JP6397642B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6397642B2
JP6397642B2 JP2014061325A JP2014061325A JP6397642B2 JP 6397642 B2 JP6397642 B2 JP 6397642B2 JP 2014061325 A JP2014061325 A JP 2014061325A JP 2014061325 A JP2014061325 A JP 2014061325A JP 6397642 B2 JP6397642 B2 JP 6397642B2
Authority
JP
Japan
Prior art keywords
negative electrode
silicon oxide
active material
electrode active
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014061325A
Other languages
Japanese (ja)
Other versions
JP2015185407A (en
Inventor
敬光 田下
敬光 田下
安展 岩見
安展 岩見
拓也 四宮
拓也 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014061325A priority Critical patent/JP6397642B2/en
Publication of JP2015185407A publication Critical patent/JP2015185407A/en
Application granted granted Critical
Publication of JP6397642B2 publication Critical patent/JP6397642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質二次電池を高容量化する手段として酸化ケイ素(SiOx、0.5≦x<1.6)を黒鉛材料と混合して負極活物質として用いた、サイクル特性に優れた非水電解質二次電池に関する。   The present invention has excellent cycle characteristics when silicon oxide (SiOx, 0.5 ≦ x <1.6) is mixed with a graphite material as a negative electrode active material as means for increasing the capacity of a nonaqueous electrolyte secondary battery. The present invention also relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素材料が広く用いられている。しかしながら、炭素材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するケイ素ないしケイ素合金や酸化ケイ素を用いる非水電解質二次電池が開発されている。例えばケイ素はLi4.4Siの組成までリチウムを挿入できるため、理論容量が4200mAh/gとなり、負極活物質として炭素材料を用いた場合よりも大きな容量を期待し得る。 Carbon materials such as graphite and amorphous carbon are widely used as negative electrode active materials used in non-aqueous electrolyte secondary batteries. However, when a negative electrode active material made of a carbon material is used, lithium can only be inserted up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes. Therefore, a nonaqueous electrolyte secondary battery using silicon or silicon alloy or silicon oxide alloyed with lithium as a negative electrode active material having high energy density per mass and volume has been developed. For example, since silicon can insert lithium up to the composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a larger capacity than when a carbon material is used as the negative electrode active material can be expected.

これらの具体例として、下記特許文献1には、負極活物質としてケイ素及び酸素を構成元素に含む材料(ただし、ケイ素に対する酸素の元素比xは、0.5≦x≦1.5である)及び黒鉛を含有するものを用いた非水電解質二次電池が開示されている。この非水電解質二次電池では、ケイ素及び酸素を構成元素に含む材料と黒鉛との合計を100質量%としたとき、ケイ素及び酸素を構成元素に含む材料の比率が3〜20質量%の負極活物質が用いられている。   As specific examples thereof, the following Patent Document 1 discloses a material containing silicon and oxygen as constituent elements as a negative electrode active material (provided that the element ratio x of oxygen to silicon is 0.5 ≦ x ≦ 1.5). And a non-aqueous electrolyte secondary battery using a material containing graphite. In this non-aqueous electrolyte secondary battery, when the total of the material containing silicon and oxygen as constituent elements and graphite is 100% by mass, the ratio of the material containing silicon and oxygen as constituent elements is 3 to 20% by mass. An active material is used.

特開2010−212228号公報JP 2010-212228 A

上記特許文献1に開示されている非水電解質二次電池によれば、高容量で、かつ充放電に伴う体積変化の大きな酸化ケイ素を使用しつつ、その体積変化による電池特性の低下を抑制できるため、従来の非水電解質二次電池の構成を大きく変更することなく良好な電池特性も確保できる。   According to the non-aqueous electrolyte secondary battery disclosed in Patent Document 1, it is possible to suppress deterioration of battery characteristics due to the volume change while using silicon oxide having a high capacity and a large volume change accompanying charge / discharge. Therefore, good battery characteristics can be ensured without greatly changing the configuration of the conventional nonaqueous electrolyte secondary battery.

しかしながら、負極活物質としてケイ素ないしケイ素合金や酸化ケイ素等を含むものを用いた場合には、充放電サイクルに伴ってこれらの負極活物質の大きな膨張・収縮が起こり、負極活物質が微粉化したり、導電性ネットワークから欠け落ちたりする。これにより、電池の容量維持率(サイクル特性)が低下するという課題が存在するので、より負極容量が大きく、かつ容量維持率が良好な非水電解質二次電池の開発が望まれている。   However, when a material containing silicon or a silicon alloy or silicon oxide is used as the negative electrode active material, the negative electrode active material undergoes large expansion / contraction along with the charge / discharge cycle, and the negative electrode active material is pulverized. Or fall off the conductive network. As a result, there is a problem that the capacity retention rate (cycle characteristics) of the battery is lowered. Therefore, it is desired to develop a non-aqueous electrolyte secondary battery having a larger negative electrode capacity and a good capacity retention ratio.

本発明の一態様の非水電解質二次電池によれば、
リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料とSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記酸化ケイ素の単一粒子の破壊強度Ssと前記黒鉛材料の単一粒子の破壊強度Sgとの比である破壊強度比Ss/Sgが60〜90である、
非水電解質二次電池が提供される。
According to the nonaqueous electrolyte secondary battery of one embodiment of the present invention,
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The fracture strength ratio Ss / Sg, which is the ratio of the fracture strength Ss of the single particle of silicon oxide and the fracture strength Sg of the single particle of the graphite material, is 60 to 90.
A non-aqueous electrolyte secondary battery is provided.

本発明の一態様の非水電解質二次電池においては、負極活物質として、黒鉛だけでなく、SiOx(0.5≦x<1.6)で表される酸化ケイ素を含んでいる。このSiOxで表される酸化ケイ素は、充放電に伴う体積変化は黒鉛材料よりも大きいが、理論容量値は黒鉛材料よりも大きい。そのため、本発明の非水電解質二次電池によれば、黒鉛材料のみからなる負極活物質を用いた非水電解質二次電池よりも電池容量を大きくすることができる。   In the nonaqueous electrolyte secondary battery of one embodiment of the present invention, not only graphite but also silicon oxide represented by SiOx (0.5 ≦ x <1.6) is included as the negative electrode active material. The silicon oxide represented by SiOx has a larger volume change due to charging / discharging than the graphite material, but a theoretical capacity value is larger than that of the graphite material. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, the battery capacity can be made larger than that of the nonaqueous electrolyte secondary battery using the negative electrode active material made of only the graphite material.

しかも、本発明の一態様の非水電解質二次電池で使用されている負極活物質は、SiOxで表される酸化ケイ素の単一粒子の破壊強度Ssと黒鉛材料の単一粒子の破壊強度Sgとの比である破壊強度比Ss/Sgが60〜90となるように選択されている。このことは、負極活物質中の黒鉛材料は比較的柔らかいものを選択していることを示している。   In addition, the negative electrode active material used in the non-aqueous electrolyte secondary battery of one embodiment of the present invention includes the single-particle fracture strength Ss of silicon oxide represented by SiOx and the single-particle fracture strength Sg of graphite material. Is selected such that the fracture strength ratio Ss / Sg is 60 to 90. This indicates that a relatively soft graphite material in the negative electrode active material is selected.

そのため、本発明の一態様の非水電解質二次電池においては、充放電に伴う酸化ケイ素の膨張・収縮が黒鉛材料より大きくても、この膨張・収縮は共存する柔らかい黒鉛材料によって吸収される。これにより、本発明の一態様の非水電解質二次電池によれば、良好な容量維持率を示す非水電解質二次電池が得られる。   Therefore, in the nonaqueous electrolyte secondary battery of one embodiment of the present invention, even if the expansion / contraction of silicon oxide accompanying charge / discharge is larger than that of the graphite material, the expansion / contraction is absorbed by the soft graphite material. Thus, according to the nonaqueous electrolyte secondary battery of one embodiment of the present invention, a nonaqueous electrolyte secondary battery exhibiting a good capacity retention rate can be obtained.

なお、破壊強度比Ss/Sgが60未満の場合には、黒鉛材料の破壊強度Sgが高くなりすぎ、酸化ケイ素の膨張・収縮を黒鉛材料が吸収できなくなるので、容量維持率が低下する。破壊強度比Ss/Sgが90を超えると、黒鉛材料が潰れ過ぎて酸化ケイ素との導電性ネットワーク構造を維持できなくなるため、同様に容量維持率が低下する。より好ましい破壊強度比Ss/Sgは、64〜84である。   When the fracture strength ratio Ss / Sg is less than 60, the fracture strength Sg of the graphite material becomes too high, and the graphite material cannot absorb the expansion / contraction of silicon oxide, so that the capacity retention rate is lowered. When the fracture strength ratio Ss / Sg exceeds 90, the graphite material is too crushed and the conductive network structure with the silicon oxide cannot be maintained, and the capacity retention rate similarly decreases. A more preferable breaking strength ratio Ss / Sg is 64 to 84.

各実験例に共通するラミネート型非水電解質二次電池の斜視図であるIt is a perspective view of a laminate type nonaqueous electrolyte secondary battery common to each experimental example. 負極活物質中の酸化ケイ素含有率が3質量%のときの破壊強度比(Ss/Sg)と容量維持率の関係を示すグラフである。It is a graph which shows the relationship between a fracture strength ratio (Ss / Sg) and a capacity | capacitance maintenance factor when the silicon oxide content rate in a negative electrode active material is 3 mass%.

以下、本発明を実施するための形態について各実験例を用いて詳細に説明する。ただし、以下に示す各実験例は、本発明の技術思想を具体化するために例示するものであり、本発明をこれらの実験例に限定することを意図するのものではない。本発明は、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも適用し得る。   Hereinafter, the form for implementing this invention is demonstrated in detail using each experiment example. However, each experimental example shown below is illustrated in order to embody the technical idea of the present invention, and is not intended to limit the present invention to these experimental examples. The present invention can also be applied to various modifications made without departing from the technical idea shown in the claims.

まず、各実験例に共通する非水電解質二次電池の構成について具体的に説明する。
[正極板の作製]
正極板は、以下のようにして作製した。炭酸コバルト(CoCO)の合成時に、コバルトに対して0.1mol%のジルコニウムと、それぞれ1mol%のマグネシウムとアルミニウムとを共沈させ、これを熱分解反応させて、ジルコニウム・マグネシウム・アルミニウム含有四酸化三コバルトを得た。これにリチウム源としての炭酸リチウム(LiCO)を混合し、850℃で20時間焼成して、ジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物(LiCo0.979Zr0.001Mg0.01Al0.01)を得た。
First, the configuration of the nonaqueous electrolyte secondary battery common to each experimental example will be specifically described.
[Production of positive electrode plate]
The positive electrode plate was produced as follows. During the synthesis of cobalt carbonate (CoCO 3 ), 0.1 mol% of zirconium and 1 mol% of magnesium and aluminum are co-precipitated with respect to cobalt, respectively, and are subjected to a thermal decomposition reaction. Tricobalt oxide was obtained. This was mixed with lithium carbonate (Li 2 CO 3 ) as a lithium source and calcined at 850 ° C. for 20 hours to obtain a zirconium / magnesium / aluminum-containing lithium cobalt composite oxide (LiCo 0.979 Zr 0.001 Mg 0. 01 Al 0.01 O 2 ) was obtained.

正極活物質として上記のようにして合成したジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物粉末を95質量部、導電剤としての炭素材料粉末を2.5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末を2.5質量部となるように混合し、これをN−メチルピロリドン(NMP)溶媒と混合して正極合剤スラリーを調製した。この正極合剤スラリーを厚さ15μmのアルミニウム製の正極芯体の両面にドクターブレード法により塗布した。その後、乾燥してNMPを除去した後、圧縮ローラーを用いて圧延し、所定サイズに裁断してアルミニウム製の正極芯体の両面に正極合剤層を有する正極板を作製した。   95 parts by mass of the zirconium-magnesium-aluminum-containing lithium cobalt composite oxide powder synthesized as described above as the positive electrode active material, 2.5 parts by mass of the carbon material powder as the conductive agent, and polyvinylidene fluoride as the binder (PVdF) powder was mixed so that it might become 2.5 mass parts, this was mixed with the N-methylpyrrolidone (NMP) solvent, and the positive mix slurry was prepared. This positive electrode mixture slurry was applied to both surfaces of an aluminum positive electrode core having a thickness of 15 μm by a doctor blade method. Then, after drying and removing NMP, it rolled using the compression roller, it cut | judged to predetermined size, and produced the positive electrode plate which has a positive mix layer on both surfaces of the positive electrode core body made from aluminum.

[負極板の作製]
(酸化ケイ素負極活物質の調製)
金属ケイ素と別途作製した二酸化ケイ素とを混合し、減圧熱処理を行ない、組成がSiO(SiOxにおいてx=1に対応)の酸化ケイ素を得た。次いで、この酸化ケイ素を粉砕・分級して粒度を調整した後、約1000℃に昇温し、アルゴン雰囲気下でCVD法によりこの粒子の表面を炭素材料で被覆した。その際、炭素材料の被覆量は、炭素材料を含めた酸化ケイ素の全量の5質量%となるようにした。これを解砕・分級し、表面が炭素材料で被覆された組成がSiOで表され、平均粒径が10μmの酸化ケイ素からなる負極活物質を調製した。
[Production of negative electrode plate]
(Preparation of silicon oxide negative electrode active material)
Metallic silicon and separately prepared silicon dioxide were mixed and subjected to heat treatment under reduced pressure to obtain silicon oxide having a composition of SiO (corresponding to x = 1 in SiOx). Next, the silicon oxide was pulverized and classified to adjust the particle size, and then the temperature was raised to about 1000 ° C., and the surfaces of the particles were coated with a carbon material by a CVD method in an argon atmosphere. At that time, the coating amount of the carbon material was set to 5 mass% of the total amount of silicon oxide including the carbon material. This was crushed and classified, and a negative electrode active material made of silicon oxide having a surface coated with a carbon material represented by SiO and an average particle size of 10 μm was prepared.

(黒鉛負極活物質の調製)
黒鉛材料としては、人造黒鉛(I)、天然黒鉛(II)及び人造黒鉛と天然黒鉛の複合黒鉛(III)を用いた。人造黒鉛(I)は、主原料となるコークスを成型した後に焼成し、所定サイズに粉砕、篩い分けすることにより調製した。天然黒鉛(II)は、主原料となる鱗片状の天然黒鉛を球形化し、篩い分けすることにより調製した。
(Preparation of graphite negative electrode active material)
As the graphite material, artificial graphite (I), natural graphite (II), and composite graphite (III) of artificial graphite and natural graphite were used. Artificial graphite (I) was prepared by molding coke as a main raw material, firing it, pulverizing to a predetermined size, and sieving. Natural graphite (II) was prepared by spheroidizing and sieving scaly natural graphite as a main raw material.

複合黒鉛(III)は、人造黒鉛前駆体であるコークスに対し、それと同程度の粒子径を有する球形化天然黒鉛を均一に混合し、それ以降は人造黒鉛(I)の場合と同様にして調製した。複合黒鉛(III)の破壊強度は人造黒鉛前駆体であるコークスに対する球形化天然黒鉛の含有割合を変化させることにより調整した。複合黒鉛(III)の原料が均一に複合化され、単一粒子(凝集体)として存在しているかどうかは、SEM(走査型電子顕微鏡)観察を行うことで確認した。   Composite graphite (III) is a mixture of coke, an artificial graphite precursor, and spheroidized natural graphite having the same particle size as that of the artificial graphite, and thereafter the same as in the case of artificial graphite (I). did. The fracture strength of the composite graphite (III) was adjusted by changing the content ratio of the spheroidized natural graphite to the coke which is an artificial graphite precursor. Whether or not the raw material of the composite graphite (III) was uniformly composited and existed as a single particle (aggregate) was confirmed by performing SEM (scanning electron microscope) observation.

なお、酸化ケイ素及び黒鉛材料の平均粒子径は、レーザー回折式粒度分布測定装置(島津製作所製SALD−2000A)を用い、水を分散媒に用い、屈折率は1.70−0.01iとして求めた。平均粒子径は、体積基準での積算粒子量が50%となる粒子径(D50)とした。 In addition, the average particle diameter of silicon oxide and graphite material is obtained by using a laser diffraction particle size distribution analyzer (SALD-2000A manufactured by Shimadzu Corporation), using water as a dispersion medium, and a refractive index of 1.70-0.01i. It was. The average particle size was a particle size (D 50 ) at which the cumulative particle amount on a volume basis was 50%.

(破壊強度比の測定)
SiOで表される酸化ケイ素と黒鉛材料の破壊強度比は、酸化ケイ素材料の単一粒子の破壊強度Ssを黒鉛材料の単一粒子の破壊強度Sgとの比、Ss/Sgで求めた。単一粒子の破壊強度は、測定装置として株式会社島津製作所製の微小圧縮試験機(MCT−W201)を用い、以下のようにして測定した。
(1)試料を測定装置の下部加圧版(SKS平板)上に散布する。
(2)光学顕微鏡にて平均粒子径と近い目的サイズの粒子を選択する。
(3)上部加圧子として直径50μmのダイヤモンド製フラット圧子を用い、この上部加圧子と下部加圧板との間に1粒子のみが存在するようにする。
(4)上部加圧子をゆっくり下降させ、試料に接触した時点(下降速度が変化する)から一定の加速度で荷重を加えていく。
(5)荷重と試料の変形量との関係を測定し、試料の変形量が急激に変化した点(荷重−変形量のプロファイルの変極点)を破壊点とし、そのときの荷重と粒子径から、以下の式に基づいて破壊強度を算出する。破壊強度は、5回測定を行って平均値により求める。
St=2.8P/πd
St:破壊強度[N/mm又はMPa]
P :荷重[N]
d :粒子径[mm]
(Measurement of fracture strength ratio)
The fracture strength ratio between the silicon oxide represented by SiO and the graphite material was determined by the ratio Ss / Sg of the fracture strength Ss of the single particle of the silicon oxide material to the fracture strength Sg of the single particle of the graphite material. The breaking strength of single particles was measured as follows using a micro compression tester (MCT-W201) manufactured by Shimadzu Corporation as a measuring device.
(1) A sample is spread | dispersed on the lower pressurization plate (SKS flat plate) of a measuring apparatus.
(2) Select particles having a target size close to the average particle size with an optical microscope.
(3) A diamond flat indenter having a diameter of 50 μm is used as the upper pressurizer, and only one particle is present between the upper pressurizer and the lower pressurization plate.
(4) The upper pressurizer is slowly lowered, and a load is applied at a constant acceleration from the time when it comes into contact with the sample (the lowering speed changes).
(5) The relationship between the load and the amount of deformation of the sample is measured, and the point at which the amount of deformation of the sample suddenly changes (the inflection point of the load-deformation amount profile) is taken as the breaking point. The fracture strength is calculated based on the following formula. The breaking strength is determined by averaging five measurements.
St = 2.8P / πd 2
St: Breaking strength [N / mm 2 or MPa]
P: Load [N]
d: Particle diameter [mm]

(負極合剤層の形成)
上述のようにして調製されたSiOで表される酸化ケイ素と平均粒径22μmの黒鉛とを、それぞれ下記表1に示した配合割合となるように秤量・混合して負極活物質として用いた。次いで、この負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレンブタジエンゴム(SBR)とを、質量比で97.0:1.5:1.5となるように水中で混合し、負極合剤スラリーを調製した。この負極合剤スラリーを、厚さ8μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布した。次いで、これを乾燥して水分を除去した後、圧縮ローラーを用いて所定厚さに圧延し、所定サイズに裁断して負極芯体の両面に負極合剤層を有する負極板を作製した。
(Formation of negative electrode mixture layer)
The silicon oxide represented by SiO prepared as described above and graphite having an average particle diameter of 22 μm were weighed and mixed so as to have the blending ratio shown in Table 1 below, and used as the negative electrode active material. Subsequently, the negative electrode active material, carboxymethyl cellulose (CMC) as a thickener, and styrene butadiene rubber (SBR) as a binder are in a mass ratio of 97.0: 1.5: 1.5. Thus, the mixture was mixed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 8 μm by a doctor blade method. Subsequently, after drying this and removing a water | moisture content, it rolled to the predetermined thickness using the compression roller, it cut | judged to the predetermined size, and produced the negative electrode plate which has a negative mix layer on both surfaces of a negative electrode core.

[非水電解液の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジエチルカーボネート(DEC)とを、25℃において、体積比で30:60:10の割合で混合した後、ヘキサフルオロリン酸リチウム(LIPF)を濃度が1mol/Lとなるように溶解した。さらに、ビニレンカーボネート(VC)を非水電解液全体に対して2.0質量%、フルオロエチレンカーボネート(FEC)を1.0質量%となるように添加して溶解させ、非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) were mixed at a volume ratio of 30:60:10 at 25 ° C., and then lithium hexafluorophosphate (LIPF 6 ) Was dissolved to a concentration of 1 mol / L. Furthermore, vinylene carbonate (VC) is added and dissolved so that 2.0 mass% and fluoroethylene carbonate (FEC) are 1.0 mass% with respect to the whole non-aqueous electrolyte, and a non-aqueous electrolyte is prepared. did.

[電池の作製]
上記のようにして作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレータを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製し、プレスして偏平状の巻回電極体(図示省略)を作製した。次いで、正極板に正極集電タブを、負極板に負極集電タブを、それぞれ溶接することにより取り付けた。
[Production of battery]
The positive electrode plate and the negative electrode plate prepared as described above are wound through a separator made of a polyethylene microporous film, and a cylindrical wound electrode body is produced by attaching a polypropylene tape to the outermost periphery. A flat wound electrode body (not shown) was produced by pressing. Next, the positive electrode current collector tab was attached to the positive electrode plate, and the negative electrode current collector tab was attached to the negative electrode plate by welding.

ここで、図1を用いて各実験例に共通するラミネート型非水電解質二次電池の構成について説明する。樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプロピレン)の5層構造から成るシート状のアルミラミネート材を用意し、このアルミラミネート材を折り返して底部を形成し、カップ状の電極体収納空間を有するラミネート外装体11を作製した。次いで、アルゴン雰囲気下のグローブボックス内で、ラミネート外装体11の内部に偏平状の巻回電極体を非水電解液とともに収容し、ラミネート外装体11の溶着封止部12から、偏平状の巻回電極体の正極板及び負極板にそれぞれ接続されている正極集電タブ13及び負極集電タブ14を突出させた。   Here, the configuration of a laminate type nonaqueous electrolyte secondary battery common to each experimental example will be described with reference to FIG. Prepare a sheet-like aluminum laminate material consisting of a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene) and fold this aluminum laminate material to form the bottom. Then, a laminate outer package 11 having a cup-shaped electrode body storage space was produced. Next, in the glove box under an argon atmosphere, the flat wound electrode body is accommodated in the laminate outer package 11 together with the non-aqueous electrolyte, and the flat wound coil body 12 is welded from the welding sealing portion 12 of the laminate outer package 11. The positive electrode current collecting tab 13 and the negative electrode current collecting tab 14 respectively connected to the positive electrode plate and the negative electrode plate of the rotating electrode body were protruded.

この後、ラミネート外装体11を減圧してセパレータ内部に非水電解液を含浸させ、ラミネート外装体11の開口部を溶着封止部12において封止した。なお、ラミネート外装体11において、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間には、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間の密着性向上及び正極集電タブ13及び負極集電タブ14とラミネート外装体11を構成するアルミニム合金層との間の短絡を防止するため、それぞれ正極集電タブ樹脂15、負極集電タブ樹脂16を配置した。得られた各実験例に共通するラミネート型非水電解質二次電池10は、高さ62mm、幅35mm、厚み3.6mm(溶着封止部12のサイズを除く)であり、設計容量は充電終止電圧4.4Vで、800mAhである。   Thereafter, the laminate exterior body 11 was depressurized to impregnate the separator with a non-aqueous electrolyte, and the opening of the laminate exterior body 11 was sealed with the welded sealing portion 12. In the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11. In order to improve adhesion and prevent a short circuit between the positive electrode current collector tab 13 and the negative electrode current collector tab 14 and the aluminum alloy layer constituting the laminate outer package 11, a positive electrode current collector tab resin 15 and a negative electrode current collector tab resin 16 respectively. Arranged. The obtained laminate type nonaqueous electrolyte secondary battery 10 common to each experimental example has a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (excluding the size of the welded sealing portion 12), and the design capacity is the end of charging. It is 800 mAh at a voltage of 4.4V.

次に、各実験例の非水電解質二次電池について、それぞれの相違する構成について説明する。
[実験例1〜6]
実験例1の電池においては、負極活物質として、SiOで表される酸化ケイ素を含有せず、複合黒鉛のみからなるものを用いた。実験例2〜6の電池においては、SiOで表される酸化ケイ素の含有率を3質量%一定とし、破壊強度比(Ss/Sg)を57(実験例2)、65(実験例3)、79(実験例4)、84(実験例5)及び93(実験例6)と変化させた。
Next, the different configurations of the nonaqueous electrolyte secondary battery of each experimental example will be described.
[Experimental Examples 1-6]
In the battery of Experimental Example 1, a negative electrode active material that did not contain silicon oxide represented by SiO and consisted only of composite graphite was used. In the batteries of Experimental Examples 2 to 6, the content rate of silicon oxide represented by SiO is constant at 3% by mass, and the fracture strength ratio (Ss / Sg) is 57 (Experimental Example 2), 65 (Experimental Example 3), 79 (Experimental example 4), 84 (Experimental example 5) and 93 (Experimental example 6).

[実験例7〜10]
実験例7〜10の電池においては、SiOで表される酸化ケイ素の含有率を5質量%一定とし、破壊強度比(Ss/Sg)を57(実験例7)、65(実験例8)、79(実験例9)及び84(実験例10)と変化させた。
[Experimental Examples 7 to 10]
In the batteries of Experimental Examples 7 to 10, the content rate of silicon oxide represented by SiO is constant at 5% by mass, and the fracture strength ratio (Ss / Sg) is 57 (Experimental Example 7), 65 (Experimental Example 8), 79 (Experimental Example 9) and 84 (Experimental Example 10).

[実験例11〜13]
実験例11及び12の電池においては、SiOで表される酸化ケイ素の含有率を10質量%一定とし、破壊強度比(Ss/Sg)を57(実験例11)及び79(実験例12)と変化させた。さらに、実験例13の電池においては、SiOで表される酸化ケイ素の含有率を15質量%、破壊強度比(Ss/Sg)を79となるようにした。
[Experimental Examples 11 to 13]
In the batteries of Experimental Examples 11 and 12, the content of silicon oxide represented by SiO is constant at 10% by mass, and the fracture strength ratio (Ss / Sg) is 57 (Experimental Example 11) and 79 (Experimental Example 12). Changed. Furthermore, in the battery of Experimental Example 13, the content of silicon oxide represented by SiO was 15 mass%, and the fracture strength ratio (Ss / Sg) was 79.

[25℃サイクル容量維持率の測定]
実験例1〜13のそれぞれの非水電解質二次電池を、25℃において、1It=800mAの定電流で電池電圧が4.4Vとなるまで充電した後、4.4Vの定電圧で電流が40mAに収束するまで充電した。次いで、1It=800mAの定電流で電池電圧が2.5Vになるまで放電し、その際に流れた電流を1サイクル目の放電容量として求めた。この充放電サイクルを繰り返し、300サイクル目の放電容量を求め、以下の計算式により300サイクル後の容量維持率として求めた。
300サイクル後の容量維持率(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of 25 ° C cycle capacity maintenance rate]
Each nonaqueous electrolyte secondary battery of Experimental Examples 1 to 13 was charged at 25 ° C. with a constant current of 1 It = 800 mA until the battery voltage reached 4.4 V, and then the current was 40 mA at a constant voltage of 4.4 V. Charged until converged. Next, the battery was discharged at a constant current of 1 It = 800 mA until the battery voltage reached 2.5 V, and the current flowing at that time was determined as the discharge capacity of the first cycle. This charge / discharge cycle was repeated, the discharge capacity at the 300th cycle was determined, and the capacity retention rate after 300 cycles was determined by the following formula.
Capacity maintenance rate after 300 cycles (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100

実験例1〜13の300サイクル後の容量維持率の測定結果を、負極活物質中の黒鉛の種類、負極活物質中のSiOで表される酸化ケイ素の含有率及び破壊強度比(Ss/Sg)表1に纏めて示した。さらに、酸化ケイ素の含有率が3質量%である実験例2〜6の測定結果を、横軸を破壊強度比(Ss/Sg)とし、縦軸を容量維持率として表したグラフを図2に示した。   The measurement results of the capacity retention rate after 300 cycles of Experimental Examples 1 to 13 are the same as the types of graphite in the negative electrode active material, the content of silicon oxide represented by SiO in the negative electrode active material, and the fracture strength ratio (Ss / Sg). Table 1 summarizes the results. Furthermore, FIG. 2 is a graph in which the horizontal axis represents the fracture strength ratio (Ss / Sg) and the vertical axis represents the capacity retention rate, with the measurement results of Experimental Examples 2 to 6 having a silicon oxide content of 3 mass%. Indicated.

Figure 0006397642
Figure 0006397642

表1に示した実験例1〜5の測定結果から以下のことがわかる。すなわち、負極活物質中の酸化ケイ素の含有率が3質量%の場合、破壊強度比(Ss/Sg)が65〜84(実験例3〜5)の電池は、負極活物質が黒鉛のみからなる実験例1の電池よりも良好な容量維持率が得られている。しかし、破壊強度比が57(実験例2)及び93(実験例6)の電池の場合は、いずれも実験例1の電池よりも容量維持率が低下している。   From the measurement results of Experimental Examples 1 to 5 shown in Table 1, the following can be understood. That is, when the content of silicon oxide in the negative electrode active material is 3% by mass, a battery having a fracture strength ratio (Ss / Sg) of 65 to 84 (Experimental Examples 3 to 5) is composed of only graphite. A better capacity retention rate than the battery of Experimental Example 1 is obtained. However, in the case of the batteries having the fracture strength ratios of 57 (Experimental Example 2) and 93 (Experimental Example 6), the capacity retention rate is lower than that of the battery of Experimental Example 1.

ここで、図2のグラフを参照すると、負極活物質中の酸化ケイ素の含有率が3質量%の場合、破壊強度比が60〜90であれば、少なくとも負極活物質が黒鉛のみからなる実験例1の電池と同等ないしより優れた容量維持率が得られることがわかる。より好ましい破壊強度比は65〜84であると認められ、この範囲内であれば容量維持率は実施例1の電池よりも良好な結果が得られることがわかる。   Here, referring to the graph of FIG. 2, when the content of silicon oxide in the negative electrode active material is 3 mass%, if the fracture strength ratio is 60 to 90, at least the negative electrode active material is an experimental example consisting of only graphite. It can be seen that a capacity retention rate equivalent to or better than that of the battery 1 is obtained. It is recognized that a more preferable fracture strength ratio is 65 to 84. Within this range, it can be seen that a better result of the capacity retention rate than that of the battery of Example 1 can be obtained.

負極活物質中の酸化ケイ素の含有率が5質量%の場合、破壊強度比が65〜84(実験例8〜10)の電池は、実験例1の電池よりも良好な容量維持率が得られている。しかし、破壊強度比が57(実験例7)の電池の場合は、実験例1の電池よりも容量維持率が低下している。   When the content of silicon oxide in the negative electrode active material is 5% by mass, a battery with a fracture strength ratio of 65 to 84 (Experimental Examples 8 to 10) has a better capacity maintenance ratio than the battery of Experimental Example 1. ing. However, in the case of a battery having a fracture strength ratio of 57 (Experimental Example 7), the capacity retention rate is lower than that of the battery of Experimental Example 1.

負極活物質中の酸化ケイ素の含有率が10質量%の場合、破壊強度比が79(実験例12)の電池は、実験例1の電池よりも良好な容量維持率が得られている。それに対し、破壊強度比が57(実験例11)の電池の場合は、実験例1の電池よりも容量維持率が低下している。負極活物質中の酸化ケイ素の含有率が15質量%の場合、破壊強度比が79(実験例13)の電池であっても、実験例1の電池よりも容量維持率が低下している。   When the content rate of silicon oxide in the negative electrode active material is 10% by mass, the battery with a fracture strength ratio of 79 (Experimental Example 12) has a better capacity retention rate than the battery of Experimental Example 1. On the other hand, in the case of a battery having a fracture strength ratio of 57 (Experimental Example 11), the capacity retention rate is lower than that of the battery of Experimental Example 1. When the content of silicon oxide in the negative electrode active material is 15% by mass, the capacity retention rate is lower than that of the battery of Experimental Example 1, even if the battery has a fracture strength ratio of 79 (Experimental Example 13).

以上の実験例1〜13の測定結果を総合的に勘案すると、負極活物質中の酸化ケイ素の含有率が実際に測定した3〜10質量%の範囲内では、破壊強度比が60〜90の範囲内であれば、負極活物質が黒鉛のみからなる場合と同等ないしそれ以上の優れた容量維持率を達成することができることがわかる。また、破壊強度比が79であり、負極合剤中の酸化ケイ素の含有率が3質量%である実験例3及び5質量%である実験例9の結果を外挿すると、少なくとも負極活物質中の酸化ケイ素の含有率が1質量%以上であれば、容量維持率の向上効果が奏されると考えられる。したがって、好ましい負極活物質中の酸化ケイ素の含有率は1〜10質量%であると考えられる。   Considering the measurement results of the above Experimental Examples 1 to 13 comprehensively, the fracture strength ratio is 60 to 90 within the range of 3 to 10% by mass in which the content of silicon oxide in the negative electrode active material is actually measured. If it is in the range, it can be seen that an excellent capacity retention rate equal to or higher than that in the case where the negative electrode active material is composed only of graphite can be achieved. Further, when extrapolating the results of Experimental Example 3 in which the fracture strength ratio is 79 and the content of silicon oxide in the negative electrode mixture is 3% by mass and Experimental Example 9 in which the content is 5% by mass is extrapolated, at least in the negative electrode active material If the silicon oxide content is 1% by mass or more, it is considered that the effect of improving the capacity retention rate is exhibited. Therefore, it is thought that the content rate of the silicon oxide in a preferable negative electrode active material is 1-10 mass%.

なお、各実験例においては、酸化ケイ素として組成がSiO(SiOxにおいてx=1に対応)の物を使用したが、0.5≦x<1.6の範囲内であれば同様に良好な効果を奏する。xが0.5未満の場合には、Si成分が多くなるため、充放電に伴う膨張・収縮が大きくなるために、容量維持率が低下する。xが1.6以上の場合には、SiO成分が多くなるため、負極容量の増大効果が低下する。 In each experimental example, a silicon oxide having a composition of SiO (corresponding to x = 1 in SiOx) was used. However, if it is within the range of 0.5 ≦ x <1.6, the same good effect is obtained. Play. When x is less than 0.5, since the Si component increases, the expansion / contraction associated with charging / discharging increases, so the capacity retention rate decreases. When x is 1.6 or more, since the SiO 2 component increases, the effect of increasing the negative electrode capacity decreases.

また、各実験例においては、黒鉛として平均粒径が22μmのものを使用したが、黒鉛の平均粒径は18〜22μmの範囲内であれば同様に良好な効果を奏する。同じく負極合剤中のCMC添加量及びSBR添加量をそれぞれ全負極合剤の1.5質量%となるようにした例を示したが、それぞれ0.5〜2質量%の範囲内であれば同様に良好な効果を奏する。同じく非電解液全量に対して、VCの添加量を2.0質量%及びFECの添加量を1.0質量%とした例を示したが、VCの添加量は1〜5質量%、FECの添加量は0.5〜5質量%の範囲内であれば同様に良好な効果を奏する。さらに、SiOで表される酸化ケイ素の表面を被覆している炭素材料の被覆量を、この炭素材料を含めた酸化ケイ素の全量の5質量%とした例を示したが、1質量%以上10質量%以下とすれば同様に良好な効果を奏する。   In each experimental example, graphite having an average particle diameter of 22 μm was used. However, if the average particle diameter of graphite is in the range of 18 to 22 μm, the same effect can be obtained. Similarly, an example in which the addition amount of CMC and the addition amount of SBR in the negative electrode mixture was 1.5% by mass of the total negative electrode mixture, respectively, was within the range of 0.5 to 2% by mass, respectively. The same effect is obtained. Similarly, an example in which the addition amount of VC is 2.0 mass% and the addition amount of FEC is 1.0 mass% with respect to the total amount of the non-electrolytic solution is shown, but the addition amount of VC is 1 to 5 mass%, FEC If the addition amount is in the range of 0.5 to 5% by mass, the same effect is obtained. Further, an example in which the coating amount of the carbon material covering the surface of the silicon oxide represented by SiO is 5% by mass of the total amount of silicon oxide including the carbon material is shown. If the content is less than or equal to mass%, the same good effect is obtained.

また、各実験例においては、正極活物質として組成がLiCo0.979Zr0.001Mg0.01Al0.01であるジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物を使用した例を示した。しかしながら、本発明においては、ジルコニウム、マグネシウム及びアルミニウム等の異種金属元素の含有量が異なる他の組成のものだけでなく、公知のリチウムイオンを可逆的に吸蔵・放出することが可能な化合物を用いることができる。このリチウムイオンを可逆的に吸蔵・放出することが可能な化合物としては、例えば、LiMO(ただし、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物(すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiCoMnNi(x+y+z=1)等)や、LiMn、LiFePO等を一種単独又はこれらから複数種を混合したものを用いることができる。 Further, in each experimental example, an example in which a zirconium-magnesium-aluminum-containing lithium cobalt composite oxide having a composition of LiCo 0.979 Zr 0.001 Mg 0.01 Al 0.01 O 2 was used as the positive electrode active material. Indicated. However, in the present invention, not only compounds having different contents of different metal elements such as zirconium, magnesium and aluminum but also compounds capable of reversibly occluding and releasing lithium ions are used. be able to. As a compound capable of reversibly occluding and releasing lithium ions, for example, a lithium transition metal composite oxide represented by LiMO 2 (where M is at least one of Co, Ni, and Mn) (Ie, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1), etc.), LiMn One kind of 2 O 4 , LiFePO 4 or the like, or a mixture of plural kinds thereof can be used.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステル、フッ素化された環状炭酸エステル;γ−ブチロラクトン(γ−BL)、γ−バレロラクトン(γ−VL)等の環状カルボン酸エステル;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)等の鎖状炭酸エステル;フッ素化された鎖状炭酸エステル;ピバリン酸メチルや、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等の鎖状カルボン酸エステル;N,N'−ジメチルホルムアミドや、N−メチルオキサゾリジノン等のアミド化合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウム等の常温溶融塩等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。   Examples of the nonaqueous solvent in the nonaqueous electrolytic solution that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluorine. Cyclic carbonate ester; cyclic carboxylic acid ester such as γ-butyrolactone (γ-BL), γ-valerolactone (γ-VL); dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) Chain carbonates such as methylpropyl carbonate (MPC) and dibutyl carbonate (DBC); fluorinated chain carbonates; chains such as methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl propionate Carboxylic acid ester; N, N′-dimethylform Bromide or, N- methyl oxazolidone amide compound, dimethylsulfoxide or the like; may be used tetrafluoroboric acid 1-ethyl-3- ambient temperature molten salt such as methyl imidazolium and the like; sulfur compounds such as sulfolane. Moreover, you may make it use these in mixture of 2 or more types.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12等を一種単独又はこれらから複数種を混合したものを用いることができる。これらの中でも、LiPFが特に好ましい。また、非水溶媒に対する電解質塩の溶解量は、0.8〜1.5mol/Lとするのが好ましい。 As the electrolyte salt dissolved in the non-aqueous solvent in the non-aqueous electrolyte that can be used in the non-aqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used. . Examples of such lithium salt include lithium hexafluorophosphate (LiPF 6 ), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 or the like can be used singly or as a mixture of a plurality of them. Among these, LiPF 6 is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.

本発明の非水電解質二次電池の非水電解液中には、電極の安定化用化合物として、例えば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、無水コハク酸(SUCAH)、無水マレイン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)等を添加するようにしてもよい。これらの化合物は、2種以上を適宜に混合して用いるようにしてもよい。   In the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention, for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride as an electrode stabilizing compound. Acid (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc. may be added. . Two or more of these compounds may be appropriately mixed and used.

10…ラミネート型非水電解質二次電池
11…ラミネート外装体
12…溶着封止部
13…正極集電タブ
14…負極集電タブ
15…正極集電タブ樹脂
16…負極集電タブ樹脂
DESCRIPTION OF SYMBOLS 10 ... Laminate type nonaqueous electrolyte secondary battery 11 ... Laminate exterior body 12 ... Welding sealing part 13 ... Positive electrode current collection tab 14 ... Negative electrode current collection tab 15 ... Positive electrode current collection tab resin 16 ... Negative electrode current collection tab resin

Claims (2)

リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料とSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記酸化ケイ素の単一粒子の破壊強度Ssと前記黒鉛材料の単一粒子の破壊強度Sgとの比である破壊強度比Ss/Sgは60〜90であ
前記負極活物質中の前記酸化ケイ素の含有割合は全負極活物質に対して1〜10質量%である、
非水電解質二次電池。
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The breaking strength ratio Ss / Sg, which is the ratio of the breaking strength Sg single particles of fracture strength Ss of single particles of silicon oxide the graphite material Ri 60-90 der,
The content ratio of the silicon oxide in the negative electrode active material is 1 to 10% by mass with respect to the total negative electrode active material.
Non-aqueous electrolyte secondary battery.
前記酸化ケイ素の単一粒子の破壊強度Ssと前記黒鉛材料の単一粒子の破壊強度Sgとの比である破壊強度比Ss/Sgは64〜84である請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte 2 according to claim 1, wherein a fracture strength ratio Ss / Sg, which is a ratio of a fracture strength Ss of the single particle of silicon oxide and a fracture strength Sg of the single particle of the graphite material, is 64 to 84. Next battery.
JP2014061325A 2014-03-25 2014-03-25 Nonaqueous electrolyte secondary battery Active JP6397642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061325A JP6397642B2 (en) 2014-03-25 2014-03-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061325A JP6397642B2 (en) 2014-03-25 2014-03-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015185407A JP2015185407A (en) 2015-10-22
JP6397642B2 true JP6397642B2 (en) 2018-09-26

Family

ID=54351709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061325A Active JP6397642B2 (en) 2014-03-25 2014-03-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6397642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011371A (en) * 2018-05-22 2021-02-01 미쯔비시 케미컬 주식회사 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN113748546A (en) * 2020-04-17 2021-12-03 宁德时代新能源科技股份有限公司 Negative pole piece, secondary battery and device thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454652B2 (en) * 2011-10-12 2014-03-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode

Also Published As

Publication number Publication date
JP2015185407A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6030070B2 (en) Nonaqueous electrolyte secondary battery
CN110224169A (en) A kind of lithium ion battery with high energy density
JP7045547B2 (en) Lithium secondary battery with improved high temperature storage characteristics
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
KR102301670B1 (en) Lithium secondary battery with improved high temperature storage property
JP5851541B2 (en) Non-aqueous electrolyte battery
US20120135312A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP6542882B2 (en) Electrolyte Additive for Lithium Secondary Battery, Nonaqueous Electrolyte Containing the Electrolyte Additive, and Lithium Secondary Battery
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2015185491A (en) Nonaqueous electrolyte secondary battery
KR20160010313A (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
JP2011138621A (en) Manufacturing method of positive electrode of nonaqueous electrolyte secondary battery
JP4776190B2 (en) Nonaqueous electrolyte secondary battery
WO2014117421A1 (en) Non-aqueous electrolyte for lithium ion batteries and corresponding lithium ion battery thereof
JP2014067583A (en) Nonaqueous electrolyte secondary battery
JP2011181386A (en) Nonaqueous electrolyte secondary battery
WO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
WO2014068931A1 (en) Nonaqueous electrolyte secondary battery
JP6397642B2 (en) Nonaqueous electrolyte secondary battery
JP2014067625A (en) Nonaqueous electrolytic secondary battery
US20140011068A1 (en) Non-aqueous electrolyte secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
US20140203787A1 (en) Nonaqueous electrolyte secondary battery
JP2014179221A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250