JP2013175410A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2013175410A
JP2013175410A JP2012040389A JP2012040389A JP2013175410A JP 2013175410 A JP2013175410 A JP 2013175410A JP 2012040389 A JP2012040389 A JP 2012040389A JP 2012040389 A JP2012040389 A JP 2012040389A JP 2013175410 A JP2013175410 A JP 2013175410A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
secondary battery
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012040389A
Other languages
Japanese (ja)
Other versions
JP6051537B2 (en
Inventor
Akira Kishimoto
顕 岸本
Naoko Nakayama
奈緒子 中山
Shigeki Yamate
山手  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012040389A priority Critical patent/JP6051537B2/en
Publication of JP2013175410A publication Critical patent/JP2013175410A/en
Application granted granted Critical
Publication of JP6051537B2 publication Critical patent/JP6051537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery, whose positive electrode has an upper limit charging potential of 4.2 V or more but less than 4.35 V, exhibiting excellent effects of reducing internal resistance and suppressing battery expansion.SOLUTION: A lithium secondary battery includes: a positive electrode containing a cathode active material capable of inserting and extracting lithium ions; a negative electrode containing an anode active material capable of inserting and extracting lithium ions; a separator; and a nonaqueous electrolyte. The upper limit charging potential of the positive electrode is 4.2 V or more but less than 4.35 V. The nonaqueous electrolyte contains trialkoxy vinyl silane.

Description

本発明は、リチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

近年、携帯電話及びノートパソコン等の携帯機器、並びに電気自動車等の電源として、エネルギー密度が高く、自己放電が少なくサイクル性能の良いリチウム二次電池に代表される非水電解質二次電池が注目されている。   In recent years, non-aqueous electrolyte secondary batteries typified by lithium secondary batteries with high energy density, low self-discharge and good cycle performance have attracted attention as power sources for portable devices such as mobile phones and laptop computers, and electric vehicles. ing.

現在のリチウム二次電池の主流は、正極電位が4.2V程度までの携帯電話用を中心とした小型のリチウム二次電池であるが、例えば電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車といった自動車分野に中形または大形のリチウム二次電池を適用することが検討されており、一部、実用化している。特に、電気自動車では搭載されるリチウム二次電池から供給される電力で全ての機器を駆動させる。このため、電気自動車の航続距離や快適性を向上させるためにリチウム二次電池の高エネルギー密度化が強く望まれている。   The current mainstream of lithium secondary batteries is a small lithium secondary battery mainly for mobile phones having a positive electrode potential of up to about 4.2 V. For example, automobile fields such as electric vehicles, hybrid vehicles, plug-in hybrid vehicles, etc. In addition, the application of medium- or large-sized lithium secondary batteries has been studied, and some of them have been put into practical use. In particular, in an electric vehicle, all devices are driven by electric power supplied from a lithium secondary battery installed. For this reason, in order to improve the cruising distance and comfort of an electric vehicle, it is strongly desired to increase the energy density of the lithium secondary battery.

リチウム二次電池のエネルギー密度を高める手段として、電池の充電電圧を高く設定する方法がある。充電電圧を高く設定することにより、高い放電電圧及び大きな放電容量を得ることができるので、リチウム二次電池のエネルギー密度を高くすることができる。しかしながら、このような高電圧タイプのリチウム二次電池を考慮すると、電池膨れの抑制や内部抵抗の低減といった観点からは小型のリチウム二次電池の現在の仕様では必ずしも充分であるとはいえない。   As a means for increasing the energy density of the lithium secondary battery, there is a method of setting the battery charging voltage high. By setting the charging voltage high, a high discharge voltage and a large discharge capacity can be obtained, so that the energy density of the lithium secondary battery can be increased. However, considering such a high voltage type lithium secondary battery, the current specification of a small lithium secondary battery is not necessarily sufficient from the viewpoint of suppressing battery swelling and reducing internal resistance.

ここで、リチウム二次電池の内部抵抗を低減させることを目的の一つとする技術が特許文献1(特開2002−134169号公報)に開示されている。即ち、特許文献1には、充放電の繰り返し時に電気容量や内部抵抗の変化率が小さく、かつ低温時の内部抵抗増加が小さいため、高い電気容量を維持するというサイクル特性及び低温特性に優れた非水電解液及び該電解液を用いた非水電解液二次電池を提供することを目的として、電解質塩を有機溶媒に溶解した電解液に、不飽和結合を有するケイ素化合物を含有させる技術が提案されている(特許文献1、要約等)。   Here, Patent Document 1 (Japanese Patent Laid-Open No. 2002-134169) discloses a technique for reducing the internal resistance of a lithium secondary battery. That is, Patent Document 1 is excellent in cycle characteristics and low temperature characteristics for maintaining high electric capacity because the rate of change in electric capacity and internal resistance is small when charging and discharging are repeated and the increase in internal resistance at low temperatures is small. For the purpose of providing a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery using the electrolyte, a technique in which a silicon compound having an unsaturated bond is contained in an electrolyte obtained by dissolving an electrolyte salt in an organic solvent. It has been proposed (patent document 1, abstract, etc.).

より具体的には、特許文献1においては、上記ケイ素化合物が、自己重合し易い化合物であり、サイクル初期に、電極と電解液との界面において重合反応することにより安定な被膜を形成し、サイクルに伴う内部抵抗の増加を抑制することができると開示されており、その効果を得るために、電解液に上記ケイ素化合物を0.05〜0.5体積%添加する旨が開示されている(特許文献1、段落番号[0040]等)。また、上記ケイ素化合物として、トリメトキシビニルシランが例示されている(同、段落番号[0028]等)。   More specifically, in Patent Document 1, the silicon compound is a compound that easily undergoes self-polymerization, and at the initial stage of the cycle, a stable film is formed by a polymerization reaction at the interface between the electrode and the electrolytic solution. In order to obtain the effect, it is disclosed that 0.05 to 0.5% by volume of the above silicon compound is added to the electrolytic solution ( Patent Document 1, paragraph number [0040] etc.). In addition, trimethoxyvinylsilane is exemplified as the silicon compound (paragraph number [0028] and the like).

また、同様のケイ素化合物を電解液に添加する技術として、例えば特許文献2(特開2002−042864号公報)に、充電後の高温保存特性及び充放電サイクル特性を向上させた非水電解質二次電池を目的として、充電放電に対して可逆性を有する正極及び負極と、電解質並びにシランカップリング剤を含有する非水電解質とを含む非水電解質二次電池が提案されており(特許文献2、要約及び特許請求の範囲等)、シランカップリング剤としてはアミノ基を有するケイ素化合物のみが開示されている。   Further, as a technique for adding a similar silicon compound to an electrolytic solution, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2002-042864) discloses a non-aqueous electrolyte secondary that has improved high-temperature storage characteristics and charge / discharge cycle characteristics after charging. For the purpose of a battery, a nonaqueous electrolyte secondary battery including a positive electrode and a negative electrode that are reversible with respect to charging and discharging, and a nonaqueous electrolyte containing an electrolyte and a silane coupling agent has been proposed (Patent Document 2, (Summary, claims, etc.) Only silicon compounds having amino groups are disclosed as silane coupling agents.

特開2002−134169号公報JP 2002-134169 A 特開2002−042864号公報JP 2002-042864 A

しかしながら、上記の特許文献1及び2においては、内部抵抗の低減に加えて電池膨れを抑制するという観点からの安全性には触れられておらず、特に正極電位が4.2V以上4.35V未満となるリチウム二次電池についてこれらの検討はなされていない。そこで、本発明の目的は、正極の充電上限電位が4.2V以上4.35V未満であるリチウム二次電池において内部抵抗の低減及び電池膨れの抑制の効果に優れるリチウム二次電池を提供することにある。   However, in the above Patent Documents 1 and 2, the safety from the viewpoint of suppressing the battery swelling in addition to the reduction of the internal resistance is not mentioned, and particularly the positive electrode potential is 4.2 V or more and less than 4.35 V. These studies have not been made on the lithium secondary battery. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lithium secondary battery that is excellent in reducing internal resistance and suppressing battery swelling in a lithium secondary battery having a positive charge upper limit potential of 4.2 V or more and less than 4.35 V. It is in.

上記の課題を解決すべく本発明者らが鋭意検討した結果、正極の充電上限電位が4.2V以上4.35V未満のリチウム二次電池において内部抵抗の低減及び電池膨れの抑制の効果を得るためには、リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、セパレータと、非水電解質と、を具備するリチウム二次電池において、非水電解質にトリアルコキシビニルシラン(特にトリエトキシビニルシラン)を添加すれば、正極の充電上限電位が4.2V以上4.35V未満である場合に内部抵抗の低減及び電池膨れの抑制の効果が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors to solve the above problems, the lithium secondary battery having a positive charge upper limit potential of 4.2 V or more and less than 4.35 V has an effect of reducing internal resistance and suppressing battery swelling. To achieve this, a positive electrode including a positive electrode active material capable of inserting / extracting lithium ions, a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions, a separator, and a non-aqueous electrolyte are provided. In secondary batteries, if trialkoxyvinylsilane (especially triethoxyvinylsilane) is added to the non-aqueous electrolyte, the internal resistance is reduced and battery swelling is suppressed when the upper limit charge potential of the positive electrode is 4.2 V or more and less than 4.35 V. As a result, the present invention has been completed.

即ち、本発明は、
リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、セパレータと、非水電解液と、を具備し、
前記正極の充電上限電位が4.2V以上(vs.Li/Li+)4.35V未満(vs.Li/Li+)であり、
前記非水電解液がトリアルコキシビニルシランを含むこと、
を特徴とするリチウム二次電池を提供する。
That is, the present invention
A positive electrode including a positive electrode active material capable of inserting / extracting lithium ions; a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions; a separator; and a non-aqueous electrolyte.
The charge upper limit potential of the positive electrode is 4.2 V or more (vs. Li / Li + ) less than 4.35 V (vs. Li / Li + ),
The non-aqueous electrolyte contains trialkoxyvinylsilane;
A lithium secondary battery is provided.

ここで、上記リチウム二次電池における「正極の充電上限電位」とは、リチウム二次電池が、通常使用時の充放電サイクルにおける充電によって到達する最も高い電位のことをいう。即ち、「正極の充電上限電位が4.2V以上4.35V未満」とは、当該リチウム二次電池が、定格で定められる充電電圧まで充電したときに、正極の電位が4.2V以上4.35V未満になるまで充電された履歴を有することを意味する。また、初期活性化処理(化成)、急速充電及び/又は意図しない事象等により、本発明の効果が失われない範囲で一時的(例えば100時間以内)に正極の上限電位が4.35V以上で充電される場合も、本発明の効果は変わらず奏されることから、本発明の範疇に含まれる。   Here, the “charge upper limit potential of the positive electrode” in the lithium secondary battery refers to the highest potential that the lithium secondary battery reaches by charging in a charge / discharge cycle during normal use. In other words, “the positive charge upper limit potential of the positive electrode is 4.2 V or more and less than 4.35 V” means that when the lithium secondary battery is charged to the charging voltage determined by the rating, the positive electrode potential is 4.2 V or more and 4. It means having a history of charging until it is below 35V. In addition, the upper limit potential of the positive electrode is 4.35 V or more temporarily (for example, within 100 hours) within a range where the effects of the present invention are not lost due to initial activation treatment (chemical conversion), rapid charging, and / or unintended events. Even when the battery is charged, the effect of the present invention is not changed and is included in the scope of the present invention.

上記本発明のリチウム二次電池においては、前記非水電解液がトリアルコキシビニルシランを10質量%以下含むこと、が好ましい。トリアルコキシビニルシランの含有量がこの上限値以下であれば、トリアルコキシビニルシランの分解反応によるリチウム二次電池の不可逆容量の増加が抑制され、リチウム二次電池の容量を損なうことなく、内部抵抗の増加を抑制することができる。   In the lithium secondary battery of the present invention, it is preferable that the non-aqueous electrolyte contains 10% by mass or less of trialkoxyvinylsilane. If the trialkoxyvinylsilane content is less than or equal to this upper limit, the increase in the irreversible capacity of the lithium secondary battery due to the decomposition reaction of the trialkoxyvinylsilane is suppressed, and the internal resistance is increased without impairing the capacity of the lithium secondary battery. Can be suppressed.

また、上記本発明のリチウム二次電池においては、前記非水電解液がトリアルコキシビニルシランを0.2質量%以上含むこと、が好ましい。トリアルコキシビニルシランの含有量がこの下限値以上であれば、内部抵抗の低減及び電池膨れの抑制という本発明の効果をより確実に得ることができる。   In the lithium secondary battery of the present invention, it is preferable that the nonaqueous electrolytic solution contains 0.2% by mass or more of trialkoxyvinylsilane. If the content of trialkoxyvinylsilane is equal to or higher than this lower limit, the effects of the present invention of reducing internal resistance and suppressing battery swelling can be obtained more reliably.

また、上記本発明のリチウム二次電池においては、前記トリアルコキシビニルシランが、トリエトキシビニルシランであること、が好ましい。トリアルコキシビニルシランとしてトリエトキシビニルシランを用いれば、内部抵抗の低減及び電池膨れの抑制という本発明の効果をより確実に得ることができる。   In the lithium secondary battery of the present invention, the trialkoxyvinylsilane is preferably triethoxyvinylsilane. If triethoxyvinylsilane is used as the trialkoxyvinylsilane, the effects of the present invention such as reduction of internal resistance and suppression of battery swelling can be obtained more reliably.

なお、上記本発明のリチウム二次電池は、単セル構造を有するものであっても、当該単セル構造を複数個有しこれらが直列及び/又は並列に接続された構造を有するもの(組電池又はモジュール電池)であってもよい。   In addition, even if the lithium secondary battery of the present invention has a single cell structure, the lithium secondary battery has a structure in which a plurality of the single cell structures are connected in series and / or in parallel (assembled battery). Or a module battery).

また、本発明は、
リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、セパレータと、非水電解液と、を具備し、
前記非水電解液がトリアルコキシビニルシランを含み、
前記正極の充電上限電位を4.2V以上(vs.Li/Li+)4.35V未満(vs.Li/Li+)とするリチウム二次電池の使用方法にも関する。
The present invention also provides:
A positive electrode including a positive electrode active material capable of inserting / extracting lithium ions; a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions; a separator; and a non-aqueous electrolyte.
The non-aqueous electrolyte contains trialkoxyvinylsilane;
Wherein the above 4.2V charging upper limit potential of the positive electrode (vs.Li/Li +) less than 4.35V (vs.Li/Li +) to also relates to the use of a lithium secondary battery.

本発明によれば、正極の充電上限電位が4.2V以上4.35V未満であるリチウム二次電池において内部抵抗の低減及び電池膨れの抑制の効果に優れるリチウム二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery which is excellent in the effect of reduction of internal resistance and suppression of a battery swelling can be provided in the lithium secondary battery whose charge upper limit electric potential of a positive electrode is 4.2V or more and less than 4.35V. .

本発明のリチウム二次電池の一実施形態(本発明の実施例において作製したリチウム二次電池)の概略縦断面図である。It is a schematic longitudinal cross-sectional view of one Embodiment (lithium secondary battery produced in the Example of this invention) of the lithium secondary battery of this invention.

以下において、図面を参照しながら本発明のリチウム二次電池の好適な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する場合があり、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。   Hereinafter, preferred embodiments of the lithium secondary battery of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or corresponding parts are denoted by the same reference numerals, and duplicate descriptions may be omitted. The drawings are for conceptual description of the present invention. The dimensions of each component and their ratio may differ from the actual ones.

図1は、本発明のリチウム二次電池の一実施形態である角型のリチウム二次電池1の概略縦断面図である。図1に示すリチウム二次電池1は扁平捲回状電極群2を含んでおり、この扁平捲回状電極群2は、正極集電体及び当該正極集電体に設けられた正極合剤層を含む板状の正極3と、負極集電体及び当該負極集電体に設けられた負極合剤層を含む板状の負極4と、を、セパレータ5を介して(挟んで)捲回することにより形成されている。   FIG. 1 is a schematic longitudinal sectional view of a prismatic lithium secondary battery 1 which is an embodiment of the lithium secondary battery of the present invention. A lithium secondary battery 1 shown in FIG. 1 includes a flat wound electrode group 2. The flat wound electrode group 2 includes a positive electrode current collector and a positive electrode mixture layer provided on the positive electrode current collector. A plate-like positive electrode 3 containing a negative electrode current collector and a plate-like negative electrode 4 containing a negative electrode mixture layer provided on the negative electrode current collector are wound (interposed) via a separator 5. It is formed by.

扁平捲回状電極群2は、電池ケース6に収納されており、扁平捲回状電極群2の最外周に配置される正極集電体及び/又は負極集電体の端部は、内周側と外周側の両面が正極合剤層及び/又は負極合剤層を担持せずに露出していてもよく、内周側は正極合剤層及び/又は負極合剤層を担持しており外周側だけが露出していてもよい。正極集電体及び/又は負極集電体の露出部は、扁平捲回状電極群2の全側面に配置されていることが望ましい。また、最外周よりも内周に配置される正極集電体及び/又は負極集電体が更に露出していてもよい。   The flat wound electrode group 2 is housed in a battery case 6, and the end of the positive electrode current collector and / or the negative electrode current collector disposed on the outermost periphery of the flat wound electrode group 2 has an inner periphery. Both the outer side and the outer side may be exposed without carrying the positive electrode mixture layer and / or the negative electrode mixture layer, and the inner circumference side carries the positive electrode mixture layer and / or the negative electrode mixture layer. Only the outer peripheral side may be exposed. The exposed portions of the positive electrode current collector and / or the negative electrode current collector are desirably disposed on all side surfaces of the flat wound electrode group 2. In addition, the positive electrode current collector and / or the negative electrode current collector disposed on the inner periphery rather than the outermost periphery may be further exposed.

セパレータ5には電解液(図示せず)が保持されているとともに、及び電池ケース6内の隙間も非水電解液で満たされている。また、電池ケース6には、従来公知の安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極4は負極リード11で負極端子9と接続され、正極3は正極リード10で電池蓋7と接続されている。   The separator 5 holds an electrolytic solution (not shown), and the gap in the battery case 6 is also filled with the nonaqueous electrolytic solution. A battery lid 7 provided with a conventionally known safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode 4 is connected to the negative electrode terminal 9 by a negative electrode lead 11, and the positive electrode 3 is connected to the negative electrode terminal 10 by a battery lead 7. Connected with.

ここで、本実施形態のリチウム二次電池1においてセパレータ5及び電池ケース6に含まれる非水電解液は、非水溶媒と当該非水溶媒に溶解した電解質塩とを含むものであり、更にトリアルコキシビニルシランを含有している点に特徴を有する。本実施形態において用いることのできるトリアルコキシビニルシランは、下記式(1)で示される化合物である。   Here, in the lithium secondary battery 1 of the present embodiment, the non-aqueous electrolyte contained in the separator 5 and the battery case 6 includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. It is characterized by containing alkoxyvinylsilane. The trialkoxyvinylsilane that can be used in the present embodiment is a compound represented by the following formula (1).

Figure 2013175410
Figure 2013175410

ただし、式(1)中、R1、R2及びR3は、それぞれ独立してアルキル基を示し、アルキル基の炭素数は1〜6である。 However, in Formula (1), R < 1 >, R < 2 > and R < 3 > show an alkyl group each independently, and carbon number of an alkyl group is 1-6.

式(1)で示されるトリアルコキシビニルシランの具体例としては、例えばトリエトキシビニルシラン、トリメトキシビニルシラン、トリプロポキシビニルシラン、ジエトキシメトキシビニルシラン及びエトキシジメトキシビニルシラン等が挙げられる。なかでも、トリメトキシビニルシラン又はトリエトキシビニルシランを用いた場合に、本発明の効果がより確実に得られることを本発明者らは確認している(後述の実施例参照)。   Specific examples of trialkoxyvinylsilane represented by the formula (1) include, for example, triethoxyvinylsilane, trimethoxyvinylsilane, tripropoxyvinylsilane, diethoxymethoxyvinylsilane, ethoxydimethoxyvinylsilane, and the like. In particular, the present inventors have confirmed that the effects of the present invention can be obtained more reliably when trimethoxyvinylsilane or triethoxyvinylsilane is used (see Examples described later).

リチウム二次電池1は、電解液に式(1)のトリアルコキシビニルシランが含まれることにより、上記のように4.2V以上4.35V未満の正極電位において電池膨れの抑制効果に優れるのであるが、その作用効果について本発明者らは次のように考えている。   Although the lithium secondary battery 1 contains the trialkoxyvinylsilane of the formula (1) in the electrolytic solution, it has an excellent effect of suppressing battery swelling at a positive electrode potential of 4.2 V or more and less than 4.35 V as described above. The inventors consider the effects as follows.

即ち、式(1)で示されるトリアルコキシビニルシランは、R1、R2及びR3の炭素数にかかわらず非水電解液等の溶液中で(−Si−O−)と(−R1)、(−R2)又は(−R3)とに解離し、正極の正極合剤に含まれる正極活物質の表面がOH基(−OH)で覆われていることから、(−Si−O)と(−OH)とが水素結合を形成し、正極活物質の表面にトリアルコキシビニルシラン分子が固定化される。これにより、トリアルコキシビニルシランのビニル基の部分における付加重合反応が促進され、隣接するトリアルコキシビニルシラン同士が結合し、正極活物質の表面に保護層を形成する。このようなトリアルコキシビニルシランによる保護機能により、非水電解液中の非水溶媒の酸化分解量が著しく減少し、その反応性生物であるガス発生量も著しく減少することにより、電池膨れが抑制されるものと考えられる。 That is, the trialkoxyvinylsilane represented by the formula (1) is (—Si—O—) and (—R 1 ) in a solution such as a non-aqueous electrolyte regardless of the carbon number of R 1 , R 2 and R 3. , (—R 2 ) or (—R 3 ), and the surface of the positive electrode active material contained in the positive electrode mixture of the positive electrode is covered with OH groups (—OH). ) And (—OH) form a hydrogen bond, and trialkoxyvinylsilane molecules are immobilized on the surface of the positive electrode active material. Thereby, the addition polymerization reaction in the vinyl group portion of trialkoxyvinylsilane is promoted, adjacent trialkoxyvinylsilanes are bonded to each other, and a protective layer is formed on the surface of the positive electrode active material. By such a protective function by trialkoxyvinylsilane, the amount of oxidative decomposition of the non-aqueous solvent in the non-aqueous electrolyte solution is remarkably reduced, and the amount of gas generated as a reactive organism is also remarkably reduced, thereby suppressing battery swelling. It is thought that.

また、内部抵抗が低減されることについては、以下のように考えられる。リチウム二次電池の内部抵抗(AC抵抗、1kHz)は、正極活物質と非水電解液との界面における、正極活物質粒子の有効反応面積と相関があるものと考えられる。リチウム二次電池を4.2V以上4.35V未満といった高い電圧の範囲にまで充電すると、正極と非水電解液との界面において、非水電解液中の非水溶媒が酸化分解してガスが発生し、また、正極中の正極活物質との反応に起因して正極表面が劣化することで、上記有効反応面積が減少する。これに対し、上記のように、トリアルコキシビニルシランが保護機能を発揮すると、主に高電位の正極の表面での非水溶媒の酸化分解が抑制されるために、上記有効反応面積の減少を抑えることができる。つまり、トリアルコキシビニルシランによる上記保護機能により、正極活物質と非水電解液との界面における正極活物質の有効反応面積が十分に確保され、内部抵抗の上昇が抑制されるものと考えられる。   Further, the reduction in internal resistance is considered as follows. The internal resistance (AC resistance, 1 kHz) of the lithium secondary battery is considered to correlate with the effective reaction area of the positive electrode active material particles at the interface between the positive electrode active material and the non-aqueous electrolyte. When the lithium secondary battery is charged to a high voltage range of 4.2 V or more and less than 4.35 V, the nonaqueous solvent in the nonaqueous electrolyte solution is oxidized and decomposed at the interface between the positive electrode and the nonaqueous electrolyte solution. In addition, the effective reaction area is reduced because the surface of the positive electrode is deteriorated due to the reaction with the positive electrode active material in the positive electrode. In contrast, when trialkoxyvinylsilane exhibits a protective function as described above, the oxidative decomposition of the non-aqueous solvent on the surface of the positive electrode at high potential is mainly suppressed, so that the reduction in the effective reaction area is suppressed. be able to. That is, it is considered that the protective function by trialkoxyvinylsilane sufficiently secures an effective reaction area of the positive electrode active material at the interface between the positive electrode active material and the non-aqueous electrolyte and suppresses an increase in internal resistance.

また、式(1)において、式(1)中、R1、R2及びR3は、それぞれ独立してアルキル基を示し、アルキル基の炭素数は1〜6である。炭素数の上限が6であるのは、炭素数が増加するにしたがって疎水性が増加し、電解液中に溶解することなく相分離を引き起こしてしまう虞があるという理由によるものである。また、R1、R2及びR3がアルキル基であることにより、電子供与性を持つアルキル基を有することで正極上において重合反応が進行しやすくなるという効果があると考えられる。 Moreover, in Formula (1), in Formula (1), R < 1 >, R < 2 > and R < 3 > show an alkyl group each independently, and carbon number of an alkyl group is 1-6. The upper limit of the number of carbon atoms is 6 because the hydrophobicity increases as the number of carbon atoms increases, which may cause phase separation without dissolving in the electrolyte. Further, it is considered that since R 1 , R 2 and R 3 are alkyl groups, the polymerization reaction easily proceeds on the positive electrode by having an alkyl group having an electron donating property.

リチウム二次電池1の非水電解液に含まれる電解質塩としては、本発明の技術の分野において従来公知のものを用いることができ、例えばLiClO4、LiPF6、LiBF4、LiAsF6、LiCF3CO2、LiC(CF33、LiC(C253、LiCF3SO3、LiCF3CF2SO3、LiCF3CF2CF2SO3、LiN(SO2CF32、LiN(SO2CF2CF32、LiN(COCF32、LiN(COCF2CF32、LiPF3(CF2CF33、LiB(C242、LiBF2(C24)、LiPF2(C242及びLiPF4(C24)等が挙げられ、これらはそれぞれ単独で又は二種以上混合して使用することができる。導電性の観点からは電解質塩としてLiPF6が好適であり、LiPF6を主成分として、LiBF4等の他の化合物を混合して用いることもできる。 As the electrolyte salt contained in the non-aqueous electrolyte solution of the lithium secondary battery 1, those conventionally known in the technical field of the present invention can be used. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiC (CF 3 ) 3 , LiC (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 , LiB (C 2 O 4 ) 2 , LiBF 2 (C 2 O 4), LiPF 2 (C 2 O 4) 2 and LiPF 4 (C 2 O 4), and the like. these may be used alone or in combination. From the viewpoint of conductivity, LiPF 6 is suitable as the electrolyte salt, and other compounds such as LiBF 4 can be mixed and used with LiPF 6 as the main component.

また、非水電解液に含まれる非水溶媒としても、本発明の技術の分野において従来公知のものを用いることができ、例えば環状カーボネート、鎖状カーボネート及び環状スルホン等が挙げられ、より具体的には、エチレンカーボネ−ト(EC)、プロピレンカ−ボネ−ト(PC)、ブチレンカーボネート(BC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、並びにN−メチル−2−ピロリドン等が挙げられる。これらは単独で用いてもよいが、非水電解液の導電性及び粘度を調整するという観点等から、2種以上を混合して用いてもよい。なかでも環状カーボネートと鎖状カーボネートとの混合溶媒または環状カーボネートと鎖状カーボネートと脂肪族カルボン酸エステルとの混合溶媒が好ましい。例えばエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との3:7混合非水溶媒が好適に用いられる。   Further, as the non-aqueous solvent contained in the non-aqueous electrolyte, those conventionally known in the technical field of the present invention can be used, and examples thereof include cyclic carbonates, chain carbonates, and cyclic sulfones. For example, ethylene carbonate (EC), propylene carbonate (PC), cyclic carbonates such as butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC). ), Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, lactones such as γ-butyrolactone and γ-valerolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, pro Pionitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, Examples include tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. These may be used alone, but may be used in combination of two or more from the viewpoint of adjusting the conductivity and viscosity of the non-aqueous electrolyte. Among these, a mixed solvent of a cyclic carbonate and a chain carbonate or a mixed solvent of a cyclic carbonate, a chain carbonate, and an aliphatic carboxylic acid ester is preferable. For example, a 3: 7 mixed nonaqueous solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) is preferably used.

非水電解液における非水溶媒に対する電解質塩の混合割合は、従来公知の技術に基づいて、非水電解液の効果を得る範囲で適宜選択すればよい。例えば、電解質塩の非水溶媒に対する溶解量は、特に限定されないが、例えば0.2〜5モル/リットルが好ましく、0.5〜2.5モル/リットルが更に好ましい。   The mixing ratio of the electrolyte salt with respect to the nonaqueous solvent in the nonaqueous electrolytic solution may be appropriately selected within a range in which the effect of the nonaqueous electrolytic solution is obtained based on a conventionally known technique. For example, the amount of electrolyte salt dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 5 mol / liter, and more preferably 0.5 to 2.5 mol / liter, for example.

なお、リチウム二次電池1の充放電特性を改良する目的で、非水電解液に種々の添加剤を加えることができる。添加剤としては、例えばビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が挙げられる。これらの添加剤は、正極3及び/又は負極4上に、良好な皮膜を形成し、電池の長寿命化に寄与する。また、過充電時の安定性を向上させるためにシクロヘキシルベンゼン(CHB)及びフルオロベンゼン等を添加できる。   Various additives can be added to the non-aqueous electrolyte for the purpose of improving the charge / discharge characteristics of the lithium secondary battery 1. Examples of the additive include vinylene carbonate (VC) and vinyl ethylene carbonate (VEC). These additives form a good film on the positive electrode 3 and / or the negative electrode 4 and contribute to extending the life of the battery. In addition, cyclohexylbenzene (CHB), fluorobenzene, and the like can be added to improve the stability during overcharge.

非水電解液におけるトリアルコキシビニルシランの含有量も、本発明の効果を損なわない範囲で適宜選択すればよいが、非水電解液がトリアルコキシビニルシランを10質量%以下含むことが好ましい。トリアルコキシビニルシランの含有量がこの上限値以下であれば、トリアルコキシビニルシランの分解反応によるリチウム二次電池の不可逆容量の増加が抑制され、リチウム二次電池の容量を損なうことなく、内部抵抗の増加を抑制することができる。   The trialkoxyvinylsilane content in the nonaqueous electrolytic solution may be appropriately selected within a range not impairing the effects of the present invention, but the nonaqueous electrolytic solution preferably contains 10% by mass or less of trialkoxyvinylsilane. If the trialkoxyvinylsilane content is less than or equal to this upper limit, the increase in the irreversible capacity of the lithium secondary battery due to the decomposition reaction of the trialkoxyvinylsilane is suppressed, and the internal resistance is increased without impairing the capacity of the lithium secondary battery. Can be suppressed.

また、リチウム二次電池1の非水電解液は、トリアルコキシビニルシランを0.2質量%以上含むことが好ましい。トリアルコキシビニルシランの含有量がこの下限値以上であれば、内部抵抗の増加抑制という本発明の効果をより確実に得ることができる。   Moreover, it is preferable that the non-aqueous electrolyte of the lithium secondary battery 1 contains 0.2% by mass or more of trialkoxyvinylsilane. If the content of trialkoxyvinylsilane is at least the lower limit value, the effect of the present invention of suppressing the increase in internal resistance can be obtained more reliably.

次に、リチウム二次電池1における非水電解液以外の構成要素について説明する。   Next, components other than the non-aqueous electrolyte in the lithium secondary battery 1 will be described.

正極3を構成する正極集電体としては、本発明の技術の分野で従来公知のものを用いることができ、例えばアルミニウム箔及びアルミニウム合金箔等が挙げられる。   As the positive electrode current collector constituting the positive electrode 3, those conventionally known in the technical field of the present invention can be used, and examples thereof include an aluminum foil and an aluminum alloy foil.

正極集電体の両面に塗布されて形成される正極合剤層は、正極活物質を含む。正極活物質としては、本発明の分野において従来公知のものを用いることができ、例えばコバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウム等のリチウム含有遷移金属酸化物が挙げられる。リチウム含有遷移金属酸化物の遷移金属の一部が他元素で置換されていてもよい。より具体的には、例えばLiNi1/3Mn1/3Co1/32等の層状岩塩型酸化物及びLiMPO4(M=Mn、Fe、Co及び/又はNi)等が挙げられる。また、リチウム含有遷移金属酸化物の粒子の表面が、他元素で被覆されていてもよい。1種の正極活物質を単独で用いてもよく2種以上の正極活物質を組み合わせて用いてもよい。 The positive electrode mixture layer formed by being applied to both surfaces of the positive electrode current collector contains a positive electrode active material. As a positive electrode active material, a conventionally well-known thing can be used in the field | area of this invention, For example, lithium containing transition metal oxides, such as lithium cobaltate, lithium nickelate, and lithium manganate, are mentioned. A part of the transition metal of the lithium-containing transition metal oxide may be substituted with another element. More specifically, for example, layered rock salt type oxides such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 and LiMPO 4 (M = Mn, Fe, Co and / or Ni) and the like can be mentioned. Moreover, the surface of the lithium-containing transition metal oxide particles may be coated with another element. One type of positive electrode active material may be used alone, or two or more types of positive electrode active materials may be used in combination.

正極合剤層は、正極活物質と少量の結着剤(例えばポリエチレンテレフタレート(PTFE)、ポリビニリデンフルオライド(PVDF)等)を含む正極合剤を正極集電体に塗布して担持させて形成することができる。正極合剤には、導電材(例えばアセチレンブラック、ケッチェンブラック、黒鉛等)や分散媒(例えばN−メチル−2−ピロリドン(NMP)等)を少量添加してもよい。   The positive electrode mixture layer is formed by applying and supporting a positive electrode mixture containing a positive electrode active material and a small amount of a binder (for example, polyethylene terephthalate (PTFE), polyvinylidene fluoride (PVDF), etc.) on a positive electrode current collector. can do. A small amount of a conductive material (for example, acetylene black, ketjen black, graphite) or a dispersion medium (for example, N-methyl-2-pyrrolidone (NMP)) may be added to the positive electrode mixture.

他方、負極4を構成する負極集電体としては、本発明の技術の分野で従来公知のものを用いることができ、例えば銅箔等が挙げられる。   On the other hand, as the negative electrode current collector constituting the negative electrode 4, those conventionally known in the technical field of the present invention can be used, and examples thereof include copper foil.

負極集電体の両面に塗布されて形成される負極合剤層は、負極活物質を含む。負極活物質としても、本発明の分野において従来公知のものを用いることができ、例えば炭素材料(例えばグラファイト(黒鉛)、天然黒鉛、人造黒鉛、ハードカーボン)、リチウムと合金化可能な元素(例えばAl、Si、Zn、Ge、Cd、Sn、Pb)、ケイ素化合物(例えばSiOx(0<x<2))、スズ化合物(例えばSnO)、リチウム金属、合金(例えばNi−Si合金、Ti−Si合金)、Co34等のコンバージョン材料、Li4Ti512、Li1.10.92等の酸化物材料等を用いることができる。1種の負極活物質を単独で用いてもよく2種以上の負極活物質を組み合わせて用いてもよい。 The negative electrode mixture layer formed by being applied to both surfaces of the negative electrode current collector contains a negative electrode active material. As the negative electrode active material, those conventionally known in the field of the present invention can be used. For example, carbon materials (for example, graphite (graphite), natural graphite, artificial graphite, hard carbon), elements that can be alloyed with lithium (for example, Al, Si, Zn, Ge, Cd, Sn, Pb), silicon compound (eg, SiO x (0 <x <2)), tin compound (eg, SnO), lithium metal, alloy (eg, Ni—Si alloy, Ti—) Si alloy), conversion materials such as Co 3 O 4 , oxide materials such as Li 4 Ti 5 O 12 and Li 1.1 V 0.9 O 2 can be used. One type of negative electrode active material may be used alone, or two or more types of negative electrode active materials may be used in combination.

負極活物質は、負極集電体に直接蒸着してもよいが、少量の結着剤(例えばPVDF、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸)を単独又は併用して含む負極合剤を負極集電体に塗布して担持して形成させることもできる。また、正極3の正極合剤と同様に、負極合剤に導電材を添加してもよい。分散媒(例えば水)を少量添加してもよい。   The negative electrode active material may be directly deposited on the negative electrode current collector, but a small amount of a binder (for example, PVDF, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid) may be used alone or in combination. The negative electrode mixture can also be formed by being applied to and supported on the negative electrode current collector. Further, like the positive electrode mixture of the positive electrode 3, a conductive material may be added to the negative electrode mixture. A small amount of a dispersion medium (for example, water) may be added.

セパレータ5としては、本発明の分野で従来公知のものを用いることができるが、例えばポリエチレン及び/又はポリプロピレン等のポリオレフィン樹脂で構成された微多孔膜が挙げられる。なかでも、ポリエチレンで構成された単層膜、ポリエチレン層とポリプロピレン層とで構成された多層膜等も用いることができる。また、セパレータの表面に無機物等をコートしたものを用いてもよい。   As the separator 5, those conventionally known in the field of the present invention can be used, and examples thereof include a microporous film made of a polyolefin resin such as polyethylene and / or polypropylene. Among these, a single layer film composed of polyethylene, a multilayer film composed of a polyethylene layer and a polypropylene layer, and the like can also be used. Moreover, you may use what coated the inorganic substance etc. on the surface of the separator.

また、電池ケース6及び電池蓋7としては、本発明の分野において従来公知のものを用いることができ、例えば鉄又はアルミニウム等で構成されたものを用いることができる。鉄缶はアルミニウム缶に比べて硬いため、衝撃を受けた際の変形は小さくなる傾向にあり、電池ケース6内の扁平捲回状電極群2も大きなダメージを受けにくい。なお、アルミニウム缶を用いる場合、電池ケース6と正極3とを導通させてもよく、その場合、扁平捲回状電極群2の最外周には、正極集電体の露出部を配置することができる。   As the battery case 6 and the battery lid 7, those conventionally known in the field of the present invention can be used, and for example, those made of iron or aluminum can be used. Since iron cans are harder than aluminum cans, the deformation when subjected to an impact tends to be small, and the flat wound electrode group 2 in the battery case 6 is not easily damaged. In the case of using an aluminum can, the battery case 6 and the positive electrode 3 may be electrically connected. In that case, an exposed portion of the positive electrode current collector may be disposed on the outermost periphery of the flat wound electrode group 2. it can.

また、本実施形態のリチウム二次電池は、充電を制御する制御回路とともに使用されるが、当該制御回路は、各リチウム二次電池にそれぞれ装着されていてもよく、複数のリチウム二次電池に対して1個の制御回路が装着されていてもよい。   In addition, the lithium secondary battery of the present embodiment is used together with a control circuit that controls charging. However, the control circuit may be attached to each lithium secondary battery, and a plurality of lithium secondary batteries may be installed. On the other hand, one control circuit may be mounted.

以上、本発明のリチウム二次電池の一実施の形態について説明したが、本発明のリチウム二次電池は図1に示す角型に限られるものではなく、種々の形状を採り得るが、本発明の電池膨れの抑制効果がより顕著に得られるという観点からは、電池ケースがその外形において扁平部分を有する形状(例えば角型又は長円筒型)であるのが好ましい。   As mentioned above, although one embodiment of the lithium secondary battery of the present invention has been described, the lithium secondary battery of the present invention is not limited to the square shape shown in FIG. 1, and may take various shapes. From the standpoint that the effect of suppressing the battery swelling is more prominent, the battery case preferably has a shape having a flat portion in its outer shape (for example, a rectangular shape or a long cylindrical shape).

次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるわけではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

≪実施例1:トリエトキシビニルシラン使用≫
(1)正極の作製
正極活物質であるLiNi1/3Mn1/3Co1/32と、導電材であるアセチレンブラックと、結着剤であるポリフッ化ビニリデン(PVdF)と、93:3:4の質量比で混合し、これに分散媒であるN−メチル−2−ピロリドン(NMP)を混合して、ペースト状の正極合剤を調製した。
<< Example 1: Use of triethoxyvinylsilane >>
(1) Production of positive electrode LiNi 1/3 Mn 1/3 Co 1/3 O 2 which is a positive electrode active material, acetylene black which is a conductive material, polyvinylidene fluoride (PVdF) which is a binder, 93: The mixture was mixed at a mass ratio of 3: 4, and N-methyl-2-pyrrolidone (NMP) as a dispersion medium was mixed therewith to prepare a paste-like positive electrode mixture.

得られたペースト状の正極合剤を、厚み15μmのアルミニウム箔の両面に塗布して正極合剤層を形成し、130℃で乾燥させて塗布後の正極合剤層からNMPを除去した。この時点での片面の正極合剤の塗布質量はそれぞれ18mg/cm2とした。ついで、NMP除去後の正極合剤層を、110℃に加熱したローラープレス機により加圧成型した後、130℃で14時間減圧乾燥して水分を完全に除去し、アルミニウム箔の両面に正極合剤層を有する板状の正極を得た。 The obtained paste-like positive electrode mixture was applied to both surfaces of a 15 μm thick aluminum foil to form a positive electrode mixture layer, and dried at 130 ° C. to remove NMP from the applied positive electrode mixture layer. The coating mass of the single-sided positive electrode mixture at this point was 18 mg / cm 2 , respectively. Next, the positive electrode mixture layer after NMP removal was pressure-molded with a roller press heated to 110 ° C., and then dried under reduced pressure at 130 ° C. for 14 hours to completely remove moisture, and the positive electrode mixture layer was formed on both surfaces of the aluminum foil. A plate-like positive electrode having an agent layer was obtained.

(2)負極の作製
負極活物質であるグラファイトと、結着剤であるSBR及びCMCとを、グラファイト:SBR:CMC=97:2:1の質量比で混合し、これに分散媒である水を混合して、ペースト状の負極合剤を調製した。
(2) Production of Negative Electrode Graphite, which is a negative electrode active material, and SBR and CMC, which are binders, are mixed at a mass ratio of graphite: SBR: CMC = 97: 2: 1, and this is water as a dispersion medium. Were mixed to prepare a paste-like negative electrode mixture.

得られたペースト状の負極合剤を、厚み10μmの銅箔の両面に塗布して負極合剤層を形成し、80℃で乾燥させて水分を除去した。この時点での片面の負極合剤の塗布質量はそれぞれ11mg/cm2とした。ついで、水分除去後の負極合剤層を、常温のローラープレス機により加圧成型した後、常温で24時間減圧乾燥して、負極合剤層中の水分を完全に除去し、銅箔の両面に負極合剤層有する板状の負極を得た。 The obtained paste-like negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil to form a negative electrode mixture layer, and dried at 80 ° C. to remove moisture. The coating mass of the single-sided negative electrode mixture at this time was 11 mg / cm 2 , respectively. Next, the negative electrode mixture layer after moisture removal was pressure-molded with a roller press at room temperature, and then dried under reduced pressure at room temperature for 24 hours to completely remove moisture in the negative electrode mixture layer, and both sides of the copper foil A plate-like negative electrode having a negative electrode mixture layer was obtained.

(3)非水電解液の調製
エチレンカーボネート及びエチルメチルカーボネートを3:7の体積比で混合して混合非水溶媒を得た。この混合非水溶媒に、電解質塩であるLiPF6を1.0モル/リットルの濃度で溶解させて、溶液を得た。更に、この溶液に、添加剤として東京化成工業(株)製のトリエトキシビニルシランを0.5質量%の濃度になるように溶解させ、非水電解液を調製した。この非水電解液の水分量は50ppm未満とした。
(3) Preparation of non-aqueous electrolyte Ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 to obtain a mixed non-aqueous solvent. In this mixed non-aqueous solvent, LiPF 6 as an electrolyte salt was dissolved at a concentration of 1.0 mol / liter to obtain a solution. Further, triethoxyvinylsilane manufactured by Tokyo Chemical Industry Co., Ltd. as an additive was dissolved in this solution to a concentration of 0.5% by mass to prepare a nonaqueous electrolytic solution. The water content of this non-aqueous electrolyte was less than 50 ppm.

(4)リチウム二次電池の作製
本実施例においては、図1に示す構造を有する角型のリチウム二次電池を作製した。厚み27μmのポリエチレン製微多孔膜からなるセパレータを、上記のようにして作製した正極及び負極の間に位置するようにして積層して、積層体を捲回して両側に対向する扁平部分を形成して扁平捲回状電極群を作製した。
(4) Production of Lithium Secondary Battery In this example, a square lithium secondary battery having the structure shown in FIG. 1 was produced. A separator made of a polyethylene microporous film having a thickness of 27 μm is laminated so as to be positioned between the positive electrode and the negative electrode produced as described above, and the laminated body is wound to form flat portions opposed to both sides. Thus, a flat wound electrode group was prepared.

ついで、この扁平捲回状電極群を、角型のアルミニウム製電池ケース(高さ49mm、幅34mm、厚み5.17mm)に収納し、この電池ケースの内部に上記のようにして調製した非水電解液を2.6ミリリットル{限界注液量(即ち、電池ケースの空間体積からエレメント(電極群)の体積を引き、エレメント(電極群)中の空間体積を足した容量)の90%)}注入し、封口して設計容量0.7Ahのリチウム二次電池を作製した。   Next, this flat wound electrode group is housed in a rectangular aluminum battery case (height 49 mm, width 34 mm, thickness 5.17 mm), and the non-aqueous solution prepared as described above is placed inside the battery case. 2.6 milliliters of electrolyte {limit injection volume (that is, 90% of the volume obtained by subtracting the volume of the element (electrode group) from the space volume of the battery case and adding the space volume in the element (electrode group))} The lithium secondary battery having a design capacity of 0.7 Ah was manufactured by pouring and sealing.

(5)初期活性化処理
このリチウム二次電池を、初期活性化処理に供した。即ち、25℃の温度雰囲気下で、電流0.2CA(約5時間率)、電圧4.2V及び8時間の定電流定電圧充電を行い、ついで、電流0.2CA(約5時間率)及び終止電圧2.75Vの定電流放電を行った(ただし、1時間率(1CA)=0.7Aとした。)。なお、充電と放電の間には10分間の休止時間を設けた。これにより、正極の充電上限電位が4.2V以上4.35V未満の本発明のリチウム二次電池1を得た。
(5) Initial activation treatment This lithium secondary battery was subjected to an initial activation treatment. That is, under a temperature atmosphere of 25 ° C., a current of 0.2 CA (about 5 hours rate), a voltage of 4.2 V and a constant current and constant voltage of 8 hours are performed, and then a current of 0.2 CA (about 5 hours rate) and A constant current discharge with a final voltage of 2.75 V was performed (however, 1 hour rate (1 CA) = 0.7 A). A 10 minute rest period was provided between charging and discharging. As a result, the lithium secondary battery 1 of the present invention having a positive charge upper limit potential of 4.2 V or more and less than 4.35 V was obtained.

≪実施例2:トリメトキシビニルシラン使用≫
非水電解液に添加したトリエトキシビニルシランに代えてトリメトキシビニルシラン(東京化成工業(株)製)を用いた以外は、実施例1と同様にして、リチウム二次電池2を作製した。
<< Example 2: Use of trimethoxyvinylsilane >>
A lithium secondary battery 2 was produced in the same manner as in Example 1 except that trimethoxyvinylsilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of triethoxyvinylsilane added to the nonaqueous electrolytic solution.

≪比較例1:トリアルコキシビニルシラン不使用≫
トリエトキシビニルシランを非水電解液に添加しなかった以外は、実施例1と同様にして、比較リチウム二次電池1を作製した。
<< Comparative Example 1: Trialkoxyvinylsilane not used >>
A comparative lithium secondary battery 1 was produced in the same manner as in Example 1 except that triethoxyvinylsilane was not added to the nonaqueous electrolytic solution.

≪比較例2:3−(2−アミノエチルアミノ)プロピルトリメトキシシラン使用≫
非水電解液に添加したトリエトキシビニルシランに代えて3−(2−アミノエチルアミノ)プロピルトリメトキシシラン(東京化成工業(株)製)を用いた以外は、実施例1と同様にして、比較リチウム二次電池2を作製した。
<< Comparative Example 2: Use of 3- (2-aminoethylamino) propyltrimethoxysilane >>
A comparison was made in the same manner as in Example 1 except that 3- (2-aminoethylamino) propyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of triethoxyvinylsilane added to the nonaqueous electrolytic solution. A lithium secondary battery 2 was produced.

≪比較例3:アミノプロピルトリメトキシシシラン使用≫
非水電解液に添加したトリエトキシビニルシランに代えてアミノプロピルトリメトキシシシラン(東京化成工業(株)製)を用いた以外は、実施例1と同様にして、比較リチウム二次電池3を作製した。
<< Comparative Example 3: Use of aminopropyltrimethoxysilane >>
A comparative lithium secondary battery 3 was produced in the same manner as in Example 1 except that aminopropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of triethoxyvinylsilane added to the nonaqueous electrolytic solution. did.

≪比較例4:トリメトキシ(3,3,3−トリフルオロプロピル)シラン使用≫
非水電解液に添加したトリエトキシビニルシランに代えてトリメトキシ(3,3,3−トリフルオロプロピル)シラン(東京化成工業(株)製)を用いた以外は、実施例1と同様にして、比較リチウム二次電池4を作製した。
<< Comparative Example 4: Use of trimethoxy (3,3,3-trifluoropropyl) silane >>
A comparison was made in the same manner as in Example 1 except that trimethoxy (3,3,3-trifluoropropyl) silane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of triethoxyvinylsilane added to the non-aqueous electrolyte. A lithium secondary battery 4 was produced.

[評価及び測定]
(1)内部抵抗測定
上記のようにして得たリチウム二次電池1及び2並びに比較リチウム二次電池1〜4について、初期活性化処理終了後24時間経過後の内部抵抗R1(mΩ、1kHz)を、日置電機(株)製のHIOKI3560 AC HITESTERを用いて測定した。内部抵抗R1及び実施例1、2及び比較例2、3と比較例1との内部抵抗の差ΔR1を表1に示した。
[Evaluation and measurement]
(1) Internal resistance measurement For the lithium secondary batteries 1 and 2 and the comparative lithium secondary batteries 1 to 4 obtained as described above, the internal resistance R1 (mΩ, 1 kHz) 24 hours after the completion of the initial activation process. Was measured using Hioki Electric Co., Ltd. HIOKI3560 AC HITESTER. Table 1 shows the internal resistance difference ΔR1 between the internal resistance R1 and Examples 1, 2 and Comparative Examples 2, 3 and Comparative Example 1.

(2)電池厚さ測定
上記のようにして得たリチウム二次電池1及び2並びに比較リチウム二次電池1〜4について、作製直後及び初期活性化処理終了後24時間経過後に、長側面の中心部を当該長側面に対して略垂直な方向から(短側面の面方向に略水平な方向に)ノギスで挟み、電池厚みを測定した。初期活性化処理終了後24時間経過後の測定値T2を「電池厚み(mm)」として表1に示した。また、作製直後の測定値T1は5.14mmであった。
(2) Battery thickness measurement For the lithium secondary batteries 1 and 2 and the comparative lithium secondary batteries 1 to 4 obtained as described above, the center of the long side immediately after production and after 24 hours from the end of the initial activation process. The part was sandwiched with calipers from a direction substantially perpendicular to the long side surface (in a direction substantially horizontal to the surface direction of the short side surface), and the battery thickness was measured. The measured value T2 after 24 hours from the completion of the initial activation process is shown in Table 1 as “battery thickness (mm)”. The measured value T1 immediately after the production was 5.14 mm.

Figure 2013175410
Figure 2013175410

表1に示す結果から、正極の充電上限電位が4.2V以上4.35V未満である本発明のリチウム二次電池は、内部抵抗の低減及び電池膨れの抑制の効果に優れることがわかる。なお、実施例及び比較例の全てのリチウム二次電池について、4.2V充電時の正極電位は4.29V(vs.Li/Li+)であることを確認した。 From the results shown in Table 1, it can be seen that the lithium secondary battery of the present invention in which the upper limit charging potential of the positive electrode is 4.2 V or more and less than 4.35 V is excellent in the effects of reducing internal resistance and suppressing battery swelling. In addition, about all the lithium secondary batteries of an Example and a comparative example, it confirmed that the positive electrode electric potential at the time of 4.2V charge was 4.29V (vs.Li/Li <+> ).

1・・・リチウム二次電池、
2・・・扁平捲回状電極群、
3・・・正極、
4・・・負極、
5・・・セパレータ、
6・・・電池ケース、
7・・・電池蓋、
8・・・安全弁、
9・・・負極端子、
10・・・正極リード、
11・・・負極リード。
1 ... lithium secondary battery,
2 ... flat wound electrode group,
3 ... positive electrode,
4 ... negative electrode,
5 ... Separator,
6 ... Battery case,
7 ... Battery cover,
8 ... Safety valve,
9: negative terminal,
10: Positive electrode lead,
11: Negative electrode lead.

Claims (5)

リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、セパレータと、非水電解液と、を具備し、
前記正極の充電上限電位が4.2V以上(vs.Li/Li+)4.35V未満(vs.Li/Li+)であり、
前記非水電解液がトリアルコキシビニルシランを含むこと、
を特徴とするリチウム二次電池。
A positive electrode including a positive electrode active material capable of inserting / extracting lithium ions; a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions; a separator; and a non-aqueous electrolyte.
The charge upper limit potential of the positive electrode is 4.2 V or more (vs. Li / Li + ) less than 4.35 V (vs. Li / Li + ),
The non-aqueous electrolyte contains trialkoxyvinylsilane;
Rechargeable lithium battery.
前記非水電解液がトリアルコキシビニルシランを10質量%以下含むこと、
を特徴とする請求項1に記載のリチウム二次電池。
The non-aqueous electrolyte contains 10% by mass or less of trialkoxyvinylsilane;
The lithium secondary battery according to claim 1.
前記非水電解液がトリアルコキシビニルシランを0.2質量%以上含むこと、
を特徴とする請求項1又は2に記載のリチウム二次電池。
The non-aqueous electrolyte contains 0.2% by mass or more of trialkoxyvinylsilane,
The lithium secondary battery according to claim 1 or 2.
前記トリアルコキシビニルシランが、トリエトキシビニルシランであること、
を特徴とする請求項1〜3のいずれかに記載のリチウム二次電池。
The trialkoxyvinylsilane is triethoxyvinylsilane;
The lithium secondary battery according to any one of claims 1 to 3.
リチウムイオンを挿入・脱離可能な正極活物質を含む正極と、リチウムイオンを挿入・脱離可能な負極活物質を含む負極と、セパレータと、非水電解液と、を具備し、
前記非水電解液がトリアルコキシビニルシランを含み、
前記正極の充電上限電位を4.2V以上(vs.Li/Li+)4.35V未満(vs.Li/Li+)とするリチウム二次電池の使用方法。
A positive electrode including a positive electrode active material capable of inserting / extracting lithium ions; a negative electrode including a negative electrode active material capable of inserting / extracting lithium ions; a separator; and a non-aqueous electrolyte.
The non-aqueous electrolyte contains trialkoxyvinylsilane;
The positive electrode charging upper limit voltage or 4.2V of (vs.Li/Li +) less than 4.35V (vs.Li/Li +) and Using lithium secondary battery.
JP2012040389A 2012-02-27 2012-02-27 Lithium secondary battery Expired - Fee Related JP6051537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040389A JP6051537B2 (en) 2012-02-27 2012-02-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040389A JP6051537B2 (en) 2012-02-27 2012-02-27 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013175410A true JP2013175410A (en) 2013-09-05
JP6051537B2 JP6051537B2 (en) 2016-12-27

Family

ID=49268138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040389A Expired - Fee Related JP6051537B2 (en) 2012-02-27 2012-02-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6051537B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017404A1 (en) * 2014-08-01 2016-02-04 セントラル硝子株式会社 Electrolyte solution for non-aqueous electrolyte solution battery and non-aqueous electrolyte solution battery using same
WO2020054863A1 (en) * 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous electrolytic solution and nonaqueous secondary battery
KR20220009486A (en) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 Non-aqueous electrolyte and non-aqueous secondary battery
WO2023140103A1 (en) * 2022-01-19 2023-07-27 パナソニックエナジ-株式会社 Non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595175B1 (en) 2018-03-14 2023-10-30 삼성전자주식회사 Lithium secondary battery comprising the electrolyte containing trialkoxyalkylsilane compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042864A (en) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005339900A (en) * 2004-05-25 2005-12-08 Sony Corp Electrolyte and battery
JP2008066301A (en) * 2006-09-04 2008-03-21 Samsung Sdi Co Ltd Organic electrolyte solution containing silane compound and lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042864A (en) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005339900A (en) * 2004-05-25 2005-12-08 Sony Corp Electrolyte and battery
JP2008066301A (en) * 2006-09-04 2008-03-21 Samsung Sdi Co Ltd Organic electrolyte solution containing silane compound and lithium battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017404A1 (en) * 2014-08-01 2016-02-04 セントラル硝子株式会社 Electrolyte solution for non-aqueous electrolyte solution battery and non-aqueous electrolyte solution battery using same
JP2016035820A (en) * 2014-08-01 2016-03-17 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
US10847838B2 (en) 2014-08-01 2020-11-24 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
US11652238B2 (en) 2014-08-01 2023-05-16 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
WO2020054863A1 (en) * 2018-09-14 2020-03-19 旭化成株式会社 Nonaqueous electrolytic solution and nonaqueous secondary battery
JPWO2020054863A1 (en) * 2018-09-14 2021-03-18 旭化成株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
EP3836276A4 (en) * 2018-09-14 2021-12-29 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolytic solution and nonaqueous secondary battery
JP7019062B2 (en) 2018-09-14 2022-02-14 旭化成株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
KR20220009486A (en) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 Non-aqueous electrolyte and non-aqueous secondary battery
KR20220150997A (en) 2019-09-13 2022-11-11 아사히 가세이 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
WO2023140103A1 (en) * 2022-01-19 2023-07-27 パナソニックエナジ-株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6051537B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
US9991561B2 (en) Lithium ion secondary battery
US7608364B2 (en) Lithium ion secondary battery
JP5582587B2 (en) Lithium ion secondary battery
JP5999604B2 (en) Nonaqueous electrolyte secondary battery
JP6005277B2 (en) Lithium secondary battery with improved life characteristics
US10044072B2 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
WO2014003077A1 (en) Non-aqueous electrolyte secondary battery
JP6051537B2 (en) Lithium secondary battery
WO2015025915A1 (en) Secondary cell
WO2016021596A1 (en) Lithium secondary battery and production method for same
CN104508891B (en) Rechargeable nonaqueous electrolytic battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP2019040722A (en) Lithium ion secondary battery
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP6003086B2 (en) Lithium secondary battery
CN110931860B (en) Nonaqueous electrolyte for lithium ion secondary battery
JP2014179221A (en) Nonaqueous electrolyte secondary battery
JP2011034698A (en) Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution
JP2020077575A (en) Lithium ion secondary battery
KR102129499B1 (en) Lithium secondary battery
JP7265713B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US10818972B2 (en) Electrolyte solution for lithium secondary battery
CN110071330B (en) Nonaqueous electrolyte secondary battery
JP2014154220A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees