JP2015185491A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015185491A
JP2015185491A JP2014063135A JP2014063135A JP2015185491A JP 2015185491 A JP2015185491 A JP 2015185491A JP 2014063135 A JP2014063135 A JP 2014063135A JP 2014063135 A JP2014063135 A JP 2014063135A JP 2015185491 A JP2015185491 A JP 2015185491A
Authority
JP
Japan
Prior art keywords
negative electrode
mass
electrode active
silicon oxide
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014063135A
Other languages
Japanese (ja)
Inventor
俊行 中森
Toshiyuki Nakamori
俊行 中森
安展 岩見
Yasunobu Iwami
安展 岩見
拓也 四宮
Takuya Shinomiya
拓也 四宮
敬光 田下
Takamitsu Tashimo
敬光 田下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014063135A priority Critical patent/JP2015185491A/en
Publication of JP2015185491A publication Critical patent/JP2015185491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which enables the achievement of a high capacity, and in which a silicon oxide (SiOx, where 0.5≤x<1.6) is mixed with graphite material and used as a negative electrode active material.SOLUTION: A nonaqueous electrolyte secondary battery 10 according to one embodiment of the present invention comprises: a positive electrode plate having a positive electrode mixture layer including a positive electrode active material capable of occluding and releasing lithium ions; a negative electrode plate having a negative electrode mixture layer including a negative electrode active material capable of occluding and releasing lithium ions; a separator; and a nonaqueous electrolyte. The negative electrode active material is a mixture of graphite material and a silicon oxide expressed by SiOx(0.5≤x<1.6). The surface of the graphite material is covered with amorphous carbon; the amount of the amorphous carbon covering the graphite material is 0.1-3.0 mass% to that of the graphite material, and the content of the silicon oxide is 1-10 mass% to the total amount of the negative electrode active material.

Description

本発明は、酸化ケイ素(SiOx、0.5≦x<1.6)を黒鉛材料と混合して負極活物質として用いた、高容量を達成できる非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery that can achieve high capacity, in which silicon oxide (SiOx, 0.5 ≦ x <1.6) is mixed with a graphite material and used as a negative electrode active material.

従来、非水電解質二次電池の負極活物質としては、天然黒鉛、人造黒鉛等の黒鉛材料が多く用いられている。これは、黒鉛材料が、リチウム金属やリチウム合金に匹敵する充放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、さらに初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有しているためである。   Conventionally, graphite materials such as natural graphite and artificial graphite are often used as negative electrode active materials for non-aqueous electrolyte secondary batteries. This is because the graphite material has a charge / discharge potential comparable to that of lithium metal or lithium alloy, but the dendrite does not grow, so the safety is high, the initial efficiency is excellent, and the potential flatness is also good. This is because it has excellent properties such as high density.

しかしながら、黒鉛材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するケイ素ないしケイ素合金や酸化ケイ素を用いる非水電解質二次電池が開発されている。この場合、例えばケイ素はLi4.4Siの組成までリチウムを挿入できるため、理論容量が4200mAh/gとなり、負極活物質として炭素材料を用いた場合よりも大きな容量を期待し得る。 However, when a negative electrode active material made of a graphite material is used, lithium can be inserted only up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes. Therefore, a nonaqueous electrolyte secondary battery using silicon or silicon alloy or silicon oxide alloyed with lithium as a negative electrode active material having high energy density per mass and volume has been developed. In this case, for example, since silicon can insert lithium up to a composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a capacity larger than that when a carbon material is used as the negative electrode active material can be expected.

これらの具体例として、下記特許文献1には、負極活物質としてケイ素と酸素とを構成元素に含む材料(ただし、ケイ素に対する酸素の元素比xは、0.5≦x≦1.5である。以下、この材料を「酸化ケイ素」という。)及び黒鉛材料を含有するものを用いた非水電解質二次電池が開示されている。この非水電解質二次電池では、酸化ケイ素と黒鉛材料との合計を100質量%としたとき、酸化ケイ素の比率が3〜20質量%の負極活物質が用いられている。   As specific examples thereof, the following Patent Document 1 discloses a material containing silicon and oxygen as constituent elements as a negative electrode active material (provided that the element ratio x of oxygen to silicon is 0.5 ≦ x ≦ 1.5). Hereinafter, this material is referred to as “silicon oxide”) and a non-aqueous electrolyte secondary battery using a material containing a graphite material is disclosed. In this nonaqueous electrolyte secondary battery, a negative electrode active material having a silicon oxide ratio of 3 to 20% by mass is used, where the total of silicon oxide and graphite material is 100% by mass.

また、負極活物質としての黒鉛材料の使用は、初期の充電過程において電極表面で有機溶媒が還元分解され、ガスの発生によって電池の膨れが生じるとともに、副反応生成物の堆積等により負極インピーダンスが増大し、充放電効率の低下、充放電サイクル特性の劣化等を引き起すという課題が存在している。そこで、下記特許文献2にも示されているように、非水電解質二次電池用の負極活物質として、黒鉛材料の表面を非晶質炭素で被覆したものを用いることにより、黒鉛材料の比表面積を下げて初期充電時の副反応を低減し、これにより初期の放電容量の低下を抑制することが行われている。   In addition, the use of the graphite material as the negative electrode active material is because the organic solvent is reduced and decomposed on the electrode surface in the initial charging process, and the battery is swollen by the generation of gas, and the negative electrode impedance is increased due to deposition of side reaction products. There is a problem of increasing charging and discharging efficiency, deterioration of charging / discharging cycle characteristics, and the like. Therefore, as shown in Patent Document 2 below, as a negative electrode active material for a non-aqueous electrolyte secondary battery, a material in which the surface of the graphite material is coated with amorphous carbon is used. The surface area is reduced to reduce side reactions at the time of initial charging, thereby suppressing a decrease in initial discharge capacity.

特開2010−212228号公報JP 2010-212228 A 特開2001−185147号公報JP 2001-185147 A

上記特許文献1に開示されている非水電解質二次電池によれば、高容量で、かつ充放電に伴う体積変化の大きな酸化ケイ素を使用しつつ、その体積変化による電池特性の低下を抑制できるため、従来の非水電解質二次電池の構成を大きく変更することなく良好な電池特性も確保できるようになる。   According to the non-aqueous electrolyte secondary battery disclosed in Patent Document 1, it is possible to suppress deterioration of battery characteristics due to the volume change while using silicon oxide having a high capacity and a large volume change accompanying charge / discharge. Therefore, good battery characteristics can be secured without greatly changing the configuration of the conventional nonaqueous electrolyte secondary battery.

また、上記特許文献2に開示されているような非水電解質二次電池用の負極活物質として黒鉛材料の表面を非晶質炭素で被覆したものを用いると、高容量と良好な室温及び低温での容量維持率を兼ね備えた非水電解質二次電池が得られるようになる。   In addition, when a negative electrode active material for a non-aqueous electrolyte secondary battery as disclosed in Patent Document 2 is a material in which the surface of a graphite material is coated with amorphous carbon, high capacity and good room temperature and low temperature are obtained. Thus, a non-aqueous electrolyte secondary battery having a capacity retention ratio of 1 can be obtained.

しかしながら、黒鉛材料に対する非晶質炭素の被覆量の増加に伴って、充電保存時の電池の膨れは抑制されるが、負極の容量の低下が生じてしまう。そのため、黒鉛材料に対する非晶質炭素の被覆量の増大による発生ガスの減少と、電池容量の確保の両立が困難となる。   However, as the amount of the amorphous carbon covered on the graphite material increases, the swelling of the battery during charge storage is suppressed, but the capacity of the negative electrode is reduced. For this reason, it is difficult to achieve both a reduction in generated gas due to an increase in the coating amount of amorphous carbon on the graphite material and securing of battery capacity.

本発明の一態様の非水電解質二次電池によれば、
リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料とSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記黒鉛材料の表面は非晶質炭素で被覆されており、
前記非晶質炭素の被覆量は前記黒鉛材料に対して0.1〜3.0質量%であり、
前記酸化ケイ素の含有量は全負極活物質量に対して1〜10質量%である、
非水電解質二次電池が提供される。
According to the nonaqueous electrolyte secondary battery of one embodiment of the present invention,
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The surface of the graphite material is coated with amorphous carbon,
The coating amount of the amorphous carbon is 0.1 to 3.0% by mass with respect to the graphite material,
The content of the silicon oxide is 1 to 10% by mass with respect to the total amount of the negative electrode active material,
A non-aqueous electrolyte secondary battery is provided.

本発明の一態様の非水電解質二次電池においては、負極活物質として、黒鉛材料だけでなくSiOx(0.5≦x<1.6)で表される酸化ケイ素を含んでおり、しかも、黒鉛材料の表面は、黒鉛材料に対して0.1〜3.0質量%の非晶質炭素で被覆されている。負極活物質としての酸化ケイ素は、負極容量は黒鉛材料よりも大きいが、不可逆容量も大きく、初期充放電時に負極容量が理論値よりも低下する。   In the nonaqueous electrolyte secondary battery of one embodiment of the present invention, the negative electrode active material contains not only graphite material but also silicon oxide represented by SiOx (0.5 ≦ x <1.6), The surface of the graphite material is covered with 0.1 to 3.0% by mass of amorphous carbon with respect to the graphite material. Silicon oxide as the negative electrode active material has a negative electrode capacity larger than that of the graphite material, but also has a large irreversible capacity, and the negative electrode capacity is lower than the theoretical value during initial charge / discharge.

黒鉛材料の表面を非晶質炭素で被覆すると、通常は負極容量の低下に繋がる。黒鉛材料と酸化ケイ素とでは、反応電位的に酸化ケイ素の方が優先的に反応する。このため、初期の充電時において、黒鉛材料と酸化ケイ素とが共存している場合、黒鉛材料には初期反応物による被膜形成が起き難い。黒鉛材料の表面に被膜が形成されていないと、黒鉛材料の表面で非水電解液との反応が進んでしまうため、本来ならば不安定となり、電池の容量の低下に繋がる。しかしながら、黒鉛材料の表面が非晶質炭素で被覆されていると、この非晶質炭素皮膜が保護被膜として役割を果たす。   When the surface of the graphite material is coated with amorphous carbon, the capacity of the negative electrode is usually reduced. Between graphite material and silicon oxide, silicon oxide reacts preferentially in terms of reaction potential. For this reason, when the graphite material and silicon oxide coexist at the time of initial charge, the graphite material is unlikely to form a film due to the initial reactant. If a film is not formed on the surface of the graphite material, the reaction with the non-aqueous electrolyte proceeds on the surface of the graphite material, which is inherently unstable, leading to a reduction in battery capacity. However, when the surface of the graphite material is coated with amorphous carbon, this amorphous carbon film plays a role as a protective film.

負極活物質として酸化ケイ素と表面が非晶質炭素で被覆された黒鉛材料とが共存していると、酸化ケイ素の初期充放電時の負極容量の低下は表面が非晶質炭素で被覆された黒鉛材料によって軽減される。その結果として、本発明の一態様の非水電解質二次電池によれば、表面を非晶質炭素で被覆しない黒鉛材料を用いた場合よりも負極活物質全体の負極容量が増大化するという特異的な効果を奏する。   When silicon oxide and a graphite material with a surface coated with amorphous carbon coexist as a negative electrode active material, the decrease in negative electrode capacity during the initial charge / discharge of silicon oxide was caused by the surface being coated with amorphous carbon. Reduced by graphite material. As a result, according to the nonaqueous electrolyte secondary battery of one embodiment of the present invention, the negative electrode capacity of the entire negative electrode active material is increased as compared with the case where a graphite material whose surface is not coated with amorphous carbon is used. The effect is effective.

非晶質炭素の被覆量が黒鉛材料に対して0.1質量%未満であると、黒鉛材料の表面を非晶質炭素で被覆することの効果が奏されなくなる。非晶質炭素の被覆量が黒鉛材料に対して3.0質量%を超えると、黒鉛材料の表面を非晶質炭素で被覆したことによる容量低下が大きくなって酸化ケイ素を添加したことによる電池容量の増大効果を上回るため、負極活物質全体の負極容量の増大化が認められなくなる。より好ましい黒鉛材料に対する非晶質炭素の被覆量は、0.1〜0.9質量%である。   When the coating amount of amorphous carbon is less than 0.1% by mass with respect to the graphite material, the effect of coating the surface of the graphite material with amorphous carbon is not achieved. When the coating amount of amorphous carbon exceeds 3.0% by mass with respect to the graphite material, the capacity decrease due to the surface of the graphite material being coated with amorphous carbon becomes large, and the battery is due to the addition of silicon oxide. Since the capacity increasing effect is exceeded, an increase in the negative electrode capacity of the entire negative electrode active material is not recognized. A more preferable coating amount of amorphous carbon on the graphite material is 0.1 to 0.9% by mass.

なお、酸化ケイ素の含有量は、全負極活物質量に対して1〜10質量%が好ましい。酸化ケイ素の含有量が全負極活物質量に対して1質量%未満であると、酸化ケイ素を添加したことによる負極容量の増大効果が奏されなくなる。酸化ケイ素の含有量が全負極活物質量に対して10質量%を超えると、充放電時の酸化ケイ素の膨張・収縮が大きいため、負極活物質の微粉化や導電性ネットワークからの欠け落が生じ、容量維持率が低下する。   In addition, as for content of a silicon oxide, 1-10 mass% is preferable with respect to the total amount of negative electrode active materials. When the content of silicon oxide is less than 1% by mass with respect to the total amount of the negative electrode active material, the effect of increasing the negative electrode capacity due to the addition of silicon oxide is not achieved. When the content of silicon oxide exceeds 10% by mass with respect to the total amount of the negative electrode active material, the expansion / contraction of the silicon oxide during charging / discharging is large, so that the negative electrode active material is pulverized and missing from the conductive network. Occurs, and the capacity retention rate decreases.

各実験例に共通するラミネート型非水電解質二次電池の斜視図である。It is a perspective view of the laminate type nonaqueous electrolyte secondary battery common to each experimental example. 酸化ケイ素添加量と電池容量との関係を黒鉛材料の非晶質炭素の被覆量毎に示したグラフである。It is the graph which showed the relationship between the amount of silicon oxide addition, and battery capacity for every coating amount of the amorphous carbon of graphite material.

以下、本発明を実施するための形態について各実験例を用いて詳細に説明する。ただし、以下に示す各実験例は、本発明の技術思想を具体化するために例示するものであり、本発明をこれらの実験例に限定することを意図するのものではない。本発明は、特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも適用し得る。   Hereinafter, the form for implementing this invention is demonstrated in detail using each experiment example. However, each experimental example shown below is illustrated in order to embody the technical idea of the present invention, and is not intended to limit the present invention to these experimental examples. The present invention can also be applied to various modifications made without departing from the technical idea shown in the claims.

まず、各実験例に共通する非水電解質二次電池の構成について具体的に説明する。
[正極板の作製]
正極板は、以下のようにして作製した。炭酸コバルト(CoCO)の合成時に、コバルトに対して0.1mol%のジルコニウムと、それぞれ1mol%のマグネシウムとアルミニウムとを共沈させ、これを熱分解反応させて、ジルコニウム・マグネシウム・アルミニウム含有四酸化三コバルトを得た。これにリチウム源としての炭酸リチウム(LiCO)を混合し、850℃で20時間焼成して、ジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物(LiCo0.979Zr0.001Mg0.01Al0.01)を得た。
First, the configuration of the nonaqueous electrolyte secondary battery common to each experimental example will be specifically described.
[Production of positive electrode plate]
The positive electrode plate was produced as follows. During the synthesis of cobalt carbonate (CoCO 3 ), 0.1 mol% of zirconium and 1 mol% of magnesium and aluminum are co-precipitated with respect to cobalt, respectively, and are subjected to a thermal decomposition reaction. Tricobalt oxide was obtained. This was mixed with lithium carbonate (Li 2 CO 3 ) as a lithium source and calcined at 850 ° C. for 20 hours to obtain a zirconium / magnesium / aluminum-containing lithium cobalt composite oxide (LiCo 0.979 Zr 0.001 Mg 0. 01 Al 0.01 O 2 ) was obtained.

正極活物質として上記のようにして合成したジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物粉末を95質量部、導電剤としての炭素材料粉末を2.5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末を2.5質量部となるように混合し、これをN−メチルピロリドン(NMP)溶媒と混合して正極合剤スラリーを調製した。この正極合剤スラリーを厚さ15μmのアルミニウム製の芯体の両面にドクターブレード法により塗布した。その後、これを乾燥してNMPを除去した後、圧縮ローラーを用いて圧延し、所定サイズに裁断して正極芯体の両面に正極合剤層が形成された正極板を作製した。   95 parts by mass of the zirconium-magnesium-aluminum-containing lithium cobalt composite oxide powder synthesized as described above as the positive electrode active material, 2.5 parts by mass of the carbon material powder as the conductive agent, and polyvinylidene fluoride as the binder (PVdF) powder was mixed so that it might become 2.5 mass parts, this was mixed with the N-methylpyrrolidone (NMP) solvent, and the positive mix slurry was prepared. The positive electrode mixture slurry was applied to both surfaces of an aluminum core having a thickness of 15 μm by a doctor blade method. Then, after drying this and removing NMP, it rolled using the compression roller, it cut | judged to predetermined size, and produced the positive electrode plate in which the positive mix layer was formed on both surfaces of the positive electrode core.

[負極板の作製]
(酸化ケイ素負極活物質の調製)
組成がSiO(SiOxにおいてx=1に対応)の酸化ケイ素を粉砕・分級して粒度を調整した後、約1000℃に昇温し、アルゴン雰囲気下でCVD法によりこの粒子の表面を炭素材料で被覆した。その際、炭素材料の被覆量は、炭素材料を含めた酸化ケイ素の全量の5質量%となるようにした。そして、これを解砕・分級し、表面が炭素材料で被覆された酸化ケイ素を調製した。
[Production of negative electrode plate]
(Preparation of silicon oxide negative electrode active material)
After adjusting the particle size by crushing and classifying silicon oxide having a composition of SiO (corresponding to x = 1 in SiOx), the temperature is raised to about 1000 ° C., and the surface of the particle is made of a carbon material by a CVD method in an argon atmosphere. Covered. At that time, the coating amount of the carbon material was set to 5 mass% of the total amount of silicon oxide including the carbon material. Then, this was crushed and classified to prepare silicon oxide whose surface was coated with a carbon material.

黒鉛材料としては人造黒鉛を用いた。人造黒鉛粒子に対し、それぞれ0質量%、0.1質量%、0.3質量%、0.9質量%、1.5質量%及び3.0質量%の仕込み比となるようにピッチを混合した。その後、これらを900℃で焼成してピッチを炭化させ、解砕・分級し、人造黒鉛粒子の表面に非晶質炭素被膜が形成された黒鉛材料を得た。   Artificial graphite was used as the graphite material. The pitch is mixed so that the charging ratio is 0% by mass, 0.1% by mass, 0.3% by mass, 0.9% by mass, 1.5% by mass and 3.0% by mass with respect to the artificial graphite particles. did. Thereafter, these were fired at 900 ° C. to carbonize the pitch, and crushed and classified to obtain a graphite material in which an amorphous carbon film was formed on the surface of the artificial graphite particles.

(負極合剤層の形成)
上述のようにして調製された酸化ケイ素と黒鉛材料とを、それぞれ下記表1に示した配合割合となるように秤量・混合して負極活物質として用いた。次いで、この負極活物質と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着材としてのスチレンブタジエンゴム(SBR)とを、質量比で97.0:1.5:1.5となるように水中で混合し、負極合剤スラリーを調製した。この負極合材スラリーを、厚さ8μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布した。次いで、乾燥して水分を除去した後、圧縮ローラーを用いて所定厚さに圧延し、所定サイズに裁断して負極芯体の両面に負極合剤層が形成された負極板を作製した。
(Formation of negative electrode mixture layer)
The silicon oxide and graphite material prepared as described above were weighed and mixed so as to have the blending ratios shown in Table 1 below, and used as the negative electrode active material. Subsequently, the negative electrode active material, carboxymethyl cellulose (CMC) as a thickener, and styrene butadiene rubber (SBR) as a binder have a mass ratio of 97.0: 1.5: 1.5. Thus, the mixture was mixed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 8 μm by a doctor blade method. Subsequently, after drying and removing water | moisture content, it rolled to the predetermined thickness using the compression roller, it cut | judged to the predetermined size, and produced the negative electrode plate in which the negative mix layer was formed on both surfaces of the negative electrode core.

[非水電解液の調製]
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジエチルカーボネート(DEC)とを、25℃において、体積比で30:60:10の割合で混合した後、ヘキサフルオロリン酸リチウム(LIPF)を濃度が1mol/Lとなるように溶解した。さらに、ビニレンカーボネート(VC)を非水電解液全体に対して2.0質量%、フルオロエチレンカーボネート(FEC)を1.0質量%となるように添加して溶解させ、非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) were mixed at a volume ratio of 30:60:10 at 25 ° C., and then lithium hexafluorophosphate (LIPF 6 ) Was dissolved to a concentration of 1 mol / L. Furthermore, vinylene carbonate (VC) is added and dissolved so that 2.0 mass% and fluoroethylene carbonate (FEC) are 1.0 mass% with respect to the whole non-aqueous electrolyte, and a non-aqueous electrolyte is prepared. did.

[電池の作製]
上記のようにして作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレータを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製し、プレスして偏平状の巻回電極体(図示省略)を作製した。次いで、正極板に正極集電タブを、負極板に負極集電タブを、それぞれ溶接することにより取り付けた。
[Production of battery]
The positive electrode plate and the negative electrode plate prepared as described above are wound through a separator made of a polyethylene microporous film, and a cylindrical wound electrode body is produced by attaching a polypropylene tape to the outermost periphery. A flat wound electrode body (not shown) was produced by pressing. Next, the positive electrode current collector tab was attached to the positive electrode plate, and the negative electrode current collector tab was attached to the negative electrode plate by welding.

ここで、図1を用いて各実験例に共通するラミネート型非水電解質二次電池の構成について説明する。樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプロピレン)の5層構造から成るシート状のアルミラミネート材を用意し、このアルミラミネート材を折り返して底部を形成し、カップ状の電極体収納空間を有するラミネート外装体11を作製した。次いで、アルゴン雰囲気下のグローブボックス内で、ラミネート外装体11の内部に偏平状の巻回電極体を非水電解液とともに収容し、ラミネート外装体11の溶着封止部12から、偏平状の巻回電極体の正極板及び負極板にそれぞれ接続されている正極集電タブ13及び負極集電タブ14を突出させた。   Here, the configuration of a laminate type nonaqueous electrolyte secondary battery common to each experimental example will be described with reference to FIG. Prepare a sheet-like aluminum laminate material consisting of a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene) and fold this aluminum laminate material to form the bottom. Then, a laminate outer package 11 having a cup-shaped electrode body storage space was produced. Next, in the glove box under an argon atmosphere, the flat wound electrode body is accommodated in the laminate outer package 11 together with the non-aqueous electrolyte, and the flat wound coil body 12 is welded from the welding sealing portion 12 of the laminate outer package 11. The positive electrode current collecting tab 13 and the negative electrode current collecting tab 14 respectively connected to the positive electrode plate and the negative electrode plate of the rotating electrode body were protruded.

この後、ラミネート外装体11を減圧してセパレータ内部に非水電解質を含浸させ、ラミネート外装体11の開口部を溶着封止部12において封止した。なお、ラミネート外装体11において、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間には、正極集電タブ13及び負極集電タブ14とラミネート外装体11との間の密着性向上及び正極集電タブ13及び負極集電タブ14とラミネート外装体11を構成するアルミニム合金層との間の短絡を防止するため、それぞれ正極集電タブ樹脂15、負極集電タブ樹脂16を配置した。得られた各実験例に共通するラミネート型非水電解質二次電池10は、高さ62mm、幅35mm、厚み3.6mm(溶着封止部12のサイズを除く)であり、設計容量は充電終止電圧4.4Vで、800mAhである。   Thereafter, the laminate exterior body 11 was depressurized to impregnate the separator with a nonaqueous electrolyte, and the opening of the laminate exterior body 11 was sealed with the welded sealing portion 12. In the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11. In order to improve adhesion and prevent a short circuit between the positive electrode current collector tab 13 and the negative electrode current collector tab 14 and the aluminum alloy layer constituting the laminate outer package 11, a positive electrode current collector tab resin 15 and a negative electrode current collector tab resin 16 respectively. Arranged. The obtained laminate type nonaqueous electrolyte secondary battery 10 common to each experimental example has a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (excluding the size of the welded sealing portion 12), and the design capacity is the end of charging. It is 800 mAh at a voltage of 4.4V.

次に、各実験例の非水電解質二次電池について、それぞれの相違する構成について説明する。
[実験例1〜4]
実験例1〜4の非水電解質二次電池としては、負極活物質について、表面が非晶質炭素で被覆されていない黒鉛材料(被覆量=0質量%)を用い、負極活物質中の組成がSiOで表される酸化ケイ素の添加量を、0質量%(実験例1)、2.5質量%(実験例2)、5.0質量%(実験例3)及び10質量%(実験例4)と変化させたものを用いた。
Next, the different configurations of the nonaqueous electrolyte secondary battery of each experimental example will be described.
[Experimental Examples 1-4]
As the nonaqueous electrolyte secondary batteries of Experimental Examples 1 to 4, the negative electrode active material was a graphite material whose surface is not coated with amorphous carbon (covering amount = 0 mass%), and the composition in the negative electrode active material The addition amount of silicon oxide represented by SiO is 0 mass% (Experimental Example 1), 2.5 mass% (Experimental Example 2), 5.0 mass% (Experimental Example 3), and 10 mass% (Experimental Example). What was changed to 4) was used.

[実験例5〜8]
実験例5〜8の非水電解質二次電池としては、負極活物質について、黒鉛材料に対する非晶質炭素の被覆量が0.1質量%の黒鉛材料を用い、負極活物質中の組成がSiOで表される酸化ケイ素の添加量を、0質量%(実験例5)、2.5質量%(実験例6)、5.0質量%(実験例7)及び10質量%(実験例8)と変化させたものを用いた。
[Experimental Examples 5 to 8]
As the non-aqueous electrolyte secondary batteries of Experimental Examples 5 to 8, the negative electrode active material was a graphite material having an amorphous carbon coating amount of 0.1% by mass with respect to the graphite material, and the composition in the negative electrode active material was SiO. The addition amount of silicon oxide represented by 0% by mass (Experimental Example 5), 2.5% by mass (Experimental Example 6), 5.0% by mass (Experimental Example 7) and 10% by mass (Experimental Example 8) What was changed was used.

[実験例9〜12]
実験例9〜12の非水電解質二次電池としては、負極活物質について、黒鉛材料に対する非晶質炭素の被覆量が0.3質量%の黒鉛材料を用い、負極活物質中の組成がSiOで表される酸化ケイ素の添加量を、0質量%(実験例9)、2.5質量%(実験例10)、5.0質量%(実験例11)及び10質量%(実験例12)と変化させたものを用いた。
[Experimental Examples 9 to 12]
As the nonaqueous electrolyte secondary batteries of Experimental Examples 9 to 12, the negative electrode active material was a graphite material having a coating amount of amorphous carbon of 0.3% by mass on the graphite material, and the composition in the negative electrode active material was SiO. The addition amount of silicon oxide represented by the formula is 0 mass% (Experimental Example 9), 2.5 mass% (Experimental Example 10), 5.0 mass% (Experimental Example 11), and 10 mass% (Experimental Example 12). What was changed was used.

[実験例13〜16]
実験例13〜16の非水電解質二次電池としては、負極活物質について、黒鉛材料に対する非晶質炭素の被覆量が0.9質量%の黒鉛材料を用い、負極活物質中の組成がSiOで表される酸化ケイ素の添加量を、0質量%(実験例13)、2.5質量%(実験例14)、5.0質量%(実験例15)及び10質量%(実験例16)と変化させたものを用いた。
[Experimental Examples 13 to 16]
As the non-aqueous electrolyte secondary batteries of Experimental Examples 13 to 16, a graphite material having a coating amount of amorphous carbon of 0.9 mass% on the graphite material was used as the negative electrode active material, and the composition in the negative electrode active material was SiO. The addition amount of silicon oxide represented by the formula is 0 mass% (Experimental Example 13), 2.5 mass% (Experimental Example 14), 5.0 mass% (Experimental Example 15), and 10 mass% (Experimental Example 16). What was changed was used.

[実験例17〜20]
実験例17〜20の非水電解質二次電池としては、負極活物質について、黒鉛材料に対する非晶質炭素の被覆量が1.5質量%の黒鉛材料を用い、負極活物質中の組成がSiOで表される酸化ケイ素の添加量を、0質量%(実験例17)、2.5質量%(実験例18)、5.0質量%(実験例19)及び10質量%(実験例20)と変化させたものを用いた。
[Experimental Examples 17 to 20]
As the non-aqueous electrolyte secondary batteries of Experimental Examples 17 to 20, a graphite material having an amorphous carbon coating amount of 1.5% by mass with respect to the graphite material was used as the negative electrode active material, and the composition in the negative electrode active material was SiO. The addition amount of silicon oxide represented by the formula is 0 mass% (Experimental Example 17), 2.5 mass% (Experimental Example 18), 5.0 mass% (Experimental Example 19), and 10 mass% (Experimental Example 20). What was changed was used.

[実験例21〜24]
実験例21〜24の非水電解質二次電池としては、負極活物質について、黒鉛材料に対する非晶質炭素の被覆量が3.0質量%の黒鉛材料を用い、負極活物質中のSiOで表される酸化ケイ素の添加量を、0質量%(実験例21)、2.5質量%(実験例22)、5.0質量%(実験例23)及び10質量%(実験例24)と変化させたものを用いた。
[Experimental Examples 21 to 24]
As the nonaqueous electrolyte secondary batteries of Experimental Examples 21 to 24, the negative electrode active material was a graphite material having an amorphous carbon coating amount of 3.0% by mass with respect to the graphite material, and represented by SiO in the negative electrode active material. The amount of silicon oxide added is changed to 0% by mass (Experimental example 21), 2.5% by mass (Experimental example 22), 5.0% by mass (Experimental example 23) and 10% by mass (Experimental example 24). What was made to use was used.

[2サイクル目の容量の測定]
実験例1〜24のそれぞれの非水電解質二次電池を、25℃において、1It=800mAの定電流で電池電圧が4.4Vとなるまで充電した後、4.4Vの定電圧で電流が40mAに収束するまで充電した。次いで、1It=800mAの定電流で電池電圧が2.5Vになるまで放電し、その際に流れた電流を1サイクル目の放電容量として求めた。これと同様の充放電を繰り返し、2サイクル目の放電容量を測定し、このときの放電容量を実験例1の放電容量を基準とした相対値として求めた。
[Measurement of capacity at the second cycle]
Each of the nonaqueous electrolyte secondary batteries of Experimental Examples 1 to 24 was charged at 25 ° C. with a constant current of 1 It = 800 mA until the battery voltage became 4.4 V, and then the current was 40 mA at a constant voltage of 4.4 V. Charged until converged. Next, the battery was discharged at a constant current of 1 It = 800 mA until the battery voltage reached 2.5 V, and the current flowing at that time was determined as the discharge capacity of the first cycle. The same charge and discharge was repeated, the discharge capacity at the second cycle was measured, and the discharge capacity at this time was determined as a relative value based on the discharge capacity of Experimental Example 1.

実験例1〜24のそれぞれの電池容量の測定結果を表1にまとめて示した。さらに、負極活物質中の酸化ケイ素の添加量が、0質量%(実験例1、5、9、13、17及び21)、2.5質量%(実験例2、6、10,14、18及び22)、5.0質量%(実験例3、7、11、15、19及び23)及び、10.0質量%(実験例4、8、12、16、20及び24)のそれぞれについて、横軸を負極活物質中の酸化ケイ素の含有量とし、縦軸を電池容量として表したグラフを図2に示した。   The measurement results of the battery capacities of Experimental Examples 1 to 24 are summarized in Table 1. Furthermore, the addition amount of silicon oxide in the negative electrode active material was 0% by mass (Experimental Examples 1, 5, 9, 13, 17, and 21) and 2.5% by mass (Experimental Examples 2, 6, 10, 14, 18). And 22), 5.0 mass% (Experimental Examples 3, 7, 11, 15, 19 and 23) and 10.0 mass% (Experimental Examples 4, 8, 12, 16, 20 and 24), A graph in which the horizontal axis represents the content of silicon oxide in the negative electrode active material and the vertical axis represents the battery capacity is shown in FIG.

Figure 2015185491
Figure 2015185491

表1に示した実験例1〜24の測定結果及び図2のグラフから以下のことがわかる。すなわち、負極活物質が酸化ケイ素と黒鉛材料からなる場合、黒鉛材料の表面を非晶質炭素で被覆しない場合には、電池容量は酸化ケイ素の添加量に比例して増加している。黒鉛材料の表面を非晶質炭素で被覆した場合、負極活物質中に酸化ケイ素が添加されていない場合は、非晶質炭素の被覆量の増大に伴って電池容量は低下している。   From the measurement results of Experimental Examples 1 to 24 shown in Table 1 and the graph of FIG. That is, when the negative electrode active material is made of silicon oxide and a graphite material, when the surface of the graphite material is not coated with amorphous carbon, the battery capacity increases in proportion to the amount of silicon oxide added. When the surface of the graphite material is coated with amorphous carbon, when no silicon oxide is added to the negative electrode active material, the battery capacity decreases as the amount of amorphous carbon covered increases.

しかし、黒鉛材料の表面を非晶質炭素で被覆しても、負極活物質中に酸化ケイ素が添加されていると、酸化ケイ素の添加量の増加に伴って電池容量は増加している。黒鉛材料の表面を被覆する非晶質炭素量が0.1〜3.0質量%の場合であれば、負極活物質中の酸化ケイ素の添加量が10質量%までの範囲内で、負極活物質中に酸化ケイ素が添加されていない場合よりも良好な電池容量が得られる領域が生じている。ただし、負極活物質中の酸化ケイ素の添加量が5質量%以上の場合には、酸化ケイ素の添加量の増加に伴って電池容量の増大化は飽和する傾向となっている。   However, even if the surface of the graphite material is coated with amorphous carbon, if silicon oxide is added to the negative electrode active material, the battery capacity increases as the amount of silicon oxide added increases. If the amount of amorphous carbon covering the surface of the graphite material is 0.1 to 3.0% by mass, the amount of silicon oxide in the negative electrode active material is within the range of up to 10% by mass, There is a region where a better battery capacity can be obtained than when no silicon oxide is added to the substance. However, when the addition amount of silicon oxide in the negative electrode active material is 5% by mass or more, the increase in battery capacity tends to be saturated as the addition amount of silicon oxide increases.

黒鉛材料の表面を被覆する非晶質炭素量が0.1〜0.9質量%の場合は、酸化ケイ素の添加量が1〜10質量%の範囲で、負極活物質中に酸化ケイ素が添加されていない場合よりも良好な電池容量が得られる。黒鉛材料の表面を被覆する非晶質炭素量が1.5質量%の場合は、酸化ケイ素の添加量が1.5〜10質量%の範囲で、負極活物質中に酸化ケイ素が添加されていない場合よりも良好な電池容量が得られる。黒鉛材料の表面を被覆する非晶質炭素量が3.0質量%の場合は、酸化ケイ素の添加量が2.5〜10質量%以の範囲で、負極活物質中に酸化ケイ素が添加されていない場合よりも良好な電池容量が得られる。   When the amount of amorphous carbon covering the surface of the graphite material is 0.1 to 0.9% by mass, silicon oxide is added to the negative electrode active material in the range of 1 to 10% by mass of silicon oxide. A better battery capacity is obtained than if not. When the amount of amorphous carbon covering the surface of the graphite material is 1.5% by mass, silicon oxide is added to the negative electrode active material when the amount of silicon oxide added is in the range of 1.5 to 10% by mass. Better battery capacity is obtained than without. When the amount of amorphous carbon covering the surface of the graphite material is 3.0% by mass, silicon oxide is added to the negative electrode active material when the amount of silicon oxide added is in the range of 2.5 to 10% by mass or less. Better battery capacity than when not.

これらのことから、黒鉛材料に対する非晶質炭素の被覆量は黒鉛材料に対して0.1〜3.0質量%であり、かつ負極活物質中の酸化ケイ素の含有量は全負極活物質量に対して1〜10質量%であることが好ましいことがわかる。より好ましい黒鉛材料に対する非晶質炭素の被覆量は、黒鉛材料に対して0.1〜0.9質量%である。   From these facts, the coating amount of amorphous carbon on the graphite material is 0.1 to 3.0% by mass with respect to the graphite material, and the content of silicon oxide in the negative electrode active material is the total amount of the negative electrode active material It can be seen that the content is preferably 1 to 10% by mass. A more preferable coating amount of amorphous carbon on the graphite material is 0.1 to 0.9% by mass with respect to the graphite material.

なお、各実験例においては、負極合剤中のCMC添加量及びSBR添加量をそれぞれ全負極合剤の1.5質量%となるようにした例を示したが、それぞれ0.5〜2質量%の範囲内であれば同様に良好な効果を奏する。同じく非電解液全量に対して、VCの添加量を2.0質量%及びFECの添加量を1.0質量%とした例を示したが、VCの添加量は1〜5質量%、FECの添加量は0.5〜5質量%の範囲内であれば同様に良好な効果を奏する。さらに、組成がSiOで表される酸化ケイ素の表面を被覆している炭素材料の被覆量を、この炭素材料を含めた酸化ケイ素の全量の5質量%とした例を示したが、1〜5質量%の範囲とすれば同様に良好な効果を奏する。   In each experimental example, the CMC addition amount and the SBR addition amount in the negative electrode mixture were each 1.5% by mass of the total negative electrode mixture. If it is within the range of%, the same good effect is obtained. Similarly, an example in which the addition amount of VC is 2.0 mass% and the addition amount of FEC is 1.0 mass% with respect to the total amount of the non-electrolytic solution is shown, but the addition amount of VC is 1 to 5 mass%, FEC If the addition amount is in the range of 0.5 to 5% by mass, the same effect is obtained. Furthermore, although the coating amount of the carbon material covering the surface of the silicon oxide whose composition is represented by SiO was shown as 5 mass% of the total amount of silicon oxide including the carbon material, 1 to 5 If it is in the range of mass%, the same advantageous effects are obtained.

また、各実験例においては、正極活物質として組成がLiCo0.979Zr0.001Mg0.01Al0.01であるジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物を使用した例を示した。しかしながら、本発明においては、ジルコニウム、マグネシウム及びアルミニウム等の異種金属元素の含有量が異なる他の組成のものだけでなく、公知のリチウムイオンを可逆的に吸蔵・放出することが可能な化合物を用いることができる。このリチウムイオンを可逆的に吸蔵・放出することが可能な化合物としては、例えば、LiMO(ただし、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物(すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiCoMnNi(x+y+z=1)等)や、LiMn、LiFePO等を一種単独又はこれらから複数種を混合したものを用いることができる。 Further, in each experimental example, an example in which a zirconium-magnesium-aluminum-containing lithium cobalt composite oxide having a composition of LiCo 0.979 Zr 0.001 Mg 0.01 Al 0.01 O 2 was used as the positive electrode active material. Indicated. However, in the present invention, not only compounds having different contents of different metal elements such as zirconium, magnesium and aluminum but also compounds capable of reversibly occluding and releasing lithium ions are used. be able to. As a compound capable of reversibly occluding and releasing lithium ions, for example, a lithium transition metal composite oxide represented by LiMO 2 (where M is at least one of Co, Ni, and Mn) (Ie, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1), etc.), LiMn One kind of 2 O 4 , LiFePO 4 or the like, or a mixture of plural kinds thereof can be used.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステル、フッ素化された環状炭酸エステル;γ−ブチロラクトン(γ−BL)、γ−バレロラクトン(γ−VL)等の環状カルボン酸エステル;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)等の鎖状炭酸エステル;フッ素化された鎖状炭酸エステル;ピバリン酸メチルや、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等の鎖状カルボン酸エステル;N,N'−ジメチルホルムアミドや、N−メチルオキサゾリジノン等のアミド化合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウム等の常温溶融塩等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。   Examples of the nonaqueous solvent in the nonaqueous electrolytic solution that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluorine. Cyclic carbonate ester; cyclic carboxylic acid ester such as γ-butyrolactone (γ-BL), γ-valerolactone (γ-VL); dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) Chain carbonates such as methylpropyl carbonate (MPC) and dibutyl carbonate (DBC); fluorinated chain carbonates; chains such as methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl propionate Carboxylic acid ester; N, N′-dimethylform Bromide or, N- methyl oxazolidone amide compound, dimethylsulfoxide or the like; may be used tetrafluoroboric acid 1-ethyl-3- ambient temperature molten salt such as methyl imidazolium and the like; sulfur compounds such as sulfolane. Moreover, you may make it use these in mixture of 2 or more types.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12等を一種単独又はこれらから複数種を混合したものを用いることができる。これらの中でも、LiPFが特に好ましい。また、非水溶媒に対する電解質塩の溶解量は、0.8〜1.5mol/Lとするのが好ましい。 As the electrolyte salt dissolved in the non-aqueous solvent in the non-aqueous electrolyte that can be used in the non-aqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used. . Examples of such lithium salt include lithium hexafluorophosphate (LiPF 6 ), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 or the like can be used singly or as a mixture of a plurality of them. Among these, LiPF 6 is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.

本発明の非水電解質二次電池の非水電解液中には、電極の安定化用化合物として、例えば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、無水コハク酸(SUCAH)、無水マレイン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)等を添加するようにしてもよい。これらの化合物は、2種以上を適宜に混合して用いるようにしてもよい。   In the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention, for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride as an electrode stabilizing compound. Acid (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc. may be added. . Two or more of these compounds may be appropriately mixed and used.

10…ラミネート型非水電解質二次電池
11…ラミネート外装体
12…溶着封止部
13…正極集電タブ
14…負極集電タブ
15…正極集電タブ樹脂
16…負極集電タブ樹脂
DESCRIPTION OF SYMBOLS 10 ... Laminate type nonaqueous electrolyte secondary battery 11 ... Laminate exterior body 12 ... Welding sealing part 13 ... Positive electrode current collection tab 14 ... Negative electrode current collection tab 15 ... Positive electrode current collection tab resin 16 ... Negative electrode current collection tab resin

Claims (3)

リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を備えた負極板と、
セパレータと、非水電解質と、
を備え、
前記負極活物質は、
黒鉛材料とSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物であり、
前記黒鉛材料の表面は非晶質炭素で被覆されており、
前記非晶質炭素の被覆量は前記黒鉛材料に対して0.1〜3.0質量%であり、
前記酸化ケイ素の含有量は全負極活物質量に対して1〜10質量%である、
非水電解質二次電池。
A positive electrode plate having a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions;
A negative electrode plate having a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions;
A separator, a non-aqueous electrolyte,
With
The negative electrode active material is
It is a mixture of graphite material and silicon oxide represented by SiOx (0.5 ≦ x <1.6),
The surface of the graphite material is coated with amorphous carbon,
The coating amount of the amorphous carbon is 0.1 to 3.0% by mass with respect to the graphite material,
The content of the silicon oxide is 1 to 10% by mass with respect to the total amount of the negative electrode active material,
Non-aqueous electrolyte secondary battery.
前記非晶質炭素の被覆量は前記黒鉛材料に対して0.1〜0.9質量%である、請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein a coating amount of the amorphous carbon is 0.1 to 0.9 mass% with respect to the graphite material. 前記酸化ケイ素の表面は炭素材料で被覆されており、前記炭素材料の被覆量は前記炭素材料を含めた前記酸化ケイ素の全量の1〜5質量%である、請求項1又は2に記載の非水電解質二次電池。   The surface of the silicon oxide is coated with a carbon material, and the coating amount of the carbon material is 1 to 5% by mass of the total amount of the silicon oxide including the carbon material. Water electrolyte secondary battery.
JP2014063135A 2014-03-26 2014-03-26 Nonaqueous electrolyte secondary battery Pending JP2015185491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063135A JP2015185491A (en) 2014-03-26 2014-03-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063135A JP2015185491A (en) 2014-03-26 2014-03-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015185491A true JP2015185491A (en) 2015-10-22

Family

ID=54351774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063135A Pending JP2015185491A (en) 2014-03-26 2014-03-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015185491A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110089A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2018225515A1 (en) * 2017-06-09 2018-12-13 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2019031597A1 (en) * 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
WO2019131030A1 (en) * 2017-12-28 2019-07-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2018097213A1 (en) * 2016-11-22 2019-10-17 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN111540886A (en) * 2020-04-20 2020-08-14 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and multilayer electrode
WO2021102848A1 (en) * 2019-11-28 2021-06-03 宁德新能源科技有限公司 Negative electrode material, and an electrochemical device and an electronic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2010040231A (en) * 2008-08-01 2010-02-18 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
WO2013094668A1 (en) * 2011-12-22 2013-06-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013200983A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2010040231A (en) * 2008-08-01 2010-02-18 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
WO2013094668A1 (en) * 2011-12-22 2013-06-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013200983A (en) * 2012-03-23 2013-10-03 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110089A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JPWO2017110089A1 (en) * 2015-12-25 2018-10-18 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP7192499B2 (en) 2016-11-22 2022-12-20 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2018097213A1 (en) * 2016-11-22 2019-10-17 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11183679B2 (en) 2016-11-22 2021-11-23 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2018225515A1 (en) * 2017-06-09 2018-12-13 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2018225515A1 (en) * 2017-06-09 2020-04-09 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11824185B2 (en) 2017-06-09 2023-11-21 Panasonic Energy Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN110710030A (en) * 2017-06-09 2020-01-17 三洋电机株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7159156B2 (en) 2017-06-09 2022-10-24 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2019031597A1 (en) * 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
CN111492528B (en) * 2017-12-28 2023-10-27 松下新能源株式会社 Nonaqueous electrolyte secondary battery
CN111492528A (en) * 2017-12-28 2020-08-04 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JPWO2019131030A1 (en) * 2017-12-28 2020-12-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
EP3734742A4 (en) * 2017-12-28 2021-01-20 SANYO Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2019131030A1 (en) * 2017-12-28 2019-07-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US11557759B2 (en) 2017-12-28 2023-01-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP7301267B2 (en) 2017-12-28 2023-07-03 パナソニックエナジー株式会社 Non-aqueous electrolyte secondary battery
WO2021102848A1 (en) * 2019-11-28 2021-06-03 宁德新能源科技有限公司 Negative electrode material, and an electrochemical device and an electronic device comprising same
CN111540886B (en) * 2020-04-20 2023-09-12 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and multilayer electrode
CN111540886A (en) * 2020-04-20 2020-08-14 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and multilayer electrode

Similar Documents

Publication Publication Date Title
JP6030070B2 (en) Nonaqueous electrolyte secondary battery
JP5241124B2 (en) Nonaqueous electrolyte secondary battery
JP7045547B2 (en) Lithium secondary battery with improved high temperature storage characteristics
JP7038967B2 (en) Lithium secondary battery with improved high temperature storage characteristics
JP2015185491A (en) Nonaqueous electrolyte secondary battery
JP7469434B2 (en) Nonaqueous electrolyte battery and method of manufacturing same
WO2010067549A1 (en) Nonaqueous electrolyte secondary cell
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2014067583A (en) Nonaqueous electrolyte secondary battery
US8906255B2 (en) Lithium-ion secondary battery
JP2015111495A (en) Nonaqueous electrolyte secondary battery
WO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5235307B2 (en) Nonaqueous electrolyte secondary battery
WO2014068931A1 (en) Nonaqueous electrolyte secondary battery
JP2011181386A (en) Nonaqueous electrolyte secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP6072689B2 (en) Nonaqueous electrolyte secondary battery
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
JP2014067625A (en) Nonaqueous electrolytic secondary battery
JP2022517684A (en) Electrolytes for lithium secondary batteries and lithium secondary batteries containing them
US20140011068A1 (en) Non-aqueous electrolyte secondary battery
JP6397642B2 (en) Nonaqueous electrolyte secondary battery
WO2014050025A1 (en) Non-aqueous electrolyte secondary battery
WO2013141243A1 (en) Nonaqueous electrolyte secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180621