JP2008135334A - Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate - Google Patents

Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate Download PDF

Info

Publication number
JP2008135334A
JP2008135334A JP2006321832A JP2006321832A JP2008135334A JP 2008135334 A JP2008135334 A JP 2008135334A JP 2006321832 A JP2006321832 A JP 2006321832A JP 2006321832 A JP2006321832 A JP 2006321832A JP 2008135334 A JP2008135334 A JP 2008135334A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrolyte secondary
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321832A
Other languages
Japanese (ja)
Other versions
JP5078330B2 (en
Inventor
Kenji Asaoka
賢司 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006321832A priority Critical patent/JP5078330B2/en
Publication of JP2008135334A publication Critical patent/JP2008135334A/en
Application granted granted Critical
Publication of JP5078330B2 publication Critical patent/JP5078330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode plate for a nonaqueous electrolyte secondary battery which is most suitable for an EV, HEV or the like superior in cycle characteristics and charging load characteristics although employing a water-based binder, and to provide the nonaqueous electrolyte secondary battery using this negative electrode plate. <P>SOLUTION: In the negative electrode plate for the nonaqueous electrolyte secondary battery in which a negative electrode active material mixture layer containing the water-based binder and an negative electrode active material is formed on the surface of a negative electrode core, a polymer layer having a three-dimensional network structure formed by applying an organic solvent solution of a polymer compound is coated on the surface of the negative electrode mixture layer. The coated amount of the polymer layer having this three-dimensional network structure is preferably 4% or less of negative electrode active material weight in the negative electrode active material mixture. Moreover, it is preferable that the negative electrode active material is a carbonaceous material, the water-based binder is composed of a mixture of carboxymethyl cellulose and styrene-butadiene rubber, and the polymer layer having the three-dimensional network structure is composed of polyvinylidene fluoride. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池に関し、特に水系バインダーを使用しながらもサイクル特性及び充電負荷特性に優れた電気自動車(EV)、ハイブリッド電気自動車(HEV)等に最適な非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池に関する。   The present invention relates to a negative electrode plate for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the negative electrode plate, and particularly an electric vehicle excellent in cycle characteristics and charge load characteristics while using an aqueous binder ( EV), a negative electrode plate for a non-aqueous electrolyte secondary battery that is optimal for a hybrid electric vehicle (HEV), and the like, and a non-aqueous electrolyte secondary battery using the negative electrode plate.

環境保護運動の高まりを背景として二酸化炭素ガス等の排出規制が強化されており、自動車業界ではガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車だけでなく、EVやHEVの開発が活発に行われている。加えて、近年の化石燃料の価格の急激な高騰はこれらのEVやHEVの開発を進める追い風となっている。そして、EV用やHEV用電池分野においても、他の電池に比べて高エネルギー密度であるリチウムイオン二次電池に代表される非水電解質二次電池が注目され、この非水電解質二次電池の占める割合は大きな伸びを示している。   Emission regulations such as carbon dioxide gas have been strengthened against the backdrop of an increasing environmental protection movement, and the automobile industry is actively developing EVs and HEVs as well as automobiles that use fossil fuels such as gasoline, diesel oil and natural gas. Has been done. In addition, the rapid rise in fossil fuel prices in recent years is a tailwind for the development of these EVs and HEVs. In the field of batteries for EVs and HEVs, nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries having a higher energy density than other batteries have attracted attention. The share is showing a big growth.

図1は、従来から作製されている円筒形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極11と負極12とがセパレータ13を介して巻回された巻回電極体14を、この巻回電極体14の上下にそれぞれ絶縁板15及び16を配置した後、負極端子を兼ねるスチール製の円筒形の電池外装缶17の内部に収容し、負極12の集電タブ12aを電池外装缶17の内側底部17aに溶接するとともに正極11の集電タブ11aを安全装置が組み込まれた電流遮断封口体18の底板部に溶接し、この電池外装缶17の開口部から所定の非水電解液を注入した後、電流遮断封口体18によって電池外装缶17を密閉することにより製造されている。このような非水電解質二次電池は、電池性能や電池の信頼性が高いという優れた効果を奏するものである。   FIG. 1 is a perspective view showing a conventional cylindrical non-aqueous electrolyte secondary battery cut in the longitudinal direction. In this nonaqueous electrolyte secondary battery 10, a wound electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13 is disposed, and insulating plates 15 and 16 are disposed above and below the wound electrode body 14, respectively. After that, it is housed in a steel cylindrical battery outer can 17 that also serves as the negative electrode terminal, and the current collecting tab 12a of the negative electrode 12 is welded to the inner bottom portion 17a of the battery outer can 17 and the current collecting tab 11a of the positive electrode 11 is welded. Is welded to the bottom plate portion of the current interrupting sealing body 18 incorporating the safety device, and a predetermined non-aqueous electrolyte is injected from the opening of the battery outer can 17. Manufactured by sealing. Such a non-aqueous electrolyte secondary battery has an excellent effect that the battery performance and the battery reliability are high.

そして、このような非水電解質二次電池における正極活物質として、リチウムイオンを可逆的に吸蔵・放出することが可能なLixMO2(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO2、LiNiO2、LiNiyCo1−yO2(y=0.01〜0.99)、LiMnO2、LiMn2O4、LiCoxMnyNizO2(x+y+z=1)、LiFePO4などが一種単独もしくは複数種を混合して用いられている。   As a positive electrode active material in such a non-aqueous electrolyte secondary battery, LixMO2 (where M is at least one of Co, Ni, and Mn) capable of reversibly occluding and releasing lithium ions. Lithium transition metal composite oxides represented, that is, LiCoO2, LiNiO2, LiNiyCo1-yO2 (y = 0.01 to 0.99), LiMnO2, LiMn2O4, LiCoxMnyNizO2 (x + y + z = 1), LiFePO4, or the like alone or in combination Are used as a mixture.

また、負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合したもの等、炭素を主体としたものが多く使用されている。   In addition, as the negative electrode active material, a material mainly composed of carbon such as natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or a mixture of one or more of these fired bodies is used. Has been.

ところで、電池の高容量化は、集電体の表面に塗布される活物質合剤密度を上昇させることにより達成可能であるが、活物質合剤密度を上昇させると活物質合剤層内の空隙が減少し、活物質合剤層内に保持することができる非水電解液量が減少する。この状態で充放電を繰り返すと、非水電解液中の非水溶媒(有機溶媒)が分解されるために更に活物質合剤層内の非水電解液量が減少する。特に活物質合剤の調整時に水系バインダーを用いると、水系バインダーの電解液の保持能力が低いため、比較的早い段階で充放電が不可能な状態となることがある。このような充放電時の活物質合剤層内の非水電解液量の減少は、負極活物質として黒鉛、非晶質炭素などの炭素質材料を用いると、充放電過程において電極表面で有機溶媒が還元分解されるため、特に顕著に表れる。なお、水系バインダーとは、熱可塑性樹脂、ゴム弾性を有する樹脂、多糖類等からなる化合物の1種又は複数種を水に溶解ないし分散させたものをいう。   By the way, the increase in capacity of the battery can be achieved by increasing the density of the active material mixture applied to the surface of the current collector. However, if the density of the active material mixture is increased, the capacity of the active material mixture layer is increased. A space | gap reduces and the amount of non-aqueous electrolyte solution which can be hold | maintained in an active material mixture layer reduces. When charging / discharging is repeated in this state, the nonaqueous solvent (organic solvent) in the nonaqueous electrolytic solution is decomposed, so that the amount of the nonaqueous electrolytic solution in the active material mixture layer further decreases. In particular, when an aqueous binder is used at the time of adjusting the active material mixture, the ability to hold the electrolytic solution of the aqueous binder may be low, and charging and discharging may be impossible at a relatively early stage. The decrease in the amount of the non-aqueous electrolyte in the active material mixture layer during charging / discharging is caused by organicity on the electrode surface during the charge / discharge process when a carbonaceous material such as graphite or amorphous carbon is used as the negative electrode active material. Since the solvent is reductively decomposed, it is particularly prominent. The aqueous binder refers to one obtained by dissolving or dispersing in water one or more compounds composed of a thermoplastic resin, a resin having rubber elasticity, a polysaccharide and the like.

上述のような負極活物質として炭素材料を用いた場合の非水電解液の分解等の問題点を解決するため、下記特許文献1には、炭素負極の表面にイオン性高分子、水溶性高分子、アルカリ金属塩のいずれかからなる被覆層を形成し、炭素負極と非水電解質層との間の濡れ性を向上させ、非水電解質層の分解を抑制するようになした非水電解質二次電池の発明が開示されている。同じく、下記特許文献2には、有孔性リチウムイオン電導性高分子、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル、ポリアクリルニトリル等の非水電解液により膨潤又は湿潤する高分子層を正極と負極との間に備えることにより、高温で放置しても正極と負極の間の電解液が枯渇することがなく、その後の充放電特性が優れた円筒型非水電池の発明が開示されている。
特開平11−120992号公報 特開平11− 26025号公報
In order to solve the problems such as decomposition of the non-aqueous electrolyte when the carbon material is used as the negative electrode active material as described above, the following Patent Document 1 discloses an ionic polymer, a water-soluble high concentration on the surface of the carbon negative electrode. A non-aqueous electrolyte layer that forms a coating layer made of either a molecule or an alkali metal salt, improves the wettability between the carbon negative electrode and the non-aqueous electrolyte layer, and suppresses the decomposition of the non-aqueous electrolyte layer. An invention of a secondary battery is disclosed. Similarly, in Patent Document 2 below, a polymer layer that swells or wets with a nonaqueous electrolyte such as a porous lithium ion conductive polymer, polyvinylidene fluoride (PVdF), polyvinyl chloride, or polyacrylonitrile is used as a positive electrode. An invention of a cylindrical non-aqueous battery that is excellent in charge / discharge characteristics after that, without being depleted of an electrolyte solution between the positive electrode and the negative electrode even when left at high temperature by being provided between the negative electrode and the negative electrode has been disclosed. .
JP-A-11-129992 JP-A-11-26025

上記特許文献1に開示されている非水電解質二次電池の発明では、負極活物質として炭素質材料を使用し、バインダー樹脂組成物及びN−メチルピロリドン(NMP)との混合物からなる負極活物質合剤を用いて負極を作製し、この負極の表面にイオン性高分子、水溶性高分子、アルカリ金属塩のいずれかからなる被覆層を形成しており、また、上記特許文献2に開示されている円筒型非水電池の発明では、負極活物質として炭素質材料を使用し、バインダーとしてのPVdF及びNMPとの混合物からなる負極活物質合剤を用いて負極を作製している。   In the invention of the non-aqueous electrolyte secondary battery disclosed in Patent Document 1, a negative electrode active material comprising a mixture of a binder resin composition and N-methylpyrrolidone (NMP) using a carbonaceous material as the negative electrode active material. A negative electrode is prepared using a mixture, and a coating layer made of any one of an ionic polymer, a water-soluble polymer, and an alkali metal salt is formed on the surface of the negative electrode, and is disclosed in Patent Document 2 above. In the invention of a cylindrical non-aqueous battery, a carbonaceous material is used as a negative electrode active material, and a negative electrode is produced using a negative electrode active material mixture made of a mixture of PVdF and NMP as a binder.

一般に、負極活物質合剤の製造の際にてNMP等の有機溶媒に溶解ないし分散する性質のバインダーを用いる理由は、電池を組み立てたときの残留水分による電池性能の劣化を防止するためである。そして、上記特許文献1及び2に開示された発明のように、バインダーとしてNMP等の有機溶媒に溶解ないし分散する性質の材料を用いた負極を用いて非水電解質二次電池を作製すれば、一応水系バインダーを使用した場合よりは非水電解液の保持能力は大きくなるため、サイクル特性は良好となる。   In general, the reason for using a binder that dissolves or disperses in an organic solvent such as NMP in the production of the negative electrode active material mixture is to prevent deterioration of battery performance due to residual moisture when the battery is assembled. . Then, as in the inventions disclosed in Patent Documents 1 and 2, if a non-aqueous electrolyte secondary battery is manufactured using a negative electrode using a material having a property of being dissolved or dispersed in an organic solvent such as NMP as a binder, Since the retention capacity of the non-aqueous electrolyte is greater than when a water-based binder is used, cycle characteristics are improved.

しかしながら、負極活物質合剤の製造の際には、NMP等の有機溶媒を使用すると作業環境の問題や有機溶媒の外部排出防止のための手段を講じる必要があるので、有機溶媒の使用を可能な限り控えることが要望されている。そのため、水系バインダーを使用しながらも、負極極板を形成した際にバインダーとしてNMP等の有機溶媒に溶解ないし分散する性質の高分子材料を使用した場合と同等かそれ以上の非水電解液保持特性を発揮し得る負極極板が必要とされる。   However, when using an organic solvent such as NMP in the production of the negative electrode active material mixture, it is necessary to take measures to prevent problems in the working environment and external discharge of the organic solvent. It is requested to refrain as much as possible. Therefore, while using a water-based binder, holding a non-aqueous electrolyte equivalent to or higher than that of using a polymer material that dissolves or disperses in an organic solvent such as NMP as a binder when forming a negative electrode plate A negative electrode plate capable of exhibiting characteristics is required.

発明者等は、このような従来技術の問題点を解決すべく種々検討を重ねた結果、水系バインダーを使用した負極活物質合剤が設けられている負極極板の表面に有機溶媒に溶解させた高分子化合物溶液を塗布することにより3次元網目構造を持つ高分子層を形成すると、3次元網目構造中に多量の非水電解液を保持することができるようになるため、特に負極極板の製造時に有機溶媒の使用量を減少させながら、サイクル特性及び充電負荷特性に優れた非水電解質二次電池用負極が得られることを見出し、本発明を完成するに至ったのである。   As a result of various studies to solve the problems of the prior art, the inventors have dissolved it in an organic solvent on the surface of the negative electrode plate on which a negative electrode active material mixture using an aqueous binder is provided. When a polymer layer having a three-dimensional network structure is formed by applying the polymer compound solution, a large amount of non-aqueous electrolyte can be retained in the three-dimensional network structure. The present inventors have found that a negative electrode for a non-aqueous electrolyte secondary battery excellent in cycle characteristics and charge load characteristics can be obtained while reducing the amount of organic solvent used during the production of the present invention.

すなわち、本発明は、水系バインダーを使用した負極活物質合剤が設けられている負極極板を使用しながらも、サイクル特性及び充電負荷特性に優れ、EV、HEV等の大電流の充放電が必要とされる用途に最適な非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池を提供することを目的とする。   That is, the present invention is excellent in cycle characteristics and charge load characteristics while using a negative electrode plate provided with a negative electrode active material mixture using a water-based binder, and can charge and discharge large currents such as EV and HEV. It is an object of the present invention to provide a negative electrode plate for a nonaqueous electrolyte secondary battery that is optimal for the required application and a nonaqueous electrolyte secondary battery using the negative electrode plate.

本発明の上記目的は以下の構成により達成し得る。すなわち、本発明の非水電解質二次電池用負極極板は、水系バインダーと負極活物質を含む負極活物質合剤層が負極芯体の表面に形成された非水電解質二次電池用負極極板において、前記負極活物質合剤層の表面には高分子化合物の有機溶媒溶液を塗布することより形成された3次元網目構造を有する高分子層が被覆されていることを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention is a negative electrode for a nonaqueous electrolyte secondary battery in which a negative electrode active material mixture layer containing an aqueous binder and a negative electrode active material is formed on the surface of the negative electrode core. In the plate, the surface of the negative electrode active material mixture layer is covered with a polymer layer having a three-dimensional network structure formed by applying an organic solvent solution of a polymer compound.

本発明の非水電解質二次電池用負極極板に使用する水系バインダーとしては、熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等の化合物、またはこれらの混合物を水に分散させて使用することができる。具体的には、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン−プロピレン−ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ラテックス、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロースなどのセルロース樹脂、などから適宜選択し得る。なお、通常、カルボキシメチルセルロース(CMC)は他のバインダーと併用されて増粘剤として使用されることが多いが、CMC単独でバインダーとしての機能を奏するものとして使用されることもあるので、本発明においてはCMCも水系バインダーに含まれるものとして取り扱うこととする。   As an aqueous binder used for the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, a thermoplastic resin, a polymer having rubber elasticity, a compound such as a polysaccharide, or a mixture thereof is used by dispersing in water. Can do. Specifically, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene copolymer, styrene butadiene rubber (SBR), polybutadiene, butyl rubber, fluororubber, polyethylene oxide, polyvinyl pyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile. , Polystyrene, ethylene-propylene-diene copolymer, polyvinyl pyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, carboxymethyl cellulose, cellulose resin such as hydroxypropyl cellulose, etc. It can be selected appropriately. In general, carboxymethyl cellulose (CMC) is often used in combination with other binders as a thickener, but CMC alone is sometimes used as a function as a binder. In the case of CMC, CMC is also treated as being included in the aqueous binder.

また、本発明の非水電解質二次電池用負極極板に使用し得る負極活物質としては、天然黒鉛、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体の一種あるいは複数種混合したもの等、炭素を主体としたものが好ましい。   Moreover, as a negative electrode active material that can be used for the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, natural graphite, artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or one of these fired bodies Or what mixed carbon, such as what mixed multiple types, is preferable.

また、本発明は、上記非水電解質二次電池用負極極板において、前記3次元網目構造を有する高分子層の被覆量は前記負極活物質合剤層中の負極活物質質量の4%以下であることを特徴とする。   In the negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention, the coating amount of the polymer layer having the three-dimensional network structure is 4% or less of the mass of the negative electrode active material in the negative electrode active material mixture layer. It is characterized by being.

また、本発明は、上記非水電解質二次電池用負極極板において、前記負極活物質は炭素質材料であり、前記水系バインダーはCMC及びSBRの混合物からなり、前記3次元網目構造を有する高分子層はPVdFからなることを特徴とする。   In the negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention, the negative electrode active material is a carbonaceous material, the aqueous binder is a mixture of CMC and SBR, and has a three-dimensional network structure. The molecular layer is made of PVdF.

また、本発明の非水電解質二次電池は、上記いずれかの発明の非水電解質二次電池用負極極板と、正極活物質合剤が正極芯体の表面に形成された正極極板と、非水電解質とを有することを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode plate for a nonaqueous electrolyte secondary battery according to any one of the above inventions, and a positive electrode plate in which a positive electrode active material mixture is formed on the surface of a positive electrode core. And a non-aqueous electrolyte.

本発明の非水電解質二次電池で使用する正極活物質としては、リチウムイオンを可逆的に吸蔵・放出することが可能なLixMO2(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO2、LiNiO2、LiNiyCo1−yO2(y=0.01〜0.99)、LiMnO2、LiMn2O4、LiCoxMnyNizO2(x+y+z=1)、又はLiFePO4などの一種単独もしくは複数種を混合して使用することができる。   As the positive electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, LixMO2 capable of reversibly occluding and releasing lithium ions (provided that M is at least one of Co, Ni, and Mn) LiCoO2, LiNiO2, LiNiyCo1-yO2 (y = 0.01 to 0.99), LiMnO2, LiMn2O4, LiCoxMnyNizO2 (x + y + z = 1), or LiFePO4 alone or A plurality of types can be mixed and used.

また、本発明の非水電解質二次電池で使用する非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   In addition, carbonates, lactones, ethers, esters, and the like can be used as the nonaqueous solvent (organic solvent) constituting the nonaqueous solvent-based electrolyte used in the nonaqueous electrolyte secondary battery of the present invention. Two or more of these solvents can be mixed and used. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned.

なお、本発明の非水電解質二次電池で使用する非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiAsF6、LiClO4、Li2B10Cl10、Li2B12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。   In addition, as a solute of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention, a lithium salt generally used as a solute in the nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF6, LiBF4, LiCF3SO3, LiN (CF3SO2) 2, LiN (C2F5SO2) 2, LiN (CF3SO2) (C4F9SO2), LiC (CF3SO2) 3, LiC (C2F5SO2) 3, LiAsF6, LiClO4, Examples include Li2B10Cl10, Li2B12Cl12, and mixtures thereof. Among these, LiPF6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

本発明は上記の構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、本発明の非水電解質二次電池用負極極板によれば、水系バインダーと負極活物質を含む負極活物質合剤層の表面に高分子化合物の有機溶媒溶液を塗布することにより形成された3次元網目構造を有する高分子層が被覆されているので、負極活物質合剤層内に含有されている非水電解液量が少なくても、負極活物質合剤層の表面に設けられている3次元網目構造を有する高分子層内に非水電解液を保持できるので、充放電サイクルを繰り返すことによって負極活物質合剤内の非水電解液が分解されるようなことがあっても、3次元網目構造を有する高分子層内に保持されている非水電解液が負極活物質合剤内に供給されるので、負極活物質合剤層内の液枯れを抑制することができる。そのため、本発明の非水電解質二次電池用負極極板を用いると、充放電サイクル特性に優れているとともに放電負荷特性にも優れた非水電解質二次電池が得られる。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, it is formed by applying an organic solvent solution of a polymer compound to the surface of a negative electrode active material mixture layer containing an aqueous binder and a negative electrode active material. Since the polymer layer having a three-dimensional network structure is coated, even if the amount of the non-aqueous electrolyte contained in the negative electrode active material mixture layer is small, it is provided on the surface of the negative electrode active material mixture layer. Since the non-aqueous electrolyte can be held in the polymer layer having a three-dimensional network structure, the non-aqueous electrolyte in the negative electrode active material mixture may be decomposed by repeating the charge / discharge cycle. In addition, since the nonaqueous electrolytic solution retained in the polymer layer having a three-dimensional network structure is supplied into the negative electrode active material mixture, it is possible to suppress liquid withering in the negative electrode active material mixture layer. . Therefore, when the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention is used, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and excellent discharge load characteristics can be obtained.

また、本発明の非水電解質二次電池用負極極板によれば、3次元網目構造を有する高分子層の被覆量が負極活物質合剤中の負極活物質質量の4%以下で良好な充放電サイクル特性の向上効果を奏する。この3次元網目構造を有する高分子層の被覆量が負極活物質合剤中の負極活物質質量の4%を越えると、この次元網目構造を有する高分子層の内部抵抗が増加するため、サイクル特性の向上効果は期待できるが充電負荷特性が低下する。なお、この3次元網目構造を有する高分子層の被覆量は、僅かであってもそれなりのサイクル特性の向上効果が生じるので、下限は0%を超えていればよい。   In addition, according to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, the coating amount of the polymer layer having a three-dimensional network structure is good at 4% or less of the negative electrode active material mass in the negative electrode active material mixture. There is an effect of improving the charge / discharge cycle characteristics. If the coating amount of the polymer layer having the three-dimensional network structure exceeds 4% of the mass of the negative electrode active material in the negative electrode active material mixture, the internal resistance of the polymer layer having the three-dimensional network structure increases. Although the effect of improving the characteristics can be expected, the charge load characteristics are lowered. Note that even if the coating amount of the polymer layer having the three-dimensional network structure is small, the effect of improving the cycle characteristics is produced, so the lower limit should be over 0%.

また、負極活物質としての黒鉛、非晶質炭素などの炭素質材料は、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることが知られているものであるが、電極の表面で非水電解液を分解しやすいという性質を備えているものである。本発明の非水電解質二次電池用負極極板によれば、負極活物質として炭素質材料を使用しながらも、水系バインダーとしてCMC及びSBRの混合物を使用し、3次元網目構造を有する高分子層としてPVdFを使用したため、上記本発明の効果が顕著に表れる。   In addition, carbonaceous materials such as graphite and amorphous carbon as a negative electrode active material have a discharge potential comparable to that of lithium metal or lithium alloy, but have high safety because dendrite does not grow, Furthermore, it is known to have excellent properties such as excellent initial efficiency, good potential flatness, and high density, but it decomposes the non-aqueous electrolyte on the electrode surface. It has the property of being easy. According to the negative electrode plate for a non-aqueous electrolyte secondary battery of the present invention, a polymer having a three-dimensional network structure using a mixture of CMC and SBR as an aqueous binder while using a carbonaceous material as a negative electrode active material. Since PVdF was used as the layer, the effect of the present invention was remarkably exhibited.

また、本発明の非水電解質二次電池によれば、上記の非水電解質二次電池用負極極板を使用しているため、上記非水電解質二次電池用負極極板の発明の効果を奏することができる非水電解質二次電池が得られる。   In addition, according to the nonaqueous electrolyte secondary battery of the present invention, since the negative electrode plate for a nonaqueous electrolyte secondary battery is used, the effect of the invention of the negative electrode plate for a nonaqueous electrolyte secondary battery is achieved. A non-aqueous electrolyte secondary battery that can be obtained is obtained.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

[正極の作製]
正極活物質としてのコバルト酸リチウム(LiCoO2)は、出発原料としてリチウム源には炭酸リチウム(Li2CO3)を用い、コバルト源には四酸化三コバルト(Co3O4)を用い、これらを所定量秤量して混合した後、空気雰囲気下において850℃で24時間焼成し、コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質とした。このようにして作製された正極活物質を90質量部と、導電剤としての黒鉛粉末を5質量部と、バインダーとしてのPVdF粉末を5質量部とを、NMP溶液中に分散させて正極活物質スラリーを調製した。次に、この正極活物質スラリーを厚さ15μmのアルミニウム箔からなる正極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であったNMPを除去した後、ロールプレス機を用いて厚みが140μmとなるように圧延して正極極板を作製した。
[Production of positive electrode]
Lithium cobaltate (LiCoO2) as the positive electrode active material uses lithium carbonate (Li2CO3) as the starting material and tricobalt tetroxide (Co3O4) as the cobalt source, and weighs a predetermined amount of these and mixes them. After that, it was baked at 850 ° C. for 24 hours in an air atmosphere to obtain lithium cobalt oxide. This was ground to an average particle size of 14 μm with a mortar to obtain a positive electrode active material. 90 parts by mass of the positive electrode active material thus produced, 5 parts by mass of graphite powder as a conductive agent, and 5 parts by mass of PVdF powder as a binder are dispersed in an NMP solution to produce a positive electrode active material. A slurry was prepared. Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode core body made of an aluminum foil having a thickness of 15 μm by a doctor blade method, and then passed through a dryer to remove NMP necessary for slurry preparation. A positive electrode plate was produced by rolling to a thickness of 140 μm using a roll press.

[負極極板の作製]
負極活物質としての黒鉛粉末97質量部と、CMC1質量部と、SBR2質量部の割合で水中に分散させて均一に混合して負極活物質合剤スラリーを調製した。次にこの負極活物質合剤スラリーを厚さ10μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であった水を除去した後、ロールプレス機を用いて厚みが125μmとなるように圧延して負極極板を作製した。次いで、この表面にNMPに溶解させたPVdFを負極活物質に対する質量比で2%となるようにドクターブレード法により塗布し、乾燥してNMPを除去して3次元網目構造を有する高分子層を被覆することにより実施例1の負極極板を作製した。なお、正極及び負極のそれぞれの活物質塗布量は、設計基準となる充電電圧において、正極極板と負極極板とが対向する部分での充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した(以下、同じ)。
[Production of negative electrode plate]
A negative electrode active material mixture slurry was prepared by dispersing 97 parts by mass of graphite powder as a negative electrode active material, 1 part by mass of CMC, and 2 parts by mass of SBR, and uniformly mixing in water. Next, this negative electrode active material mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 10 μm by a doctor blade method, and then passed through a dryer to remove water necessary for slurry preparation. Then, a negative electrode plate was produced by rolling to a thickness of 125 μm using a roll press. Next, PVdF dissolved in NMP is applied to the surface by a doctor blade method so that the mass ratio with respect to the negative electrode active material is 2%, dried to remove NMP, and a polymer layer having a three-dimensional network structure is formed. The negative electrode plate of Example 1 was produced by coating. The amount of active material applied to each of the positive electrode and the negative electrode is such that the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at the portion where the positive electrode plate and the negative electrode plate face each other is 1 at the charge voltage as the design standard. .1 (hereinafter the same).

[非水電解液の調製]
ECとEMCとDECとを体積比20:50:30の割合(1気圧、25℃換算)で混合した非水溶媒に、電解質塩としてのLiPF6を1.0mol/Lの割合で溶解したものを非水電解液とした。
[Preparation of non-aqueous electrolyte]
What melt | dissolved LiPF6 as electrolyte salt in the ratio of 1.0 mol / L in the nonaqueous solvent which mixed EC, EMC, and DEC by the ratio of 20:50:30 (1 atmosphere, 25 degreeC conversion). A non-aqueous electrolyte was used.

[電池の作製]
上述のようにして作製した正極極板、負極極板及び非水電解液を用い、セパレータとしてポリエチレン製微多孔膜を使用して、図1に示したような構成の実施例1の円筒形非水電解質二次電池を作製した。なお、この円筒形非水電解質二次電池の設計容量は2200mAhである。
[Production of battery]
Using the positive electrode plate, the negative electrode plate, and the non-aqueous electrolyte prepared as described above, and using a polyethylene microporous membrane as a separator, the cylindrical non-electrode of Example 1 configured as shown in FIG. A water electrolyte secondary battery was produced. The design capacity of this cylindrical nonaqueous electrolyte secondary battery is 2200 mAh.

実施例2では、負極活物質合剤層の表面を被覆するPVdF層の量を負極活物質に対する質量比で4%となるようにした以外は実施例1の場合と同様に負極極板を作製し、その他の構成はすべて実施例1の場合と同様にして実施例2の非水電解質二次電池を作製した。   In Example 2, a negative electrode plate was prepared in the same manner as in Example 1 except that the amount of the PVdF layer covering the surface of the negative electrode active material mixture layer was 4% by mass ratio to the negative electrode active material. Then, the other configurations were the same as those of Example 1, and a nonaqueous electrolyte secondary battery of Example 2 was produced.

実施例3では、負極活物質合剤層の表面を被覆するPVdF層の量を負極活物質に対する質量比で5%となるようにした以外は実施例1の場合と同様に負極極板を作製し、その他の構成はすべて実施例1の場合と同様にして実施例3の非水電解質二次電池を作製した。   In Example 3, a negative electrode plate was prepared in the same manner as in Example 1 except that the amount of the PVdF layer covering the surface of the negative electrode active material mixture layer was 5% by mass ratio to the negative electrode active material. The other configurations were the same as in Example 1, and a nonaqueous electrolyte secondary battery of Example 3 was produced.

[比較例1]
比較例1では、負極極板の表面にPVdF層を設けない以外は実施例1の場合と同様に負極極板を作製し、その他の構成はすべて実施例1の場合と同様にして比較例1の非水電解質二次電池を作製した。
[Comparative Example 1]
In Comparative Example 1, a negative electrode plate was prepared in the same manner as in Example 1 except that the PVdF layer was not provided on the surface of the negative electrode plate, and all other configurations were the same as in Example 1, Comparative Example 1. A non-aqueous electrolyte secondary battery was prepared.

[比較例2]
比較例2では、負極極板の作製の際に、黒鉛粉末95質量部とPVdF5質量部との割合でNMP溶液中で均一に混合して負極活物質合剤スラリーを調整し、次にこの負極活物質合剤スラリーを厚さ10μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であったNMPを除去した後、ロールプレス機を用いて厚みが125μmとなるように圧延して比較例2の負極極板を作製した。この比較例2の負極極板の表面にはPVdF層が設けられていない。この比較例2の負極極板を用いて実施例1の場合と同様にして比較例2の非水電解質二次電池を作製した。
[Comparative Example 2]
In Comparative Example 2, a negative electrode active material mixture slurry was prepared by uniformly mixing in an NMP solution at a ratio of 95 parts by mass of graphite powder and 5 parts by mass of PVdF during the production of the negative electrode plate. The active material mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 10 μm by a doctor blade method, and then passed through a dryer to remove NMP necessary for slurry preparation, and then a roll press machine The negative electrode plate of Comparative Example 2 was produced by rolling to a thickness of 125 μm. A PVdF layer is not provided on the surface of the negative electrode plate of Comparative Example 2. Using the negative electrode plate of Comparative Example 2, a nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1.

[比較例3]
比較例3では、負極極板の作製の際に、黒鉛粉末95質量部とPVdF5質量部との割合でNMP溶液中で均一に混合して負極活物質合剤スラリーを調整し、次にこの負極活物質合剤スラリーを厚さ10μmの銅箔からなる負極芯体の両面にドクターブレード法により塗布し、次いで、乾燥機内に通してスラリー調製時に必要であったNMPを除去した後、ロールプレス機を用いて厚みが125μmとなるように圧延して負極極板を作製した。次いで、この表面にNMPに溶解させたPVdFを活物質に対する質量比で2%となるようにドクターブレード法により塗布を行い、乾燥してNMPを除去することにより3次元網目構造を有する高分子層を被覆し、比較例3の負極極板を作製した。そして、その他の構成はすべて実施例1の場合と同様にして比較例3の非水電解質二次電池を作製した。
[Comparative Example 3]
In Comparative Example 3, when preparing the negative electrode plate, a negative electrode active material mixture slurry was prepared by mixing uniformly in an NMP solution at a ratio of 95 parts by mass of graphite powder and 5 parts by mass of PVdF. The active material mixture slurry was applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 10 μm by a doctor blade method, and then passed through a dryer to remove NMP necessary for slurry preparation, and then a roll press machine Was used to roll to a thickness of 125 μm to prepare a negative electrode plate. Next, a polymer layer having a three-dimensional network structure is formed by applying PVdF dissolved in NMP to the surface by a doctor blade method so that the mass ratio to the active material is 2%, and drying to remove NMP. The negative electrode plate of Comparative Example 3 was produced. Then, the other configurations were the same as in Example 1, and a nonaqueous electrolyte secondary battery of Comparative Example 3 was produced.

[サイクル特性及び充電負荷特性の測定]
以上のようにして作製された実施例1〜3及び比較例1〜3の6種類の電池について、以下のようにしてサイクル特性及び充電負荷特性を測定した。サイクル特性の測定は、まず、25℃において1It=2200mAの定電流で電池電圧が4.20Vとなるまで充電し、その後4.20Vの定電圧で電流が1/50It=44mAとなるまで充電し、次いで、25℃で1Itの定電流で電池電圧が2.75Vとなるまで放電した。このときの放電容量を1サイクル目の放電容量として求めた。次いで、上述のような充放電サイクルを300回繰り返し、300回目の放電容量を300サイクル目の放電容量として求めた。そして、以下の計算式によりサイクル特性値を求めた。結果を表1にまとめて示した。
サイクル特性値(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of cycle characteristics and charge load characteristics]
For the six types of batteries of Examples 1 to 3 and Comparative Examples 1 to 3 manufactured as described above, the cycle characteristics and the charge load characteristics were measured as follows. The cycle characteristics are measured by charging at 25 ° C. with a constant current of 1 It = 2200 mA until the battery voltage reaches 4.20 V, and then charging with a constant voltage of 4.20 V until the current reaches 1/50 It = 44 mA. Subsequently, the battery was discharged at a constant current of 1 It at 25 ° C. until the battery voltage reached 2.75V. The discharge capacity at this time was determined as the discharge capacity of the first cycle. Next, the above charge / discharge cycle was repeated 300 times, and the discharge capacity at the 300th time was determined as the discharge capacity at the 300th cycle. And the cycle characteristic value was calculated | required with the following formulas. The results are summarized in Table 1.
Cycle characteristic value (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100

また、充電負荷特性は、1サイクル目の放電容量を測定した電池に対して、25℃において、1Itで電池電圧が4.20Vになるまで定電流充電した後に1Itで電池電圧が2.75Vになるまで放電させたときの充電容量を1It充電容量として求め、次いで3It=6600mAの定電流で電池電圧が4.20Vとなるまで充電した後に1Itの定電流で電池電圧が2.75Vになるまで放電させた時の充電容量を3It充電容量として求め、以下の計算式により充電負荷特性を求めた。結果を表1にまとめて示した。
充電負荷特性(%)
=(3It充電容量/1It充電容量)×100
In addition, the charge load characteristic is that the battery whose discharge capacity is measured at the first cycle is charged at a constant current until the battery voltage reaches 4.20 V at 1 It at 25 ° C., and then the battery voltage becomes 2.75 V at 1 It. The charge capacity when discharged until is obtained as a 1 It charge capacity, then charged until the battery voltage reaches 4.20 V at a constant current of 3 It = 6600 mA, and then the battery voltage reaches 2.75 V at a constant current of 1 It. The charge capacity when discharged was determined as a 3 It charge capacity, and the charge load characteristics were determined by the following calculation formula. The results are summarized in Table 1.
Charging load characteristics (%)
= (3It charge capacity / 1It charge capacity) × 100

Figure 2008135334
Figure 2008135334

表1に示した結果から、以下のことが分かる。すなわち、負極極板の表面に3次元網目構造を有する高分子層を備えていない比較例1及び比較例2の結果の比較から、水系バインダーを使用した比較例1の電池のサイクル特性は非水系バインダーを使用した比較例2の電池よりもサイクル特性が低下していることが分かる。このことは、水系バインダーを用いた負極極板では、非水系バインダーを用いた負極極板よりも非水電解液の保持能力が低いため、充放電サイクルの早い段階で負極活物質合剤層内の非水電解液が枯渇してしまうことを示している。   From the results shown in Table 1, the following can be understood. That is, from the comparison of the results of Comparative Example 1 and Comparative Example 2 that do not include a polymer layer having a three-dimensional network structure on the surface of the negative electrode plate, the cycle characteristics of the battery of Comparative Example 1 using an aqueous binder are non-aqueous. It turns out that cycling characteristics are falling rather than the battery of the comparative example 2 which uses a binder. This is because the negative electrode plate using a water-based binder has a lower ability to hold a non-aqueous electrolyte than a negative electrode plate using a non-aqueous binder. This indicates that the non-aqueous electrolyte of the battery is exhausted.

これに対し、同じ水系バインダーを使用しながらも負極活物質合剤層の表面に3次元網目構造を有する高分子層を備えている実施例1の電池では、このような高分子層を備えていない比較例1の電池と比するとサイクル特性が大幅に増加していることが分かる。実施例1の電池と比較例1の電池との構成の差異は、負極活物質合剤層の表面に3次元網目構造を有する高分子層の有無のみであるから、この高分子層に保持された非水電解液の存在がサイクル特性の向上に繋がっていることは明らかである。なお、この高分子層の存在の有無は充電負荷特性にはほとんど影響を与えていない。   On the other hand, the battery of Example 1 provided with a polymer layer having a three-dimensional network structure on the surface of the negative electrode active material mixture layer while using the same aqueous binder has such a polymer layer. It can be seen that the cycle characteristics are greatly increased as compared with the battery of Comparative Example 1 that is not present. The difference in configuration between the battery of Example 1 and the battery of Comparative Example 1 is only the presence or absence of a polymer layer having a three-dimensional network structure on the surface of the negative electrode active material mixture layer. It is clear that the presence of non-aqueous electrolyte leads to improvement of cycle characteristics. The presence or absence of this polymer layer has little influence on the charge load characteristics.

また、水系バインダーを使用した同じ組成の負極活物質合剤層を使用しながら、この負極活物質合剤層の表面に被覆された3次元網目構造を有する高分子層の量が相違する実施例1、実施例2及び実施例3の結果を対比すると、3次元網目構造を有する高分子層の量が4%まではサイクル特性及び充電負荷特性にほとんど影響を与えないが、3次元網目構造を有する高分子層の量が4%を超えるとサイクル特性が低下するとともに充電負荷特性は大幅に低下している。このことは、実施例3の電池では3次元網目構造を有する高分子層の量が多いためにこの高分子層の厚さが厚くなり、この高分子層内に多量の非水電解液が保持されているとしてもこの高分子層での内部抵抗が大きくなり、これが充電負荷特性の大幅な低下に繋がったものと考えられる。したがって、3次元網目構造を有する高分子層の量は、負極活物質合剤層内の活物質質量に対して4%以下が好ましいことが分かる。   In addition, while using the negative electrode active material mixture layer of the same composition using an aqueous binder, the amount of the polymer layer having a three-dimensional network structure coated on the surface of the negative electrode active material mixture layer is different 1. When the results of Example 2 and Example 3 are compared, up to 4% of the polymer layer having a three-dimensional network structure hardly affects cycle characteristics and charge load characteristics. When the amount of the polymer layer is more than 4%, the cycle characteristics are deteriorated and the charge load characteristics are greatly deteriorated. This is because, in the battery of Example 3, the amount of the polymer layer having a three-dimensional network structure is large, so the thickness of the polymer layer is increased, and a large amount of nonaqueous electrolyte is retained in the polymer layer. Even if this is done, the internal resistance of the polymer layer increases, which is thought to have led to a significant decrease in charge load characteristics. Therefore, it can be seen that the amount of the polymer layer having a three-dimensional network structure is preferably 4% or less with respect to the mass of the active material in the negative electrode active material mixture layer.

従来の円筒形の非水電解質二次電池の外装缶を透視して表した正面図である。FIG. 6 is a front view of a conventional cylindrical nonaqueous electrolyte secondary battery seen through.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 正極
11a 正極の集電タブ
12 負極
12a 負極の集電タブ
13 セパレータ
14 巻回電極体
17 電池外装缶
18 電流遮断封口体
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode 11a Positive electrode current collection tab 12 Negative electrode 12a Negative electrode current collection tab 13 Separator 14 Winding electrode body 17 Battery exterior can 18 Current interruption sealing body

Claims (4)

水系バインダーと負極活物質を含む負極活物質合剤層が負極芯体の表面に形成された非水電解質二次電池用負極極板において、
前記負極活物質合剤層の表面には高分子化合物の有機溶媒溶液を塗布することより形成された3次元網目構造を有する高分子層が被覆されていることを特徴とする非水電解質二次電池用負極極板。
In the negative electrode plate for a non-aqueous electrolyte secondary battery in which a negative electrode active material mixture layer containing an aqueous binder and a negative electrode active material is formed on the surface of the negative electrode core,
A surface of the negative electrode active material mixture layer is coated with a polymer layer having a three-dimensional network structure formed by applying an organic solvent solution of a polymer compound. Negative electrode plate for batteries.
前記3次元網目構造を有する高分子層の被覆量は前記負極活物質合剤中の負極活物質質量の4%以下であることを特徴とする請求項1に記載の非水電解質二次電池用負極極板。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a coating amount of the polymer layer having the three-dimensional network structure is 4% or less of a negative electrode active material mass in the negative electrode active material mixture. Negative electrode plate. 前記負極活物質は炭素質材料であり、前記水系バインダーはカルボキシメチルセルロース及びスチレンブタジエンゴムの混合物からなり、前記3次元網目構造を有する高分子層はポリフッ化ビニリデンからなることを特徴とする請求項1又は2に記載の非水電解質二次電池用負極極板。   2. The negative electrode active material is a carbonaceous material, the aqueous binder is made of a mixture of carboxymethyl cellulose and styrene butadiene rubber, and the polymer layer having the three-dimensional network structure is made of polyvinylidene fluoride. Or the negative electrode plate for nonaqueous electrolyte secondary batteries of 2. 請求項1〜3のいずれかに記載の非水電解質二次電池用負極極板と、正極活物質合剤が正極芯体の表面に形成された正極極板と、非水電解質とを有することを特徴とする非水電解質二次電池。   It has the negative electrode plate for nonaqueous electrolyte secondary batteries in any one of Claims 1-3, the positive electrode plate in which the positive electrode active material mixture was formed in the surface of a positive electrode core, and a nonaqueous electrolyte. A non-aqueous electrolyte secondary battery.
JP2006321832A 2006-11-29 2006-11-29 Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate Expired - Fee Related JP5078330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321832A JP5078330B2 (en) 2006-11-29 2006-11-29 Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321832A JP5078330B2 (en) 2006-11-29 2006-11-29 Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate

Publications (2)

Publication Number Publication Date
JP2008135334A true JP2008135334A (en) 2008-06-12
JP5078330B2 JP5078330B2 (en) 2012-11-21

Family

ID=39560035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321832A Expired - Fee Related JP5078330B2 (en) 2006-11-29 2006-11-29 Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate

Country Status (1)

Country Link
JP (1) JP5078330B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239915A1 (en) * 2007-07-25 2010-09-23 Varta Microbattery Gmbh Electrodes and lithium-ion cells with a novel electrode binder
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
EP2555293A1 (en) 2011-08-03 2013-02-06 Leclanché S.A. Aqueous slurry for battery electrodes
JP2020181688A (en) * 2019-04-25 2020-11-05 トヨタ自動車株式会社 Manufacturing method of electrode plate with separator and manufacturing method of cell
CN112204794A (en) * 2018-05-31 2021-01-08 株式会社村田制作所 Nonaqueous electrolyte secondary battery
CN116387634A (en) * 2023-06-05 2023-07-04 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342966A (en) * 1991-05-21 1992-11-30 Toshiba Battery Co Ltd Secondary battery with non-aqueous solvent
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JP2001176497A (en) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342966A (en) * 1991-05-21 1992-11-30 Toshiba Battery Co Ltd Secondary battery with non-aqueous solvent
JPH07201357A (en) * 1994-01-06 1995-08-04 Asahi Chem Ind Co Ltd Lighium battery
JP2001176497A (en) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239915A1 (en) * 2007-07-25 2010-09-23 Varta Microbattery Gmbh Electrodes and lithium-ion cells with a novel electrode binder
US9653733B2 (en) * 2007-07-25 2017-05-16 VW-VM Forschungsgesellschaft mbH & Co. KG Electrodes and lithium-ion cells with a novel electrode binder
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
EP2555293A1 (en) 2011-08-03 2013-02-06 Leclanché S.A. Aqueous slurry for battery electrodes
US11283078B2 (en) 2011-08-03 2022-03-22 Leclanche' S.A. Aqueous slurry for battery electrodes
CN112204794A (en) * 2018-05-31 2021-01-08 株式会社村田制作所 Nonaqueous electrolyte secondary battery
CN112204794B (en) * 2018-05-31 2024-03-19 株式会社村田制作所 Nonaqueous electrolyte secondary battery
JP2020181688A (en) * 2019-04-25 2020-11-05 トヨタ自動車株式会社 Manufacturing method of electrode plate with separator and manufacturing method of cell
JP7131472B2 (en) 2019-04-25 2022-09-06 トヨタ自動車株式会社 METHOD FOR MANUFACTURING ELECTRODE PLATE WITH SEPARATOR AND METHOD FOR MANUFACTURING BATTERY
CN116387634A (en) * 2023-06-05 2023-07-04 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric equipment
CN116387634B (en) * 2023-06-05 2024-01-26 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric equipment

Also Published As

Publication number Publication date
JP5078330B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CN108172823B (en) Lithium-manganese-rich material, lithium ion battery positive electrode plate, lithium ion battery and preparation method thereof
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5094230B2 (en) Nonaqueous electrolyte secondary battery
WO2015129188A1 (en) Nonaqueous-electrolyte secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010212086A (en) Nonaqueous electrolyte secondary battery
JP5219422B2 (en) Nonaqueous electrolyte secondary battery
JP2008300180A (en) Nonaqueous electrolyte secondary battery
JP2010231958A (en) Nonaqueous electrolyte secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
KR102112207B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP2008091041A (en) Nonaqueous secondary battery
CN111430801B (en) Electrolyte of lithium ion secondary battery and application thereof
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5078330B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate
JP3580209B2 (en) Lithium ion secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
CN113346140A (en) Electrolyte and application thereof
JP4219187B2 (en) Non-aqueous lithium secondary battery
WO2014050025A1 (en) Non-aqueous electrolyte secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP7403474B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP4270904B2 (en) Non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees