JP2014154220A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014154220A
JP2014154220A JP2013020111A JP2013020111A JP2014154220A JP 2014154220 A JP2014154220 A JP 2014154220A JP 2013020111 A JP2013020111 A JP 2013020111A JP 2013020111 A JP2013020111 A JP 2013020111A JP 2014154220 A JP2014154220 A JP 2014154220A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
negative electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013020111A
Other languages
Japanese (ja)
Inventor
Takashi Wada
和田  隆
Atsushi Funabiki
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013020111A priority Critical patent/JP2014154220A/en
Publication of JP2014154220A publication Critical patent/JP2014154220A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of suppressing a short circuit due to dendrite-like metal lithium even when the metal lithium is formed, without complicating the manufacturing process thereof.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode including a positive electrode active material layer capable of absorbing/desorbing lithium ions; a negative electrode including a negative electrode active material layer capable of absorbing/desorbing lithium ions; a separator; a nonaqueous electrolyte; and an insulating coating layer provided on the surface of the positive electrode active material layer and including inorganic fine particles capable of absorbing/desorbing lithium.

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、携帯電話及びノートパソコン等の携帯機器、並びに電気自動車等の電源として、エネルギー密度が高く、自己放電が少なくサイクル性能の良い、リチウムイオン電池に代表される非水電解質二次電池が注目されている。   In recent years, non-aqueous electrolyte secondary batteries typified by lithium ion batteries, which have high energy density, low self-discharge, and good cycle performance, have attracted attention as power sources for portable devices such as mobile phones and laptop computers, and electric vehicles. ing.

現在のリチウムイオン電池の主流は、正極電位が4.2V程度までの携帯電話用を中心とした小型のリチウムイオン電池であるが、例えば電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車といった自動車分野に中形または大形のリチウムイオン電池を適用することが検討されており、一部、実用化している。特に、電気自動車では搭載されるリチウムイオン電池から供給される電力で全ての機器を駆動させる。このため、リチウムイオン電池には、高いエネルギー密度と併せて、優れた安全性及び信頼性が強く望まれている。   The current mainstream of lithium ion batteries is a small lithium ion battery mainly for mobile phones having a positive electrode potential of up to about 4.2 V. However, the lithium ion battery is currently used in the automobile field such as electric cars, hybrid cars, and plug-in hybrid cars. The application of large or large lithium ion batteries is being studied, and some have been put into practical use. In particular, in an electric vehicle, all devices are driven by electric power supplied from a lithium ion battery installed. For this reason, excellent safety and reliability are strongly demanded for lithium ion batteries together with high energy density.

リチウムイオン電池が過充電状態となると、負極上にデンドライド状の金属リチウムが析出及び成長する。ここで、当該金属リチウムの先端が正極に接触するとマイクロショートが生じ、電池温度が一気に上昇する熱逸走に至ってしまう。   When the lithium ion battery is overcharged, dendritic metallic lithium is deposited and grows on the negative electrode. Here, when the tip of the metallic lithium contacts the positive electrode, a micro short circuit occurs, leading to a thermal escape that causes the battery temperature to rise at a stretch.

これに対し、リチウムイオン電池の内部短絡を抑制することを目的の一つとする技術が特許文献1(特開2006−12788号公報)に開示されている。即ち、特許文献1には、複合リチウム酸化物からなる正極、リチウムを可逆的に吸蔵・放出しうる材料からなる負極、および非水電解液を具備し、正極と負極とを隔離する通常のセパレータを備えるリチウム二次電池であって、正極および負極の少なくとも一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む多孔膜を有し、当該電極表面が部分的に凸部を有していることを特徴とするリチウムイオン電池が提案されている。   On the other hand, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-12788) discloses a technique that aims to suppress an internal short circuit of a lithium ion battery. That is, Patent Document 1 discloses a normal separator that includes a positive electrode made of composite lithium oxide, a negative electrode made of a material capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, and separating the positive electrode and the negative electrode. A lithium secondary battery comprising: at least one of a positive electrode and a negative electrode has a porous film containing an inorganic oxide filler and a binder on a surface facing the other electrode, and the electrode surface is partially A lithium ion battery characterized by having a convex portion has been proposed.

当該リチウムイオン電池においては、多孔膜あるいは電極の凸部と、対向する電極との間に隙間が生じる。この隙間は、他の部位より多く電解液を保持できるため、イオンのやりとりが活性化される。その結果、当該部位において過充電時に集中的に過充電反応が進行し、電池全体としての過充電があまり進行しないうちに導電性化学種が析出する。このため、過充電の進行を抑制し、過熱という不具合を回避することができる。   In the lithium ion battery, a gap is generated between the convex portion of the porous film or electrode and the opposing electrode. Since this gap can hold more electrolytic solution than other parts, the exchange of ions is activated. As a result, an overcharge reaction proceeds intensively at the site during overcharge, and conductive chemical species are deposited before the overcharge as a whole battery progresses so much. For this reason, it is possible to suppress the progress of overcharging and avoid the problem of overheating.

特開2006−12788号公報JP 2006-12788 A

しかしながら、上記の特許文献1においては、多孔膜あるいは電極の凸部を形成する為の工程が煩雑になるだけでなく、導電性化学種が電極に接した場合は、短絡が生じてしまう。そこで、本発明の目的は、製造工程を煩雑化させることなく、かつ、導電性化学種であるデンドライド状の金属リチウムが生成した場合であっても、当該金属リチウムによる短絡を抑制し得る、非水電解質二次電池を提供することにある。   However, in the above-mentioned Patent Document 1, not only the process for forming the porous film or the convex portion of the electrode is complicated, but a short circuit occurs when the conductive chemical species contacts the electrode. Therefore, an object of the present invention is to reduce the short circuit due to the metallic lithium without complicating the production process and even when the dendritic metallic lithium as the conductive chemical species is generated. The object is to provide a water electrolyte secondary battery.

上記の課題を解決すべく本発明者らが鋭意検討した結果、正極活物質層の表面を、絶縁性で、かつ、リチウムを吸蔵可能な酸化物で被覆することで、過充電時等に負極で析出した金属リチウムが正極へ到達した場合であっても、当該金属リチウムが被覆層に吸蔵されるため、短絡による熱逸走を抑制されることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors to solve the above-described problems, the surface of the positive electrode active material layer is coated with an oxide that is insulative and capable of occluding lithium, so that a negative electrode can be obtained during overcharge. Even when the metal lithium deposited in (1) reaches the positive electrode, the metal lithium is occluded in the coating layer, so that the thermal escape due to the short circuit is suppressed, and the present invention has been completed.

即ち、本発明は、リチウムイオンを吸蔵・放出可能な正極活物質層を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質層を含む負極と、セパレータと、非水電解液と、前記正極活物質層の表面に設けられた、リチウム吸蔵可能な無機微粒子を含む絶縁性被覆層と、を具備すること、を特徴とする非水電解質二次電池を提供する。 That is, the present invention includes a positive electrode including a positive electrode active material layer capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material layer capable of occluding and releasing lithium ions, a separator, a non-aqueous electrolyte, There is provided a non-aqueous electrolyte secondary battery comprising an insulating coating layer containing inorganic fine particles capable of occluding lithium provided on a surface of a positive electrode active material layer.

上記本発明の非水電解質二次電池においては、無機微粒子が、リチウム含有チタン酸化物であることが好ましく、アナターゼ型二酸化チタン又はチタン酸リチウムであることがより好ましい。   In the nonaqueous electrolyte secondary battery of the present invention, the inorganic fine particles are preferably lithium-containing titanium oxide, and more preferably anatase-type titanium dioxide or lithium titanate.

本発明によれば、デンドライド状の金属リチウムによる短絡を抑制し得る、優れた安全性及び信頼性を有する非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery which has the outstanding safety | security and reliability which can suppress the short circuit by dendritic metal lithium can be provided.

本発明の一実施形態の非水電解質二次電池の部分構造及び効果を示す概念図である。It is a conceptual diagram which shows the partial structure and effect of the nonaqueous electrolyte secondary battery of one Embodiment of this invention.

以下において、図面を参照しながら本発明の非水電解質二次電池の好適な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する場合があり、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。   Hereinafter, preferred embodiments of the nonaqueous electrolyte secondary battery of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts are denoted by the same reference numerals, and duplicate descriptions may be omitted. The drawings are for conceptual description of the present invention. The dimensions of each component and their ratio may differ from the actual ones.

図1は、本発明の一実施形態の非水電解質二次電池の部分構造及び効果を示す概念図である。本発明の非水電解質二次電池は、リチウムイオンを吸蔵・放出可能な正極活物質層を含む正極2と、リチウムイオンを吸蔵・放出可能な負極活物質層を含む負極4と、セパレータ6と、非水電解液と、正極活物質層の表面に設けられた、リチウム吸蔵可能な無機微粒子を含む絶縁性被覆層8と、を具備している。   FIG. 1 is a conceptual diagram showing a partial structure and effects of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode 2 including a positive electrode active material layer capable of occluding and releasing lithium ions, a negative electrode 4 including a negative electrode active material layer capable of occluding and releasing lithium ions, and a separator 6. And a non-aqueous electrolyte and an insulating coating layer 8 provided on the surface of the positive electrode active material layer and containing inorganic fine particles capable of occluding lithium.

正極2には、本発明の効果を損なわない範囲で従来公知の種々の正極を用いることができるが、アルミニウム箔からなる正極集電体の両面に正極活物質層が形成された構造とすることが好ましい。正極活物質層は、ペースト状の正極合剤を集電体の両面に塗布、乾燥し、プレスすることによって得ることができる。   As the positive electrode 2, various conventionally known positive electrodes can be used as long as the effects of the present invention are not impaired, but a structure in which a positive electrode active material layer is formed on both surfaces of a positive electrode current collector made of an aluminum foil is used. Is preferred. The positive electrode active material layer can be obtained by applying a paste-like positive electrode mixture on both sides of the current collector, drying, and pressing.

正極集電体の両面に塗布されて形成される正極活物質層は、正極活物質を含む。正極活物質としては、本発明の分野において従来公知のものを用いることができ、例えばコバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウム等のリチウム含有遷移金属酸化物が挙げられる。リチウム含有遷移金属酸化物の遷移金属の一部が他元素で置換されていてもよい。より具体的には、例えばLiNi1/3Mn1/3Co1/3等の層状岩塩型酸化物及びLiMPO(M=Mn、Fe、Co及び/又はNi)等が挙げられる。また、リチウム含有遷移金属酸化物の粒子の表面が、他元素で被覆されていてもよい。1種の正極活物質を単独で用いてもよく2種以上の正極活物質を組み合わせて用いてもよい。 The positive electrode active material layer formed by being applied to both surfaces of the positive electrode current collector contains a positive electrode active material. As a positive electrode active material, a conventionally well-known thing can be used in the field | area of this invention, For example, lithium containing transition metal oxides, such as lithium cobaltate, lithium nickelate, and lithium manganate, are mentioned. A part of the transition metal of the lithium-containing transition metal oxide may be substituted with another element. More specifically, for example, layered rock salt type oxides such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 and LiMPO 4 (M = Mn, Fe, Co and / or Ni) and the like can be mentioned. Moreover, the surface of the lithium-containing transition metal oxide particles may be coated with another element. One type of positive electrode active material may be used alone, or two or more types of positive electrode active materials may be used in combination.

正極活物質層は、正極活物質と少量の結着剤(例えばポリエチレンテレフタレート(PTFE)、ポリビニリデンフルオライド(PVDF)等)を含む正極合剤を正極集電体に塗布して担持させて形成することができる。正極合剤には、導電材(例えばアセチレンブラック、ケッチェンブラック、黒鉛等)や分散媒(例えばN−メチル−2−ピロリドン(NMP)等)を少量添加してもよい。   The positive electrode active material layer is formed by applying and supporting a positive electrode mixture containing a positive electrode active material and a small amount of a binder (for example, polyethylene terephthalate (PTFE), polyvinylidene fluoride (PVDF)) on a positive electrode current collector. can do. A small amount of a conductive material (for example, acetylene black, ketjen black, graphite) or a dispersion medium (for example, N-methyl-2-pyrrolidone (NMP)) may be added to the positive electrode mixture.

負極4には、本発明の効果を損なわない範囲で従来公知の種々の負極を用いることができるが、銅箔からなる負極集電体の両面に負極活物質層を形成させた構造とすることが好ましい。負極活物質層を形成させるための負極合剤は、例えば、負極活物質としての比表面積1m/gの黒鉛粉末部と、結着剤としてのポリフッ化ビニリデン部とを混合して、適宜NMPを加えてペースト状に調製することができる。そして、当該負極合剤を集電体の両面に塗布、乾燥し、プレスすることによって、負極4を得ることができる。 As the negative electrode 4, various conventionally known negative electrodes can be used as long as the effects of the present invention are not impaired, but a structure in which a negative electrode active material layer is formed on both surfaces of a negative electrode current collector made of copper foil is used. Is preferred. The negative electrode mixture for forming the negative electrode active material layer is, for example, a mixture of a graphite powder part having a specific surface area of 1 m 2 / g as a negative electrode active material and a polyvinylidene fluoride part as a binder, and appropriately NMP Can be added to prepare a paste. And the negative electrode 4 can be obtained by apply | coating the said negative mix on both surfaces of a collector, drying, and pressing.

負極集電体の両面に塗布されて形成される負極活物質層は、負極活物質を含む。負極活物質としても、本発明の分野において従来公知のものを用いることができ、例えば炭素材料(例えばグラファイト(黒鉛)、天然黒鉛、人造黒鉛、ハードカーボン)、リチウムと合金化可能な元素(例えばAl、Si、Zn、Ge、Cd、Sn、Pb)、ケイ素化合物(例えばSiO(0<x<2))、スズ化合物(例えばSnO)、リチウム金属、合金(例えばNi−Si合金、Ti−Si合金)、Co等のコンバージョン材料、LiTi12、Li1.10.9等の酸化物材料等を用いることができる。1種の負極活物質を単独で用いてもよく、2種以上の負極活物質を組み合わせて用いてもよい。 The negative electrode active material layer formed by being applied to both surfaces of the negative electrode current collector contains a negative electrode active material. As the negative electrode active material, those conventionally known in the field of the present invention can be used. For example, carbon materials (for example, graphite (graphite), natural graphite, artificial graphite, hard carbon), elements that can be alloyed with lithium (for example, Al, Si, Zn, Ge, Cd, Sn, Pb), silicon compound (eg, SiO x (0 <x <2)), tin compound (eg, SnO), lithium metal, alloy (eg, Ni—Si alloy, Ti—) Si alloy), conversion materials such as Co 3 O 4 , and oxide materials such as Li 4 Ti 5 O 12 and Li 1.1 V 0.9 O 2 can be used. One type of negative electrode active material may be used alone, or two or more types of negative electrode active materials may be used in combination.

負極活物質は、負極集電体に直接蒸着してもよいが、少量の結着剤(例えばPVDF、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸)を単独又は併用して含む負極合剤を負極集電体に塗布して担持して形成させることもできる。また、正極2の正極合剤と同様に、負極合剤に導電材や分散媒(例えばNMP、水)を少量添加してもよい。   The negative electrode active material may be directly deposited on the negative electrode current collector, but a small amount of a binder (for example, PVDF, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid) may be used alone or in combination. The negative electrode mixture can also be formed by being applied to and supported on the negative electrode current collector. Similarly to the positive electrode mixture of the positive electrode 2, a small amount of a conductive material or a dispersion medium (for example, NMP, water) may be added to the negative electrode mixture.

セパレータ6には、本発明の分野で従来公知のものを用いることができるが、例えばポリエチレン及び/又はポリプロピレン等のポリオレフィン樹脂で構成された微多孔膜が挙げられる。なかでも、ポリエチレンで構成された単層膜、ポリエチレン層とポリプロピレン層とで構成された多層膜等も用いることができる。また、セパレータの表面に無機物等をコートしたものを用いてもよい。   As the separator 6, those conventionally known in the field of the present invention can be used, and examples thereof include a microporous film made of a polyolefin resin such as polyethylene and / or polypropylene. Among these, a single layer film composed of polyethylene, a multilayer film composed of a polyethylene layer and a polypropylene layer, and the like can also be used. Moreover, you may use what coated the inorganic substance etc. on the surface of the separator.

非水電解液に含まれる電解質塩としては、本発明の技術の分野において従来公知のものを用いることができ、例えばLiClO、LiPF、LiBF、LiAsF、LiCFCO、LiC(CF、LiC(C、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiPF(CFCF、LiB(C、LiBF(C)、LiPF(C及びLiPF(C)等が挙げられ、これらはそれぞれ単独で又は二種以上混合して使用することができる。導電性の観点からは電解質塩としてLiPFが好適であり、LiPFを主成分として、LiBF等の他の化合物を混合して用いることもできる。 As the electrolyte salt contained in the non-aqueous electrolyte, those conventionally known in the technical field of the present invention can be used. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiC (CF 3 ) 3 , LiC (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3) 2, LiN (COCF 3 ) 2, LiN (COCF 2 CF 3) 2, LiPF 3 (CF 2 CF 3) 3, LiB (C 2 O 4) 2, LiBF 2 (C 2 O 4), LiPF 2 (C 2 O 4 ) 2 and LiPF 4 (C 2 O 4 ) and the like can be mentioned, and these can be used alone or in combination of two or more. . From the viewpoint of conductivity, LiPF 6 is suitable as the electrolyte salt, and other compounds such as LiBF 4 can be mixed and used with LiPF 6 as the main component.

また、非水電解液に含まれる非水溶媒としても、本発明の技術の分野において従来公知のものを用いることができ、例えば環状カーボネート、鎖状カーボネート及び環状スルホン等が挙げられ、より具体的には、エチレンカーボネ−ト(EC)、プロピレンカ−ボネ−ト(PC)、ブチレンカーボネート(BC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、ジメチルスルホキシド、並びにN−メチル−2−ピロリドン等が挙げられる。これらは単独で用いてもよいが、非水電解液の導電性及び粘度を調整するという観点等から、2種以上を混合して用いてもよい。なかでも環状カーボネートと鎖状カーボネートとの混合溶媒または環状カーボネートと鎖状カーボネートと脂肪族カルボン酸エステルとの混合溶媒が好ましい。例えばエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との3:7混合非水溶媒が好適に用いられる。   Further, as the non-aqueous solvent contained in the non-aqueous electrolyte, those conventionally known in the technical field of the present invention can be used, and examples thereof include cyclic carbonates, chain carbonates, and cyclic sulfones. For example, ethylene carbonate (EC), propylene carbonate (PC), cyclic carbonates such as butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC). ), Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, lactones such as γ-butyrolactone and γ-valerolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, pro Pionitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, Examples include tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. These may be used alone, but may be used in combination of two or more from the viewpoint of adjusting the conductivity and viscosity of the non-aqueous electrolyte. Of these, a mixed solvent of a cyclic carbonate and a chain carbonate or a mixed solvent of a cyclic carbonate, a chain carbonate, and an aliphatic carboxylic acid ester is preferable. For example, a 3: 7 mixed nonaqueous solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) is preferably used.

非水電解液における非水溶媒に対する電解質塩の混合割合は、従来公知の技術に基づいて、非水電解液の効果を得る範囲で適宜選択すればよい。例えば、電解質塩の非水溶媒に対する溶解量は、特に限定されないが、例えば0.2〜5モル/リットルが好ましく、0.5〜2.5モル/リットルが更に好ましい。   The mixing ratio of the electrolyte salt with respect to the nonaqueous solvent in the nonaqueous electrolytic solution may be appropriately selected within a range where the effect of the nonaqueous electrolytic solution is obtained based on a conventionally known technique. For example, the amount of electrolyte salt dissolved in the non-aqueous solvent is not particularly limited, but is preferably 0.2 to 5 mol / liter, and more preferably 0.5 to 2.5 mol / liter, for example.

なお、リチウムイオン電池の充放電特性を改良する目的で、非水電解液に種々の添加剤を加えることができる。添加剤としては、例えばビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が挙げられる。これらの添加剤は、正極2及び/又は負極4上に、良好な皮膜を形成し、電池の長寿命化に寄与する。また、過充電時の安定性を向上させるためにシクロヘキシルベンゼン(CHB)及びフルオロベンゼン等を添加できる。   Various additives can be added to the non-aqueous electrolyte for the purpose of improving the charge / discharge characteristics of the lithium ion battery. Examples of the additive include vinylene carbonate (VC) and vinyl ethylene carbonate (VEC). These additives form a good film on the positive electrode 2 and / or the negative electrode 4 and contribute to extending the life of the battery. In addition, cyclohexylbenzene (CHB), fluorobenzene, and the like can be added to improve the stability during overcharge.

リチウム吸蔵可能な無機微粒子を含む絶縁性被覆層8は、正極2の正極活物質層の表面に設けられる。絶縁性被覆層8は、リチウム吸蔵可能な無機微粒子を結着剤と混合してペースト状とし、当該ペーストを正極2の正極活物質層の表面に均一に塗布して乾燥させることで、形成させることができる。絶縁性被覆層8は、連続しているのが好ましいが、一部が不連続であってもよい。また、リチウム吸蔵可能な無機微粒子にはリチウム含有チタン酸化物を用いることが好ましく、アナターゼ型二酸化チタン又はチタン酸リチウムを用いることがより好ましい。また、結着剤にはポリフッ化ビニリデン等を用いることができる。   The insulating coating layer 8 containing inorganic fine particles capable of occluding lithium is provided on the surface of the positive electrode active material layer of the positive electrode 2. The insulating coating layer 8 is formed by mixing inorganic fine particles capable of occluding lithium with a binder to form a paste, and uniformly applying the paste to the surface of the positive electrode active material layer of the positive electrode 2 and drying it. be able to. The insulating coating layer 8 is preferably continuous, but may be partially discontinuous. Moreover, it is preferable to use lithium-containing titanium oxide for the inorganic fine particles capable of occluding lithium, and it is more preferable to use anatase type titanium dioxide or lithium titanate. Moreover, polyvinylidene fluoride etc. can be used for a binder.

絶縁性被覆層8は、絶縁性を有するが、例えば1kgf/cmの圧力を加えた際のAC抵抗が100Ω以上であればよい。リチウムイオン電池が過充電状態になると、リチウムイオン10の移動により、負極4においてデンドライド状の金属リチウム12が析出及び成長する。ここで、金属リチウム12が正極2に接触すると、マイクロショートが生じ、電池温度が急激に上昇する熱逸走に至ってしまう。 The insulating coating layer 8 has an insulating property, but the AC resistance when a pressure of 1 kgf / cm 2 is applied may be 100Ω or more, for example. When the lithium ion battery is overcharged, dendritic metallic lithium 12 precipitates and grows on the negative electrode 4 due to the movement of the lithium ions 10. Here, when the metal lithium 12 comes into contact with the positive electrode 2, a micro short-circuit occurs, leading to a thermal runaway in which the battery temperature rapidly increases.

しかしながら、本発明の非水電解質二次電池においては、正極2がリチウム吸蔵可能な無機微粒子を含む絶縁性被覆層8を備えているため、正極2と負極4との間の絶縁性が高く、内部短絡が抑制される。加えて、金属リチウム12が絶縁性被覆層8に含まれる無機微粒子に吸蔵されるため、短絡の原因となる金属リチウム12そのものが消失し、より効果的に熱逸走を抑制することができる。   However, in the nonaqueous electrolyte secondary battery of the present invention, since the positive electrode 2 includes the insulating coating layer 8 containing inorganic fine particles capable of occluding lithium, the insulating property between the positive electrode 2 and the negative electrode 4 is high. Internal short circuit is suppressed. In addition, since the metal lithium 12 is occluded by the inorganic fine particles contained in the insulating coating layer 8, the metal lithium 12 itself causing the short circuit disappears, and the thermal escape can be more effectively suppressed.

リチウム吸蔵可能な無機微粒子としては、チタン酸リチウム等のリチウム含有チタン酸化物又はアナターゼ型二酸化チタンを用いることができる。リチウム含有チタン酸化物としては、例えば組成式LiTi5−xMe12(x=0〜1、Meは、Mg、Al、Ti、Zr、Mo、Nb、Sr、Ni、Co、Mn、Wのうち少なくとも一種)を用いることができる。リチウム吸蔵可能な無機微粒子としてチタン酸リチウムを用いる場合、チタン酸リチウムは金属リチウムを吸蔵しても結晶格子の膨張収縮が生じないため、絶縁性被覆層8が歪むことがない。また、アナターゼ型二酸化チタン及びチタン酸リチウムは、正極電位領域において不活性であるため、リチウムイオン電池の通常使用時に、不具合等が生じることはない。 As the inorganic fine particles capable of occluding lithium, lithium-containing titanium oxide such as lithium titanate or anatase-type titanium dioxide can be used. Examples of the lithium-containing titanium oxide include a composition formula Li 4 Ti 5-x Me x O 12 (x = 0 to 1, Me is Mg, Al, Ti, Zr, Mo, Nb, Sr, Ni, Co, Mn , At least one of W) can be used. When lithium titanate is used as the inorganic fine particles capable of occluding lithium, the insulating coating layer 8 does not distort because lithium titanate does not cause expansion and contraction of the crystal lattice even when metallic lithium is occluded. Moreover, since anatase type titanium dioxide and lithium titanate are inactive in the positive electrode potential region, no trouble or the like occurs during normal use of the lithium ion battery.

また、本実施形態のリチウムイオン電池は、充電を制御する制御回路とともに使用されるが、当該制御回路は、各リチウムイオン電池にそれぞれ装着されていてもよく、複数のリチウムイオン電池に対して1個の制御回路が装着されていてもよい。   Moreover, although the lithium ion battery of this embodiment is used with the control circuit which controls charge, the said control circuit may each be mounted | worn with each lithium ion battery, and is 1 with respect to several lithium ion battery. Individual control circuits may be mounted.

以上、本発明の非水電解質二次電池の代表的な例について説明したが、本発明はこれらのみに限定されるわけではなく、本発明の技術的思想の範囲内で、種々の設計変更が可能であり、かかる設計変更も全て本発明に含まれるものである。以下、実施例を用いて本発明の非水電解質二次電池をより具体的に説明するが、本発明がかかる実施例に限定されないものであることは言うまでもない。   As mentioned above, although the typical example of the nonaqueous electrolyte secondary battery of this invention was demonstrated, this invention is not necessarily limited only to these, A various design change is within the range of the technical idea of this invention. All such design changes are included in the present invention. Hereinafter, the non-aqueous electrolyte secondary battery of the present invention will be described more specifically with reference to examples, but it goes without saying that the present invention is not limited to such examples.

≪実施例1:アナターゼ型二酸化チタン使用≫
(1)正極の作製
N−メチルピロリドンを溶媒とする正極ペーストを帯状のアルミニウム製集電体(厚み15μm)の両面に塗布し、乾燥後、ロールプレスで加圧成形することにより、正極活物質層を作製した。ここで、正極ペーストは、溶媒以外に、正極活物質であるLiCo0.33Ni0.33Mn0.33、導電材であるアセチレンブラック、結着剤であるポリフッ化ビニリデンを含有しており、正極活物質、導電材及び結着剤の固形物換算質量比は92:4:4である。
Example 1: Use of anatase type titanium dioxide
(1) Preparation of positive electrode A positive electrode active material is prepared by applying a positive electrode paste using N-methylpyrrolidone as a solvent to both sides of a strip-shaped aluminum current collector (thickness: 15 μm), drying, and pressing with a roll press. A layer was made. Here, in addition to the solvent, the positive electrode paste contains LiCo 0.33 Ni 0.33 Mn 0.33 O 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride as a binder. The mass ratio of the positive electrode active material, the conductive material, and the binder in terms of solid matter is 92: 4: 4.

次に、正極活物質層の表面に、無機微粒子であるアナターゼ型二酸化チタン及び結着剤であるポリフッ化ビニリデンが、固形物換算質量比で94:6である無機フィラーペーストを均一に塗布し、当該ペーストを常温で24時間減圧乾燥させることで絶縁性被覆層を有する正極を得た。   Next, on the surface of the positive electrode active material layer, anatase-type titanium dioxide that is inorganic fine particles and polyvinylidene fluoride that is a binder are uniformly coated with an inorganic filler paste having a mass ratio of 94: 6 in terms of solid matter, The paste was dried under reduced pressure at room temperature for 24 hours to obtain a positive electrode having an insulating coating layer.

(2)負極の作製
負極活物質である黒鉛、結着剤であるカルボキシメチルセルロース及びスチレンブタジエンゴムが97:1.5:1.5の固形物換算質量比で含有している負極ペーストを、厚み10μmの銅箔の両面に塗布して負極活物質層を形成し、80℃で乾燥させて水分を除去した。ついで、水分除去後の負極活物質層を、常温のローラープレス機により加圧成形した後、常温で24時間減圧乾燥して、負極活物質層中の水分を完全に除去し、銅箔の両面に負極活物質層を有する板状の負極を得た。
(2) Production of negative electrode A negative electrode paste containing graphite as a negative electrode active material, carboxymethyl cellulose as a binder, and styrene butadiene rubber in a solid-converted mass ratio of 97: 1.5: 1.5. A negative electrode active material layer was formed on both sides of a 10 μm copper foil and dried at 80 ° C. to remove moisture. Next, the negative electrode active material layer after moisture removal was pressure-formed with a roller press at room temperature, and then dried under reduced pressure for 24 hours at room temperature to completely remove moisture in the negative electrode active material layer, and both sides of the copper foil A plate-like negative electrode having a negative electrode active material layer was obtained.

(3)非水電解液の調製
エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)を等体積比で混合した混合溶媒に電解質塩としてLiPFを1モル/リットルの濃度で混合して、非水電解質を得た。
(3) Preparation of non-aqueous electrolyte solution LiPF 6 as an electrolyte salt in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at an equal volume ratio, at a concentration of 1 mol / liter. By mixing, a non-aqueous electrolyte was obtained.

(4)リチウムイオン電池の作製
セパレータとして帯状のポリエチレン製微多孔膜を介して帯状正極及び帯状負極を偏平に捲回することにより極群を作製し、外装容器である角形電槽に収容し、非水電解質を注液、含浸し、初期充放電サイクル工程を経て、設計容量20Ahのリチウムイオン電池1を作製した。
(4) Production of a lithium ion battery A pole group is produced by winding a belt-like positive electrode and a belt-like negative electrode flatly through a belt-like polyethylene microporous membrane as a separator, and accommodated in a rectangular battery case which is an exterior container, A non-aqueous electrolyte was injected and impregnated, and the lithium ion battery 1 having a design capacity of 20 Ah was manufactured through an initial charge / discharge cycle process.

≪実施例2:チタン酸リチウム使用≫
絶縁性被覆層に含まれる無機微粒子としてチタン酸リチウムを用いた以外は、実施例1と同様にして、リチウムイオン電池2を作製した。
<< Example 2: Use of lithium titanate >>
A lithium ion battery 2 was produced in the same manner as in Example 1 except that lithium titanate was used as the inorganic fine particles contained in the insulating coating layer.

≪比較例1:アルミナ使用≫
絶縁性被覆層に含まれる無機微粒子としてアルミナを用いた以外は、実施例1と同様にして、比較リチウムイオン電池1を作製した。
<< Comparative Example 1: Use of alumina >>
A comparative lithium ion battery 1 was produced in the same manner as in Example 1 except that alumina was used as the inorganic fine particles contained in the insulating coating layer.

≪比較例2:ルチル型二酸化チタン使用≫
絶縁性被覆層に含まれる無機微粒子としてルチル型二酸化チタンを用いた以外は、実施例1と同様にして、比較リチウムイオン電池2を作製した。
<< Comparative Example 2: Use of rutile titanium dioxide >>
A comparative lithium ion battery 2 was produced in the same manner as in Example 1 except that rutile titanium dioxide was used as the inorganic fine particles contained in the insulating coating layer.

≪比較例3:シリコン酸化物使用≫
絶縁性被覆層に含まれる無機微粒子としてシリコン酸化物を用いた以外は、実施例1と同様にして、比較リチウムイオン電池3を作製した。
<< Comparative Example 3: Use of silicon oxide >>
A comparative lithium ion battery 3 was produced in the same manner as in Example 1 except that silicon oxide was used as the inorganic fine particles contained in the insulating coating layer.

≪比較例4:ジルコニウム酸化物使用≫
絶縁性被覆層に含まれる無機微粒子としてジルコニウム酸化物を用いた以外は、実施例1と同様にして、比較リチウムイオン電池4を作製した。
<< Comparative Example 4: Use of zirconium oxide >>
A comparative lithium ion battery 4 was produced in the same manner as in Example 1 except that zirconium oxide was used as the inorganic fine particles contained in the insulating coating layer.

≪比較例5:アナターゼ型二酸化チタン使用(負極被覆)≫
絶縁性被覆層を正極ではなく負極に形成させた以外は、実施例1と同様にして、比較リチウムイオン電池5を作製した。
<< Comparative Example 5: Use of anatase type titanium dioxide (negative electrode coating) >>
A comparative lithium ion battery 5 was produced in the same manner as in Example 1 except that the insulating coating layer was formed on the negative electrode instead of the positive electrode.

≪比較例6:チタン酸リチウム使用(負極被覆)≫
絶縁性被覆層を正極ではなく負極に形成させた以外は、実施例2と同様にして、比較リチウムイオン電池6を作製した。
<< Comparative Example 6: Use of lithium titanate (negative electrode coating) >>
A comparative lithium ion battery 6 was produced in the same manner as in Example 2 except that the insulating coating layer was formed on the negative electrode instead of the positive electrode.

≪比較例7:絶縁被覆なし≫
絶縁性被覆層を正極及び負極に形成させなかった以外は、実施例1と同様にして、比較リチウムイオン電池7を作製した。
<< Comparative Example 7: No insulation coating >>
A comparative lithium ion battery 7 was produced in the same manner as in Example 1 except that the insulating coating layer was not formed on the positive electrode and the negative electrode.

[過充電試験]
上記のようにして得たリチウムイオン電池1及び2並びに比較リチウムイオン電池1〜7について、過充電試験を行った。全ての電池は、供試前、0.2ItA、4.2V、10時間の定電流定電圧充電により充電末状態とした。温度25℃にて、それぞれの電池に対して、通電された積算電気量を知ることのできる直流電源を用いて、8.4V、32Aの直流を印加した。過充電試験後の各リチウムイオン電池の状況を表1に示す。
[Overcharge test]
An overcharge test was performed on the lithium ion batteries 1 and 2 and the comparative lithium ion batteries 1 to 7 obtained as described above. All the batteries were put into the end-of-charge state by constant current and constant voltage charging for 0.2 hours, 4.2 V, and 10 hours before the test. At a temperature of 25 ° C., a direct current of 8.4 V and 32 A was applied to each battery using a direct current power source capable of knowing the accumulated amount of electricity supplied. Table 1 shows the state of each lithium ion battery after the overcharge test.

表1に示す結果から、無機微粒子にアナターゼ型二酸化チタン及びチタン酸リチウムを用い、正極に絶縁性被覆層を形成させた場合にのみ、リチウムイオン電池の熱逸走が抑制されていることがわかる。   From the results shown in Table 1, it can be seen that thermal escape of the lithium ion battery is suppressed only when anatase-type titanium dioxide and lithium titanate are used as the inorganic fine particles and an insulating coating layer is formed on the positive electrode.

2・・・正極
4・・・負極
6・・・セパレータ
8・・・絶縁性被覆層
10・・・リチウムイオン
12・・・金属リチウム
2 ... Positive electrode 4 ... Negative electrode 6 ... Separator 8 ... Insulating coating layer 10 ... Lithium ion 12 ... Metallic lithium

Claims (3)

リチウムイオンを吸蔵・放出可能な正極活物質層を含む正極と、
リチウムイオンを吸蔵・放出可能な負極活物質層を含む負極と、
セパレータと、
非水電解液と、
前記正極活物質層の表面に設けられた、リチウム吸蔵可能な無機微粒子を含む絶縁性被覆層と、を具備すること、
を特徴とする非水電解質二次電池。
A positive electrode including a positive electrode active material layer capable of inserting and extracting lithium ions;
A negative electrode including a negative electrode active material layer capable of inserting and extracting lithium ions;
A separator;
A non-aqueous electrolyte,
An insulating coating layer containing inorganic fine particles capable of occluding lithium, provided on the surface of the positive electrode active material layer,
A non-aqueous electrolyte secondary battery.
前記無機微粒子が、リチウム含有チタン酸化物であること、
を特徴とする請求項1記載の非水電解質二次電池。
The inorganic fine particle is a lithium-containing titanium oxide;
The nonaqueous electrolyte secondary battery according to claim 1.
前記無機微粒子が、アナターゼ型二酸化チタン又はチタン酸リチウムであること、
を特徴とする請求項1に記載の非水電解質二次電池。
The inorganic fine particles are anatase-type titanium dioxide or lithium titanate;
The nonaqueous electrolyte secondary battery according to claim 1.
JP2013020111A 2013-02-05 2013-02-05 Nonaqueous electrolyte secondary battery Pending JP2014154220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020111A JP2014154220A (en) 2013-02-05 2013-02-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020111A JP2014154220A (en) 2013-02-05 2013-02-05 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014154220A true JP2014154220A (en) 2014-08-25

Family

ID=51575935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020111A Pending JP2014154220A (en) 2013-02-05 2013-02-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014154220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210175582A1 (en) * 2018-06-22 2021-06-10 Lg Chem, Ltd. Separator and lithium secondary battery comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210175582A1 (en) * 2018-06-22 2021-06-10 Lg Chem, Ltd. Separator and lithium secondary battery comprising the same
US11749868B2 (en) * 2018-06-22 2023-09-05 Lg Energy Solution, Ltd. Separator including porous coating layer containing additive that occludes lithium ions, and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
JP4794180B2 (en) Nonaqueous electrolyte secondary battery
JP5582587B2 (en) Lithium ion secondary battery
JP5999604B2 (en) Nonaqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010231958A (en) Nonaqueous electrolyte secondary battery
JP2009230914A (en) Non-aqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
WO2014003077A1 (en) Non-aqueous electrolyte secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP2010129192A (en) Lithium ion secondary battery and method for manufacturing the same
JP2006202529A (en) Nonaqueous electrolyte secondary battery and its charging method
JPWO2012133027A1 (en) Non-aqueous electrolyte secondary battery system
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP6051537B2 (en) Lithium secondary battery
JPWO2013042503A1 (en) Non-aqueous secondary battery
WO2014068903A1 (en) Non-aqueous electrolyte secondary cell
JPWO2014068931A1 (en) Nonaqueous electrolyte secondary battery
WO2013018607A1 (en) Nonaqueous electrolyte secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2008135334A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP7214662B2 (en) Non-aqueous electrolyte secondary battery
WO2016117399A1 (en) Lithium-ion secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
JP6003086B2 (en) Lithium secondary battery