100μmのアルミニウム箔、或いは、厚さが10~100μm、孔径0.11~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などを用いることができる。アルミニウム以外の材質として、例えばステンレス鋼、チタンなども適用可能である。なお、正極用の集電体は、リチウムイオン二次電池の使用中に溶解、酸化などの変化をせず、正極用金属箔として用いることができるものであれば、材質、形状、製造方法は、特に限定されない。本実施形態では、厚さ20μmのアルミニウム圧延箔を用いている。 Next, a positive electrode metal foil as a current collector is prepared. Examples of the positive electrode metal foil include an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.11 to 10 mm, an expanded metal, a foam metal plate, and the like. Can be used. As a material other than aluminum, for example, stainless steel, titanium, and the like are also applicable. As long as the current collector for the positive electrode can be used as a metal foil for the positive electrode without changing such as dissolution and oxidation during use of the lithium ion secondary battery, the material, shape, and manufacturing method are as follows. There is no particular limitation. In this embodiment, a 20 μm thick aluminum rolled foil is used.
 その後、負極122の製造工程と同様に、正極スラリを正極121用の集電体上に塗布し、乾燥処理を行い、圧縮して加圧成形することにより、正極合剤層を形成する。これにより、集電体上に正極合剤層が形成されたリチウムイオン二次電池用の正極121が得られる。本実施形態では、集電体上への正極スラリの塗布は、ドクターブレード法により一回だけ行うが、正極スラリの塗布から乾燥までを複数回おこなうことにより、集電体上に多層合剤層を形成することも可能である。 Thereafter, in the same manner as in the manufacturing process of the negative electrode 122, the positive electrode slurry is applied on the current collector for the positive electrode 121, dried, compressed and pressure-molded to form a positive electrode mixture layer. Thereby, the positive electrode 121 for a lithium ion secondary battery in which the positive electrode mixture layer is formed on the current collector is obtained. In this embodiment, the application of the positive electrode slurry on the current collector is performed only once by the doctor blade method, but the multilayer mixture layer is formed on the current collector by performing a plurality of times from the application of the positive electrode slurry to the drying. It is also possible to form
 前記の工程により製造した正極121と負極122とを、これらの間に絶縁体であるセパレータ123を介在させた状態で積層させて、電極群120を製造する。電極群120が捲回電極群である場合には、セパレータ123を介在させて積層させた正極121と負極122とを、捲回軸周りに捲回して電極群120を製造する。 The electrode group 120 is manufactured by laminating the positive electrode 121 and the negative electrode 122 manufactured by the above-described process with a separator 123 as an insulator interposed therebetween. When the electrode group 120 is a wound electrode group, the electrode group 120 is manufactured by winding the positive electrode 121 and the negative electrode 122 laminated with the separator 123 interposed therebetween around the winding axis.
 また、正極電池蓋112a、ガスケット113、内圧解放弁114、PTC抵抗素子115及び内蓋116を、一体構造の電池蓋ユニットとして組み立てる。また、電極群120の周囲にセパレータ123を配置した状態で、電極群120を電池容器110の筒状部111に収容する。また、正極121を正極集電タブ131により正極電池蓋112aに接続し、負極122を負極電池蓋112bに接続し、正極電池蓋112a及び負極電池蓋112bにより筒状部111の開口部111aを封止する。 Also, the positive battery cover 112a, the gasket 113, the internal pressure release valve 114, the PTC resistance element 115, and the inner cover 116 are assembled as an integrally structured battery cover unit. In addition, the electrode group 120 is accommodated in the cylindrical portion 111 of the battery container 110 with the separator 123 disposed around the electrode group 120. In addition, the positive electrode 121 is connected to the positive battery cover 112a by the positive current collecting tab 131, the negative electrode 122 is connected to the negative battery cover 112b, and the opening 111a of the cylindrical portion 111 is sealed by the positive battery cover 112a and the negative battery cover 112b. Stop.
 最後に、電池容器110に電解液Lを注入する。電解液Lは、正極電池蓋112aを取り付ける前に、筒状部111の開口部111aの上方から注入する。その後、正極電池蓋112aを取り付けて、筒状部111を封止する。電池蓋112aに予め設けた注液口から電解液を供給し、注液口をレーザー溶接等により封止しても良い。以上により、本実施形態のリチウムイオン二次電池100が得られる。 Finally, the electrolyte L is injected into the battery container 110. The electrolytic solution L is injected from above the opening 111a of the cylindrical portion 111 before attaching the positive battery cover 112a. Thereafter, the positive battery cover 112a is attached, and the cylindrical portion 111 is sealed. The electrolyte may be supplied from a liquid inlet provided in advance in the battery lid 112a, and the liquid inlet may be sealed by laser welding or the like. As described above, the lithium ion secondary battery 100 of the present embodiment is obtained.
(モジュール/組電池)
 図5は、図2に示すリチウムイオン二次電池100を8個直列に接続したモジュール(組電池)200の概略図である。モジュール200には、正極外部端子201及び負極外部端子202が接続され、該正極外部端子201及び負極外部端子202は、電力線304を介して充放電回路301に接続されている。充放電回路301には、信号線305を介して演算制御部302が接続されると共に、外部電力ケーブル306を介して給電負荷電源303が接続されている。
(Module / battery)
FIG. 5 is a schematic diagram of a module (assembled battery) 200 in which eight lithium ion secondary batteries 100 shown in FIG. 2 are connected in series. A positive external terminal 201 and a negative external terminal 202 are connected to the module 200, and the positive external terminal 201 and the negative external terminal 202 are connected to the charge / discharge circuit 301 via a power line 304. The charge / discharge circuit 301 is connected to an arithmetic control unit 302 via a signal line 305 and to a power supply load power source 303 via an external power cable 306.
 給電負荷電源303は、電力の供給と消費の両方の機能を兼ね備えており、モジュール200の有効性を確認するために、外部電源又は外部負荷の代わりに設置されている。すなわち、給電負荷電源303は、充放電回路301、電力ケーブル306を介してモジュール200より電力を受け取り、或いはモジュール200に電力を供給する電気自動車等の電気車両や工作機械、あるいは分散型電力貯蔵システムやバックアップ電源システムなどを想定して設けられている。 The power supply load power supply 303 has both power supply and consumption functions, and is installed in place of an external power supply or an external load in order to confirm the effectiveness of the module 200. That is, the power supply load power supply 303 receives electric power from the module 200 via the charging / discharging circuit 301 and the power cable 306, or an electric vehicle such as an electric vehicle that supplies power to the module 200, a machine tool, or a distributed power storage system. And a backup power supply system.
 演算制御部302は、給電負荷電源303がモジュール200に電力を供給する際に充放電回路301を充電モードに切り替え、モジュール200が給電負荷電源303に電力を供給する際に充放電回路301を放電モードに切り替える。 The arithmetic control unit 302 switches the charge / discharge circuit 301 to the charging mode when the power supply load power supply 303 supplies power to the module 200, and discharges the charge / discharge circuit 301 when the module 200 supplies power to the power supply load power supply 303. Switch to mode.
 充放電回路301は、充電モードにおいて給電負荷電源303からの充電電流をモジュール200に供給し、放電モードにおいてモジュール200からの放電電流を給電負荷電源303に供給する。 The charge / discharge circuit 301 supplies the charging current from the power supply load power supply 303 to the module 200 in the charging mode, and supplies the discharge current from the module 200 to the power supply load power supply 303 in the discharge mode.
 本実施形態のモジュール200は、前述のリチウムイオン二次電池100を備えている。したがって、モジュール200の容量密度を増加させることができる。また、モジュール200が給電負荷電源303との関係で充放電を繰り返し行っても、モジュール200の容量維持率の低下が抑制され、モジュール200のサイクル寿命を向上させることができる。 The module 200 of the present embodiment includes the above-described lithium ion secondary battery 100. Therefore, the capacity density of the module 200 can be increased. Further, even when the module 200 repeatedly performs charging / discharging in relation to the power supply load power supply 303, a decrease in the capacity maintenance rate of the module 200 is suppressed, and the cycle life of the module 200 can be improved.
(電池システム)
 図6は、図5に示すモジュール200を用いた電池システム400の概略図である。電池システム400は、直列に接続した2つのモジュール200A,200Bと、充放電制御器410と、を備えている。モジュール200A,200Bは、図5に示すモジュール200と同一の構成を有している。モジュール200Aの負極外部端子202Aは、電力ケーブル401により充放電制御器410の負極入力ターミナルに接続されている。電池モジュール200Aの正極外部端子201Aは、電力ケーブル402を介して、電池モジュール200Bの負極外部端子202Bに連結されている。電池モジュール200Bの正極外部端子201Bは、電力ケーブル403により充放電制御器410の正極入力ターミナルに接続されている。このような配線構成によって、2個の電池モジュール200A,200Bを充電又は放電させることができる。
(Battery system)
FIG. 6 is a schematic diagram of a battery system 400 using the module 200 shown in FIG. The battery system 400 includes two modules 200A and 200B connected in series and a charge / discharge controller 410. Modules 200A and 200B have the same configuration as module 200 shown in FIG. The negative external terminal 202A of the module 200A is connected to the negative input terminal of the charge / discharge controller 410 by the power cable 401. The positive external terminal 201A of the battery module 200A is connected to the negative external terminal 202B of the battery module 200B via the power cable 402. The positive external terminal 201B of the battery module 200B is connected to the positive input terminal of the charge / discharge controller 410 by the power cable 403. With such a wiring configuration, the two battery modules 200A and 200B can be charged or discharged.
 充放電制御器410は、電力ケーブル404,405を介して、外部機器500との間で電力の授受を行う。外部機器500は、充放電制御器410に給電するための外部電源及び回生モータ等の各種電気機器、並びに本システムが電力を供給するインバータ、コンバータ及び負荷を含む。外部機器500が対応する交流、直流の種類に応じて、インバータ等を設けることができる。これらの機器類は、公知のものを任意に適用することができる。 The charge / discharge controller 410 exchanges power with the external device 500 via the power cables 404 and 405. The external device 500 includes an external power source for supplying power to the charge / discharge controller 410 and various electric devices such as a regenerative motor, and an inverter, a converter, and a load that supply power from the system. An inverter or the like can be provided in accordance with the types of AC and DC that the external device 500 supports. As these devices, known devices can be arbitrarily applied.
 また、再生可能エネルギーを生み出す機器として風力発電機の動作条件を模擬した発電装置420が設置され、電力ケーブル406,407を介して充放電制御器410に接続されている。充放電制御器410は、発電装置420が発電するときには充電モードに移行し、外部機器500に給電すると共に余剰電力を電池モジュール200A,200Bに充電する。また、充放電制御器410は、風力発電機を模擬した発電装置420の発電量が外部機器500の要求電力よりも少ないときには、電池モジュール200A,200Bを放電させるように動作する。なお、発電装置420は他の発電装置、すなわち太陽電池、地熱発電装置、燃料電池、ガスタービン発電機などの任意の装置に置換することができる。充放電制御器410には、上述の動作をするように自動運転可能なプログラムを記憶させておく。 Also, a power generation device 420 that simulates the operating conditions of a wind power generator is installed as a device that generates renewable energy, and is connected to the charge / discharge controller 410 via power cables 406 and 407. When the power generation device 420 generates power, the charge / discharge controller 410 shifts to the charge mode, supplies power to the external device 500 and charges the battery modules 200A and 200B with surplus power. The charge / discharge controller 410 operates to discharge the battery modules 200 </ b> A and 200 </ b> B when the power generation amount of the power generation apparatus 420 simulating a wind power generator is smaller than the required power of the external device 500. The power generation device 420 can be replaced with another power generation device, that is, any device such as a solar cell, a geothermal power generation device, a fuel cell, or a gas turbine generator. The charge / discharge controller 410 stores a program that can be automatically operated so as to perform the above-described operation.
 本実施形態の電池システム400は、前述のリチウムイオン二次電池100を備えている。したがって、電池システム400の容量密度を、従来よりも増加させることができる。また、電池システム400が発電装置420及び外部機器500との関係で充放電を繰り返し行っても、電池システム400の容量維持率の低下が抑制され、電池システム400のサイクル寿命を向上させることができる。なお、電池の本数、直列数、並列数は、本実施形態に限定されず、需要者側に必要な電力量に応じて、直列数や並列数を増減することが可能である。 The battery system 400 of the present embodiment includes the lithium ion secondary battery 100 described above. Therefore, the capacity density of the battery system 400 can be increased as compared with the conventional case. In addition, even when the battery system 400 repeatedly performs charge and discharge in relation to the power generation device 420 and the external device 500, a decrease in the capacity maintenance rate of the battery system 400 is suppressed, and the cycle life of the battery system 400 can be improved. . In addition, the number of batteries, the number of series, and the number of parallel are not limited to this embodiment, According to the electric energy required by the consumer side, it is possible to increase / decrease the number of series and the number of parallel.
 以上、本発明の好ましい実施形態を説明したが、本発明は前述の実施形態に限定されるものではなく、様々な変形例が含まれる。前述の実施形態は本発明を解りやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されない。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications are included. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 リチウムイオン二次電池の電池容器は、有底筒状又は有底箱型の電池缶を有していてもよく、任意の形状の電池容器を用いることができる。また、リチウムイオン二次電池の製造方法は、前述の実施形態に限定されない。例えば、負極スラリ及び正極スラリの組成は、材料の種類、比表面積、粒径分布などに応じて変更され、例示した組成に限定されない。 The battery container of a lithium ion secondary battery may have a bottomed cylindrical or boxed battery can, and a battery container of any shape can be used. Moreover, the manufacturing method of a lithium ion secondary battery is not limited to the above-mentioned embodiment. For example, the compositions of the negative electrode slurry and the positive electrode slurry are changed according to the type of material, specific surface area, particle size distribution, and the like, and are not limited to the exemplified compositions.
 電池モジュールは、携帯用電子機器、携帯電話、電動工具などの民生用品の他、電気自動車、電車、再生可能エネルギーの貯蔵用蓄電池、無人移動車、介護機器などの電源に用いることが可能である。さらに、本実施形態のリチウムイオン二次電池は、月や火星等の探索のためのロジステック列車の電源に適用可能である。また、本実施形態のリチウムイオン二次電池は、宇宙服、宇宙ステーション、地球上またはその他の天体上の建造物あるいは生活空間(密閉、開放状態を問わない。)、惑星間移動用の宇宙船、惑星ローバー(land rover)、水中または海中の密閉空間、潜水艦、魚類観測用設備などの各種空間の空調、温調、汚水や空気の浄化、動力等の各種電源に用いることが可能である。 The battery module can be used as a power source for consumer electronics such as portable electronic devices, mobile phones, and electric tools, as well as electric vehicles, trains, storage batteries for storing renewable energy, unmanned mobile vehicles, nursing care devices, etc. . Furthermore, the lithium ion secondary battery of the present embodiment can be applied to a power supply of a logistics train for searching for the moon, Mars, and the like. In addition, the lithium ion secondary battery of this embodiment is a space suit, a space station, a building or living space on earth or other celestial body (regardless of sealed or open state), a spacecraft for interplanetary movement. It can be used for various power sources such as air conditioning, temperature control, purification of sewage and air, and power for planetary rover, underwater or underwater sealed space, submarine, fish observation equipment.
 以下、前述の実施形態に基づく本発明の実施例について説明する。 Hereinafter, examples of the present invention based on the above-described embodiment will be described.
(実施例1)
 まず、前述の実施形態において説明した製造方法により、表1に示す試料1~4の負極活物質を製造した。
Figure JPOXMLDOC01-appb-T000001
(Example 1)
First, the negative electrode active materials of Samples 1 to 4 shown in Table 1 were manufactured by the manufacturing method described in the above embodiment.
Figure JPOXMLDOC01-appb-T000001
 試料1~4では、負極活物質に含まれる微粒子の外殻の厚さを全て100nmとし、シリコンナノ粒子の平均粒径は100nm~30nmの範囲で異なる。また、外殻の表面に高導電材及び被覆層は形成しなかった。 In Samples 1 to 4, the thickness of the outer shell of the fine particles contained in the negative electrode active material is all 100 nm, and the average particle diameter of the silicon nanoparticles is different in the range of 100 nm to 30 nm. Moreover, a highly conductive material and a coating layer were not formed on the surface of the outer shell.
 各試料において、シリコンナノ粒子の平均粒径及び平均個数、外殻の厚さは、負極活物質の微粒子を熱硬化性樹脂に埋め込んだ後、ミクロトームを用いて樹脂の断面を切り出して、走査型電子顕微鏡写真から見積もった。なお、微粒子の平均粒径も同様に見積もることができる。また、前述の実施形態における式(3)及び式(7)に基づき、外殻の内部空間に対するシリコンナノ粒子の体積占有率Vc、及び、外殻の内面に対するシリコンナノ粒子の面積占有率Scを算出した。空隙率Vaは、図4Bの第2前駆体の平均粒径から粒子の単位体積を求め、樹脂とシリコン粒子と外殻の各容積の平均値の和との差(差が空隙容積に相当する。)から計算した。各容積は、第2前駆体の粒子を熱硬化性樹脂に包埋し、断面写真の画像から見積もることができる。負極活物質の比表面積は、窒素ガスを用いたBET法により測定した。 In each sample, the average particle diameter and the average number of silicon nanoparticles, and the thickness of the outer shell were determined by embedding the negative electrode active material fine particles in a thermosetting resin, and then cutting out the cross section of the resin using a microtome. Estimated from electron micrographs. The average particle size of the fine particles can be estimated in the same manner. Further, based on the expressions (3) and (7) in the above-described embodiment, the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell and the area occupancy ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell are calculated. Calculated. The porosity Va is obtained from the average particle size of the second precursor in FIG. 4B, and the unit volume of the particle is obtained, and the difference (the difference corresponds to the void volume) with the sum of the average values of the volumes of the resin, silicon particles, and outer shell. )). Each volume can be estimated from an image of a cross-sectional photograph in which the particles of the second precursor are embedded in a thermosetting resin. The specific surface area of the negative electrode active material was measured by the BET method using nitrogen gas.
 次に、試料1~4の負極活物質を用いて、前述の実施形態において説明した製造方法により、リチウムイオン二次電池を各試料につき5本ずつ製造した。ここで、負極合剤層の負極空隙率は、窒素ガスを用いたBET比表面積法により測定した。結果を以下の表2に示す。製造したリチウムイオン二次電池の定格容量(計算値)は3.5Ahとした。 Next, using the negative electrode active materials of Samples 1 to 4, five lithium ion secondary batteries were manufactured for each sample by the manufacturing method described in the above embodiment. Here, the negative electrode porosity of the negative electrode mixture layer was measured by a BET specific surface area method using nitrogen gas. The results are shown in Table 2 below. The rated capacity (calculated value) of the manufactured lithium ion secondary battery was 3.5 Ah.
 これらの電池について、以下の初期エージング処理を行った。まず、開回路の状態からリチウムイオン二次電池の充電を開始した。電流は1.75Aとし、4.2Vに到達した時点でその電圧を維持し、電流が0.05Aになるまで充電を継続した。その後30分の休止時間を設けて、3.5Aにて放電を始めた。電池の電圧が3.0Vに達したときに放電を停止させ、30分の休止を行った。同じように、充電と放電を5回繰り返して、電池の初期エージングの処理を終了させた。最後のサイクル(5サイクル目)の放電容量の値を、負極活物質の重量(10±0.1g)で割り、初期容量密度を計算した。また、1時間率の充放電を繰り返し、100サイクル経過時の容量密度を計算し、得られた容量密度と初期容量密度から容量維持率を算出した。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
For these batteries, the following initial aging treatment was performed. First, charging of the lithium ion secondary battery was started from the open circuit state. The current was set to 1.75 A, and the voltage was maintained when the voltage reached 4.2 V, and charging was continued until the current reached 0.05 A. Thereafter, a 30-minute rest period was provided, and discharging was started at 3.5 A. When the voltage of the battery reached 3.0V, the discharge was stopped and a 30-minute pause was performed. Similarly, charging and discharging were repeated 5 times to complete the initial aging process of the battery. The value of the discharge capacity in the last cycle (5th cycle) was divided by the weight (10 ± 0.1 g) of the negative electrode active material to calculate the initial capacity density. Moreover, charging / discharging of 1 hour rate was repeated, the capacity density at the time of 100-cycle progress was calculated, and the capacity | capacitance maintenance factor was computed from the obtained capacity density and initial stage capacity density. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、シリコンナノ粒子の粒径が100nmから30nmの範囲では、粒径が小さくなるにしたがって、初期容量密度は2700Ah/kgから2910Ah/kgまで漸次上昇し、容量維持率は85%から90%まで漸次上昇した。 As shown in Table 1 and Table 2, when the particle diameter of the silicon nanoparticles is in the range of 100 nm to 30 nm, the initial capacity density gradually increases from 2700 Ah / kg to 2910 Ah / kg as the particle diameter decreases, and the capacity is maintained. The rate gradually increased from 85% to 90%.
(実施例2)
 次に、実施例1で製造した試料3の負極活物質を用いたリチウムイオン二次電池の初期エージング処理の条件を変更した。具体的には、電池の充電電流を0.4Aとし、4.2Vに到達した時点でその電圧を維持し、電流が0.01Aになるまで充電を継続した。その後30分の休止時間を設けて、0.4Aにて放電を始めた。電池電圧が3.0Vに達したときに放電を停止させ、30分の休止を行った。同じように、充電と放電を5回繰り返して、電池の初期エージングの処理を終了させた。その後、実施例1と同様に、初期容量密度と容量維持率を算出した。結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
(Example 2)
Next, the conditions for the initial aging treatment of the lithium ion secondary battery using the negative electrode active material of Sample 3 manufactured in Example 1 were changed. Specifically, the charging current of the battery was set to 0.4 A, the voltage was maintained when the voltage reached 4.2 V, and charging was continued until the current reached 0.01 A. Thereafter, a 30-minute rest period was provided, and discharging was started at 0.4 A. When the battery voltage reached 3.0 V, the discharge was stopped and a 30-minute pause was performed. Similarly, charging and discharging were repeated 5 times to complete the initial aging process of the battery. Thereafter, in the same manner as in Example 1, the initial capacity density and the capacity retention ratio were calculated. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 充放電の電流値を小さくしたため、負極へのLi吸蔵量が増大し、実施例1に比べて容量密度が増大した。また、電流密度が小さくなったため、負極活物質が一様に充放電され、粒子間の応力が緩和されるために、容量維持率も実施例1の結果よりも改善された。 Since the charge / discharge current value was reduced, the amount of Li occlusion in the negative electrode increased, and the capacity density increased compared to Example 1. In addition, since the current density was reduced, the negative electrode active material was uniformly charged and discharged, and the stress between the particles was relieved. Therefore, the capacity retention rate was also improved from the result of Example 1.
(実施例3)
 次に、前述の実施形態において説明した製造方法により、シリコンナノ粒子の平均粒径及び平均個数、外殻の厚さを前記実施例1と同等として、表4に示す試料5から試料9の負極活物質を製造した。
Figure JPOXMLDOC01-appb-T000004
(Example 3)
Next, according to the manufacturing method described in the above-described embodiment, the average particle diameter and the average number of silicon nanoparticles and the thickness of the outer shell are set to be equal to those in Example 1, and the negative electrodes of Sample 5 to Sample 9 shown in Table 4 An active material was produced.
Figure JPOXMLDOC01-appb-T000004
 試料5では、負極活物質の外殻の表面に高導電材として1重量%のカーボンナノチューブ(CNT)を成長させた。試料6~9では、負極活物質の外殻の表面に被覆層として、それぞれフッ化物層、炭化物層、窒化物層及び硫化物層を5nmの厚さで形成した。高導電材及び各被覆層は、前述の実施形態において説明した方法により形成した。 In sample 5, 1% by weight of carbon nanotubes (CNT) was grown as a highly conductive material on the surface of the outer shell of the negative electrode active material. In Samples 6 to 9, a fluoride layer, a carbide layer, a nitride layer, and a sulfide layer were formed as a coating layer on the surface of the outer shell of the negative electrode active material with a thickness of 5 nm, respectively. The highly conductive material and each coating layer were formed by the method described in the above embodiment.
 その後、実施例1と同様に、試料5~9の負極活物質を用いたリチウムイオン二次電池を製造し、初期エージング処理を行って、初期容量密度と容量維持率を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
Thereafter, in the same manner as in Example 1, lithium ion secondary batteries using the negative electrode active materials of Samples 5 to 9 were manufactured, subjected to initial aging treatment, and initial capacity density and capacity retention ratio were calculated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 試料3の負極活物質を用いたリチウムイオン二次電池(表2)と比較して、試料5の負極活物質を用いたリチウムイオン二次電池では、高導電材であるCNTにより負極活物質の微粒子間の導電性が良好になって、初期容量密度と容量維持率がさらに向上した。 Compared with the lithium ion secondary battery using the negative electrode active material of sample 3 (Table 2), the lithium ion secondary battery using the negative electrode active material of sample 5 is made of the negative electrode active material by CNT which is a highly conductive material. The conductivity between the fine particles was improved, and the initial capacity density and capacity retention were further improved.
 また、試料3の負極活物質を用いたリチウムイオン二次電池(表2)と比較して、試料6~9の負極活物質を用いたリチウムイオン二次電池では、リチウム充放電容量の小さな被覆層があるために、初期容量密度は同等程度又は僅かに低下したが、電解液の分解が効果的に抑制されるために、容量維持率は向上した。 Compared with the lithium ion secondary battery using the negative electrode active material of sample 3 (Table 2), the lithium ion secondary battery using the negative electrode active material of samples 6 to 9 has a smaller lithium charge / discharge capacity. Because of the presence of the layers, the initial capacity density was reduced to the same extent or slightly, but the capacity retention was improved because the decomposition of the electrolyte was effectively suppressed.
(実施例4)
 次に、シリコンナノ粒子の平均粒径及び平均個数、外殻の厚さを前記実施例1の試料2の負極活物質と同等にして、以下の表6に示すように空隙率Vaを変化させた試料10~13の負極活物質を製造した。負極合剤層を加圧成型する際の圧力と負極合剤密度は単調な関係を示すので、圧力を調整してVaを変化させることができた。ここで、単調な関係とは、例えば、圧力を高くすれば密度が高くなるので、逆に空隙率は小さくなるという関係を意味する。
Figure JPOXMLDOC01-appb-T000006
Example 4
Next, the average particle diameter and the average number of silicon nanoparticles and the thickness of the outer shell were made equal to those of the negative electrode active material of Sample 2 of Example 1, and the porosity Va was changed as shown in Table 6 below. The negative electrode active materials of Samples 10 to 13 were manufactured. Since the pressure at the time of pressure-molding the negative electrode mixture layer and the negative electrode mixture density showed a monotonous relationship, Va could be changed by adjusting the pressure. Here, the monotonous relationship means a relationship in which, for example, the density increases as the pressure increases, so that the porosity decreases.
Figure JPOXMLDOC01-appb-T000006
 その後、実施例1と同様に、試料10~13の負極活物質を用いたリチウムイオン二次電池を製造した。各試料を用いた電池では、負極空隙率を0.70以上かつ0.81以下とした。その後、実施例1と同様に、各電池の初期エージング処理を行って初期容量密度と容量維持率を測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
Thereafter, in the same manner as in Example 1, lithium ion secondary batteries using the negative electrode active materials of Samples 10 to 13 were manufactured. In the battery using each sample, the negative electrode porosity was 0.70 or more and 0.81 or less. Thereafter, in the same manner as in Example 1, each battery was subjected to initial aging treatment, and the initial capacity density and the capacity retention rate were measured. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 空隙率Vaを0.2以上かつ0.5以下とした試料10~13の負極活物質を用い、負極空隙率を0.70以上かつ0.81以下の範囲とすることで、初期容量密度及び容量維持率が前記実施例1の資料2の負極活物質を用いたリチウムイオン二次電池と同等以上の値となった。すなわち、リチウムイオン二次電池の負極における電解液の保持量は減少せず、負極活物質の微粒子間の電気的接触が損なわれることがなかった。 By using the negative electrode active material of Samples 10 to 13 having a porosity Va of 0.2 or more and 0.5 or less, and by setting the negative electrode porosity to a range of 0.70 or more and 0.81 or less, the initial capacity density and The capacity retention rate was equal to or greater than that of the lithium ion secondary battery using the negative electrode active material of Document 2 of Example 1. That is, the amount of electrolyte retained in the negative electrode of the lithium ion secondary battery was not reduced, and the electrical contact between the fine particles of the negative electrode active material was not impaired.
(実施例5)
 次に、実施例1で製造した試料3の負極活物質と同等の条件で、微粒子の外殻の材質を銅に変更した負極活物質を製造した。すなわち、前述の実施形態で説明した負極活物質の製造方法における第1前駆体に対して、バレルスパッタ装置を用いて銅めっきすることで第2前駆体を製造し、第2前駆体に対して加熱処理を行って、以下の表8に示す試料14の負極活物質を製造した。
Figure JPOXMLDOC01-appb-T000008
(Example 5)
Next, a negative electrode active material in which the material of the outer shell of the fine particles was changed to copper was manufactured under the same conditions as the negative electrode active material of Sample 3 manufactured in Example 1. That is, a second precursor is manufactured by copper plating using a barrel sputtering apparatus with respect to the first precursor in the method for manufacturing a negative electrode active material described in the above-described embodiment, and the second precursor The negative electrode active material of the sample 14 shown in the following Table 8 was manufactured by heat-processing.
Figure JPOXMLDOC01-appb-T000008
 その後、実施例1と同様に、試料14の負極活物質を用いたリチウムイオン二次電池を製造し、初期エージングを行って初期容量密度と容量維持率を算出した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
Thereafter, in the same manner as in Example 1, a lithium ion secondary battery using the negative electrode active material of Sample 14 was manufactured, and initial aging was performed to calculate an initial capacity density and a capacity retention rate. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、外殻の材質が変更になっても、外殻に導電性があれば、リチウムイオン二次電池の初期容量密度と容量維持率が比較的高いことが実証された。 From the results in Table 9, it was demonstrated that even if the outer shell material was changed, the initial capacity density and capacity retention rate of the lithium ion secondary battery were relatively high if the outer shell had conductivity.
(実施例6)
 次に、前述の実施形態において説明した製造方法により、以下の表10に示すように、シリコンナノ粒子の粒径を200nmに増加させた試料15の負極活物質と、外殻の厚さを200nmに増加させた試料16の負極活物質を製造した。
Figure JPOXMLDOC01-appb-T000010
(Example 6)
Next, as shown in Table 10 below, the negative electrode active material of Sample 15 in which the particle size of the silicon nanoparticles was increased to 200 nm and the thickness of the outer shell were set to 200 nm by the manufacturing method described in the above embodiment. The negative electrode active material of Sample 16 increased in size was manufactured.
Figure JPOXMLDOC01-appb-T000010
 その後、実施例1と同様に、試料15及び試料16の負極活物質を用いたリチウムイオン二次電池を製造し、初期エージングを行って初期容量密度と容量維持率を算出した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
Thereafter, similarly to Example 1, lithium ion secondary batteries using the negative electrode active materials of Sample 15 and Sample 16 were manufactured, and initial aging was performed to calculate initial capacity density and capacity retention rate. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
 前記実施例1の試料1の負極活物質を用いたリチウムイオン二次電池と比較して、シリコンナノ粒子の平均粒径、又は外殻の厚さが増大しても、略同等の初期容量密度と容量維持率が得られることが実証された。 Compared to the lithium ion secondary battery using the negative electrode active material of Sample 1 of Example 1, even if the average particle diameter of the silicon nanoparticles or the thickness of the outer shell is increased, the initial capacity density is substantially equivalent. It was proved that the capacity retention rate was obtained.
(実施例7)
 次に、前述の実施形態において説明した製造方法により、以下の表12に示す試料17~22の負極活物質を製造した。
Figure JPOXMLDOC01-appb-T000012
(Example 7)
Next, negative electrode active materials of Samples 17 to 22 shown in Table 12 below were manufactured by the manufacturing method described in the above embodiment.
Figure JPOXMLDOC01-appb-T000012
 試料17の負極活物質では、実施例1の試料1と同様に微粒子の外殻の厚さは100nmとし、外殻の内部空間に対するシリコンナノ粒子の体積占有率Vcを1.20に増加させた。試料18の負極活物質では、同様に微粒子の外殻の厚さは100nmとし、外殻の内面に対するシリコンナノ粒子の面積占有率Scを、試料17の0.91よりも大きい0.95とした。 In the negative electrode active material of Sample 17, as in Sample 1 of Example 1, the thickness of the outer shell of the fine particles was 100 nm, and the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell was increased to 1.20. . Similarly, in the negative electrode active material of Sample 18, the thickness of the outer shell of the fine particles was 100 nm, and the area occupation ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell was 0.95, which was larger than 0.91 of Sample 17. .
 試料19及び試料20の負極活物質は、実施例1の試料2の負極活物質と同等である。 The negative electrode active material of Sample 19 and Sample 20 is the same as the negative electrode active material of Sample 2 of Example 1.
 試料21の負極活物質では、シリコンナノ粒子の平均粒径を400nmに増加させた以外は、実施例6の試料15の負極活物質と同等とした。試料22の負極活物質では、微粒子の外殻の厚さを400nmに増大させた以外は、実施例6の試料16の負極活物質と同等とした。 The negative electrode active material of Sample 21 was the same as the negative electrode active material of Sample 15 of Example 6 except that the average particle size of the silicon nanoparticles was increased to 400 nm. The negative electrode active material of Sample 22 was the same as the negative electrode active material of Sample 16 of Example 6 except that the thickness of the outer shell of the fine particles was increased to 400 nm.
 その後、実施例1と同様に、試料17から試料22の負極活物質を用い、それぞれリチウムイオン二次電池を製造した。ここで、前記実施例1の試料2の負極活物質を用いた電池の負極空隙率は0.74であったが、試料19の負極活物質を用いた電池では負極空隙率を0.66に低下させ、試料20の負極活物質を用いた電池では負極空隙率を0.85に増加させた。そして、実施例1と同様に、製造したリチウムイオン二次電池の初期エージング処理を行って、初期容量密度と容量維持率を算出した。結果を表13に示す。
Then, similarly to Example 1, lithium ion secondary batteries were manufactured using the negative electrode active materials of Sample 17 to Sample 22, respectively. Here, the negative electrode porosity of the battery using the negative electrode active material of Sample 2 of Example 1 was 0.74, but the negative electrode porosity of the battery using the negative electrode active material of Sample 19 was set to 0.66. In the battery using the negative electrode active material of Sample 20, the negative electrode porosity was increased to 0.85. Then, as in Example 1, the manufactured lithium ion secondary battery was subjected to the initial aging treatment, and the initial capacity density and the capacity retention rate were calculated. The results are shown in Table 13.
 試料17の負極活物質を用いた電池では、充電の際に負極活物質を構成する微粒子のシリコンナノ粒子が膨張する際に、多くの微粒子の外殻が破壊され、前記実施例1の試料1の負極活物質を用いた電池と比較して初期容量密度と容量維持率が低下した。したがって、負極活物質を構成する微粒子の外殻の内部空間に対するシリコンナノ粒子の体積占有率Vcは、1.20より小であることが好ましく、0.74以下であることがより好ましいことが実証された。 In the battery using the negative electrode active material of Sample 17, when the fine silicon nanoparticles constituting the negative electrode active material expand during charging, the outer shell of many fine particles is destroyed, and Sample 1 of Example 1 is used. As compared with the battery using the negative electrode active material, the initial capacity density and the capacity retention rate were lowered. Therefore, it is demonstrated that the volume occupancy Vc of the silicon nanoparticles with respect to the inner space of the outer shell of the fine particles constituting the negative electrode active material is preferably smaller than 1.20, and more preferably 0.74 or less. It was done.
 試料18の負極活物質を用いたリチウムイオン二次電池では、充電の際のシリコンナノ粒子の膨張による外殻の破壊に加えて、微粒子間の電気的接触が損なわれ、試料17の負極活物質を用いたリチウムイオン二次電池と比較して初期容量密度と容量維持率が低下した。したがって、負極活物質を構成する微粒子の外殻の内面に対するシリコンナノ粒子の面積占有率Scは、0.95より小であることが好ましい。 In the lithium ion secondary battery using the negative electrode active material of sample 18, in addition to the destruction of the outer shell due to the expansion of the silicon nanoparticles during charging, the electrical contact between the fine particles is impaired, and the negative electrode active material of sample 17 The initial capacity density and the capacity retention rate were reduced compared to the lithium ion secondary battery using the battery. Therefore, the area occupation ratio Sc of the silicon nanoparticles with respect to the inner surface of the outer shell of the fine particles constituting the negative electrode active material is preferably smaller than 0.95.
 実施例1の試料2の負極活物質と同等の試料19の負極活物質を用い、負極空隙率を0.66に低下させたリチウムイオン二次電池では、空隙率の低下による負極活物質の外殻の破壊とシリコンナノ粒子の脱落に加え、電解液の保持量が減少することで、初期容量密度が減少し、特に容量維持率の低下が顕著であった。したがって、負極空隙率は、0.66より大であることが好ましい。 In the lithium ion secondary battery in which the negative electrode active material of sample 19 equivalent to the negative electrode active material of sample 2 of Example 1 was used and the negative electrode porosity was reduced to 0.66, In addition to the destruction of the shell and the removal of the silicon nanoparticles, the amount of electrolyte retained decreased, so that the initial capacity density decreased, and in particular, the capacity retention rate decreased significantly. Therefore, the negative electrode porosity is preferably larger than 0.66.
 実施例1の試料2の負極活物質と同等の試料20の負極活物質を用い、負極空隙率を0.78に増加させたリチウムイオン二次電池では、空隙率の増大により、試料19の負極活物質を用いたときのような問題は生じない代わりに、負極活物質の微粒子間の電気的接触が損なわれ、初期容量密度が減少し、特に容量維持率の低下が顕著であった。したがって、負極空隙率は、0.78より小であることが好ましい。 In the lithium ion secondary battery in which the negative electrode active material of sample 20 equivalent to the negative electrode active material of sample 2 of Example 1 was used and the negative electrode porosity was increased to 0.78, the negative electrode of sample 19 was increased due to the increased porosity. Instead of causing the problem as in the case of using the active material, the electrical contact between the fine particles of the negative electrode active material was impaired, the initial capacity density was reduced, and the capacity retention rate was particularly lowered. Accordingly, the negative electrode porosity is preferably smaller than 0.78.
 試料21の負極活物質を用いたリチウムイオン二次電池では、充放電の過程でシリコンナノ粒子が破壊され、実施例6の試料15の負極活物質を用いたリチウムイオン二次電池と比較して、初期容量密度と容量維持率が低下した。したがって、シリコンナノ粒子の平均粒径は、400nmより小であることが好ましい。 In the lithium ion secondary battery using the negative electrode active material of Sample 21, silicon nanoparticles were destroyed in the process of charge and discharge, and compared with the lithium ion secondary battery using the negative electrode active material of Sample 15 of Example 6. The initial capacity density and capacity retention rate decreased. Therefore, the average particle diameter of the silicon nanoparticles is preferably smaller than 400 nm.
 試料22の負極活物質を用いたリチウムイオン二次電池では、充放電の過程で外殻が破壊されて導電性が悪化したために、実施例6の試料16の負極活物質を用いたリチウムイオン二次電池と比較して、初期容量密度と容量維持率が低下した。したがって、外殻の厚さは、400nmより小であることが好ましい。 In the lithium ion secondary battery using the negative electrode active material of sample 22, the outer shell was destroyed during the charge and discharge process and the conductivity deteriorated. Therefore, the lithium ion secondary battery using the negative electrode active material of sample 16 of Example 6 was used. Compared with the secondary battery, the initial capacity density and the capacity retention rate were lowered. Accordingly, the thickness of the outer shell is preferably smaller than 400 nm.
(実施例8)
 次に、実施例4の試料12の負極活物質を用いたリチウムイオン二次電池100を8つ製造し、前述の実施形態において説明した図5に示す構成のモジュール200(組電池)を組み立てて、充電試験及び放電試験を行った。
(Example 8)
Next, eight lithium ion secondary batteries 100 using the negative electrode active material of sample 12 of Example 4 were manufactured, and the module 200 (assembled battery) having the configuration shown in FIG. 5 described in the above embodiment was assembled. A charge test and a discharge test were conducted.
 充電試験では、充放電回路301より正極外部端子201と負極外部端子202に1時間率相当の電流値(3.5A)の充電電流を供給し、33.6Vの定電圧にて1時間の充電を行った。ここで設定した定電圧値は、本実施例におけるリチウムイオン二次電池の定電圧値4.2Vの8倍の値である。モジュール200の充放電に必要な電力は給電負荷電源303より供給した。 In the charging test, the charging / discharging circuit 301 supplies a charging current having a current value (3.5 A) corresponding to an hour rate to the positive external terminal 201 and the negative external terminal 202, and charging is performed for 1 hour at a constant voltage of 33.6V. Went. The constant voltage value set here is eight times the constant voltage value 4.2 V of the lithium ion secondary battery in this example. Electric power necessary for charging / discharging the module 200 was supplied from a power supply load power source 303.
 放電試験では、正極外部端子201と負極外部端子202から逆向きの電流を充放電回路301に流して、給電負荷電源303にて電力を消費させた。放電電流は、1時間率の条件(放電電流として3.5A)とし、正極外部端子201と負極外部端子202の端子間電圧が24Vに達するまで放電させた。 In the discharge test, a reverse current was passed from the positive external terminal 201 and the negative external terminal 202 to the charge / discharge circuit 301, and power was consumed by the power supply load power source 303. The discharge current was 1 hour rate (discharge current: 3.5 A), and discharging was performed until the voltage between the positive external terminal 201 and the negative external terminal 202 reached 24V.
 このような充放電試験条件にて、モジュール200は、充電容量3.5Ah、放電容量3.4~3.5Ahの初期性能を得た。さらに300サイクルの充放電サイクル試験を実施したところ、モジュール200の容量維持率は94~95%であった。本実施例のリチウムイオン二次電池100を用いることで、モジュール200の初期容量が従来よりも増加し、充放電の繰り返しによる容量維持率の低下が抑制され、モジュール200のサイクル寿命が向上した。 Under such charge / discharge test conditions, the module 200 obtained initial performance with a charge capacity of 3.5 Ah and a discharge capacity of 3.4 to 3.5 Ah. Further, when a charge / discharge cycle test of 300 cycles was performed, the capacity maintenance rate of the module 200 was 94 to 95%. By using the lithium ion secondary battery 100 of the present embodiment, the initial capacity of the module 200 is increased compared to the conventional case, the decrease in the capacity retention rate due to repeated charge and discharge is suppressed, and the cycle life of the module 200 is improved.
(実施例9)
 次に、実施例8において組み立てた電池モジュール200A、200Bを2つ直列に接続し、前述の実施形態において説明した図6に示す構成の電池システム400を作製した。
Example 9
Next, two battery modules 200A and 200B assembled in Example 8 were connected in series, and the battery system 400 having the configuration shown in FIG. 6 described in the above embodiment was manufactured.
 まず、電池モジュール200A、200Bに対して定格容量が得られる通常の充電を行う。ここでは、1時間率の充電電流で4.2Vの定電圧充電を0.5時間行った。充電条件は、リチウムイオン二次電池の材料の種類、使用量などの設計で決まるので、電池の仕様ごとに最適な条件とする。 First, the battery modules 200A and 200B are charged normally to obtain a rated capacity. Here, constant voltage charging of 4.2 V was performed for 0.5 hour at a charging current of 1 hour rate. The charging conditions are determined by the design of the material type, amount of use, etc. of the lithium ion secondary battery. Therefore, the charging conditions are optimal for each battery specification.
 リチウムイオン二次電池を充電した後、充放電制御器410を放電モードに切り替えて各電池を放電させ、一定の下限電圧に到達したときに放電を停止させた。さらに、リチウムイオン二次電池の充電時には外部機器500からリチウムイオン二次電池に対して電力を供給し、リチウムイオン二次電池の放電時にはリチウムイオン二次電池から外部機器500に電力を供給して電力を消費させた。本実施例では、2時間率の充電を行い、1時間率の放電を行い、初期の放電容量を求めた。その結果、各電池モジュールの設計容量3.5Ahの99.1~99.6%の容量を得た。 After charging the lithium ion secondary battery, the charge / discharge controller 410 was switched to the discharge mode to discharge each battery, and the discharge was stopped when a certain lower limit voltage was reached. Furthermore, when charging the lithium ion secondary battery, power is supplied from the external device 500 to the lithium ion secondary battery, and when discharging the lithium ion secondary battery, power is supplied from the lithium ion secondary battery to the external device 500. Power was consumed. In this example, charging was performed at a rate of 2 hours, discharging was performed at a rate of 1 hour, and the initial discharge capacity was obtained. As a result, a capacity of 99.1 to 99.6% of the design capacity 3.5 Ah of each battery module was obtained.
 その後、環境温度20~30℃の条件で、以下の充放電サイクル試験を行った。まず、2時間率の電流(1.75A)にて充電を行い、充電深度50%(1.75Ah充電した状態)になった時点で、充電方向に5秒のパルスを、放電方向に5秒のパルスを電池モジュール200A、200Bに与え、発電装置420からの電力の受け入れと外部機器500への電力供給を模擬するパルス試験を行った。なお、電流パルスの大きさは、ともに150Aとした。続けて、残りの容量1.75Ahを2時間率の電流(1.75A)で各電池の電圧が4.2Vに達するまで充電し、その電圧で1時間の定電圧充電を継続した後に、充電を終了させた。その後、1時間率の電流(3.5A)にて各電池の電圧が3.0Vになるまで放電した。このような一連の充放電サイクル試験を500回繰り返したところ、初期の放電容量に対し、88~89%の容量を得た。電力受け入れと電力供給の電流パルスを電池に与えても、システム400の性能はほとんど低下しないことがわかった。すなわち、電池システム400が本実施例のリチウムイオン二次電池を備えることで、充放電を繰り返し行っても容量維持率の低下が抑制され、電池システム400のサイクル寿命が向上した。 Thereafter, the following charge / discharge cycle test was performed under the condition of an environmental temperature of 20-30 ° C. First, when charging is performed at a current of 2 hours (1.75 A) and the depth of charge reaches 50% (a state in which 1.75 Ah is charged), a pulse of 5 seconds is charged in the charging direction and 5 seconds in the discharging direction. Was applied to the battery modules 200 </ b> A and 200 </ b> B, and a pulse test for simulating acceptance of power from the power generation device 420 and power supply to the external device 500 was performed. The magnitude of the current pulse was 150A for both. Subsequently, the remaining capacity of 1.75 Ah is charged with a current (1.75 A) at a rate of 2 hours until the voltage of each battery reaches 4.2 V, and after constant voltage charging for 1 hour is continued at that voltage, Was terminated. Then, it discharged until the voltage of each battery was set to 3.0V with the electric current (3.5A) of 1 hour rate. When such a series of charge / discharge cycle tests were repeated 500 times, a capacity of 88 to 89% of the initial discharge capacity was obtained. It has been found that the performance of the system 400 is hardly degraded when the battery is subjected to power acceptance and power supply current pulses. That is, since the battery system 400 includes the lithium ion secondary battery of this example, a decrease in capacity retention rate is suppressed even when charging and discharging are repeated, and the cycle life of the battery system 400 is improved.
1 負極活物質
10 微粒子
10a 薄片状微粒子
10A 第1前駆体
10B 第2前駆体
11 外殻
11a 開口部
12 内部空間
13 シリコンナノ粒子
100 リチウムイオン二次電池
B 樹脂ビーズ(粒状物)
S1 第1前駆体を製造する工程
S2 第2前駆体を製造する工程
S3 微粒子を製造する工程
DESCRIPTION OF SYMBOLS 1 Negative electrode active material 10 Fine particle 10a Flaky fine particle 10A 1st precursor 10B 2nd precursor 11 Outer shell 11a Opening part 12 Internal space 13 Silicon nanoparticle 100 Lithium ion secondary battery B Resin beads (granular material)
S1 Process for producing the first precursor S2 Process for producing the second precursor S3 Process for producing the fine particles

Claims (10)

  1.  リチウムイオン二次電池用の負極活物質であって、
     導電性の外殻と、該外殻の内面に保持されて該外殻の内部空間に露出する複数のシリコンナノ粒子と、を備えた微粒子を含み、
     前記外殻は、該外殻の外部空間と前記内部空間とを連通する開口部を有することを特徴とする負極活物質。
    A negative electrode active material for a lithium ion secondary battery,
    Including a conductive outer shell and a plurality of silicon nanoparticles held on the inner surface of the outer shell and exposed to the inner space of the outer shell,
    The negative electrode active material, wherein the outer shell has an opening communicating the outer space of the outer shell and the inner space.
  2.  前記外殻を構成する材料はシリコンを含むことを特徴とする請求項1に記載の負極活物質。 2. The negative electrode active material according to claim 1, wherein the material constituting the outer shell contains silicon.
  3.  前記外殻の外面に前記外殻よりも導電性が高い高導電材が保持されていることを特徴とする請求項2に記載の負極活物質。 3. The negative electrode active material according to claim 2, wherein a highly conductive material having higher conductivity than the outer shell is held on the outer surface of the outer shell.
  4.  前記外殻の外面に被覆層を有することを特徴とする請求項2に記載の負極活物質。 The negative electrode active material according to claim 2, further comprising a coating layer on an outer surface of the outer shell.
  5.  前記微粒子は、前記外殻が分裂して形成された薄片状微粒子を含むことを特徴とする請求項1に記載の負極活物質。 2. The negative electrode active material according to claim 1, wherein the fine particles include flaky fine particles formed by dividing the outer shell.
  6.  前記外殻の容積と、前記シリコンナノ粒子の個数及び大きさは、以下の式(1)の関係を満たすことを特徴とする請求項1に記載の負極活物質。
         n・(4πr/3)・ΔV≦a・C     …(1)
     ただし、nは前記シリコンナノ粒子の個数、rは前記シリコンナノ粒子の平均粒径の1/2、ΔVは前記リチウムイオン二次電池の充電時の前記シリコンナノ粒子の体積増加比、aは前記充電時の体積増加後の前記シリコンナノ粒子が前記内部空間に最密充填されたときの充填率、Cは前記外殻の前記内部空間の容積
    2. The negative electrode active material according to claim 1, wherein the volume of the outer shell and the number and size of the silicon nanoparticles satisfy the relationship of the following formula (1).
    n · (4πr 3/3) · ΔV ≦ a · C ... (1)
    However, n is the number of the silicon nanoparticles, r is 1/2 of the average particle diameter of the silicon nanoparticles, ΔV is a volume increase ratio of the silicon nanoparticles during charging of the lithium ion secondary battery, and a is the above The filling rate when the silicon nanoparticles after the volume increase at the time of charging are closely packed in the internal space, C is the volume of the internal space of the outer shell
  7.  導電性の外殻と、該外殻の内面に保持されて該外殻の内部空間に露出する複数のシリコンナノ粒子と、を備えた微粒子を含む、リチウムイオン二次電池用の負極活物質の製造方法であって、
     前記外殻の融点よりも低い温度で熱分解する粒状物の表面に複数の前記シリコンナノ粒子を付着させた第1前駆体を製造する工程と、
     前記第1前駆体の表面に前記外殻を構成する材料からなる層を形成して前記外殻を形成することで複数の前記シリコンナノ粒子が前記粒状物の表面に付着しかつ前記外殻の内面に保持された第2前駆体を製造する工程と、
     前記第2前駆体を加熱して前記粒状物を熱分解させることで前記外殻に開口部を形成すると共に、該開口部から前記粒状物の分解物を外部空間に放出し、前記内部空間を形成して前記微粒子を製造する工程と、
     を有することを特徴とする負極活物質の製造方法。
    A negative electrode active material for a lithium ion secondary battery, comprising: a fine particle comprising a conductive outer shell and a plurality of silicon nanoparticles held on the inner surface of the outer shell and exposed to the inner space of the outer shell. A manufacturing method comprising:
    Producing a first precursor in which a plurality of the silicon nanoparticles are attached to the surface of a granular material thermally decomposed at a temperature lower than the melting point of the outer shell;
    By forming a layer made of a material constituting the outer shell on the surface of the first precursor to form the outer shell, a plurality of the silicon nanoparticles are attached to the surface of the granular material and Producing a second precursor held on the inner surface;
    The second precursor is heated to thermally decompose the granular material to form an opening in the outer shell, and the decomposition product of the granular material is discharged from the opening to an external space, Forming and producing the microparticles;
    A method for producing a negative electrode active material, comprising:
  8.  前記微粒子を製造する工程の後に、前記外殻の外面に前記外殻よりも導電性が高い高導電材を形成する工程を有することを特徴とする請求項7に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 7, further comprising a step of forming a highly conductive material having higher conductivity than the outer shell on the outer surface of the outer shell after the step of manufacturing the fine particles. .
  9.  前記微粒子を製造する工程の後に、前記外殻の外面に被覆層を形成する工程を有することを特徴とする請求項7に記載の負極活物質の製造方法。 The method for producing a negative electrode active material according to claim 7, further comprising a step of forming a coating layer on an outer surface of the outer shell after the step of producing the fine particles.
  10.  負極及び正極からなる電極群と、該電極群を収容する電池容器と、該電池容器に収容される電解液と、を備えたリチウムイオン二次電池であって、
     前記負極を構成する負極活物質は、導電性の外殻と、該外殻の内面に保持され該外殻の内部空間に露出する複数のシリコンナノ粒子とを備えた微粒子を含み、
     前記外殻は、該外殻の外部空間と前記内部空間とを連通する開口部を有することを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery comprising an electrode group comprising a negative electrode and a positive electrode, a battery container containing the electrode group, and an electrolyte solution contained in the battery container,
    The negative electrode active material constituting the negative electrode includes a fine particle comprising a conductive outer shell and a plurality of silicon nanoparticles held on the inner surface of the outer shell and exposed to the inner space of the outer shell,
    The lithium ion secondary battery, wherein the outer shell has an opening that communicates the outer space of the outer shell and the inner space.
PCT/JP2013/067886 2013-06-28 2013-06-28 Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell WO2014207921A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067886 WO2014207921A1 (en) 2013-06-28 2013-06-28 Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067886 WO2014207921A1 (en) 2013-06-28 2013-06-28 Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell

Publications (1)

Publication Number Publication Date
WO2014207921A1 true WO2014207921A1 (en) 2014-12-31

Family

ID=52141312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067886 WO2014207921A1 (en) 2013-06-28 2013-06-28 Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell

Country Status (1)

Country Link
WO (1) WO2014207921A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010802A (en) * 2015-06-23 2017-01-12 住友電気工業株式会社 Sodium ion secondary battery
CN113690447A (en) * 2020-05-19 2021-11-23 华为技术有限公司 Battery electrode plate, preparation method thereof, battery and terminal
WO2022070892A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2022163595A1 (en) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (en) * 1995-03-17 1996-12-03 Canon Inc Secondary battery using lithium
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2007123100A (en) * 2005-10-28 2007-05-17 Sony Corp Anode material and battery using the same, as well as manufacturing method of battery
JP2010003675A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Material having core shell structure
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
WO2013031993A1 (en) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING SAME, AND ELECTRODE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321300A (en) * 1995-03-17 1996-12-03 Canon Inc Secondary battery using lithium
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2007042579A (en) * 2005-06-29 2007-02-15 Matsushita Electric Ind Co Ltd Composite particle for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2007123100A (en) * 2005-10-28 2007-05-17 Sony Corp Anode material and battery using the same, as well as manufacturing method of battery
JP2010003675A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Material having core shell structure
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
WO2013031993A1 (en) * 2011-08-31 2013-03-07 国立大学法人東北大学 Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING SAME, AND ELECTRODE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010802A (en) * 2015-06-23 2017-01-12 住友電気工業株式会社 Sodium ion secondary battery
CN113690447A (en) * 2020-05-19 2021-11-23 华为技术有限公司 Battery electrode plate, preparation method thereof, battery and terminal
WO2022070892A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery
WO2022163595A1 (en) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery

Similar Documents

Publication Publication Date Title
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
US9527748B2 (en) Production process for nanometer-size silicon material
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2011027503A1 (en) Nonaqueous electrolyte secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP6287651B2 (en) Non-aqueous secondary battery
JP7021702B2 (en) Lithium ion secondary battery
US20160268608A1 (en) Lithium secondary battery, power storage apparatus including lithium secondary battery and method of manufacturing lithium secondary battery
US20150357632A1 (en) Negative electrode active material for lithium secondary batteries, and lithium secondary battery
JP6448510B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2018116856A (en) Positive electrode active material for lithium ion secondary battery
WO2017047030A1 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
CN112750995A (en) Method for preparing silicon-carbon composite electrode material
WO2014207921A1 (en) Negative-electrode active substance, method for manufacturing same, and lithium-ion secondary cell
US20200403224A1 (en) Lithium molybdate anode material
JP7003775B2 (en) Lithium ion secondary battery
US9831494B2 (en) Negative-electrode active material and electric storage apparatus
CN112840485A (en) Negative electrode active material, negative electrode using the same, and secondary battery
JP2013197052A (en) Lithium ion power storage device
US11728490B2 (en) Current collectors having surface structures for controlling formation of solid-electrolyte interface layers
JP2016091869A (en) Negative electrode material for lithium secondary batteries, and lithium secondary battery arranged by use thereof
JP2013197051A (en) Lithium ion power storage device
JP2014143061A (en) Method for manufacturing nonaqueous electrolyte secondary battery
US20230060634A1 (en) Methods for fabricating two-dimensional anode materials
US20230101215A1 (en) Solid-state synthesis for the fabrication of a layered anode material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP