JP2004185984A - Negative electrode material for lithium secondary battery, and lithium secondary battery using it - Google Patents

Negative electrode material for lithium secondary battery, and lithium secondary battery using it Download PDF

Info

Publication number
JP2004185984A
JP2004185984A JP2002351387A JP2002351387A JP2004185984A JP 2004185984 A JP2004185984 A JP 2004185984A JP 2002351387 A JP2002351387 A JP 2002351387A JP 2002351387 A JP2002351387 A JP 2002351387A JP 2004185984 A JP2004185984 A JP 2004185984A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
electrode material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002351387A
Other languages
Japanese (ja)
Other versions
JP4046601B2 (en
Inventor
Akihiro Mabuchi
昭弘 馬淵
Hiroyuki Fujimoto
宏之 藤本
Chinnasamy Natarajan
ナタラジャン・チンナサミィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002351387A priority Critical patent/JP4046601B2/en
Publication of JP2004185984A publication Critical patent/JP2004185984A/en
Application granted granted Critical
Publication of JP4046601B2 publication Critical patent/JP4046601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery excellent in initial charge-discharge efficiency, and capable of keeping high charge-discharge capacity. <P>SOLUTION: This lithium secondary battery negative electrode material is formed with a particulate silicon constituent (for instance, silicon fine powder having an average particle diameter of 0.01-5 μm) containing 50-100 wt.% of amorphous silicon, and graphite particles. The ratio (weight ratio) of the silicon constituent (A) to the graphite particles (B) may be silicon constituent (A)/graphite particles (B)=99.9/0.1-40/60. The negative electrode material may further contain a carbonaceous binder. When the negative electrode material for a lithium secondary battery containing the particulate silicon constituent (A) and the graphite particles (B) is used, the initial charge-discharge efficiency or the charge-discharge capacity of the lithium secondary battery can be improved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、初期充放電効率および/または充放電容量が高いリチウム二次電池用負極材とその製造方法、前記負極材を用いたリチウム二次電池用負極およびリチウム二次電池に関する。
【0002】
【従来の技術】
電子機器の小型化、薄型化、軽量化が進む中で、電子機器の電源用の電池として、また電子機器のバックアップ用電池として、高エネルギー密度で充電でき、高効率で放電できるリチウム二次電池が注目を集めている。また、リチウムは、環境に与える影響が少なく、安全性が高いことから、リチウム二次電池は、電気自動車の動力源として、さらに分散型の電力貯蔵用電池としての開発も行われている。
【0003】
従来の典型的なリチウム二次電池は、負極活物質として炭素材を用い、電池の充電時にリチウムをイオン状態で炭素材中に挿入(インターカレーション)し、放電時にはリチウムをイオンとして放出(デインターカレーション)する“ロッキングチェアー型”を採用している。しかし、この電池構成では、炭素材に対するリチウムイオンの挿入量を高めるのが困難であり、二次電池としての充放電容量を高めることができない。例えば、黒鉛を用いると、充電による組成はLiCとなり、この理論充放電容量は372Ah/kgである。これは、リチウム金属の理論充放電容量3860Ah/kg(リチウムペース)の1/10以下と低い。
【0004】
一方、電池を装着する電子機器側からは、充放電容量をより一層向上させるとともに、高い初期充放電効率を有するリチウム二次電池負極材が要求されている。
【0005】
特開平11−97014号公報には、メソフェーズピッチに気相合成法で得られたシリコン粒子を分散し、炭素で覆われたシリコン微粒子からなるリチウム二次電池用負極材が提案されている。この負極材を用いたリチウム二次電池は、シリコンの大きな充放電容量と黒鉛の優れたサイクル特性を兼ね備えるという利点はある。しかし、この負極材では初期充放電効率が低下する。したがって、この負極材では実用化に耐えるリチウム二次電池を作製できない。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、高い初期充放電効率(例えば、90%以上の初期充放電効率)及び/又は高い充放電容量を有するリチウム二次電池用負極材、それを用いたリチウム二次電池用負極及びリチウム二次電池を提供することにある。
【0007】
本発明の他の目的は、高い初期充放電効率だけでなく、高い充放電容量及び優れたサイクル特性を有するリチウム二次電池用負極材、それを用いたリチウム二次電池用負極及びリチウム二次電池を提供することにある。
【0008】
本発明の他の目的は、簡便な方法で、前記特性を有するリチウム二次電池用負極材を製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、アモルファスシリコンで構成された粒子状シリコン成分と黒鉛粒子とで炭素−金属複合負極材を作製することによって、高い充放電容量を達成できるだけでなく、初期充放電容量を向上又は改善できることを見出し、本発明を完成するに至った。
【0010】
すなわち、本発明のリチウム二次電池用負極材は、アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含む。この負極材において、シリコン成分(A)におけるアモルファスシリコンの割合は、50〜100重量%であってもよく、シリコン成分(A)の平均粒子径は、0.01〜5μmであってもよい。シリコン成分(A)は、黒鉛粒子(B)に担持されていてもよい。シリコン成分(A)と黒鉛粒子(B)との割合(重量比)は、例えば、シリコン成分(A)/黒鉛粒子(B)=99.9/0.1〜40/60であってもよい。また、前記リチウム二次電池負極材は、さらに炭素質バインダーを含んでいてもよい。
【0011】
本発明は、アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)との混合物を焼成し、リチウム二次電池用負極材を製造する方法や、アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含むリチウム二次電池用負極材を用いることにより、リチウム二次電池の初期充放電特性又は充放電容量を改善する方法も包含する。
【0012】
さらに本発明は、前記リチウム二次電池用負極材及び結着剤で構成された組成物(混合物)が、負極集電体表面に塗着されているリチウム二次電池用負極、及びこのリチウム二次電池用負極で構成されたリチウム二次電池も包含する。
【0013】
【発明の実施の形態】
本発明のリチウム二次電池用負極材は、アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含む。
【0014】
シリコン成分の種類は、特に限定されず、焼成によりリチウムイオンに対して比較的不活性な焼成物(ケイ素化合物など)を生成すればよく、例えば、シリコン単体(Si)[例えば、単結晶シリコン、多結晶シリコン、非晶質シリコン(アモルファスシリコン)など]、酸化シリコン(SiO、SiO)、ケイ化物(窒化ケイ素、炭化ケイ素、ホウ化ケイ素,TiSi,ZrSi,VSi,CrSi,MoSi,WSi,CoSiなど)などが例示できる。これらのシリコン成分は単独で又は二種以上組み合わせて使用できる。好ましいシリコン成分は、シリコン単体や酸化ケイ素、特にシリコン単体である。シリコン成分は、少なくともアモルファスシリコンを含んでいればよく、非晶質(アモルファス)シリコンを含む限り、結晶(単結晶、多結晶を含む)シリコンを含んでいてもよい。
【0015】
前記結晶シリコンでシリコン成分を構成すると、充電時に結晶シリコンがリチウムとの合金化によりアモルファス化されるため、充電容量を消費し、初期充放電効率が低下し易い。これに対して、シリコン成分がアモルファスシリコンで構成されると、リチウム二次電池の初期充放電効率及び/又は充放電容量を高めることができる。
【0016】
シリコン成分(A)におけるアモルファスシリコンの割合は、初期充放電効率を向上できる範囲であれば特に限定されず、シリコン成分(A)全体に対して、例えば、50〜100重量%、好ましくは60〜100重量%(例えば、70〜100重量%)、さらに好ましくは80〜100重量%(例えば、90〜100重量%)程度である。
【0017】
粒子状シリコン成分(A)(例えば、アモルファスシリコン粒子、結晶シリコン粒子、アモルファスシリコンと結晶シリコンとの混晶粒子など)の平均粒子径は、例えば、0.001〜5μm(例えば、0.001〜2.5μm)、好ましくは0.01〜5μm(例えば、0.01〜2.5μm)、さらに好ましくは0.01〜2μm(例えば、0.05〜2μm)程度である。
【0018】
なお、粒子状シリコン成分(A)は、化学的合成法により調製してもよく、粗大ケイ素化合物(例えば、10〜100μm程度のシリコン)を粉砕することにより得てもよい。粉砕は、慣用の方法、例えば、ボールミル、ハンマーミルなどの慣用の粉砕機又は微粉末化手段が利用できる。
【0019】
黒鉛粒子(B)としては、メソフェーズ小球体の黒鉛化物を含め、人造黒鉛及び天然黒鉛が使用できる。これらの黒鉛は単独で又は二種以上組み合わせて使用できる。黒鉛の結晶構造はリチウムイオンの授受が可能である限り特に制限されず、例えば、面間隔d(002)は、0.3354〜0.34nm、好ましくは0.3354〜0.337nm程度である。c軸方向の長さLcは、30〜200nm、好ましくは50〜150nm程度である。a軸方向の長さLaは、50〜300nm、好ましくは70〜200nm程度である。
【0020】
黒鉛粒子の形態は特に制限されず、無定形状、平板状(又は扁平状)、薄片状、粉粒状などであってもよい。黒鉛の平均粒子径は特に制限されず、例えば、0.1〜100μm程度の広い範囲から選択でき、通常、1〜40μm、好ましくは2〜30μm(例えば、3〜20μm)程度であってもよく、1〜10μm程度であってもよい。
【0021】
黒鉛の比表面積は、例えば、0.5〜5m/g、好ましくは0.8〜2m/g、さらに好ましくは0.8〜1m/g程度であり、嵩密度は、例えば、0.1〜1.5g/ml、好ましくは0.8〜1.5g/ml、さらに好ましくは1〜1.5g/ml程度である。
【0022】
粒子状シリコン成分(A)の平均粒子径は、黒鉛粒子の平均粒子径を「1」としたとき、例えば、0.001〜1、好ましくは0.01〜0.5、さらに好ましくは0.01〜0.3(例えば、0.1〜0.3)程度である。
【0023】
アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含むリチウム二次電池用負極材を用いることにより、リチウム二次電池の初期充放電効率を改善(例えば、初期充放電効率を90%以上とする)できるだけでなく、充放電容量を向上できる。
【0024】
各成分の割合は、初期充放電効率を向上できる範囲であれば特に限定されず、例えば、シリコン成分(A)と黒鉛粒子(B)との割合(重量比)は、シリコン成分(A)/黒鉛粒子(B)=99.9/0.1〜40/60(例えば99.9/0.1〜50/50)、好ましくは、99/1〜50/50(例えば、95/5〜50/50)、さらに好ましくは95/5〜60/40(例えば、90/10〜70/30)程度である。黒鉛粒子の使用量が少なすぎるとサイクル特性が低下しやすく、黒鉛粒子の使用量が多すぎると高充放電容量を示すシリコン成分の量的割合が相対的に低下するため、充放電容量が低下する。
【0025】
本発明のアモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とは、複合体(例えば、複合粒子又は一体化粒子)として用いることもできる。複合化する方法は特に限定されず、例えば、アモルファスシリコンで構成された粒子状シリコン成分(A)と、黒鉛粒子(B)との混合物を熱処理(例えば、焼成など)することにより複合化してもよい。
【0026】
負極材は、シリコン成分(A)及び黒鉛粒子(B)に加えて、必要に応じて炭素質バインダーを含んでいてもよい。炭素質バインダーは、炭素化(炭化又は黒鉛化)可能な材料(炭素質前駆体)の焼成により生成でき、炭素質前駆体としては、例えば、樹脂類(フェノール樹脂、フラン樹脂、アクリロニトリル系樹脂など)、歴青質物質(タール、ピッチなど)などが例示できる。歴青質物質は石油又は石炭に由来してもよく、等方性又は異方性(例えば、等方性ピッチ、異方性ピッチなど)であってもよい。これらの炭素質前駆体は、単独で又は二種以上組み合わせて使用できる。これらの炭素質前駆体のうち、通常、ピッチ、タールが使用される。
【0027】
シリコン成分100重量部に対して、炭素質バインダーの割合(重量比)は、炭素質前駆体として、例えば、10〜200重量部(例えば、20〜150重量部)、好ましくは10〜100重量部、さらに好ましくは20〜80重量部程度である。炭素質前駆体の量が少なすぎるとシリコン成分と黒鉛とを結着させる能力が低下するため、サイクル特性が低下しやすく、炭素質前駆体の量が多すぎると充放電容量が低下しやすい。
【0028】
各成分(例えば、粒子状シリコン成分(A)及び黒鉛粒子(B)、好ましくは粒子状シリコン成分(A)、黒鉛粒子(B)及び炭素質前駆体)の混合は、慣用の混合機を用いて行うことができる。前記粉砕機で粗大ケイ素化合物を粉砕する場合には、この粉砕機内で各成分を混合してもよい。また、必要であれば、各成分を粉砕しながら混合し、混合物を得てもよい。さらに、混合工程では、必要により溶媒(例えば、水、アルコール類、炭化水素類、エステル類、ケトン類、エーテル類など)を用い、均一に混合してもよい。
【0029】
前記混合物の熱処理は、通常、焼成により行うことができる。焼成温度は、特に限定されず、700〜1200℃程度の範囲から選択でき、通常、800〜1200℃、好ましくは900〜1100℃、さらに好ましくは1000〜1100℃程度である。焼成は、通常、不活性ガス、例えば、窒素、ヘリウム、アルゴンなどの雰囲気下で行うことができる。
【0030】
このようにして生成した焼成物(複合体)は、そのまま負極材として使用してもよいが、通常、粉砕、解砕などにより、粉粒体(粉粒状複合体)として使用される。このような複合体は、リチウム二次電池用負極材として充分高いリチウムイオンの移動速度を有しており、リチウム二次電池の初期充放電効率および/または充放電特性に優れる。さらに、粒子状シリコン成分と黒鉛粒子との複合化により、黒鉛構造による充放電容量よりも充放電容量を大きく向上できるとともに、充放電を繰り返しても充放電容量を低下させることがなく、優れたサイクル特性が得られる。
【0031】
負極材(又は複合体)では、粒子状シリコン成分と黒鉛粒子とが、それぞれ分散していてもよい。例えば、負極材において、黒鉛粒子の周りにシリコン成分が存在してもよく、シリコン成分の周りに黒鉛粒子が存在してもよく、負極材は、黒鉛粒子にシリコン成分が担持された構造、シリコン成分に黒鉛粒子が担持された構造、又は、それに類した構造を有していてもよい。
【0032】
さらに、リチウム二次電池負極材がさらに炭素質バインダーを含む場合、粒子状シリコン成分と黒鉛粒子とが炭素質バインダーで結合しており、炭素質バインダー(炭素質マトリックス)中に、黒鉛構造(黒鉛粒子)と粒子状シリコン成分とが分散又は点在した分散構造とを有していてもよい。特に、黒鉛粒子よりも小さな平均粒子径を有する粒子状シリコン成分を用いると、炭素質バインダーにより、黒鉛粒子の表面又はその近傍に、微細シリコン成分が、分散又は担持された構造を有するようである。
【0033】
なお、焼成物(複合体)は、通常、粉粒状で使用できる。粉粒状炭素材(炭素質負極材)の平均粒子径は、通常、1〜40μm(例えば、1〜30μm)、好ましくは1〜20μm、さらに好ましくは5〜15μm程度であってもよい。粉粒状炭素材(炭素質負極材)のアスペクト比(粒子の短径に対する長径の比)は、1〜10、好ましくは1〜6(例えば、1〜3)程度である。
【0034】
本発明の方法で得られた炭素質負極材は、常法により、リチウム二次電池用負極の構成材料として使用できる。例えば、負極材、結着剤などを含む組成物(混合物)を成形する方法;負極材、有機溶媒、結着剤などを含むペーストを負極集電体に塗布手段(ドクターブレードなど)などを用いて塗布又は圧着する方法などにより、任意の形状のリチウム二次電池用負極とすることができる。負極の形成においては、必要に応じて端子と組み合わせてもよい。
【0035】
負極集電体は、特に制限されず、公知の集電体、例えば、銅などの導電体(導電芯体)を使用することができる。有機溶媒としては、通常、結着剤を溶解又は分散可能な溶媒が使用され、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶媒を例示することができる。有機溶媒の使用量は、組成物がペースト状となる限り特に制限されず、例えば、負極材100重量部に対して、通常、80〜150重量部程度、好ましくは60〜100重量部程度である。
【0036】
結着剤としては、例えば、フッ素含有樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)などが例示できる。結着剤の使用量(分散液の場合には、固形分換算の使用量)は、特に限定されず、その下限値は、負極材100重量部に対して、通常、3重量部以上程度、好ましくは5重量部以上程度である。結着剤の使用量の上限は、負極材100重量部に対して、通常、20重量部以下(例えば、15重量部以下)、好ましくは10重量部以下程度である。より具体的には、結着剤の使用量は、固形分換算で、例えば、負極材100重量部に対して、3〜20重量部、好ましくは5〜15重量部(例えば、5〜10重量部)程度である。ペーストの調製方法は、特に制限されず、例えば、結着剤と有機溶媒との混合液(又は分散液)と負極材とを混合する方法などを例示することができる。
【0037】
なお、本発明の負極材と導電材(又は炭素質材料、導電性炭素材)とを併用して、負極を製造してもよい。導電材(又は炭素質材料)の使用割合は特に制限されないが、本発明の負極材と炭素質材料の総量に対して、通常、1〜10重量%程度、好ましくは1〜5重量%程度である。導電材(炭素質材料)を併用することにより、電極としての導電性を向上させることができる。また、更に充放電容量とサイクル特性を向上させることができる。このような導電材(炭素質材料)として、例えば、カーボンブラック(例えばアセチレンブラック、サーマルブラック、ファーネスブラック)などが例示できる。導電材(導電性炭素材)は、単独で又は2種以上組み合わせて使用できる。なお、導電材(炭素質材料)は、例えば、負極材と溶媒とを含むペーストに混合し、このペーストを負極集電体に塗布する方法などにより、負極材とともに有効に利用できる。
【0038】
前記ペーストの負極集電体への塗布量は特に制限されず、通常、3〜10mg/cm程度、好ましくは4〜7mg/cm程度である。
【0039】
本発明の負極材で構成されたリチウム二次電池用負極を用いることにより、高い充放電容量を達成するだけでなく、初期充放電効率が改善されたリチウム二次電池を製造できる。リチウム二次電池は、負極と、リチウムを吸蔵・放出可能な正極と、非水電解質とで構成でき、上記負極、正極、電解液、セパレータなどを用いて、常法によりリチウム二次電池を製造することができる。
【0040】
正極は、特に制限されず、公知の正極が使用でき、正極は、例えば、正極集電体、正極活物質、導電剤などで構成できる。正極集電体として、例えば、アルミニウムなどを例示することができる。正極活物質として、例えば、リチウム複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiCo0.33Ni0.33Mn0.33など)などを例示できる。導電剤として、例えば、天然黒鉛、人造黒鉛、導電性カーボンブラック(アセチレンブラックなど)などが例示できる。
【0041】
電解液は、特に制限されず、公知のものを用いることができる。例えば、電解液として、有機溶媒に電解質を溶解させた溶液を用いることにより、非水系リチウム二次電池を製造することができる。電解質としては、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiCl、LiIなどの溶媒和しにくいアニオンを生成するリチウム塩を例示することができる。有機溶媒としては、例えば、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートなど)、ラクトン類(γ一ブチロラクトンなど)、鎖状エーテル類(1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテルなど)、環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランなど)、スルホラン類(スルホランなど)、スルホキシド類(ジメチルスルホキシドなど)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなど)、ポリオキシアルキレングリコール類(ジエチレングリコールなど)などの非プロトン性溶媒を例示することができる。有機溶媒は、単独で用いてもよく2種以上の混合溶媒として用いてもよい。
【0042】
セパレータは、特に制限されず公知のセパレータ、例えば、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布などのポリオレフィン系の多孔質膜などが例示できる。
【0043】
リチウム二次電池は、本発明の負極材を含む負極、正極および電解液の他に、例えば、通常当該分野において使用されるガスケット、封口板、ケースなどをさらに備えていてもよい。
【0044】
リチウム二次電池の形状は、円筒型、角型、ボタン型など任意の形態とすることができる。本発明のリチウム二次電池は、分散型、可搬性電池として、電子機器、電気機器、自動車、電力貯蔵などの電源や補助電源として利用できる。本発明では、高い初期充放電効率、充放電特性及びサイクル特性に優れ、長期間に亘り安定して使用できるリチウム二次電池を提供できる。特に、リチウム二次電池に使用される負極材の初期充放電効率を著しく高めることが可能である。そのため、本発明の工業的価値は大きく、種々の用途で利用できる。
【0045】
【発明の効果】
本発明のリチウム二次電池用負極材は、アモルファスシリコンで構成された粒子状シリコン成分と黒鉛粒子とを含むので、リチウム二次電池の初期充放電効率を向上させるとともに、長期間に亘り高い充放電容量を維持できる。また、粒子状シリコン成分と黒鉛粒子との組合わせにより、高い充放電容量のみならず、優れたサイクル特性も達成できる。さらに、混合、焼成という簡便な方法で、前記の如き優れた特性を有するリチウム二次電池用負極材を製造できる。
【0046】
【実施例】
以下に、実施例及び比較例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0047】
実施例1
(負極材の調製)
アモルファスシリコン材料を、ステンレス製ボール100gを入れた遊星式ボールミルにより、200rpm、5時間の条件で粉砕し、平均粒子径約1μmの微粉末を得た。この粉砕物24gに平均粒子径約6μmの人造黒鉛(Timcal AG製「SFG−6」)6g及び石炭系ピッチ6gを加え、窒素雰囲気中、1100℃で1時間焼成処理し、解砕することにより負極材を得た。得られた負極材の平均粒子径は10μmであった。
【0048】
(負極体の作成)
得られた負極材92重量部と、結着剤(ポリフッ化ビニリデン)8重量部とを、適量のN−メチルピロリドン(NMP)に溶解させ撹拌した後、スラリー状のペーストを得た。得られたペーストを、電解銅箔上にドクターブレードを用いて5mg/cmの塗布量で塗布し、110℃で30分間乾燥させた後、ロールプレス機によりプレスして電極とした。さらに、この電極の塗布部を円形(サイズ:1cm)に打ち抜いて、200℃で6時間の真空乾燥を行い、負極体を作製した。
【0049】
(リチウム二次電池の作製)
前記負極体、対極として金属リチウム、電解液として過塩素酸リチウムを1モル/Lの割合で溶解させたエチレンカーボネートとジエチルカーボネート1:1(体積比)混合溶液、及びセパレータとしてポリプロピレン不織布を用い、リチウム二次電池(二極式密閉セル)を組み立てた。
【0050】
(電極特性の評価)
対極(リチウム極)に対し、0.3Cに相当する電流で800Ah/kg充電し、前記リチウム二次電池の充放電特性及び初期充放電効率を測定した。放電はリチウム極に対して0.3Cに相当する電流で、2.0Vまで行った。充放電容量は、カット電圧が1.3Vの時の容量とした。
【0051】
実施例2
シリコン成分を、アモルファスシリコンと結晶性の金属シリコンとを重量比4:1で混合したもの(アモルファスシリコン80重量%)とする以外は、すべて実施例1と同様にしてリチウム二次電池を作製して、電極特性の評価を行った。
【0052】
実施例3
シリコン成分を、アモルファスシリコンと結晶性の金属シリコンとを重量比1:1で混合したもの(アモルファスシリコン50重量%)とする以外は、すべて実施例1と同様にしてリチウム二次電池を作製して、電極特性の評価を行った。
【0053】
比較例
アモルファスシリコンを使用せず、結晶性の金属シリコンのみを使用する以外、実施例1と同様にしてリチウム二次電池を作製して、電極特性の評価を行った。
【0054】
結果を表1に示す。
【0055】
【表1】

Figure 2004185984
【0056】
表1に示す結果から明らかなように、実施例の負極材を用いると、初期充放電効率及び充放電容量を大きく向上できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a lithium secondary battery having a high initial charge / discharge efficiency and / or charge / discharge capacity, a method for producing the same, a negative electrode for a lithium secondary battery using the negative electrode material, and a lithium secondary battery.
[0002]
[Prior art]
As electronic devices become smaller, thinner and lighter, lithium secondary batteries can be charged at a high energy density and discharged with high efficiency as batteries for power supplies of electronic devices and as backup batteries for electronic devices. Is attracting attention. In addition, since lithium has little effect on the environment and high safety, lithium secondary batteries are being developed as power sources for electric vehicles and as distributed power storage batteries.
[0003]
A typical conventional lithium secondary battery uses a carbon material as a negative electrode active material, inserts (intercalates) lithium into the carbon material in an ion state when charging the battery, and releases lithium as an ion (discharge) when discharging. Interlocking) "rocking chair type" is adopted. However, with this battery configuration, it is difficult to increase the amount of lithium ions inserted into the carbon material, and the charge / discharge capacity of the secondary battery cannot be increased. For example, when graphite is used, the composition upon charging is LiC 6 and the theoretical charge / discharge capacity is 372 Ah / kg. This is as low as 1/10 or less of the theoretical charge / discharge capacity of lithium metal of 3860 Ah / kg (lithium pace).
[0004]
On the other hand, from the side of the electronic device on which the battery is mounted, there is a demand for a negative electrode material for a lithium secondary battery having a further improved charge / discharge capacity and high initial charge / discharge efficiency.
[0005]
Japanese Patent Application Laid-Open No. H11-97014 proposes a negative electrode material for a lithium secondary battery in which silicon particles obtained by a gas phase synthesis method are dispersed in a mesophase pitch and silicon particles are covered with carbon. A lithium secondary battery using this negative electrode material has an advantage that it has both a large charge / discharge capacity of silicon and excellent cycle characteristics of graphite. However, with this negative electrode material, the initial charge / discharge efficiency decreases. Therefore, a lithium secondary battery that can withstand practical use cannot be manufactured using this negative electrode material.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a negative electrode material for a lithium secondary battery having high initial charge / discharge efficiency (for example, initial charge / discharge efficiency of 90% or more) and / or high charge / discharge capacity, and a lithium secondary battery using the same. And a lithium secondary battery.
[0007]
Another object of the present invention is to provide a negative electrode material for a lithium secondary battery having not only a high initial charge / discharge efficiency, but also a high charge / discharge capacity and excellent cycle characteristics, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery using the same. It is to provide a battery.
[0008]
Another object of the present invention is to provide a method for producing a negative electrode material for a lithium secondary battery having the above characteristics by a simple method.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by producing a carbon-metal composite anode material with a particulate silicon component composed of amorphous silicon and graphite particles, high charge / discharge was achieved. The inventors have found that not only the capacity can be achieved but also the initial charge / discharge capacity can be improved or improved, and the present invention has been completed.
[0010]
That is, the negative electrode material for a lithium secondary battery of the present invention includes a particulate silicon component (A) composed of amorphous silicon and graphite particles (B). In this negative electrode material, the proportion of amorphous silicon in the silicon component (A) may be 50 to 100% by weight, and the average particle diameter of the silicon component (A) may be 0.01 to 5 μm. The silicon component (A) may be supported on the graphite particles (B). The ratio (weight ratio) between the silicon component (A) and the graphite particles (B) may be, for example, silicon component (A) / graphite particles (B) = 99.9 / 0.1 to 40/60. . The negative electrode material for a lithium secondary battery may further include a carbonaceous binder.
[0011]
The present invention relates to a method for producing a negative electrode material for a lithium secondary battery by firing a mixture of a particulate silicon component (A) and graphite particles (B) composed of amorphous silicon, and a method of producing particles composed of amorphous silicon. The present invention also includes a method for improving the initial charge / discharge characteristics or charge / discharge capacity of a lithium secondary battery by using a negative electrode material for a lithium secondary battery containing the silicon component (A) and the graphite particles (B).
[0012]
Further, the present invention provides a negative electrode for a lithium secondary battery in which a composition (mixture) composed of the negative electrode material for a lithium secondary battery and a binder is coated on the surface of a negative electrode current collector. It also includes a lithium secondary battery composed of a negative electrode for a secondary battery.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The negative electrode material for a lithium secondary battery of the present invention contains a particulate silicon component (A) composed of amorphous silicon and graphite particles (B).
[0014]
The type of the silicon component is not particularly limited as long as a fired product (silicon compound or the like) that is relatively inert to lithium ions is generated by firing, and for example, simple silicon (Si) [for example, single crystal silicon, Polycrystalline silicon, amorphous silicon (amorphous silicon), etc.], silicon oxide (SiO, SiO 2 ), silicide (silicon nitride, silicon carbide, silicon boride, TiSi 2 , ZrSi 2 , VSi 2 , CrSi 2 , MoSi) 2, such as WSi 2, CoSi), and others. These silicon components can be used alone or in combination of two or more. Preferred silicon components are simple silicon and silicon oxide, particularly simple silicon. The silicon component only needs to include at least amorphous silicon, and may include crystalline (including single crystal and polycrystalline) silicon as long as it includes amorphous (amorphous) silicon.
[0015]
When the silicon component is composed of the crystalline silicon, the crystalline silicon becomes amorphous by alloying with lithium at the time of charging, so that the charging capacity is consumed and the initial charging / discharging efficiency is likely to decrease. On the other hand, when the silicon component is composed of amorphous silicon, the initial charge / discharge efficiency and / or charge / discharge capacity of the lithium secondary battery can be increased.
[0016]
The proportion of amorphous silicon in the silicon component (A) is not particularly limited as long as the initial charge / discharge efficiency can be improved, and is, for example, 50 to 100% by weight, preferably 60 to 100% by weight, based on the entire silicon component (A). It is about 100% by weight (for example, 70 to 100% by weight), and more preferably about 80 to 100% by weight (for example, 90 to 100% by weight).
[0017]
The average particle diameter of the particulate silicon component (A) (for example, amorphous silicon particles, crystalline silicon particles, mixed crystal particles of amorphous silicon and crystalline silicon, etc.) is, for example, 0.001 to 5 μm (for example, 0.001 to 5 μm). 2.5 μm), preferably about 0.01 to 5 μm (eg, 0.01 to 2.5 μm), and more preferably about 0.01 to 2 μm (eg, 0.05 to 2 μm).
[0018]
The particulate silicon component (A) may be prepared by a chemical synthesis method, or may be obtained by pulverizing a coarse silicon compound (for example, silicon having a size of about 10 to 100 μm). For the pulverization, a conventional method, for example, a conventional pulverizer such as a ball mill or a hammer mill or a pulverizing means can be used.
[0019]
As the graphite particles (B), artificial graphite and natural graphite, including graphitized mesophase spheres, can be used. These graphites can be used alone or in combination of two or more. The crystal structure of graphite is not particularly limited as long as lithium ions can be transferred. For example, the interplanar spacing d (002) is about 0.3354 to 0.34 nm, preferably about 0.3354 to 0.337 nm. The length Lc in the c-axis direction is 30 to 200 nm, preferably about 50 to 150 nm. The length La in the a-axis direction is about 50 to 300 nm, preferably about 70 to 200 nm.
[0020]
The form of the graphite particles is not particularly limited, and may be amorphous, flat (or flat), flake, powder or the like. The average particle size of graphite is not particularly limited, and can be selected from a wide range of, for example, about 0.1 to 100 μm, and may be usually about 1 to 40 μm, preferably about 2 to 30 μm (for example, about 3 to 20 μm). It may be about 1 to 10 μm.
[0021]
The specific surface area of the graphite, for example, 0.5 to 5 m 2 / g, preferably 0.8~2m 2 / g, more preferably about 0.8~1m 2 / g, bulk density, for example, 0 0.1 to 1.5 g / ml, preferably 0.8 to 1.5 g / ml, and more preferably about 1 to 1.5 g / ml.
[0022]
The average particle diameter of the particulate silicon component (A) is, for example, 0.001 to 1, preferably 0.01 to 0.5, and more preferably 0.1 to 1.0 when the average particle diameter of the graphite particles is "1". It is about 01 to 0.3 (for example, 0.1 to 0.3).
[0023]
By using a negative electrode material for a lithium secondary battery including a particulate silicon component (A) composed of amorphous silicon and graphite particles (B), the initial charge / discharge efficiency of the lithium secondary battery is improved (for example, the initial charge / discharge efficiency is increased). The discharge efficiency can be 90% or more), and the charge / discharge capacity can be improved.
[0024]
The ratio of each component is not particularly limited as long as the initial charge / discharge efficiency can be improved. For example, the ratio (weight ratio) of the silicon component (A) to the graphite particles (B) is expressed as silicon component (A) / Graphite particles (B) = 99.9 / 0.1 to 40/60 (e.g., 99.9 / 0.1 to 50/50), preferably 99/1 to 50/50 (e.g., 95/5 to 50) / 50), and more preferably about 95/5 to 60/40 (eg, 90/10 to 70/30). If the amount of the graphite particles is too small, the cycle characteristics are likely to deteriorate.If the amount of the graphite particles is too large, the quantitative ratio of the silicon component showing a high charge / discharge capacity is relatively reduced, so the charge / discharge capacity is reduced. I do.
[0025]
The particulate silicon component (A) and the graphite particles (B) composed of the amorphous silicon of the present invention can be used as a composite (for example, composite particles or integrated particles). The method of compounding is not particularly limited. For example, the compound may be formed by heat-treating (for example, firing) a mixture of the particulate silicon component (A) composed of amorphous silicon and the graphite particles (B). Good.
[0026]
The negative electrode material may contain a carbonaceous binder as needed in addition to the silicon component (A) and the graphite particles (B). The carbonaceous binder can be generated by firing a material (carbonaceous precursor) capable of being carbonized (carbonized or graphitized). Examples of the carbonaceous precursor include resins (phenol resin, furan resin, acrylonitrile-based resin, etc.). ), Bituminous substances (tar, pitch, etc.). The bituminous material may be derived from petroleum or coal and may be isotropic or anisotropic (eg, isotropic pitch, anisotropic pitch, etc.). These carbonaceous precursors can be used alone or in combination of two or more. Of these carbonaceous precursors, pitch and tar are usually used.
[0027]
The ratio (weight ratio) of the carbonaceous binder to 100 parts by weight of the silicon component is, for example, 10 to 200 parts by weight (for example, 20 to 150 parts by weight), preferably 10 to 100 parts by weight as the carbonaceous precursor. And more preferably about 20 to 80 parts by weight. If the amount of the carbonaceous precursor is too small, the ability to bind the silicon component to the graphite is reduced, so that the cycle characteristics are apt to be reduced. If the amount of the carbonaceous precursor is too large, the charge / discharge capacity is apt to be reduced.
[0028]
The components (for example, the particulate silicon component (A) and the graphite particles (B), preferably the particulate silicon component (A), the graphite particles (B) and the carbonaceous precursor) are mixed using a conventional mixer. Can be done. When the coarse silicon compound is crushed by the crusher, the respective components may be mixed in the crusher. If necessary, each component may be mixed while being pulverized to obtain a mixture. Further, in the mixing step, if necessary, a solvent (eg, water, alcohols, hydrocarbons, esters, ketones, ethers, etc.) may be used to uniformly mix.
[0029]
The heat treatment of the mixture can be usually performed by firing. The firing temperature is not particularly limited and can be selected from the range of about 700 to 1200 ° C, and is usually about 800 to 1200 ° C, preferably about 900 to 1100 ° C, and more preferably about 1000 to 1100 ° C. The firing can be usually performed in an atmosphere of an inert gas, for example, nitrogen, helium, argon, or the like.
[0030]
The fired product (composite) thus generated may be used as it is as a negative electrode material, but is usually used as a powder (granular composite) by pulverization, crushing, or the like. Such a composite has a sufficiently high migration speed of lithium ions as a negative electrode material for a lithium secondary battery, and is excellent in the initial charge / discharge efficiency and / or charge / discharge characteristics of the lithium secondary battery. Furthermore, by combining the particulate silicon component and the graphite particles, the charge / discharge capacity can be greatly improved as compared with the charge / discharge capacity due to the graphite structure. Cycle characteristics can be obtained.
[0031]
In the negative electrode material (or the composite), the particulate silicon component and the graphite particles may be dispersed respectively. For example, in the negative electrode material, a silicon component may be present around the graphite particles, and graphite particles may be present around the silicon component.The negative electrode material has a structure in which the silicon component is supported on the graphite particles, silicon. The component may have a structure in which graphite particles are supported, or a structure similar thereto.
[0032]
Further, when the negative electrode material of the lithium secondary battery further contains a carbonaceous binder, the particulate silicon component and the graphite particles are bound by the carbonaceous binder, and the graphite structure (graphite) is contained in the carbonaceous binder (carbonaceous matrix). (Particles) and a particulate silicon component may be dispersed or dispersed. In particular, when a particulate silicon component having an average particle diameter smaller than graphite particles is used, the carbonaceous binder seems to have a structure in which the fine silicon component is dispersed or supported on or near the surface of the graphite particles. .
[0033]
The fired product (composite) can be usually used in the form of a powder. The average particle size of the powdery carbon material (carbonaceous negative electrode material) may be generally 1 to 40 μm (for example, 1 to 30 μm), preferably 1 to 20 μm, and more preferably about 5 to 15 μm. The aspect ratio (the ratio of the major axis to the minor axis of the particles) of the granular carbon material (carbonaceous negative electrode material) is about 1 to 10, preferably about 1 to 6 (for example, 1 to 3).
[0034]
The carbonaceous negative electrode material obtained by the method of the present invention can be used as a constituent material of a negative electrode for a lithium secondary battery by a conventional method. For example, a method of molding a composition (mixture) containing a negative electrode material, a binder, and the like; a method of applying a paste containing the negative electrode material, an organic solvent, a binder, and the like to a negative electrode current collector using a means (eg, a doctor blade) or the like. A negative electrode for a lithium secondary battery having an arbitrary shape can be obtained by a method of applying or press-bonding. In forming the negative electrode, it may be combined with a terminal as necessary.
[0035]
The negative electrode current collector is not particularly limited, and a known current collector, for example, a conductor (conductive core) such as copper can be used. As the organic solvent, a solvent capable of dissolving or dispersing the binder is generally used, and examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide. The amount of the organic solvent used is not particularly limited as long as the composition becomes a paste. For example, the amount is usually about 80 to 150 parts by weight, preferably about 60 to 100 parts by weight, based on 100 parts by weight of the negative electrode material. .
[0036]
Examples of the binder include a fluorine-containing resin (such as polyvinylidene fluoride and polytetrafluoroethylene). The amount of the binder used (in the case of a dispersion, the amount used in terms of solid content) is not particularly limited, and its lower limit is usually about 3 parts by weight or more based on 100 parts by weight of the negative electrode material. It is preferably about 5 parts by weight or more. The upper limit of the amount of the binder used is usually 20 parts by weight or less (for example, 15 parts by weight or less), and preferably about 10 parts by weight or less based on 100 parts by weight of the negative electrode material. More specifically, the amount of the binder used is, for example, 3 to 20 parts by weight, preferably 5 to 15 parts by weight (for example, 5 to 10 parts by weight) based on 100 parts by weight of the negative electrode material in terms of solid content. Part) degree. The method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a mixture (or dispersion) of a binder and an organic solvent with a negative electrode material.
[0037]
The negative electrode of the present invention may be used in combination with a conductive material (or a carbonaceous material or a conductive carbon material) to produce a negative electrode. Although the usage ratio of the conductive material (or carbonaceous material) is not particularly limited, it is usually about 1 to 10% by weight, preferably about 1 to 5% by weight, based on the total amount of the negative electrode material and the carbonaceous material of the present invention. is there. By using a conductive material (carbonaceous material) in combination, the conductivity as an electrode can be improved. Further, the charge / discharge capacity and cycle characteristics can be further improved. Examples of such a conductive material (carbonaceous material) include, for example, carbon black (eg, acetylene black, thermal black, furnace black) and the like. The conductive material (conductive carbon material) can be used alone or in combination of two or more. The conductive material (carbonaceous material) can be effectively used together with the negative electrode material by, for example, mixing the paste with the negative electrode material and a solvent and applying the paste to the negative electrode current collector.
[0038]
The amount of the paste applied to the negative electrode current collector is not particularly limited, and is usually about 3 to 10 mg / cm 2 , preferably about 4 to 7 mg / cm 2 .
[0039]
By using the negative electrode for a lithium secondary battery composed of the negative electrode material of the present invention, a lithium secondary battery not only achieving a high charge / discharge capacity but also having improved initial charge / discharge efficiency can be manufactured. A lithium secondary battery can be composed of a negative electrode, a positive electrode capable of occluding and releasing lithium, and a non-aqueous electrolyte. A lithium secondary battery is manufactured by a conventional method using the above-described negative electrode, positive electrode, electrolyte, separator, and the like. can do.
[0040]
The positive electrode is not particularly limited, and a known positive electrode can be used. The positive electrode can be composed of, for example, a positive electrode current collector, a positive electrode active material, a conductive agent, and the like. Examples of the positive electrode current collector include aluminum and the like. Examples of the positive electrode active material include lithium composite oxides (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.33 Ni 0.33 Mn 0.33 O 2 ) and the like. Examples of the conductive agent include natural graphite, artificial graphite, and conductive carbon black (such as acetylene black).
[0041]
The electrolyte is not particularly limited, and a known electrolyte can be used. For example, a non-aqueous lithium secondary battery can be manufactured by using a solution in which an electrolyte is dissolved in an organic solvent as an electrolyte. As the electrolyte, for example, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, be mentioned lithium salt that produces a solvated hard anions such LiI it can. Examples of the organic solvent include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), cyclic Ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyldioxolan, etc.), sulfolane (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, benzonitrile, etc.), amides Examples of aprotic solvents such as (N, N-dimethylformamide, N, N-dimethylacetamide) and polyoxyalkylene glycols (such as diethylene glycol). Kill. The organic solvent may be used alone or as a mixed solvent of two or more.
[0042]
The separator is not particularly limited, and may be a known separator, for example, a polyolefin-based porous membrane such as a porous polypropylene nonwoven fabric and a porous polyethylene nonwoven fabric.
[0043]
The lithium secondary battery may further include, for example, a gasket, a sealing plate, a case, and the like generally used in the art, in addition to the negative electrode, the positive electrode, and the electrolyte including the negative electrode material of the present invention.
[0044]
The shape of the lithium secondary battery can be any shape such as a cylindrical shape, a square shape, and a button shape. INDUSTRIAL APPLICABILITY The lithium secondary battery of the present invention can be used as a dispersed or portable battery as a power source or an auxiliary power source for electronic devices, electric devices, automobiles, power storage, and the like. According to the present invention, it is possible to provide a lithium secondary battery which is excellent in high initial charge / discharge efficiency, charge / discharge characteristics, and cycle characteristics and can be used stably for a long period of time. In particular, it is possible to significantly increase the initial charge / discharge efficiency of the negative electrode material used in the lithium secondary battery. Therefore, the present invention has great industrial value and can be used in various applications.
[0045]
【The invention's effect】
Since the negative electrode material for a lithium secondary battery of the present invention contains a particulate silicon component composed of amorphous silicon and graphite particles, the initial charge / discharge efficiency of the lithium secondary battery is improved, and a high charge rate is maintained for a long period of time. Discharge capacity can be maintained. Further, the combination of the particulate silicon component and the graphite particles can achieve not only high charge / discharge capacity but also excellent cycle characteristics. Furthermore, a negative electrode material for a lithium secondary battery having the above-described excellent characteristics can be manufactured by a simple method of mixing and firing.
[0046]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0047]
Example 1
(Preparation of negative electrode material)
The amorphous silicon material was pulverized by a planetary ball mill containing 100 g of stainless steel balls at 200 rpm for 5 hours to obtain a fine powder having an average particle diameter of about 1 μm. 6 g of artificial graphite (“SFG-6” manufactured by Timcal AG) having an average particle diameter of about 6 μm and 6 g of coal-based pitch were added to 24 g of the pulverized product, and the mixture was calcined at 1100 ° C. for 1 hour in a nitrogen atmosphere to be crushed. A negative electrode material was obtained. The average particle diameter of the obtained negative electrode material was 10 μm.
[0048]
(Preparation of negative electrode body)
After 92 parts by weight of the obtained negative electrode material and 8 parts by weight of a binder (polyvinylidene fluoride) were dissolved in an appropriate amount of N-methylpyrrolidone (NMP) and stirred, a slurry paste was obtained. The obtained paste was applied on an electrolytic copper foil at a coating amount of 5 mg / cm 2 using a doctor blade, dried at 110 ° C. for 30 minutes, and then pressed by a roll press to form an electrode. Further, the coated portion of the electrode was punched out in a circular shape (size: 1 cm 2 ), and vacuum-dried at 200 ° C. for 6 hours to produce a negative electrode body.
[0049]
(Production of lithium secondary battery)
Using the negative electrode body, a metal lithium as a counter electrode, a mixed solution of ethylene carbonate and diethyl carbonate 1: 1 (volume ratio) in which lithium perchlorate is dissolved at a ratio of 1 mol / L as an electrolyte, and a polypropylene nonwoven fabric as a separator, A lithium secondary battery (bipolar closed cell) was assembled.
[0050]
(Evaluation of electrode characteristics)
The counter electrode (lithium electrode) was charged at 800 Ah / kg with a current corresponding to 0.3 C, and the charge / discharge characteristics and the initial charge / discharge efficiency of the lithium secondary battery were measured. Discharging was performed up to 2.0 V at a current corresponding to 0.3 C with respect to the lithium electrode. The charge / discharge capacity was a capacity when the cut voltage was 1.3 V.
[0051]
Example 2
A lithium secondary battery was manufactured in the same manner as in Example 1 except that the silicon component was a mixture of amorphous silicon and crystalline metal silicon at a weight ratio of 4: 1 (80% by weight of amorphous silicon). Then, the electrode characteristics were evaluated.
[0052]
Example 3
A lithium secondary battery was manufactured in the same manner as in Example 1 except that the silicon component was a mixture of amorphous silicon and crystalline metal silicon at a weight ratio of 1: 1 (amorphous silicon 50% by weight). Then, the electrode characteristics were evaluated.
[0053]
Comparative Example A lithium secondary battery was fabricated in the same manner as in Example 1 except that only crystalline metallic silicon was used without using amorphous silicon, and the electrode characteristics were evaluated.
[0054]
Table 1 shows the results.
[0055]
[Table 1]
Figure 2004185984
[0056]
As is evident from the results shown in Table 1, the use of the negative electrode material of the example can greatly improve the initial charge / discharge efficiency and the charge / discharge capacity.

Claims (11)

アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含むリチウム二次電池用負極材。A negative electrode material for a lithium secondary battery, comprising a particulate silicon component (A) composed of amorphous silicon and graphite particles (B). シリコン成分(A)におけるアモルファスシリコンの割合が、50〜100重量%である請求項1記載のリチウム二次電池用負極材。The negative electrode material for a lithium secondary battery according to claim 1, wherein the proportion of amorphous silicon in the silicon component (A) is 50 to 100% by weight. シリコン成分(A)の平均粒子径が、0.01〜5μmである請求項1記載のリチウム二次電池用負極材。The negative electrode material for a lithium secondary battery according to claim 1, wherein the silicon component (A) has an average particle size of 0.01 to 5 m. 黒鉛粒子(B)に、シリコン成分(A)が担持されている請求項1記載のリチウム二次電池用負極材。The negative electrode material for a lithium secondary battery according to claim 1, wherein the silicon component (A) is supported on the graphite particles (B). シリコン成分(A)と黒鉛粒子(B)との割合(重量比)が、シリコン成分(A)/黒鉛粒子(B)=99.9/0.1〜40/60である請求項1記載のリチウム二次電池用負極材。The ratio (weight ratio) of the silicon component (A) and the graphite particles (B) is silicon component (A) / graphite particles (B) = 99.9 / 0.1 to 40/60. Negative electrode material for lithium secondary batteries. シリコン成分(A)と黒鉛粒子(B)との割合(重量比)が、シリコン成分(A)/黒鉛粒子(B)=99.9/0.1〜50/50であり、かつシリコン成分(A)におけるアモルファスシリコンの割合が、60〜100重量%である請求項1記載のリチウム二次電池用負極材。The ratio (weight ratio) of the silicon component (A) to the graphite particles (B) is silicon component (A) / graphite particles (B) = 99.9 / 0.1 to 50/50, and the silicon component ( 2. The negative electrode material for a lithium secondary battery according to claim 1, wherein the proportion of amorphous silicon in A) is 60 to 100% by weight. さらに、炭素質バインダーを含む請求項1記載のリチウム二次電池用負極材。The negative electrode material for a lithium secondary battery according to claim 1, further comprising a carbonaceous binder. アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含む混合物を焼成し、リチウム二次電池用負極材を製造する方法。A method for producing a negative electrode material for a lithium secondary battery by firing a mixture containing a particulate silicon component (A) composed of amorphous silicon and graphite particles (B). アモルファスシリコンで構成された粒子状シリコン成分(A)と黒鉛粒子(B)とを含むリチウム二次電池用負極材を用いることにより、リチウム二次電池の初期充放電効率又は充放電容量を改善する方法。By using a negative electrode material for a lithium secondary battery containing a particulate silicon component (A) composed of amorphous silicon and graphite particles (B), the initial charge / discharge efficiency or charge / discharge capacity of the lithium secondary battery is improved. Method. 請求項1記載のリチウム二次電池用負極材及び結着剤で構成された組成物が、負極集電体表面に塗着されているリチウム二次電池用負極。A negative electrode for a lithium secondary battery, wherein a composition comprising the negative electrode material for a lithium secondary battery according to claim 1 and a binder is applied to the surface of the negative electrode current collector. 請求項10記載のリチウム二次電池用負極を備えているリチウム二次電池。A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 10.
JP2002351387A 2002-12-03 2002-12-03 Negative electrode material for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4046601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351387A JP4046601B2 (en) 2002-12-03 2002-12-03 Negative electrode material for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351387A JP4046601B2 (en) 2002-12-03 2002-12-03 Negative electrode material for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2004185984A true JP2004185984A (en) 2004-07-02
JP4046601B2 JP4046601B2 (en) 2008-02-13

Family

ID=32753320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351387A Expired - Fee Related JP4046601B2 (en) 2002-12-03 2002-12-03 Negative electrode material for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4046601B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
US7807301B2 (en) 2008-06-17 2010-10-05 Industrial Technology Research Institute Lithium battery
WO2014080893A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
JP2014102888A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Negative electrode material for power storage device, negative electrode for power storage device, and power storage device
CN103904307A (en) * 2012-12-24 2014-07-02 宁波杉杉新材料科技有限公司 Silicon-carbon composite material, preparation method and application thereof
JP2015508934A (en) * 2012-01-30 2015-03-23 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
KR101560863B1 (en) 2012-09-07 2015-10-15 주식회사 엘지화학 Lithium secondary battery with high energy density
KR101572405B1 (en) * 2011-12-21 2015-11-26 도요타지도샤가부시키가이샤 Lithium secondary battery
JP2016219354A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Negative electrode including crystalline silicon powder and amorphous silicon powder
US9577246B2 (en) 2013-02-22 2017-02-21 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10644347B2 (en) 2016-02-29 2020-05-05 Nec Corporation Negative electrode active material and lithium ion secondary battery using the same
CN111755689A (en) * 2014-06-11 2020-10-09 日新化成株式会社 Negative electrode material for lithium ion battery, method for producing negative electrode or negative electrode material for lithium ion battery, and apparatus for producing negative electrode or negative electrode material for lithium ion battery
CN115799474A (en) * 2022-12-13 2023-03-14 大连理工大学 Preparation method and application of fluorinated silicon-carbon negative electrode material
CN115832267A (en) * 2021-09-16 2023-03-21 中南大学 Amorphous silicon/hard carbon composite material, preparation thereof and application thereof in lithium ion battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
US7807301B2 (en) 2008-06-17 2010-10-05 Industrial Technology Research Institute Lithium battery
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
KR101572405B1 (en) * 2011-12-21 2015-11-26 도요타지도샤가부시키가이샤 Lithium secondary battery
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
JP2015508934A (en) * 2012-01-30 2015-03-23 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
KR101560863B1 (en) 2012-09-07 2015-10-15 주식회사 엘지화학 Lithium secondary battery with high energy density
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
JP2014102888A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Negative electrode material for power storage device, negative electrode for power storage device, and power storage device
JP6024760B2 (en) * 2012-11-22 2016-11-16 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
WO2014080893A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
CN103904307A (en) * 2012-12-24 2014-07-02 宁波杉杉新材料科技有限公司 Silicon-carbon composite material, preparation method and application thereof
US9577246B2 (en) 2013-02-22 2017-02-21 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
CN111755689A (en) * 2014-06-11 2020-10-09 日新化成株式会社 Negative electrode material for lithium ion battery, method for producing negative electrode or negative electrode material for lithium ion battery, and apparatus for producing negative electrode or negative electrode material for lithium ion battery
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
JP2016219354A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Negative electrode including crystalline silicon powder and amorphous silicon powder
US10644347B2 (en) 2016-02-29 2020-05-05 Nec Corporation Negative electrode active material and lithium ion secondary battery using the same
CN115832267A (en) * 2021-09-16 2023-03-21 中南大学 Amorphous silicon/hard carbon composite material, preparation thereof and application thereof in lithium ion battery
CN115799474A (en) * 2022-12-13 2023-03-14 大连理工大学 Preparation method and application of fluorinated silicon-carbon negative electrode material

Also Published As

Publication number Publication date
JP4046601B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4046601B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JP3713900B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
KR101328982B1 (en) Anode active material and method of preparing the same
KR101059094B1 (en) Plus active material and non-aqueous electrolyte secondary battery
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
US20130295454A1 (en) Low crystallinity silicon composite anode material for lithium ion battery
US20060102474A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
Zhang et al. A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0. 5Mn1. 5O4 cathode
JP2002117833A (en) Nonaqueous electrolyte secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
MXPA01009681A (en) Method for the preparation of cathode active material and method for the preparation of a non-aqueous electrolyte cell.
JP7480284B2 (en) Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
JP2006164952A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
Guo et al. Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries
JP2001126733A (en) Nonaqueous electrolytic material
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
JP3816799B2 (en) Lithium secondary battery
US10115963B2 (en) Negative electrode material for secondary battery and secondary battery using the same
JP2006185794A (en) Non-aqueous electrolyte secondary battery, and its charging method
Guo et al. A novel SnxSbNi composite as anode materials for Li rechargeable batteries
JP2002117843A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees