JP2014179221A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014179221A
JP2014179221A JP2013051876A JP2013051876A JP2014179221A JP 2014179221 A JP2014179221 A JP 2014179221A JP 2013051876 A JP2013051876 A JP 2013051876A JP 2013051876 A JP2013051876 A JP 2013051876A JP 2014179221 A JP2014179221 A JP 2014179221A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
experimental example
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013051876A
Other languages
Japanese (ja)
Inventor
Hiroaki Furuta
裕昭 古田
Yoshiyuki Muraoka
芳幸 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013051876A priority Critical patent/JP2014179221A/en
Publication of JP2014179221A publication Critical patent/JP2014179221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-capacity nonaqueous electrolyte secondary battery superior in cycle characteristics.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode having a positive electrode mixture layer including a positive electrode active material; a negative electrode having a negative electrode mixture layer including a negative electrode active material and; a porous insulator layer interposed therebetween; and a nonaqueous electrolyte. The negative electrode active material includes graphite, and silicon oxide including silicon and oxygen as constituent elements (where the atomic ratio x of oxygen to the total quantity of silicon satisfies the following condition: 0.5≤x≤1.5). The rate of the silicon oxide to the total quantity of the graphite and the silicon oxide is 1-20 pts.mass. The positive electrode and the negative electrode are opposed to each other through the porous insulator layer and form electrode-plate wound assembly. Supposing that the thickness of the porous insulator layer is A(μm), and the inter-electrode distance from the surface of the positive electrode mixture layer to the surface of the negative electrode mixture layer opposed thereto is B(μm), "A" and "B" satisfy the following Expression 1: (Expression 1) A≤B≤A×1.3.

Description

本発明は非水電解質二次電池に関するものであり、特に、グラファイトと、SiとOとを含むSi酸化物(ただし、Siの総量に対するOの原子比xは、0.5≦x≦1.5である)とを含有する負極を用いた場合のサイクル特性に優れた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a Si oxide containing graphite and Si and O (wherein the atomic ratio x of O to the total amount of Si is 0.5 ≦ x ≦ 1. 5 is a non-aqueous electrolyte secondary battery having excellent cycle characteristics.

近年、スマートフォンを含む携帯電話機、携帯型パーソナルコンピュータ、PDA、携帯型ゲーム機等の移動・携帯型電子機器が数多く登場している。これらの機器の高機能化、小型化及び軽量化の要請から、その駆動電源としての二次電池は更なる高容量化が望まれている。   In recent years, many mobile and portable electronic devices such as mobile phones including smartphones, portable personal computers, PDAs, and portable game machines have appeared. In view of the demand for higher functionality, smaller size, and lighter weight of these devices, it is desired to further increase the capacity of the secondary battery as the driving power source.

また、近年の環境保護運動の高まりから、二酸化炭素等の温暖化の原因となる排ガスの排出規制が強化されている。自動車業界では、ガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車に換えて、電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)の開発が活発に行われている。   In addition, due to the recent increase in environmental protection movements, exhaust gas emission regulations that cause global warming, such as carbon dioxide, have been strengthened. In the automobile industry, electric vehicles (EV) and hybrid electric vehicles (HEV, PHEV) are being actively developed in place of vehicles using fossil fuels such as gasoline, diesel oil, and natural gas.

これらの駆動用電池としては、ニッケル−水素二次電池やリチウムイオン二次電池が使用されているが、近年は、軽量で、かつ高容量の電池が得られるということから、リチウムイオン二次電池等の非水電解質二次電池が多く用いられるようになってきている。   As these driving batteries, nickel-hydrogen secondary batteries and lithium ion secondary batteries are used. However, in recent years, a lightweight and high capacity battery can be obtained. Non-aqueous electrolyte secondary batteries such as these have been increasingly used.

加えて、太陽光発電や、風力発電等の出力変動を抑制するための用途や夜間に電力をためて昼間に利用するための系統電力のピークシフト用途等の定置用蓄電池システムにおいても、非水電解質二次電池の使用が多くなってきている。   In addition, non-water storage battery systems such as photovoltaic power generation and wind power generation are also used for stationary storage battery systems such as applications for suppressing output fluctuations and grid power peak shift applications for storing power during the daytime. The use of electrolyte secondary batteries is increasing.

この非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、さらに初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。   As the negative electrode active material used in this non-aqueous electrolyte secondary battery, carbonaceous materials such as graphite and amorphous carbon have a discharge potential comparable to that of lithium metal or lithium alloy, but dendrite grows. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density.

しかしながら、炭素材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。 However, when a negative electrode active material made of a carbon material is used, lithium can only be inserted up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes.

そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するケイ素ないしケイ素合金や酸化ケイ素(以下、高容量負極材料)を用いる非水電解質二次電池が開発されている。   Therefore, non-aqueous electrolyte secondary batteries using silicon or silicon alloys or silicon oxide (hereinafter referred to as high capacity negative electrode materials) alloyed with lithium have been developed as negative electrode active materials having high energy density per mass and per volume. .

この場合、たとえばケイ素はLi4.4Siの組成までリチウムを挿入できるため、理論容量が4200mAh/gとなり、負極活物質として炭素材料を用いた場合よりも遙かに大きな容量を期待し得る。 In this case, for example, since silicon can insert lithium up to the composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a capacity much larger than that when a carbon material is used as the negative electrode active material can be expected.

しかしながら、非水電解質二次電池の負極活物質としてケイ素ないしケイ素合金や酸化ケイ素等を用いた場合には、充放電サイクルの進行に伴って負極活物質の大きな膨張・収縮が起こるため、負極活物質が微粉化を起こしたり導電性ネットワークから欠け落ちたりするため、電池のサイクル特性が低下するという課題があり、これらの課題を解決すべく種々改良が行われている。   However, when silicon or a silicon alloy, silicon oxide, or the like is used as the negative electrode active material of the non-aqueous electrolyte secondary battery, the negative electrode active material undergoes large expansion / contraction as the charge / discharge cycle progresses. There is a problem that the cycle characteristics of the battery are deteriorated because the substance is pulverized or missing from the conductive network, and various improvements have been made to solve these problems.

こうした非水電解質二次電池用の高容量負極材料の一つとして、下記特許文献1には、負極として、SiとOを構成元素に含む化合物(以下、Si酸化物)と黒鉛と導電性材料とを含有する負極合剤層を有する非水電解質二次電池が提案されている   As one of such high-capacity negative electrode materials for non-aqueous electrolyte secondary batteries, the following Patent Document 1 discloses, as a negative electrode, a compound containing Si and O as constituent elements (hereinafter referred to as Si oxide), graphite, and a conductive material. Non-aqueous electrolyte secondary batteries having a negative electrode mixture layer containing

特開2008−210618号公報JP 2008-210618A

上記特許文献1に開示されている非水電解質二次電池によれば、充放電に伴う体積変化の大きなSi酸化物を使用しているため、負極合剤層の膨張率が大きくなる。   According to the nonaqueous electrolyte secondary battery disclosed in Patent Document 1, since the Si oxide having a large volume change associated with charge / discharge is used, the expansion rate of the negative electrode mixture layer is increased.

しかしながら、負極合剤層は、正極合剤層及び多孔質絶縁層と密着した状態で極板巻回体を形成し、粘着テープで極板巻回体が固定されている。   However, the negative electrode mixture layer forms an electrode plate winding body in close contact with the positive electrode mixture layer and the porous insulating layer, and the electrode plate winding body is fixed with an adhesive tape.

したがって、充電時、負極合剤層が膨張した際、負極合剤層中に保持されていた電解液が極板巻回体の外に押し出されることになる。このように負極合剤層中に保持されていた電解液が一度、極板巻回体の外に押し出された場合、再び、極板巻回体の中に戻ることは困難であるため、充電する毎に負極合剤層中の電解液が押し出され、不足することになるので、サイクル特性が低下するという問題がある。   Therefore, when the negative electrode mixture layer expands during charging, the electrolytic solution held in the negative electrode mixture layer is pushed out of the electrode plate roll. In this way, when the electrolytic solution held in the negative electrode mixture layer is once pushed out of the electrode plate winding body, it is difficult to return to the electrode plate winding body again. Every time it is done, the electrolyte solution in the negative electrode mixture layer is pushed out, resulting in a shortage of the cycle characteristics.

本発明は、上述のような従来技術の問題点を解決するべくなされたものであり、負極活物質としてSiとOを構成元素に含むSi酸化物(ただし、Siの総量に対するOの原子比xは、0.5≦x≦1.5である)を含有し、サイクル特性に優れた非水電解質二次電池を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, and is a Si oxide containing Si and O as constituent elements as a negative electrode active material (however, the atomic ratio x of O to the total amount of Si x Is 0.5 ≦ x ≦ 1.5), and an object thereof is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics.

上記目的を達成するために、本発明の非水電解質二次電池は、正極活物質を含む正極合剤層を備えた正極と、負極活物質を含む負極合剤層を備えた負極と、多孔質絶縁層と、非水溶媒にリチウム塩を溶解した非水電解質とを備える非水電解質二次電池であって、前記負極活物質は、グラファイトと、SiとOを構成元素に含むSi酸化物(ただし、Siの総量に対するOの原子比xは、0.5≦x≦1.5である)を含有し、前記グラファイトと前記Si酸化物の総量に対する前記Si酸化物の比率が1質量部以上20質量部以下であり、前記正極と前記負極は前記多孔質絶縁層を介して対向した状態で極板巻回体を形成し、前記多孔質絶縁層の厚みをA(μm)とし、前記正極合剤層の表面から対向する前記負極合剤層の表面までの極間距離をB(μm)とした場合、AとBの関係が下記式1を満たすことを特徴とする。
(式1) A≦B≦A×1.3
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode mixture layer including a positive electrode active material, a negative electrode including a negative electrode mixture layer including a negative electrode active material, and a porous A non-aqueous electrolyte secondary battery comprising a porous insulating layer and a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, wherein the negative electrode active material includes graphite, and Si oxide containing Si and O as constituent elements (However, the atomic ratio x of O to the total amount of Si is 0.5 ≦ x ≦ 1.5), and the ratio of the Si oxide to the total amount of the graphite and the Si oxide is 1 part by mass. 20 parts by mass or less, and the positive electrode and the negative electrode face each other through the porous insulating layer to form an electrode plate wound body, the thickness of the porous insulating layer is A (μm), Distance between electrodes from the surface of the positive electrode mixture layer to the surface of the opposite negative electrode mixture layer If the the B ([mu] m), the relationship of A and B is characterized by satisfying the following equation 1.
(Formula 1) A ≦ B ≦ A × 1.3

本発明の非水電解質二次電池は、負極活物質として、グラファイトだけでなく、SiとOを構成元素に含むSi酸化物(ただし、Siの総量に対するOの原子比xは、0.5≦x≦1.5である)を含んでいる。   The non-aqueous electrolyte secondary battery of the present invention is not limited to graphite as a negative electrode active material, but also an Si oxide containing Si and O as constituent elements (however, the atomic ratio x of O to the total amount of Si is 0.5 ≦ x ≦ 1.5).

なお、SiとOを構成元素に含むSi酸化物は、SiOx(0.5≦x≦1.5)で表されるSi酸化物を含む。このようなSiOxで表されるSi酸化物は、充放電に伴う体積変化が黒鉛材料よりも大きいが、理論容量値は黒鉛材料よりも大きい。そのため、本発明の非水電解質二次電池によれば、黒鉛材料のみからなる負極活物質を用いた非水電解質二次電池よりも電池容量を大きくすることができる。   Note that Si oxides containing Si and O as constituent elements include Si oxides represented by SiOx (0.5 ≦ x ≦ 1.5). Such a Si oxide represented by SiOx has a larger volume change due to charge / discharge than the graphite material, but a theoretical capacity value is larger than that of the graphite material. Therefore, according to the nonaqueous electrolyte secondary battery of the present invention, the battery capacity can be made larger than that of the nonaqueous electrolyte secondary battery using the negative electrode active material made of only the graphite material.

さらに、グラファイトとSi酸化物の総量に対するSi酸化物の比率が1質量部以上20質量部以下とする。この比率が、1質量部未満であると、Si酸化物による高容量化が実現できず、また、20質量部を超えると、Si酸化物の膨張・収縮に伴って、極板の膨張・収縮が大きくなり、サイクル特性が低下する   Furthermore, the ratio of the Si oxide to the total amount of graphite and Si oxide is 1 part by mass or more and 20 parts by mass or less. If this ratio is less than 1 part by mass, a high capacity cannot be realized with Si oxide, and if it exceeds 20 parts by mass, expansion / contraction of the electrode plate is accompanied by expansion / contraction of the Si oxide. Increases and cycle characteristics deteriorate

さらに、正極と負極は多孔質絶縁層を介して対向した状態で極板巻回体を形成し、多孔質絶縁層の厚みをA(μm)とし、正極合剤層の表面から対向する負極合剤層の表面までの極間距離をB(μm)とした場合、AとBの関係が下記式1を満たす。
(式1) A≦B≦A×1.3
Further, the positive electrode and the negative electrode are opposed to each other through the porous insulating layer to form a rolled electrode plate, the thickness of the porous insulating layer is A (μm), and the negative electrode composite facing from the surface of the positive electrode mixture layer is formed. When the distance between the electrodes to the surface of the agent layer is B (μm), the relationship between A and B satisfies the following formula 1.
(Formula 1) A ≦ B ≦ A × 1.3

正極合剤層の表面から対向する負極合剤層の表面までの極間距離(B)を、多孔質絶縁層の厚み(A)と同じ距離以上、多孔質絶縁層の厚みの1.3倍の距離以下とすると、正極合剤層と多孔質絶縁層の間および負極合剤層と多孔質絶縁層の間に空間ができ、Si酸化物が膨張・収縮してもこの空間で抑制でき、サイクル特性に優れた非水電解質二次電池が得られる。   The distance (B) between the surface of the positive electrode mixture layer and the surface of the opposing negative electrode mixture layer is equal to or greater than the thickness of the porous insulating layer (A) and 1.3 times the thickness of the porous insulating layer When the following is set, a space is created between the positive electrode mixture layer and the porous insulating layer and between the negative electrode mixture layer and the porous insulating layer, and even if the Si oxide expands or contracts, it can be suppressed in this space. A non-aqueous electrolyte secondary battery excellent in the above can be obtained.

なお、本発明の非水電解質二次電池で使用し得る正極活物質としては、公知のリチウムイオンを可逆的に吸蔵・放出することが可能な化合物を用いることができる。このリチウムイオンを可逆的に吸蔵・放出することが可能な化合物としては、例えば、LiMO(ただし、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物(すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiCoMnNi(x+y+z=1)等)や、LiMn、LiFePO等を一種単独又はこれらから複数種を混合したものを用いることができる。さらには、リチウムコバルト複合酸化物にジルコニウムやマグネシウム、アルミニウム等の異種金属元素を添加したものを用いることができる。 In addition, as a positive electrode active material which can be used in the nonaqueous electrolyte secondary battery of the present invention, a compound capable of reversibly occluding and releasing lithium ions can be used. As a compound capable of reversibly occluding and releasing lithium ions, for example, a lithium transition metal composite oxide represented by LiMO 2 (where M is at least one of Co, Ni, and Mn) (Ie, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1), etc.), LiMn One kind of 2 O 4 , LiFePO 4 or the like, or a mixture of plural kinds thereof can be used. Further, a lithium cobalt composite oxide added with a different metal element such as zirconium, magnesium, or aluminum can be used.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状炭酸エステル;フッ素化された環状炭酸エステル;γ−ブチロラクトン(γ−BL)、γ−バレロラクトン(γ−VL)等の環状カルボン酸エステル;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)等の鎖状炭酸エステル;フッ素化された鎖状炭酸エステル;ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネート等の鎖状カルボン酸エステル;N,N’−ジメチルホルムアミドや、N−メチルオキサゾリジノン等のアミド化合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウム等の常温溶融塩等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。   Examples of the non-aqueous solvent in the non-aqueous electrolyte that can be used in the non-aqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC); fluorine Cyclic carbonate ester; cyclic carboxylic acid ester such as γ-butyrolactone (γ-BL), γ-valerolactone (γ-VL); dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) Chain carbonates such as methylpropyl carbonate (MPC) and dibutyl carbonate (DBC); fluorinated chain carbonates; chains such as methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl propionate Carboxylic acid ester; N, N′-dimethylform Bromide or, N- methyl oxazolidone amide compound, dimethylsulfoxide or the like; may be used tetrafluoroboric acid 1-ethyl-3- ambient temperature molten salt such as methyl imidazolium and the like; sulfur compounds such as sulfolane. Moreover, you may make it use these in mixture of 2 or more types.

本発明の非水電解質二次電池で使用し得る非水電解液における非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12等を一種単独又はこれらから複数種を混合したものを用いることができる。これらの中でも、LiPFが特に好ましい。また、非水溶媒に対する電解質塩の溶解量は、0.8〜1.5mol/Lとするのが好ましい。 As the electrolyte salt dissolved in the non-aqueous solvent in the non-aqueous electrolyte that can be used in the non-aqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used. . Examples of such lithium salt include lithium hexafluorophosphate (LiPF 6 ), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 or the like can be used singly or as a mixture of a plurality of them. Among these, LiPF 6 is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.

本発明の非水電解質二次電池の非水電解液中には、電極の安定化用化合物として、例えば、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)、無水コハク酸(SUCAH)、無水マイレン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)等を添加するようにしてもよい。これらの化合物は、2種以上を適宜に混合して用いるようにしてもよい。   In the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention, as the electrode stabilizing compound, for example, vinylene carbonate (VC), vinyl ethyl carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride Acid (MAAH), glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc. may be added. . Two or more of these compounds may be appropriately mixed and used.

以下、本発明を実施するための形態を、実験例を用いて詳細に説明する。但し、以下に示す実験例は、本発明の技術思想を具体化するためのものであり、本発明をこの実験例に限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the form for implementing this invention is demonstrated in detail using an experiment example. However, the following experimental examples are intended to embody the technical idea of the present invention, and are not intended to limit the present invention to these experimental examples. The present invention is shown in the claims. The present invention can be equally applied to various modifications without departing from the technical idea.

[実験例1]
最初に、実験例1に係る非水電解質二次電池の具体的作製方法について説明する。
[Experimental Example 1]
First, a specific method for producing the nonaqueous electrolyte secondary battery according to Experimental Example 1 will be described.

[正極板の作製]
正極板は次のようにして作製した。まず、正極活物質としてのニッケル・コバルト酸リチウム(LiNi0.82Co0.15Al0.03)粉末と、正極導電剤としてのアセチレンブラックと、ポリフッ化ビニリデン(PVdF)粉末とを、正極活物質:アセチレンブラック:PVdF=100:1.25:1.7の質量部でN−メチル−2−ピロリドン(NMP)溶液に混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔製の正極集電体の両面にドクターブレード法により塗布した後、乾燥させて、正極集電体の両面に正極合剤層を形成した。その後、圧縮ローラを用いて圧縮し、厚み0.177mm、幅58.5mm、長さ656mmに裁断して正極板を作製した。
[Production of positive electrode plate]
The positive electrode plate was produced as follows. First, nickel-lithium cobaltate (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) powder as a positive electrode active material, acetylene black as a positive electrode conductive agent, and polyvinylidene fluoride (PVdF) powder, A slurry was prepared by mixing the positive electrode active material: acetylene black: PVdF = 100: 1.25: 1.7 with an N-methyl-2-pyrrolidone (NMP) solution. This slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm by a doctor blade method and then dried to form a positive electrode mixture layer on both surfaces of the positive electrode current collector. Then, it compressed using the compression roller and cut | judged to thickness 0.177mm, width 58.5mm, and length 656mm, and produced the positive electrode plate.

[負極板の作製]
負極板は次のようにして作製した。まず、組成がSiOx(x=1)の粒子を粉砕、分級して粒度を調整した後、約1000℃に昇温し、アルゴン雰囲気下でCVD法によりこの粒子の表面を炭素で被覆した。そして、これを解砕・分級し、SiOとして表されるSi酸化物を作製した。なお、SiOの表面に被覆した炭素の被覆量は、1質量部である。
[Production of negative electrode plate]
The negative electrode plate was produced as follows. First, particles having a composition of SiOx (x = 1) were pulverized and classified to adjust the particle size, and then the temperature was raised to about 1000 ° C., and the surfaces of the particles were coated with carbon by an CVD method in an argon atmosphere. And this was crushed and classified, and Si oxide represented as SiO was produced. In addition, the coating amount of carbon coated on the surface of SiO is 1 part by mass.

次に、黒鉛粉末を96質量部、Si酸化物を4質量部、結着剤としてのスチレンブタジエンゴムのディスパージョン1質量部を水に分散させ、固形分濃度が60質量%になるように負極スラリーを調整した。この負極スラリーを、厚さ8μmの銅箔製の負極集電体の両面にドクターブレード法により塗布して負極合剤層を形成した。次いで、乾燥した後、負極活物質密度が1.65g/ccになるように圧縮ローラで圧縮し負極合剤層の厚みを調整し、幅59.5mm、長さ590mmに裁断して負極板を作製した。   Next, 96 parts by mass of graphite powder, 4 parts by mass of Si oxide, and 1 part by mass of a styrene butadiene rubber dispersion as a binder are dispersed in water, and the negative electrode is adjusted so that the solid content concentration is 60% by mass. The slurry was adjusted. This negative electrode slurry was applied to both surfaces of a negative electrode current collector made of copper foil having a thickness of 8 μm by a doctor blade method to form a negative electrode mixture layer. Next, after drying, the negative electrode active material density is compressed with a compression roller so as to be 1.65 g / cc, the thickness of the negative electrode mixture layer is adjusted, and the negative electrode plate is cut into a width of 59.5 mm and a length of 590 mm. Produced.

[非水電解液の調製]
エチレンカーボネート(EC)とジメチルメチルカーボネート(DMC)とからなる混合溶媒(体積比でEC:DMC=1:3)に、ビニレンカーボネート(VC)を5質量部を添加し、LiPFを1モル/リットル溶解して非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
5 parts by mass of vinylene carbonate (VC) is added to a mixed solvent composed of ethylene carbonate (EC) and dimethylmethyl carbonate (DMC) (volume ratio EC: DMC = 1: 3), and LiPF 6 is added at 1 mol / A non-aqueous electrolyte was prepared by dissolving 1 liter.

[極板巻回体の作製]
上記正極板の芯体にアルミニウム製の正極タブを取り付け、上記負極板の芯体にニッケル製の負極タブを取り付けた。この正極板と負極板とを用い、両電極間に厚さ16.0μmのポリエチレン製の多孔質絶縁層を介在させて円筒状に巻回し、極板巻回体とした。
[Preparation of electrode plate roll]
A positive electrode tab made of aluminum was attached to the core of the positive electrode plate, and a negative electrode tab made of nickel was attached to the core of the negative electrode plate. Using this positive electrode plate and negative electrode plate, a polyethylene porous insulating layer having a thickness of 16.0 μm was interposed between the two electrodes and wound into a cylindrical shape to obtain an electrode plate wound body.

さらに、極板巻回体の巻き終り外周部をポリプロピレン製の粘着テープで固定した。
なお、粘着テープ固定の際、極板巻回体が緩まる方向に2mm位置をずらして粘着テープを貼り付けた。
Furthermore, the winding outer periphery of the electrode plate roll was fixed with a polypropylene adhesive tape.
When fixing the adhesive tape, the adhesive tape was affixed by shifting the position by 2 mm in the direction in which the electrode roll was loosened.

[電池の作製]
上記極板巻回体の上下端面に絶縁板を配置し、内径が18.1mmの円筒型の有底筒状電池ケース内部に収納した。次いで、負極タブを電池ケースの底面に溶接すると共に、正極タブは電池内の内圧により作動する安全弁を有する封口体側に溶接した。
[Production of battery]
Insulating plates were arranged on the upper and lower end surfaces of the above electrode plate winding body, and housed inside a cylindrical bottomed cylindrical battery case having an inner diameter of 18.1 mm. Next, the negative electrode tab was welded to the bottom surface of the battery case, and the positive electrode tab was welded to the sealing body side having a safety valve that is operated by the internal pressure in the battery.

次に、電池ケースの開口部から上記非水電解液を減圧方式により注入した。
次に、電池ケースの開口端部にガスケットを介して封口体を配置し、電池ケースの開口端部をかしめることにより密閉し、非水電解質二次電池を作製した。
なお、この際の正極合剤層表面と対向する負極合剤層表面の極間距離は、18.4μmであった。
Next, the non-aqueous electrolyte was injected from the opening of the battery case by a reduced pressure method.
Next, a sealing body was disposed at the opening end of the battery case via a gasket, and the opening end of the battery case was sealed by caulking to produce a nonaqueous electrolyte secondary battery.
In this case, the distance between the electrodes on the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer was 18.4 μm.

[実験例2]
実験例2に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製の際、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に1mmずらし、極板巻回体の緊迫率を緩め、内径が17.9mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例2に係る非水電解質二次電池を作製した。
なお、この実験例2のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、16.0μmであった。
[Experiment 2]
The nonaqueous electrolyte secondary battery according to Experimental Example 2 was manufactured as follows. When preparing the electrode plate winding body in Experimental Example 1, when applying a tape to the electrode plate winding body at the end of winding, shift the electrode plate winding body by 1 mm in the loosening direction, and loosen the tension rate of the electrode plate winding body, A nonaqueous electrolyte secondary battery according to Experimental Example 2 was produced in the same manner as in Experimental Example 1 except that the electrode plate winding body was housed in a battery case having an inner diameter of 17.9 mm.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 2 was 16.0 μm.

[実験例3]
実験例3に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に3mmずらし、極板巻回体の緊迫率を緩め、内径が18.3mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例3に係る非水電解質二次電池を作製した。
なお、この実験例3のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、20.8μmであった。
[Experiment 3]
The nonaqueous electrolyte secondary battery according to Experimental Example 3 was manufactured as follows. In the production of the electrode plate winding body in Experimental Example 1, when the end-of-winding tape is applied to the electrode plate winding body, the electrode plate winding body is shifted by 3 mm in the loosening direction to loosen the tension rate of the electrode plate winding body, A nonaqueous electrolyte secondary battery according to Experimental Example 3 was manufactured in the same manner as in Experimental Example 1 except that the electrode plate wound body was housed in a 18.3 mm battery case.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer opposite to the surface of the positive electrode mixture layer in Experimental Example 3 was 20.8 μm.

[実験例4]
実験例4に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、厚さ14.1μmのセパレータを用い、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に1mmずらし、極板巻回体の緊迫率を緩め、内径が17.7mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例4に係る非水電解質二次電池を作製した。
なお、この実験例4のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、14.1μmであった。
[Experimental Example 4]
The nonaqueous electrolyte secondary battery according to Experimental Example 4 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when using a separator having a thickness of 14.1 μm and applying a tape at the end of winding to the electrode plate winding body, the electrode plate winding body is shifted by 1 mm in the loosening direction. The nonaqueous electrolyte secondary battery according to Experimental Example 4 was prepared in the same manner as in Experimental Example 1, except that the tightness of the wound body was relaxed and the electrode plate wound body was housed in a battery case having an inner diameter of 17.7 mm. Produced.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 4 was 14.1 μm.

[実験例5]
実験例5に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、厚さ14.1μmのセパレータを用い、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に2mmずらし、極板巻回体の緊迫率を緩め、内径が17.9mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例5に係る非水電解質二次電池を作製した。
なお、この実験例5のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、16.2μmであった。
[Experimental Example 5]
The nonaqueous electrolyte secondary battery according to Experimental Example 5 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when using a separator having a thickness of 14.1 μm and applying the tape to the end of the electrode plate winding, the electrode plate winding body is shifted by 2 mm in the loosening direction. The non-aqueous electrolyte secondary battery according to Experimental Example 5 was obtained in the same manner as in Experimental Example 1 except that the tightness of the wound body was relaxed and the electrode plate wound body was housed in a battery case having an inner diameter of 17.9 mm. Produced.
The inter-electrode distance between the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 5 was 16.2 μm.

[実験例6]
実験例6に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、厚さ14.1μmのセパレータを用い、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に3mmずらし、極板巻回体の緊迫率を緩め、内径が18.1mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例6に係る非水電解質二次電池を作製した。
なお、この実験例6のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、18.3μmであった。
[Experimental Example 6]
The nonaqueous electrolyte secondary battery according to Experimental Example 6 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when using a separator with a thickness of 14.1 μm and applying the tape to the end of the electrode plate winding, the electrode plate winding body is shifted by 3 mm in the loosening direction. The non-aqueous electrolyte secondary battery according to Experimental Example 6 was manufactured in the same manner as in Experimental Example 1 except that the tightness of the wound body was relaxed and the electrode plate wound body was housed in a battery case having an inner diameter of 18.1 mm. Produced.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer opposite to the surface of the positive electrode mixture layer in Experimental Example 6 was 18.3 μm.

[実験例7]
実験例7に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、厚さ19.6μmのセパレータを用い、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に3mmずらし、極板巻回体の緊迫率を緩め、内径が18.4mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例7に係る非水電解質二次電池を作製した。
なお、この実験例7のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、22.5μmであった。
[Experimental Example 7]
The nonaqueous electrolyte secondary battery according to Experimental Example 7 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when using a separator having a thickness of 19.6 μm and applying a tape to the end of the electrode plate winding, the electrode plate winding body is shifted by 3 mm in the loosening direction. The non-aqueous electrolyte secondary battery according to Experimental Example 7 is the same as in Experimental Example 1 except that the tightness of the wound body is relaxed and the electrode plate wound body is housed in a battery case having an inner diameter of 18.4 mm. Produced.
In addition, the distance between the electrodes of the negative electrode mixture layer surface facing the positive electrode mixture layer surface in this experimental example 7 was 22.5 μm.

[実験例8]
実験例8に係る非水電解質二次電池は次のようにして作製した。実験例1における負極板の作製において、黒鉛粉末を99質量部、Si酸化物を1質量部として、負極の単位面積当たりの容量が実験例1と同等になるようにする以外は実験例1の場合と同様にして、実験例8に係る非水電解質二次電池を作製した。
なお、この実験例8のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、18.3μmであった。
[Experimental Example 8]
The nonaqueous electrolyte secondary battery according to Experimental Example 8 was produced as follows. In preparation of the negative electrode plate in Experimental Example 1, 99 parts by mass of graphite powder and 1 part by mass of Si oxide were used, except that the capacity per unit area of the negative electrode was made equal to that of Experimental Example 1. In the same manner as in the case, a nonaqueous electrolyte secondary battery according to Experimental Example 8 was produced.
In addition, the inter-electrode distance between the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 8 was 18.3 μm.

[実験例9]
実験例9に係る非水電解質二次電池は次のようにして作製した。実験例1における負極板の作製において、黒鉛粉末を80質量部、Si酸化物を20質量部として、負極の単位面積当たりの容量が実験例1と同等になるようにする以外は実験例1の場合と同様にして、実験例9に係る非水電解質二次電池を作製した。
なお、この実験例9のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、18.6μmであった。
[Experimental Example 9]
The nonaqueous electrolyte secondary battery according to Experimental Example 9 was produced as follows. In preparation of the negative electrode plate in Experimental Example 1, 80 parts by mass of graphite powder and 20 parts by mass of Si oxide were used, except that the capacity per unit area of the negative electrode was made equal to that of Experimental Example 1. A nonaqueous electrolyte secondary battery according to Experimental Example 9 was produced in the same manner as in the case.
In addition, the inter-electrode distance between the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 9 was 18.6 μm.

[実験例10]
実験例10に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、極板巻回体に巻き終りテープを張る際、巻き終りテープをずらさずに貼り、内径が17.8mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例10に係る非水電解質二次電池を作製した。
なお、この実験例10のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、14.6μmであった。
[Experimental Example 10]
The nonaqueous electrolyte secondary battery according to Experimental Example 10 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when the end-of-winding tape was applied to the electrode plate winding body, the end-of-winding tape was applied without shifting, and the electrode plate winding body was stored in a battery case having an inner diameter of 17.8 mm. A nonaqueous electrolyte secondary battery according to Experimental Example 10 was fabricated in the same manner as in Experimental Example 1 except that this was done.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 10 was 14.6 μm.

[実験例11]
実験例11に係る非水電解質二次電池は次のようにして作製した。実験例1における極板巻回体作製において、極板巻回体に巻き終りテープを張る際、極板巻回体が緩まる方向に5mmずらし、極板巻回体の緊迫率を緩め、内径が18.4mmの電池ケースに極板巻回体を収納する以外は実験例1の場合と同様にして、実験例11に係る非水電解質二次電池を作製した。
なお、この実験例11のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、22.7μmであった。
[Experimental Example 11]
The nonaqueous electrolyte secondary battery according to Experimental Example 11 was produced as follows. In the production of the electrode plate winding body in Experimental Example 1, when the end of winding is applied to the electrode plate winding body, the electrode plate winding body is shifted by 5 mm in the loosening direction, the tension rate of the electrode plate winding body is relaxed, and the inner diameter A nonaqueous electrolyte secondary battery according to Experimental Example 11 was fabricated in the same manner as in Experimental Example 1 except that the electrode plate wound body was housed in a 18.4 mm battery case.
In addition, the distance between the electrodes of the negative electrode mixture layer surface facing the positive electrode mixture layer surface in Experimental Example 11 was 22.7 μm.

[実験例12]
実験例12に係る非水電解質二次電池は次のようにして作製した。実験例1における負極板の作製において、黒鉛粉末を100質量部として、負極の単位面積当たりの容量が実験例1と同等になるようにする以外は実験例1の場合と同様にして、実験例12に係る非水電解質二次電池を作製した。
なお、この実験例12のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、18.4μmであった。
[Experimental example 12]
The nonaqueous electrolyte secondary battery according to Experimental Example 12 was produced as follows. In the production of the negative electrode plate in Experimental Example 1, the experimental example is the same as in Experimental Example 1, except that the graphite powder is 100 parts by mass and the capacity per unit area of the negative electrode is made equal to that of Experimental Example 1. A non-aqueous electrolyte secondary battery according to No. 12 was produced.
The interelectrode distance between the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 12 was 18.4 μm.

[実験例13]
実験例13に係る非水電解質二次電池は次のようにして作製した。実験例1における負極板の作製において、黒鉛粉末を75質量部、Si酸化物を25質量部として、負極の単位面積当たりの容量が実験例1と同等になるようにする以外は実験例1の場合と同様にして、実験例13に係る非水電解質二次電池を作製した。
なお、この実験例13のおける正極合剤層表面と対向する負極合剤層表面の極間距離は、18.3μmであった。
[Experimental Example 13]
The nonaqueous electrolyte secondary battery according to Experimental Example 13 was produced as follows. In the production of the negative electrode plate in Experimental Example 1, 75 parts by mass of graphite powder and 25 parts by mass of Si oxide were used, except that the capacity per unit area of the negative electrode was made equal to that of Experimental Example 1. In the same manner as in the case, a nonaqueous electrolyte secondary battery according to Experimental Example 13 was produced.
In addition, the distance between the electrodes on the surface of the negative electrode mixture layer facing the surface of the positive electrode mixture layer in Experimental Example 13 was 18.3 μm.

[500サイクル後の容量維持率の測定]
実験例1〜13に係る非水電解質二次電池について、サイクル特性として500サイクル後の容量維持率を以下のようにして行った。それぞれの非水電解質二次電池を、25℃において、0.5It=1700mAの定電流で電池電圧が4.2Vとなるまで充電した後、4.2Vの定電圧で電流が0.01It=34mAに収束するまで充電し、その後、1It=3400mAの定電流で電池電圧が2.5Vに達するまで放電し、これを1サイクルとした。そして、1サイクル目の放電容量と500サイクル目の放電容量とを測定し、500サイクル後の容量維持率を下記のようにして算出した。結果を表1に示した。
500サイクル後の容量維持率(%)
=(500サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of capacity retention after 500 cycles]
Regarding the nonaqueous electrolyte secondary batteries according to Experimental Examples 1 to 13, the capacity retention rate after 500 cycles was performed as cycle characteristics as follows. Each non-aqueous electrolyte secondary battery was charged at 25 ° C. with a constant current of 0.5 It = 1700 mA until the battery voltage reached 4.2 V, and then at a constant voltage of 4.2 V, the current was 0.01 It = 34 mA. Then, the battery was charged until it converged, and then discharged at a constant current of 1 It = 3400 mA until the battery voltage reached 2.5 V, which was defined as one cycle. Then, the discharge capacity at the first cycle and the discharge capacity at the 500th cycle were measured, and the capacity retention ratio after 500 cycles was calculated as follows. The results are shown in Table 1.
Capacity maintenance rate after 500 cycles (%)
= (Discharge capacity at 500th cycle / discharge capacity at the first cycle) × 100

Figure 2014179221
Figure 2014179221

表1に示した結果から以下のことが分かる。
Si酸化物の含有量が1〜20質量部でかつ、正負極板の極間距離(B)が、A≦B≦A×1.3を満たす実験例1〜9は、充電時に膨張した負極合剤層中から電解液が極板巻回体の外に押し出されることはないため、優れた容量維持率が得られている。
From the results shown in Table 1, the following can be understood.
Examples 1 to 9 in which the content of Si oxide is 1 to 20 parts by mass and the distance (B) between the positive and negative electrode plates satisfies A ≦ B ≦ A × 1.3 are negative electrodes expanded during charging. Since the electrolyte solution is not pushed out of the electrode plate wound body from the mixture layer, an excellent capacity retention ratio is obtained.

また、Si酸化物の含有量が1質量部に満たない実験例12は、容量を満足することができず、20質量部を超える実験例13は、Si酸化物の膨張収縮が更に大きくなるため、正負極板の極間距離(B)が、A≦B≦A×1.3の範囲でも優れた容量維持率は得られていない。   Further, in Experimental Example 12 in which the content of Si oxide is less than 1 part by mass, the capacity cannot be satisfied, and in Experimental Example 13 in which the content exceeds 20 parts by mass, the expansion and contraction of Si oxide is further increased. Even when the distance (B) between the positive and negative electrode plates is in the range of A ≦ B ≦ A × 1.3, an excellent capacity retention rate is not obtained.

さらに、正負極板の極間距離(B)が、(A)よりも短い実験例10は、充電時に膨張した負極合剤層中から電解液が極板巻回体の外に押し出されるため、容量維持率が低下している。
さらに、正負極板の極間距離(B)が、(A×1.3)よりも長い実験例11は、極板巻回体の内部抵抗が増大するため、容量維持率が低下している。
Further, in Experimental Example 10 in which the distance between the positive and negative electrode plates (B) is shorter than that of (A), the electrolyte solution is pushed out of the electrode plate wound body from the negative electrode mixture layer expanded during charging. Capacity maintenance rate is decreasing.
Further, in Experimental Example 11 in which the distance between the positive and negative electrode plates (B) is longer than (A × 1.3), the internal resistance of the electrode plate winding body is increased, so that the capacity maintenance ratio is reduced. .

Claims (1)

正極活物質を含む正極合剤層を備えた正極と、負極活物質を含む負極合剤層を備えた負極と、多孔質絶縁層と、非水溶媒にリチウム塩を溶解した非水電解質とを備える非水電解質二次電池であって、
前記負極活物質は、グラファイトと、SiとOを構成元素に含むSi酸化物(ただし、Siの総量に対するOの原子比xは、0.5≦x≦1.5である)を含有し、
前記グラファイトと前記Si酸化物の総量に対する前記Si酸化物の比率が1質量部以上20質量部以下であり、
前記正極と前記負極は前記多孔質絶縁層を介して対向した状態で極板巻回体を形成し、前記多孔質絶縁層の厚みをA(μm)とし、前記正極合剤層の表面から対向する前記負極合剤層の表面までの極間距離をB(μm)とした場合、AとBの関係が下記式1を満たすことを特徴とする非水電解質二次電池。
(式1) A≦B≦A×1.3

A positive electrode including a positive electrode mixture layer including a positive electrode active material, a negative electrode including a negative electrode mixture layer including a negative electrode active material, a porous insulating layer, and a nonaqueous electrolyte in which a lithium salt is dissolved in a nonaqueous solvent. A non-aqueous electrolyte secondary battery comprising:
The negative electrode active material contains graphite and Si oxide containing Si and O as constituent elements (however, the atomic ratio x of O with respect to the total amount of Si is 0.5 ≦ x ≦ 1.5),
The ratio of the Si oxide to the total amount of the graphite and the Si oxide is 1 part by mass or more and 20 parts by mass or less,
The positive electrode and the negative electrode are opposed to each other through the porous insulating layer, and the electrode plate winding body is formed. The thickness of the porous insulating layer is A (μm), and the positive electrode mixture layer is opposed to the surface. A nonaqueous electrolyte secondary battery in which the relationship between A and B satisfies the following formula 1 when the interelectrode distance to the surface of the negative electrode mixture layer is B (μm).
(Formula 1) A ≦ B ≦ A × 1.3

JP2013051876A 2013-03-14 2013-03-14 Nonaqueous electrolyte secondary battery Pending JP2014179221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051876A JP2014179221A (en) 2013-03-14 2013-03-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051876A JP2014179221A (en) 2013-03-14 2013-03-14 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014179221A true JP2014179221A (en) 2014-09-25

Family

ID=51698972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051876A Pending JP2014179221A (en) 2013-03-14 2013-03-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014179221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110959222A (en) * 2017-12-26 2020-04-03 Tdk株式会社 Non-aqueous electrolyte secondary battery
WO2022100626A1 (en) * 2020-11-11 2022-05-19 比亚迪股份有限公司 Lithium-ion battery
JP2022127915A (en) * 2021-02-22 2022-09-01 プライムプラネットエナジー&ソリューションズ株式会社 secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156311A (en) * 2004-12-01 2006-06-15 Sony Corp Battery
JP2008047303A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery
JP2010212228A (en) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2011016183A1 (en) * 2009-08-07 2011-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP2011100745A (en) * 2011-01-26 2011-05-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2011135613A1 (en) * 2010-04-27 2011-11-03 パナソニック株式会社 Non-aqueous secondary battery and electrodes for use in same
JP2012160371A (en) * 2011-02-01 2012-08-23 Panasonic Corp Lithium ion secondary battery
US20120270103A1 (en) * 2011-04-21 2012-10-25 Chun-Gyoo Lee Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156311A (en) * 2004-12-01 2006-06-15 Sony Corp Battery
JP2008047303A (en) * 2006-08-10 2008-02-28 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery
JP2010212228A (en) * 2009-02-13 2010-09-24 Hitachi Maxell Ltd Nonaqueous secondary battery
WO2011016183A1 (en) * 2009-08-07 2011-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery
WO2011135613A1 (en) * 2010-04-27 2011-11-03 パナソニック株式会社 Non-aqueous secondary battery and electrodes for use in same
JP2011100745A (en) * 2011-01-26 2011-05-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012160371A (en) * 2011-02-01 2012-08-23 Panasonic Corp Lithium ion secondary battery
US20120270103A1 (en) * 2011-04-21 2012-10-25 Chun-Gyoo Lee Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110959222A (en) * 2017-12-26 2020-04-03 Tdk株式会社 Non-aqueous electrolyte secondary battery
WO2022100626A1 (en) * 2020-11-11 2022-05-19 比亚迪股份有限公司 Lithium-ion battery
JP2022127915A (en) * 2021-02-22 2022-09-01 プライムプラネットエナジー&ソリューションズ株式会社 secondary battery
JP7202407B2 (en) 2021-02-22 2023-01-11 プライムプラネットエナジー&ソリューションズ株式会社 secondary battery

Similar Documents

Publication Publication Date Title
JP6030070B2 (en) Nonaqueous electrolyte secondary battery
US8597829B2 (en) Nonaqueous electrolyte secondary battery with rolled electrode assembly
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
US9005824B2 (en) Lithium secondary battery
US20140322591A1 (en) Non-aqueous electrolyte secondary battery
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JP2014067583A (en) Nonaqueous electrolyte secondary battery
JP2010238469A (en) Nonaqueous electrolyte secondary battery
JP5687804B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2015185491A (en) Nonaqueous electrolyte secondary battery
US9590234B2 (en) Nonaqueous electrolyte secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
TWI622199B (en) Lithium secondary battery
US20170084910A1 (en) Negative electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013175410A (en) Lithium secondary battery
JP2014179221A (en) Nonaqueous electrolyte secondary battery
JP2014067581A (en) Nonaqueous electrolyte secondary battery
WO2014050025A1 (en) Non-aqueous electrolyte secondary battery
JP2014035924A (en) Nonaqueous electrolyte secondary battery
WO2013141243A1 (en) Nonaqueous electrolyte secondary battery
JP2015185407A (en) Nonaqueous electrolyte secondary battery
JP2014112496A (en) Nonaqueous electrolyte secondary battery
KR20150054682A (en) Lithium secondary battery
JP2014099263A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606