JP5156195B2 - Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP5156195B2 JP5156195B2 JP2006088104A JP2006088104A JP5156195B2 JP 5156195 B2 JP5156195 B2 JP 5156195B2 JP 2006088104 A JP2006088104 A JP 2006088104A JP 2006088104 A JP2006088104 A JP 2006088104A JP 5156195 B2 JP5156195 B2 JP 5156195B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- metal
- lithium
- ion secondary
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、金属と黒鉛質材料を含むリチウムイオン二次電池用負極材料およびその製造方法、前記負極材料を用いたリチウムイオン二次電池用負極、ならびに前記負極を用いた放電容量、初回充放電効率およびサイクル特性に優れるリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery containing a metal and a graphite material and a method for producing the same, a negative electrode for a lithium ion secondary battery using the negative electrode material, a discharge capacity using the negative electrode, and an initial charge / discharge The present invention relates to a lithium ion secondary battery excellent in efficiency and cycle characteristics.
リチウムイオン二次電池は、他の二次電池に比べて高い電圧、高いエネルギー密度を有するので、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急に進み、リチウムイオン二次電池のエネルギーをさらに向上させる要望がますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は、充放電の可逆性に優れるものの、その放電容量はすでに層間化合物(LiC6)の理論値(372mAh/g)に近い値まで到達している。そこで、電池のエネルギー密度をさらに高めるためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Lithium ion secondary batteries have a higher voltage and higher energy density than other secondary batteries, and are therefore widely used as power sources for electronic devices. In recent years, electronic devices have been rapidly reduced in size and performance, and there is an increasing demand for further improving the energy of lithium ion secondary batteries.
Currently, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, the discharge capacity has already reached a value close to the theoretical value (372 mAh / g) of the intercalation compound (LiC 6 ). Therefore, in order to further increase the energy density of the battery, it is necessary to develop a negative electrode material having a discharge capacity larger than that of graphite.
金属リチウムは負極材料として最大の放電容量を有する。しかし、充電時にリチウムがデンドライト状に析出して負極が劣化するため、電池の充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、電池が短絡する恐れがある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物(以下、金属等とも称す)が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量を持つ。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、合金負極を用いたリチウムイオン二次電池のサイクル特性はまだ実用レベルには至っていない。
Metallic lithium has the maximum discharge capacity as a negative electrode material. However, since lithium is deposited in a dendritic state during charging and the negative electrode is deteriorated, there is a problem that the charge / discharge cycle of the battery is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, and the battery may be short-circuited.
Therefore, a metal or a metal compound (hereinafter also referred to as a metal) that forms an alloy with lithium has been studied as a negative electrode material that can replace metal lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, though not as much as metallic lithium. However, the active material is pulverized and peeled off due to volume expansion accompanying alloying, and the cycle characteristics of a lithium ion secondary battery using an alloy negative electrode have not yet reached a practical level.
特許文献1には、金属等と黒鉛質物を結合して、粉化・剥離を防止するため、さらに特定の結晶構造を有する炭素質物で結合または被覆してなる電極材料が開示されている。しかし、このような炭素質物は黒鉛化されていないため結晶構造が完全に発達しておらず、ランダムに配向した結晶子の間に小さな空隙(ミクロポア)が多数存在した構造を持つ。ミクロポアにドープされたリチウムイオンはすべてが充放電に寄与するわけではなく、一部はドープされたままで脱離せず、これが充放電ロスになる。それゆえ、金属質物と黒鉛質物の結合や、被覆材料として炭素質材料を用いた場合、充放電ロスが大きくなり、初回充放電効率が低下するという問題がある。
本発明は、前記のような状況を鑑みてなされたものであり、リチウムイオン二次電池用負極材料として用いて、放電容量が高く、優れたサイクル特性と初回充放電効率が得られる負極材料、負極を提供することを目的とする。また、得られた負極を用いてなる、放電容量が高く、優れたサイクル特性と初回充放電効率を有するリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the situation as described above, and is used as a negative electrode material for a lithium ion secondary battery. The negative electrode material has high discharge capacity, and excellent cycle characteristics and initial charge / discharge efficiency can be obtained. An object is to provide a negative electrode. Another object of the present invention is to provide a lithium ion secondary battery having a high discharge capacity, excellent cycle characteristics and initial charge / discharge efficiency, using the obtained negative electrode.
上記目的は、以下のような特徴を有する本発明により達成することができる。すなわち、本発明は、リチウムと合金化可能な金属粉末、黒鉛質材料粉末、および結合材料である、リチウムと合金を形成しない金属を含むリチウムイオン二次電池用負極材料であって、前記結合材料である金属の融点が前記リチウムと合金化可能な金属の融点よりも低く、かつ、前記黒鉛質材料粉末の表面に前記リチウムと合金化可能な金属粉末が付着し、前記結合材料である金属が、融着により、前記リチウムと合金化可能な金属粉末と前記黒鉛質材料粉末を結合および/または被覆していることを特徴とするリチウムイオン二次電池用負極材料、である。 The above object can be achieved by the present invention having the following features. That is, the present invention is a negative electrode material for a lithium ion secondary battery containing a metal powder that can be alloyed with lithium, a graphite material powder , and a metal that does not form an alloy with lithium. The metal melting point is lower than the melting point of the metal that can be alloyed with lithium, and the metal powder that can be alloyed with lithium adheres to the surface of the graphite material powder. A negative electrode material for a lithium ion secondary battery, wherein the metal powder that can be alloyed with lithium and the graphite material powder are bonded and / or coated by fusion.
前記リチウムイオン二次電池用負極材料は、前記結合材料である金属が銅および/または金であることが好ましい。 In the negative electrode material for a lithium ion secondary battery, the metal that is the binding material is preferably copper and / or gold.
前記リチウムイオン二次電池用負極材料は、前記リチウムと合金化可能な金属が珪素であることが好ましい。 In the negative electrode material for a lithium ion secondary battery, the metal that can be alloyed with lithium is preferably silicon.
前記リチウムイオン二次電池用負極材料は、前記リチウムと合金化可能な金属を3〜50質量%、前記黒鉛質材料を30〜90質量%、および前記結合材料である金属を5〜30質量%含むことが好ましい。 The negative electrode material for a lithium ion secondary battery includes 3 to 50% by mass of the metal that can be alloyed with lithium, 30 to 90% by mass of the graphite material, and 5 to 30% by mass of the metal that is the binding material. It is preferable to include.
また、本発明は、上記リチウムイオン二次電池用負極材料を得る、リチウムイオン二次電池用負極材料の製造方法であって、リチウムと合金化可能な金属粉末、黒鉛質材料粉末、および結合材料である、リチウムと合金を形成せず、前記リチウムと合金化可能な金属の融点よりも低い融点を有する金属を含む混合物をメカノケミカル処理した後、メカノケミカル処理生成物を前記結合材料が溶融する温度範囲で加熱して、前記結合材料である金属が、融着により、前記リチウムと合金化可能な金属粉末と前記黒鉛質材料粉末を結合および/または被覆することを特徴とするリチウムイオン二次電池用負極材料の製造方法、である。 The present invention also provides a method for producing a negative electrode material for a lithium ion secondary battery, wherein the negative electrode material for a lithium ion secondary battery is obtained, wherein the metal powder is alloyable with lithium, a graphite material powder , and a binding material After the mechanochemical treatment of a mixture containing a metal that does not form an alloy with lithium and has a melting point lower than that of the metal that can be alloyed with lithium, the binding material melts the mechanochemical treatment product. Lithium ion secondary, wherein the metal as the binding material is heated in a temperature range to bond and / or coat the metal powder that can be alloyed with lithium and the graphite material powder by fusion. It is a manufacturing method of the negative electrode material for batteries.
また、本発明は、上記リチウムイオン二次電池用負極材料を得る、リチウムイオン二次電池用負極材料の製造方法であって、リチウムと合金化可能な金属粉末および黒鉛質材料粉末に、結合材料である、リチウムと合金を形成せず、前記リチウムと合金化可能な金属の融点よりも低い融点を有する金属を気相法で付着した後、付着生成物を、前記結合材料である金属が溶融する温度範囲で加熱して、前記結合材料である金属が、融着により、前記リチウムと合金化可能な金属粉末と前記黒鉛質材料粉末を結合および/または被覆することを特徴とするリチウムイオン二次電池用負極材料の製造方法、である。 The present invention also provides a method for producing a negative electrode material for a lithium ion secondary battery, wherein the negative electrode material for a lithium ion secondary battery is obtained, wherein a metal powder and a graphite material powder that can be alloyed with lithium are combined with a binding material. After a metal having a melting point lower than the melting point of the metal that can be alloyed with lithium is deposited by a vapor phase method without forming an alloy with lithium, the deposited product is melted with the metal as the binding material. The metal as the binding material is bonded to and / or coats the metal powder that can be alloyed with the lithium and the graphite material powder by fusion in a temperature range of It is a manufacturing method of the negative electrode material for secondary batteries.
また、本発明は、前記いずれかのリチウムイオン二次電池用負極材料を用いることを特徴とするリチウムイオン二次電池用負極、である。 Moreover, this invention is a negative electrode for lithium ion secondary batteries characterized by using any one of the negative electrode materials for lithium ion secondary batteries.
また、本発明は、前記のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池、である。 Moreover, this invention is a lithium ion secondary battery characterized by using the said negative electrode for lithium ion secondary batteries.
本発明のリチウムイオン二次電池用負極材料を用いると、黒鉛の理論容量を超える高い放電容量が得られ、同時に優れた初回充放電効率とサイクル特性を示すリチウムイオン二次電池を得ることができる。
そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
When the negative electrode material for lithium ion secondary batteries of the present invention is used, a high discharge capacity exceeding the theoretical capacity of graphite can be obtained, and at the same time, a lithium ion secondary battery exhibiting excellent initial charge / discharge efficiency and cycle characteristics can be obtained. .
Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted device.
以下、本発明をより具体的に説明する。
(負極材料)
本発明のリチウムイオン二次電池用負極材料は、結合材料である、リチウムと合金を形成せず、リチウムと合金化可能な金属の融点よりも低い融点を有する金属(以下、結合剤である金属とも称す)が融着により、リチウムと合金化可能な金属と黒鉛質材料とを結合してなる複合化物、場合によっては、前記結合材料である金属が、さらに前記複合化物の表面の一部を被覆した複合化物であり、さらには、前記結合材料である金属が媒介することなく、リチウムと合金化可能な金属と黒鉛質材料とが結合した複合化物の表面の一部を、前記結合材料である金属が被覆した複合化物である。
Hereinafter, the present invention will be described more specifically.
(Negative electrode material)
The negative electrode material for a lithium ion secondary battery of the present invention is a metal that does not form an alloy with lithium and has a melting point lower than that of a metal that can be alloyed with lithium (hereinafter, a metal that is a binder). Is also a composite formed by bonding a metal that can be alloyed with lithium and a graphitic material by fusion, and in some cases, the metal that is the binding material further forms part of the surface of the composite. Further, a part of the surface of the composite in which the metal that can be alloyed with lithium and the graphite material is bonded without intermediation of the metal that is the binding material is coated with the binding material. It is a composite coated with a certain metal.
本発明の負極材料は、該負極材料全体を100質量%としたとき、リチウムと合金化可能な金属を3〜50質量%、好ましくは5〜40質量%、より好ましくは5〜30質量%含有し、黒鉛質材料を30〜90質量%、好ましくは40〜85質量%、より好ましくは50〜82質量%含有し、結合材料である金属を5〜30質量%、好ましくは5〜25質量%、より好ましくは5〜20質量%含有する。なお、結合材料である金属の結合材としての比率と被覆材としての比率は特に限定されない。前記被覆はまだら模様に分布していても、連続していてもよい。
また、前記被覆材の厚さは特に限定されないが、好ましくは0.05〜2μm、より好ましくは0.1〜1μmである。本発明の負極材料の形状は、一般的に塊状であり、平均粒子径は1〜30μm程度、好ましくは5〜20μmである。該平均粒子径はレーザー回折式粒度計で測定される累積度数が体積百分率で50%となる粒子径を意味する。
The negative electrode material of the present invention contains 3 to 50% by mass, preferably 5 to 40% by mass, more preferably 5 to 30% by mass of a metal that can be alloyed with lithium, when the total amount of the negative electrode material is 100% by mass. The graphite material is contained in an amount of 30 to 90% by mass, preferably 40 to 85% by mass, more preferably 50 to 82% by mass, and the metal as a binding material is 5 to 30% by mass, preferably 5 to 25% by mass. More preferably, it contains 5 to 20% by mass. In addition, the ratio as a binder of the metal which is a binding material, and the ratio as a coating | covering material are not specifically limited. The coating may be distributed in a mottled pattern or may be continuous.
Moreover, the thickness of the said coating | covering material is although it does not specifically limit, Preferably it is 0.05-2 micrometers, More preferably, it is 0.1-1 micrometer. The shape of the negative electrode material of the present invention is generally massive, and the average particle size is about 1 to 30 μm, preferably 5 to 20 μm. The average particle diameter means a particle diameter at which the cumulative frequency measured by a laser diffraction particle size meter is 50% by volume.
(リチウムと合金化可能な金属)
本発明の負極材料を構成するリチウムと合金化可能な金属としては、珪素(Si、融点1414℃)、硼素(B、融点2300℃)、白金(Pt、融点1772℃)、パラジウム(Pd、融点1554℃)などを挙げることができる。好ましいのは珪素である。また、前記金属が2種以上の金属からなる合金であってもよい。該合金中には前記以外の元素を含有していてもよい。前記金属の炭化物、窒化物、酸化物などの化合物であってもよい。また、前記金属は結晶質でも、非晶質でもよいが、金属が非晶質であると、リチウムイオン二次電池の充電時の膨張が軽減されるので、むしろ非晶質金属を含むことが好ましい。特に、非晶質シリコン(Si)を含む金属が最も好ましい。
(Metal that can be alloyed with lithium)
Examples of the metal that can be alloyed with lithium constituting the negative electrode material of the present invention include silicon (Si, melting point 1414 ° C.), boron (B, melting point 2300 ° C.), platinum (Pt, melting point 1772 ° C.), palladium (Pd, melting point). 1554 ° C.). Preferred is silicon. Further, the metal may be an alloy made of two or more metals. The alloy may contain elements other than those described above. It may be a compound such as a carbide, nitride or oxide of the metal. In addition, the metal may be crystalline or amorphous, but if the metal is amorphous, expansion during charging of the lithium ion secondary battery is reduced. preferable. In particular, a metal containing amorphous silicon (Si) is most preferable.
前記リチウムと合金化可能な金属の形状は特に限定されることはなく、粉状、板状、粒状、繊維状、塊状、球状など、あらゆる形状のものが使用可能であるが、球状、粒状の場合が好ましく、その平均粒子径は5μm以下であることが好ましく、0.01〜5μmであることがより好ましく、0.01〜1μmであることがさらに好ましい。
また、前記リチウムと合金化可能な金属は、前記したように、本発明の負極材料中に、3〜50質量%、好ましくは5〜40質量%、より好ましくは5〜30質量%含有される。前記範囲を逸脱すると、放電容量やサイクル特性が低下する傾向が現れ、好ましくない。
The shape of the metal that can be alloyed with lithium is not particularly limited, and any shape such as powder, plate, granule, fiber, lump, and sphere can be used. The average particle diameter is preferably 5 μm or less, more preferably 0.01 to 5 μm, and still more preferably 0.01 to 1 μm.
Further, as described above, the metal that can be alloyed with lithium is contained in the negative electrode material of the present invention in an amount of 3 to 50% by mass, preferably 5 to 40% by mass, more preferably 5 to 30% by mass. . If it deviates from the above range, the discharge capacity and the cycle characteristics tend to decrease, which is not preferable.
(黒鉛質材料)
本発明の負極材料を構成する黒鉛質材料は、負極活物質としてリチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。
前記黒鉛質材料は、高い放電容量を得る観点から、結晶性の高いものが好ましい。結晶性の指標として、X線広角回折における(002)面の平均格子面間隔d002が0.34nm以下、特に0.337nm以下であることが好ましい。
ここで、X線広角回折における(002)面の平均格子面間隔d002は、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して黒鉛質材料の(002)面の回折ピークを測定し、そのピークの位置から算出する。算出方法は、学振法(日本学術振興会第117委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」[大谷杉郎、733−742頁(1986年3月)、近代編集社]に記載された方法によって測定された値である。
(Graphite material)
The graphite material constituting the negative electrode material of the present invention is not particularly limited as long as it can absorb and release lithium ions as the negative electrode active material.
The graphite material is preferably highly crystalline from the viewpoint of obtaining a high discharge capacity. As an index of crystallinity, it is preferable that an average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is 0.34 nm or less, particularly 0.337 nm or less.
Here, the average lattice spacing d 002 of the (002) plane in the X-ray wide angle diffraction is the diffraction peak of the (002) plane of the graphite material using CuKα ray as the X-ray and using high-purity silicon as a standard substance. Is calculated from the position of the peak. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 117th Committee of the Japan Society for the Promotion of Science). Specifically, “carbon fiber” [Sugirou Otani, pp. 733-742 (March 1986) ), Modern Editorial Company].
前記黒鉛質材料としては、その一部または全部が黒鉛質で形成されているもの、例えば、タール、ピッチ類を最終的に1500℃以上の温度で熱処理して得た人造黒鉛や天然黒鉛が挙げられる。具体的には、易黒鉛化性炭素材料と言われる石油系または石炭系のタール、ピッチ類を原料として重縮合させたメソフェーズ焼成体、メソフェーズ小球体、メソフェーズ炭素繊維またはコークス類を、好ましくは1500℃以上、より好ましくは2800〜3300℃で黒鉛化処理して得たものを用いることができる。
また、前記黒鉛質材料は、液相、気相、または固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。
Examples of the graphite material include artificial graphite and natural graphite obtained by heat-treating tar or pitch at a temperature of 1500 ° C. or higher, for example, part or all of which is formed of graphite. It is done. Specifically, a mesophase calcined product, mesophase spherule, mesophase carbon fiber or coke obtained by polycondensation using petroleum-based or coal-based tars and pitches, which are called graphitizable carbon materials, as a raw material, preferably 1500 What was obtained by graphitizing at 2800-3300 ° C or more can be used.
The graphite material may be subjected to various chemical treatments in a liquid phase, a gas phase, or a solid phase, heat treatment, oxidation treatment, physical treatment, and the like.
黒鉛質材料の形状は特に限定されないが、鱗片状または鱗片状に近い形状であることが好ましい。それは、複合粒子間または該粒子内の接点を確保しやすく、導電性がさらに向上するからである。また、前記した各種人造黒鉛や天然黒鉛の混合物、造粒物、被覆物、積層物であってもよい。黒鉛質材料の平均粒子径は好ましくは1〜50μm、より好ましくは5〜30μmである。前記範囲を逸脱すると、充放電効率が低下したり、サイクル特性が低下する傾向が現れ、好ましくない。
前記黒鉛質材料は、前記したように、本発明の負極材料中に、30〜90質量%、好ましくは40〜85質量%、より好ましくは50〜82質量%含有される。前記範囲を逸脱すると、放電容量やサイクル特性が低下する傾向が現れ、好ましくない。
The shape of the graphite material is not particularly limited, but is preferably a scaly shape or a shape close to a scaly shape. This is because it is easy to secure a contact between the composite particles or in the particles, and the conductivity is further improved. Moreover, the above-mentioned various artificial graphite and a mixture of natural graphite, a granulated material, a coating, and a laminate may be used. The average particle diameter of the graphite material is preferably 1 to 50 μm, more preferably 5 to 30 μm. If it deviates from the above range, the charge / discharge efficiency tends to decrease or the cycle characteristics tend to deteriorate, which is not preferable.
As described above, the graphite material is contained in the negative electrode material of the present invention in an amount of 30 to 90% by mass, preferably 40 to 85% by mass, more preferably 50 to 82% by mass. If it deviates from the above range, the discharge capacity and the cycle characteristics tend to decrease, which is not preferable.
(結合材料である金属)
本発明の結合材料である金属は、リチウムと合金を形成せず、前記リチウムと合金化可能な金属の融点よりも低い融点を有する金属である。具体的には、銅(融点1085℃)、金(融点1064℃)、チタン(融点1675℃)、ニッケル(融点1455℃)などである。好ましいのは銅および/または金である。前記金属は2種以上併用することができる。もちろん、前記金属を含む合金の使用も可能である。
また、前記結合材料である金属は、前記したように、本発明の負極材料中に、5〜30質量%、好ましくは5〜25質量%、より好ましくは5〜15質量%含有される。前記範囲を逸脱すると、サイクル特性が低下する傾向が現れるので、好ましくない。
本発明の負極材料においては、結合材料に炭素質材料を用いていないため、炭素質材料に由来する充放電ロスの増大、つまり充放電効率の低下という従来の問題を解決することができる。
(Metal that is a binding material)
The metal that is the binding material of the present invention is a metal that does not form an alloy with lithium and has a melting point lower than that of the metal that can be alloyed with lithium. Specifically, copper (melting point: 1085 ° C.), gold (melting point: 1064 ° C.), titanium (melting point: 1675 ° C.), nickel (melting point: 1455 ° C.), and the like. Preference is given to copper and / or gold. Two or more of these metals can be used in combination. Of course, it is also possible to use an alloy containing the metal.
Moreover, the metal which is the said binding material is 5-30 mass% in the negative electrode material of this invention as mentioned above, Preferably it is 5-25 mass%, More preferably, 5-15 mass% is contained. Deviating from the above range is not preferable because the cycle characteristics tend to deteriorate.
In the negative electrode material of the present invention, since a carbonaceous material is not used as the binding material, the conventional problem of an increase in charge / discharge loss derived from the carbonaceous material, that is, a decrease in charge / discharge efficiency can be solved.
(負極材料の製造方法)
本発明の負極材料は、リチウムと合金化可能な金属、黒鉛質材料および結合材料である金属を複合化する種々の方法と、必要ならば、その後の複合化物の熱処理によって製造することができる。前記複合化は機械的方法、物理的方法などのうちのいずれの方法によってもよいが、機械的方法によることが好ましい。
機械的方法による前記複合化は、リチウムと合金化可能な金属と、黒鉛質材料とを先に複合化して得た一次複合化物に、結合材料である金属を加えて加熱溶融し、結合材料である金属の溶着により、前記一次粒子を結合および/または被覆して前記3成分を含有する二次複合化物を得る方法、または、前記3成分を混合し、結合材料である金属を加熱溶融し、結合材料である金属の溶着により、リチウムと合金化可能な金属と黒鉛質材料とを結合し、さらに被覆を行う方法である。
(Method for producing negative electrode material)
The negative electrode material of the present invention can be produced by various methods for compounding a metal that can be alloyed with lithium, a graphite material, and a metal that is a bonding material, and, if necessary, subsequent heat treatment of the compound. The compounding may be performed by any method out of a mechanical method and a physical method, but is preferably performed by a mechanical method.
The above-mentioned compounding by a mechanical method is performed by adding a metal, which is a bonding material, to a primary compound obtained by first compounding a metal that can be alloyed with lithium and a graphite material, and heating and melting the resulting material. A method of obtaining a secondary composite containing the three components by bonding and / or coating the primary particles by welding a certain metal, or mixing the three components and heating and melting the metal that is a binding material, This is a method in which a metal that can be alloyed with lithium and a graphite material are bonded to each other by welding of a metal that is a bonding material, and then coating is performed.
機械的方法の具体的手段としては、例えば、圧縮、剪断、衝突、摩擦などの機械的エネルギーを付与するメカノケミカル処理が挙げられる。前記処理が可能な装置としては、「GRANUREX」[フロイント産業(株)製]、「ニューグラマシン」[(株)セイシン企業製]、「アグロマスター」[ホソカワミクロン(株)製]などの造粒機、ロールミル、「ハイブリダイゼーションシステム」[(株)奈良機械製作所製]、「メカノマイクロシステム」[(株)奈良機械製作所製]、「メカノフュージョンシステム」[ホソカワミクロン(株)製]などの圧縮剪断式加工装置などが挙げられる。
これらの装置には、粒子を転動する作用もあり、これにより一次複合化物は擬似球状になる。特に、黒鉛質材料の一つとして鱗片状黒鉛を使用する場合は、前記鱗片状黒鉛が同心円状に配置され、リチウムと合金化可能な金属の充電時の膨張を吸収する空隙を複合粒子内部に形成することができる。
Specific examples of the mechanical method include mechanochemical treatment that imparts mechanical energy such as compression, shearing, collision, and friction. Granulators such as “GRANUREX” [manufactured by Freund Sangyo Co., Ltd.], “Newgra Machine” [manufactured by Seishin Enterprises], “Agromaster” [manufactured by Hosokawa Micron Co., Ltd.] , Roll mill, “hybridization system” [manufactured by Nara Machinery Co., Ltd.], “mechano micro system” [manufactured by Nara Machinery Co., Ltd.], “mechano fusion system” [manufactured by Hosokawa Micron Corporation], etc. Examples include processing equipment.
These devices also have the effect of rolling the particles so that the primary composite becomes a pseudo-sphere. In particular, when scaly graphite is used as one of the graphite materials, the scaly graphite is arranged concentrically, and voids that absorb expansion during charging of a metal that can be alloyed with lithium are formed inside the composite particles. Can be formed.
物理的方法としては、気相、液相または固相で結合材料である金属を複合化できる方法であれば特に制限されないが、気相法が好ましい。気相法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法などのPVD(Physical Vapor Deposition)法や、常圧CVD(Chemical Vapor Deposition)法、減圧CVD法、プラズマCVD法、MO(Magneto-Optic)CVD法、光CVD法などのCVD法が挙げられるが、スパッタリング法が特に好ましい。スパッタリング法としては、直流スパックリング法、マグネトロンスパッタリング法、高周波スパッタリング法、反応性スパックリング法、バイアススパッタリング法、イオンビームスパッタリング法などを用いることができる。 The physical method is not particularly limited as long as it is a method capable of complexing a metal that is a binding material in a gas phase, a liquid phase, or a solid phase, but a gas phase method is preferable. Gas phase methods include vacuum vapor deposition, sputtering, ion plating, molecular beam epitaxy and other PVD (Physical Vapor Deposition) methods, atmospheric pressure CVD (Chemical Vapor Deposition) methods, low pressure CVD methods, and plasma CVD methods. There are CVD methods such as MO (Magneto-Optic) CVD method and photo CVD method, but sputtering method is particularly preferable. As the sputtering method, a direct current sputtering method, a magnetron sputtering method, a high frequency sputtering method, a reactive sputtering method, a bias sputtering method, an ion beam sputtering method, or the like can be used.
前記スパッタリング法は、カソード側に結合材料である金属のターゲットを設置し、一般に1〜10−2Pa程度の不活性ガス雰囲気中で電極間にグロー放電を起こし、不活性ガスをイオン化させ、前記ターゲットの金属を叩き出して、アノード側に設置した一次複合化物に前記ターゲット金属を堆積させる方法である。前記ターゲットの金属は複数を同時に用いてもよい。すなわち、複数の前記金属をターゲットとして同時にスパッタリングして合金を合成してもよいし、複数の前記金属を順に積層してもよい。なお、前記金属を堆積させる方法としては、前記気相法以外にも、例えば、溶射法、めっき法なども利用できる。 In the sputtering method, a metal target as a binding material is installed on the cathode side, and generally a glow discharge is generated between the electrodes in an inert gas atmosphere of about 1 to 10 −2 Pa to ionize the inert gas, In this method, the target metal is knocked out and the target metal is deposited on the primary composite provided on the anode side. A plurality of the target metals may be used simultaneously. That is, an alloy may be synthesized by simultaneously sputtering a plurality of the metals as targets, or a plurality of the metals may be laminated in order. In addition to the vapor phase method, for example, a thermal spraying method, a plating method, or the like can be used as a method for depositing the metal.
また、機械的方法と物理的方法を併用することもできる。すなわち、まず、前記した機械的方法でリチウムと合金化可能な金属と黒鉛質材料を複合化して2成分を含有する一次複合化物を得、これに、前記結合材料である金属を前記した気相法により堆積させ、前記堆積した金属が溶融する温度以上で加熱して、前記結合材料である金属を溶融させ、溶着によってリチウムと合金化可能な金属と黒鉛質材料を結合および/または被覆した二次複合化物、すなわち、本発明の負極材料を製造することができる。
前記溶融温度は特に限定されないが、リチウムと合金化可能な金属として珪素を用いる場合は、1200℃未満であることが好ましい。1200℃以上であると放電容量の増大に寄与しない炭化珪素(SiC)が生成すからである。
Further, a mechanical method and a physical method can be used in combination. That is, first, a metal compound that can be alloyed with lithium and a graphite material is composited by the mechanical method described above to obtain a primary composite containing two components, and the metal that is the binding material is mixed with the gas phase described above. The metal that is deposited by the method, heated at a temperature higher than the temperature at which the deposited metal melts, melts the metal as the binding material, and bonds and / or coats the metal that can be alloyed with lithium and the graphite material by welding. The next composite, that is, the negative electrode material of the present invention can be manufactured.
The melting temperature is not particularly limited, but when silicon is used as the metal that can be alloyed with lithium, it is preferably less than 1200 ° C. This is because silicon carbide (SiC) that does not contribute to an increase in discharge capacity is generated when the temperature is 1200 ° C. or higher.
(負極)
本発明は、前記負極材料を含有するリチウムイオン二次電池用負極であり、また、前記負極を用いるリチウムイオン二次電池である。
本発明のリチウムイオン二次電池用負極の作製は、通常の黒鉛負極の作製方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の負極材料に負極合剤用結合剤を加えて、予め調製した負極合剤を用いることが好ましい。
前記結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
本発明の負極は、前記負極材料および結合剤のほかに、天然黒鉛などの黒鉛質材料や非晶質ハードカーボンなどの炭素質材料などの導電剤、フェノール樹脂などの有機物、シリコンなどの金属、酸化錫などの金属化合物などを、本発明の負極として期待する本来の作用効果に影響を及ぼさない範囲の量で、配合してもよい。
(Negative electrode)
The present invention is a negative electrode for a lithium ion secondary battery containing the negative electrode material, and a lithium ion secondary battery using the negative electrode.
The negative electrode for a lithium ion secondary battery according to the present invention is manufactured in accordance with a normal method for preparing a negative electrode for graphite. However, any method can be used as long as it can obtain a chemically and electrochemically stable negative electrode. Not. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder for negative electrode mixture to the negative electrode material of the present invention.
As the binder, those that are chemically and electrochemically stable with respect to the electrolyte are preferable. For example, fluorine resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, resins such as polyethylene and polyvinyl alcohol, and the like. Powder, carboxymethylcellulose, etc. are used. These can also be used together. A binder is normally used in the ratio of about 1-20 mass% in the whole quantity of a negative electrode mixture.
In addition to the negative electrode material and the binder, the negative electrode of the present invention includes a conductive material such as a graphite material such as natural graphite and a carbonaceous material such as amorphous hard carbon, an organic substance such as a phenol resin, a metal such as silicon, You may mix | blend metal compounds, such as a tin oxide, in the quantity of the range which does not affect the original effect which is anticipated as a negative electrode of this invention.
より具体的には、まず、本発明の負極材料を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の負極材料と、結合剤を水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。前記ペーストを、集電体の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。 More specifically, first, the negative electrode material of the present invention is adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, a slurry obtained by mixing the negative electrode material of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, etc., using a known stirrer, mixer, kneader, kneader or the like. Mix with stirring to prepare a paste. If the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded can be obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 100 μm.
また、本発明の負極は、本発明の負極材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成形して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電効率が低下することがある。なお、本発明の負極は、負極密度が1.7g/cm3を超えるように高くすることができる。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
負極の作製に用いる集電体の形状としては、特に限定されないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電体の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合は好ましくは5〜20μm程度であることが好ましい。
The negative electrode of the present invention can also be produced by dry-mixing the negative electrode material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient strength of the negative electrode, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency of the lithium ion secondary battery may be reduced. . In addition, the negative electrode of this invention can be made high so that a negative electrode density may exceed 1.7 g / cm < 3 >.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The shape of the current collector used for production of the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil shape.
(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時には、リチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として本発明の負極材料を用いること以外は特に限定されることはなく、正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is composed of a lithium ion carrier, and during charging, lithium ions are occluded in the negative electrode and discharged. It depends on the battery mechanism that is detached from the negative electrode.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used as a negative electrode material, and other lithium battery components such as a positive electrode, an electrolyte, and a separator are general lithium ions. Conforms to secondary battery elements.
(正極)
正極は、例えば、正極材料(正極活物質)と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極材料は、充分量のリチウムを吸蔵/離脱し得るものを選択することが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MxMo6S8−Y (式中、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture composed of a positive electrode material (positive electrode active material), a binder, and a conductive agent to the surface of the current collector. It is preferable to select a positive electrode material that can occlude / release a sufficient amount of lithium. Lithium-containing compounds such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides and lithium compounds thereof, and general formula M x Mo 6 S 8-Y (wherein M is at least one transition metal element, X is a number in the range of 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) Compounds, activated carbon, activated carbon fibers and the like.
リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を混合し、酸素雰囲気下、600〜1000℃の温度で焼成することにより得ることができる。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Lithium-containing transition metal oxides are, for example, lithium, transition metal oxides, hydroxides, salts, etc. as starting materials, mixed with these starting materials, and fired at a temperature of 600 to 1000 ° C. in an oxygen atmosphere. Can be obtained.
リチウム含有遷移金属酸化物は、具体的には、LiM1 1-XM2 X O2 (式中、M1およびM2は少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数である)、またはLiM1 1-YM2 Y O4 (式中、M1およびM2 は少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数である)で示される。M1 およびM2 で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのは、Co、Mn、Cr、Ti、V、Fe、Alなどである。好ましい具体例は、LiCoO2、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 O2、LiNi0.5 Co0.5 O2 などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩などの出発原料を、所望の金属酸化物の組成に応じて混合し、酸素雰囲気下、600〜1000℃の温度で焼成することにより得ることができる。
リチウム含有遷移金属酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。
Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is 0 ≦ X ≦ 1) LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a number in the range of 0 ≦ Y ≦ 1). ). Transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Mn, Cr, Ti, V, Fe, Al and the like. Preferable specific examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.
The lithium-containing transition metal oxide is prepared by mixing starting materials such as lithium, transition metal oxide, hydroxide, and salt according to the composition of the desired metal oxide, and in an oxygen atmosphere, 600 to 1000 ° C. It can obtain by baking at the temperature of.
Lithium-containing transition metal oxides may be used alone or in combination of two or more.
正極材料は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウムなどの炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤などの各種添加剤を適宜に使用することができる。 The positive electrode material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent, can be used suitably.
正極の作製に使用される結合剤としては、負極の作製に使用される結合剤と同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
As the binder used for producing the positive electrode, the same binder as used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.
The shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.
正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電体に接着される。 Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
(非水電解質)
非水電解質としては、通常の非水電解液の調製に使用される電解質塩が使用できる。例えば、LiPF6 、LiBF4、LiAsF6、LiClO4、LiB(C6H5)4、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3SO2 )2 、LiC(CF3 SO2 )3 、LiN(CF3CH2 OSO2 )2 、LiN(CF3 CF2OSO2 )2 、LiN(HCF2 CF2 CH2OSO2 )2 、LiN[(CF3 )2 CHOSO2]2 、LiB[C6 H3 (CF3 )2 ]4、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4が酸化安定性の点から好ましい。
電解液中の電解質塩濃度は0.1〜5mol /lが好ましく、0.5〜3.0mol/l がより好ましい。
非水電解質は液状であってもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, an electrolyte salt used for preparing a normal non-aqueous electrolyte can be used. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (
The electrolyte salt concentration in the electrolytic solution is preferably from 0.1 to 5 mol / l, more preferably from 0.5 to 3.0 mol / l.
The non-aqueous electrolyte may be liquid, or may be a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .
非水電解質液を調製するための非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。 Nonaqueous solvents for preparing a nonaqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2- Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloro Nitriles such as nitrile and propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitric acid Robenzen, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.
非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリックスとして可塑剤(非水電解液)でゲル化された高分子化合物を用いることが好ましい。前記マトリックスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを単独または混合して用いることが好ましい。特に、酸化還元安定性の観点などから、フッ素系高分子化合物を用いることが好ましい。
前記のゲル化に必要な可塑剤としては、前記の電解質塩や非水溶媒が使用できる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜2.0mol/lがより好ましい。
When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer compound gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer compound constituting the matrix include ether polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate polymer compounds, polyacrylate polymer compounds, polyvinylidene fluoride and vinylidene fluoride-hexafluoro. Fluorine polymer compounds such as propylene copolymers are preferably used alone or in combination. In particular, it is preferable to use a fluorine-based polymer compound from the viewpoint of oxidation-reduction stability.
As the plasticizer necessary for the gelation, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 2.0 mol / l.
高分子固体電解質の作製方法は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、混合用有機溶剤に高分子化合物、リチウム塩および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。
ここで、前記高分子固体電解質中の非水溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低く、90質量%超であると機械的強度が小さくなり、成膜しにくくなる。
The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer), and heating to melt the polymer compound, for mixing Method of evaporating organic solvent for mixing after dissolving polymer compound, lithium salt and non-aqueous solvent in organic solvent, mixing polymerizable monomer, lithium salt and non-aqueous solvent, ultraviolet ray, electron beam or molecule in mixture Examples include a method of polymerizing a polymerizable monomer by irradiating a line and the like to obtain a polymer.
Here, the ratio of the nonaqueous solvent in the polymer solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. When the content is less than 10% by mass, the electrical conductivity is low, and when it exceeds 90% by mass, the mechanical strength decreases and film formation becomes difficult.
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
本発明のリチウムイオン二次電池は、前記した構成の、少なくともリチウムと合金化可能な金属と、黒鉛質材料を含む負極材料において、前記金属と黒鉛質材料が、炭素質材料以外の導電性材料で結合および/または被覆された負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に、非水電解質を配するようにしてもよい。 The lithium ion secondary battery of the present invention is a negative electrode material including at least a metal that can be alloyed with lithium and a graphite material having the above-described configuration, wherein the metal and the graphite material are conductive materials other than the carbonaceous material. For example, the negative electrode, the positive electrode, and the non-aqueous electrolyte that are bonded and / or coated with are stacked in the order of the negative electrode, the non-aqueous electrolyte, and the positive electrode, and are housed in the battery exterior material. Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.
次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図1に示すように、少なくとも集電体(負極)7bの表面の一部に、リチウムと合金化可能な金属、黒鉛質材料、および結合材料である金属を含む複合化物が付着した集電体(負極)7bと、リチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して充放電特性を評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In the following examples and comparative examples, as shown in FIG. 1, at least part of the surface of the current collector (negative electrode) 7b is a metal that can be alloyed with lithium, a graphite material, and a metal that is a binding material. A button-type secondary battery for single electrode evaluation composed of a current collector (negative electrode) 7b to which a composite material containing lithium was adhered and a counter electrode (positive electrode) 4 made of a lithium foil was prepared to evaluate charge / discharge characteristics. An actual battery can be produced according to a known method based on the concept of the present invention.
(実施例1)
(負極材料の調製)
黒鉛粉末(中越黒鉛工業所製、平均粒子径15μm)80質量%に、10質量%に相当する珪素粉末(高純度化学研究所製、平均粒子径2μm)と、10質量%に相当する銅粉末[和光純薬工業(株)製、平均粒子径75μm以下]の粉砕生成物とを加え、得られた混合物を乾式粉体複合化装置[「メカノフュージョンシステム」、ホソカワミクロン(株)製]を用いて、回転ドラムの周速20m/s、時間60min、回転ドラムと内部部材との距離5mmの条件で、圧縮力と剪断力を繰返し付与し、メカノケミカル処理して、前記黒鉛粉末表面に珪素粉末と銅粉末が分散して付着した複合化物を製造した。得られた複合化物を1100℃で熱処理して銅粉末を溶融し、銅が溶着により黒鉛粉末の一部と珪素粉末の一部を被覆した負極材料を作製した。
Example 1
(Preparation of negative electrode material)
Graphite powder (manufactured by Chuetsu Graphite Industry Co., Ltd., average particle diameter of 15 μm), silicon powder corresponding to 10% by mass (manufactured by High Purity Chemical Laboratory, average particle diameter of 2 μm), and copper powder corresponding to 10% by mass [Wako Pure Chemical Industries, Ltd., average particle size 75 μm or less] pulverized product was added, and the resulting mixture was used with a dry powder compounding device [“Mechanofusion System”, manufactured by Hosokawa Micron Co., Ltd.] Then, under the conditions of a peripheral speed of the rotating drum of 20 m / s, a time of 60 min, and a distance of 5 mm between the rotating drum and the internal member, a compressive force and a shearing force are repeatedly applied, mechanochemical treatment is performed, and silicon powder is applied to the surface of the graphite powder. And a composite with copper powder dispersed and adhered. The obtained composite was heat treated at 1100 ° C. to melt the copper powder, and a negative electrode material in which a part of the graphite powder and a part of the silicon powder were coated by copper welding was prepared.
(負極合剤の調製)
前記負極材料90質量%と、ポリフッ化ビニリデン10質量%を、N−メチルピロリドンに入れ、ホモミキサーを用いて2000rpmで30min間攪拌混合し、有機溶剤系のペースト状負極合剤を調製した。
(Preparation of negative electrode mixture)
90% by mass of the negative electrode material and 10% by mass of polyvinylidene fluoride were placed in N-methylpyrrolidone, and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based pasty negative electrode mixture.
[作用電極(負極)の作製]
前記負極合剤ペーストを、銅箔(厚み16μm)上に均一な厚さで塗布し、真空中で90℃で溶剤を揮発させて乾燥し、負極合剤層を形成し、その後、ハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体(銅箔)と前記集電体に密着した負極合剤層(厚み60μm、密度1.72g/cm3)からなる作用電極(負極)2を作製した。
[Production of working electrode (negative electrode)]
The negative electrode mixture paste is applied to a copper foil (thickness: 16 μm) with a uniform thickness, and the solvent is evaporated and dried at 90 ° C. in a vacuum to form a negative electrode mixture layer. Pressurized. A copper foil and a negative electrode mixture layer were punched into a cylindrical shape with a diameter of 15.5 mm, and a negative electrode mixture layer (thickness 60 μm, density 1.72 g / cm 3 ) adhered to the current collector (copper foil) and the current collector. A working electrode (negative electrode) 2 was prepared.
[対極(正極)の作製]
リチウム金属箔(厚み0.5mm)を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、前記集電体に密着したリチウム金属箔からなる対極(正極)を作製した。
[Production of counter electrode (positive electrode)]
A lithium metal foil (thickness 0.5 mm) is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm, and a current collector made of nickel net and a counter electrode made of a lithium metal foil in close contact with the current collector (Positive electrode) was produced.
(電解質・セパレータ)
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6を1mol/l となる濃度で溶解させ、非水電解液を調製した。得られた非水電解質をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解質が含浸されたセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained non-aqueous electrolyte was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolyte.
(評価電池の作製)
評価電池として図1に示すボタン型二次電池を作製した。
前記評価電池は、電解液を含浸させたセパレータ5を、集電体7bに密着した作用電極2と、集電体7aに密着した対極4との間に挟んで、積層した。その後、作用電極2の集電体7b側が外装カップ1内に、対極4の集電体7a側が外装缶3内に収容して、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
(Production of evaluation battery)
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the working
前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、初回充放電効率とサイクル特性を計算した。充放電特性(放電容量、初回充放電効率、サイクル特性)の評価結果を表1に示した。 The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., and the initial charge / discharge efficiency and cycle characteristics were calculated. Table 1 shows the evaluation results of charge / discharge characteristics (discharge capacity, initial charge / discharge efficiency, cycle characteristics).
(放電容量、初回充放電効率)
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120min間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式(1)から初回充放電効率を計算した。
初回充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100 (1)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、リチウムイオンが負極材料から離脱する過程を放電とした。
(Discharge capacity, initial charge / discharge efficiency)
After constant current charging of 0.9 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was performed when the circuit voltage reached 0 mV, and charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Thereafter, the operation was stopped for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation (1).
Initial charge / discharge efficiency (%) = (Discharge capacity of the first cycle / Charge capacity of the first cycle)
× 100 (1)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.
(サイクル特性)
引続き、回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた後、120min間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を100回繰返し、得られた放電容量から、次式(2)を用いてサイクル特性を計算した。
サイクル特性(%)=(第100サイクルにおける放電容量/第1サイクルにおけ
る放電容量)×100 (2)
(Cycle characteristics)
Then, after performing constant current charging of 4.0 mA until the circuit voltage reaches 0 mV, switching to constant voltage charging when the circuit voltage reaches 0 mV, and further continuing charging until the current value reaches 20 μA, Paused for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. This charge / discharge was repeated 100 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation (2).
Cycle characteristics (%) = (discharge capacity in the 100th cycle / in the first cycle)
Discharge capacity) x 100 (2)
(実施例2〜3)
実施例1において、複合化物の構成成分の組成を表1に示すように代える以外は、実施例1と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Examples 2-3)
In Example 1, except that the composition of the components of the composite is changed as shown in Table 1, the production of the negative electrode material, the production of the negative electrode mixture, the production of the negative electrode, the production of the evaluation battery, and the battery are the same as in Example 1. The charge / discharge characteristics were evaluated. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(実施例4)
実施例1において、銅粉末を金粉末[Aldrich(株)製、平均粒子径1.5μm]に代える以外は、実施例1と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
Example 4
In Example 1, except that the copper powder is replaced with gold powder [Aldrich Co., Ltd., average particle diameter of 1.5 μm], production of a negative electrode material, production of a negative electrode mixture, production of a negative electrode, as in Example 1, The evaluation battery was produced and the charge / discharge characteristics of the battery were evaluated. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(比較例1)
実施例1において、銅粉末を石油コークの粉砕生成物(平均粒子径5μm)に代える以外は、実施例1と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Comparative Example 1)
In Example 1, except that the copper powder is replaced with the pulverized product of petroleum coke (average particle size 5 μm), the production of the negative electrode material, the production of the negative electrode mixture, the production of the negative electrode, and the production of the evaluation battery are performed in the same manner as in Example 1. In addition, the charge / discharge characteristics of the battery were evaluated. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(比較例2)
実施例1のメカノケミカル処理して黒鉛粉末表面に珪素粉末と銅粉末が分散して付着した複合化物(加熱していない複合化物)、したがって、銅粉末が黒鉛粉末と珪素粉末との結合に与らず、かつ複合化物を被覆していない複合化物を用いて、実施例1と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Comparative Example 2)
A composite (non-heated composite) in which the silicon powder and the copper powder are dispersed and adhered to the surface of the graphite powder after the mechanochemical treatment of Example 1, and thus the copper powder has a role in bonding the graphite powder and the silicon powder. In addition, the composite material not coated with the composite material was used to prepare a negative electrode material, a negative electrode material mixture, a negative electrode material, an evaluation battery, and a battery charge / discharge characteristic as in Example 1. Went. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(実施例5)
実施例1において、まず、黒鉛粉末と珪素粉末を、銅粉末を混合することなく、実施例1と同様にメカノケミカル処理して、一次複合化物を得た。ついで、DC二極スパッタリング装置のアノード側ステージに、前記一次複合化物を配置し、カソード側に99.999%純度の銅ターゲットを配置して、圧力0.5Pa、電圧600V、電流0.5Aの条件でスパッタリングを2hr行った。その後、前記一次複合化物を攪拌した。再び、前記と同じ条件で、スパッタリングを2hr行い、攪拌を行った。その後、同様なスパッタリングを2hr行った。発光分光分析によるスパッタリング後の一次複合化物の銅付着量は10質量%であった。
前記銅を付着させた一次複合化物を1100℃で加熱して銅を溶融し、銅が黒鉛粉末の一部と珪素粉末の一部を被覆した負極材料を作製した。
前記負極材料を用いる以外、実施例1と同様に負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Example 5)
In Example 1, first, graphite powder and silicon powder were mechanochemically treated in the same manner as in Example 1 without mixing copper powder to obtain a primary composite. Next, the primary composite is disposed on the anode side stage of the DC bipolar sputtering apparatus, and a 99.999% purity copper target is disposed on the cathode side. The pressure is 0.5 Pa, the voltage is 600 V, and the current is 0.5 A. Sputtering was performed for 2 hours under the conditions. Thereafter, the primary composite was stirred. Again, sputtering was performed for 2 hr under the same conditions as described above, followed by stirring. Thereafter, similar sputtering was performed for 2 hours. The amount of copper deposited on the primary composite after sputtering by emission spectroscopic analysis was 10% by mass.
The primary composite with the copper adhered was heated at 1100 ° C. to melt the copper, and a negative electrode material in which copper covered a part of the graphite powder and a part of the silicon powder was produced.
Except using the said negative electrode material, preparation of the negative mix, preparation of a negative electrode, preparation of an evaluation battery, and evaluation of the charging / discharging characteristic of a battery were performed like Example 1. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(実施例6)
実施例5において、銅ターゲットを金ターゲットに代える以外は、実施例5と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Example 6)
In Example 5, except that the copper target is replaced with a gold target, the production of the negative electrode material, the production of the negative electrode mixture, the production of the negative electrode, the production of the evaluation battery, and the evaluation of the charge / discharge characteristics of the battery are performed in the same manner as in Example 5. It was. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
(比較例3)
実施例5のスパッタリング後の一次複合化物(加熱していない複合化物)、したがって、銅粉末が黒鉛粉末と珪素粉末との結合に与らず、かつ複合化物を被覆していない複合化物を用いて、実施例1と同様に負極材料の作製、負極合剤の作製、負極の作製、評価電池の作製および電池の充放電特性の評価を行った。前記負極材料の特性と電池の評価結果を表1に示した。
(Comparative Example 3)
Using the primary composite after sputtering of Example 5 (unheated composite), and therefore, the composite in which the copper powder does not participate in the bonding of the graphite powder and the silicon powder and does not cover the composite In the same manner as in Example 1, production of a negative electrode material, production of a negative electrode mixture, production of a negative electrode, production of an evaluation battery, and evaluation of charge / discharge characteristics of the battery were performed. The characteristics of the negative electrode material and the evaluation results of the battery are shown in Table 1.
実施例1〜6と比較例1〜3との対比から、結合剤である金属が複合化物を結合および/または被覆している複合化物(負極材料)を用いる本発明は、結合材料として炭素質材料を用いた場合や、結合剤である金属を溶融して、複合化物を結合および/または被覆しなかった場合に比べて、初回充放電効率とサイクル特性が優れることがわかる。 From the comparison between Examples 1 to 6 and Comparative Examples 1 to 3, the present invention using the composite (negative electrode material) in which the metal as the binder binds and / or covers the composite is carbonaceous as the binding material. It can be seen that the initial charge and discharge efficiency and the cycle characteristics are superior compared to the case where the material is used or the metal which is the binder is melted and the composite is not bonded and / or coated.
本発明のリチウムイオン二次電池用負極材料は、その特性を活かして、小型から大型までの高性能リチウイムイオン二次電池に使用することができる。 The negative electrode material for lithium ion secondary batteries of the present invention can be used for high performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.
1 外装カップ
2 作用電極
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a、7b 集電体
DESCRIPTION OF SYMBOLS 1
Claims (8)
リチウムと合金化可能な金属粉末、黒鉛質材料粉末、および結合材料である、リチウムと合金を形成せず、前記リチウムと合金化可能な金属の融点よりも低い融点を有する金属を含む混合物をメカノケミカル処理した後、メカノケミカル処理生成物を前記結合材料が溶融する温度範囲で加熱して、前記結合材料である金属が、融着により、前記リチウムと合金化可能な金属粉末と前記黒鉛質材料粉末を結合および/または被覆することを特徴とするリチウムイオン二次電池用負極材料の製造方法。 It is a manufacturing method of the negative electrode material for lithium ion secondary batteries which obtains the negative electrode material for lithium ion secondary batteries in any one of Claims 1-4,
A metal powder that can be alloyed with lithium, a graphite material powder , and a binder material that does not form an alloy with lithium and has a lower melting point than that of the metal that can be alloyed with lithium is mechanized. After the chemical treatment, the mechanochemical treatment product is heated in a temperature range in which the binding material melts, and the metal as the binding material is fused with the metal powder that can be alloyed with the lithium and the graphitic material. A method for producing a negative electrode material for a lithium ion secondary battery, wherein the powder is bound and / or coated.
リチウムと合金化可能な金属粉末および黒鉛質材料粉末に、結合材料である、リチウムと合金を形成せず、前記リチウムと合金化可能な金属の融点よりも低い融点を有する金属を気相法で付着した後、付着生成物を、前記結合材料である金属が溶融する温度範囲で加熱して、前記結合材料である金属が、融着により、前記リチウムと合金化可能な金属粉末と前記黒鉛質材料粉末を結合および/または被覆することを特徴とするリチウムイオン二次電池用負極材料の製造方法。 It is a manufacturing method of the negative electrode material for lithium ion secondary batteries which obtains the negative electrode material for lithium ion secondary batteries in any one of Claims 1-4,
Lithium can be alloyed metal powder and graphitic material powder, a binding material, does not form an alloy with lithium, a metal having the lithium can be alloyed metal melting point lower than the melting point in a gas phase method After adhering, the adhering product is heated in a temperature range in which the metal as the bonding material melts, and the metal as the bonding material is fused to the metal powder that can be alloyed with the lithium and the graphite. A method for producing a negative electrode material for a lithium ion secondary battery, comprising bonding and / or coating a material powder .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006088104A JP5156195B2 (en) | 2006-03-28 | 2006-03-28 | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006088104A JP5156195B2 (en) | 2006-03-28 | 2006-03-28 | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007265751A JP2007265751A (en) | 2007-10-11 |
JP5156195B2 true JP5156195B2 (en) | 2013-03-06 |
Family
ID=38638544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006088104A Active JP5156195B2 (en) | 2006-03-28 | 2006-03-28 | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5156195B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5455183B2 (en) * | 2008-08-04 | 2014-03-26 | Necエナジーデバイス株式会社 | Non-aqueous electrolyte secondary battery |
JP4922457B2 (en) | 2008-12-26 | 2012-04-25 | 積水化学工業株式会社 | Method for producing carbon particles for electrodes |
JP5369031B2 (en) * | 2009-08-11 | 2013-12-18 | 積水化学工業株式会社 | Carbon material, electrode material, and negative electrode material for lithium ion secondary battery |
KR102188818B1 (en) * | 2013-03-27 | 2020-12-09 | 미쯔비시 케미컬 주식회사 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same |
JP6901295B2 (en) * | 2017-03-17 | 2021-07-14 | 古河機械金属株式会社 | Manufacturing method of inorganic materials |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4013327B2 (en) * | 1998-05-14 | 2007-11-28 | 宇部興産株式会社 | Non-aqueous secondary battery |
JP4379971B2 (en) * | 1998-09-10 | 2009-12-09 | 三菱化学株式会社 | Electrical energy storage element |
JP4140222B2 (en) * | 2001-04-09 | 2008-08-27 | ソニー株式会社 | Negative electrode, non-aqueous electrolyte secondary battery, and negative electrode manufacturing method |
JP3985263B2 (en) * | 2001-11-09 | 2007-10-03 | ソニー株式会社 | NEGATIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
EP1313158A3 (en) * | 2001-11-20 | 2004-09-08 | Canon Kabushiki Kaisha | Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof |
JP4965790B2 (en) * | 2002-10-28 | 2012-07-04 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JP2004055505A (en) * | 2002-07-18 | 2004-02-19 | Masayuki Yoshio | Lithium secondary battery and negative electrode material therefor |
JP4406789B2 (en) * | 2003-11-20 | 2010-02-03 | 福田金属箔粉工業株式会社 | Negative electrode material for lithium secondary battery and method for producing the same |
JP4986222B2 (en) * | 2006-01-31 | 2012-07-25 | Jfeケミカル株式会社 | Method for producing negative electrode material for lithium ion secondary battery |
-
2006
- 2006-03-28 JP JP2006088104A patent/JP5156195B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007265751A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5348878B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3995050B2 (en) | Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
TWI528620B (en) | Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery using negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP3957692B2 (en) | Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery | |
JP4996830B2 (en) | Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4927384B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6316466B2 (en) | Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5941437B2 (en) | Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6278870B2 (en) | Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same | |
JP6285350B2 (en) | Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery | |
JP4855696B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2011243567A (en) | Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5156195B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4986222B2 (en) | Method for producing negative electrode material for lithium ion secondary battery | |
JP4723830B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4152279B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4996827B2 (en) | Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4785341B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5351990B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5133543B2 (en) | Method for producing mesocarbon microsphere graphitized material | |
JP6322525B2 (en) | Method for producing carbon-coated graphite particles | |
JP5066132B2 (en) | Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery | |
JP2017075091A (en) | Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery | |
JP2007165293A (en) | Lithium-ion secondary battery anode, its manufacturing method, and lithium-ion secondary battery | |
JP2013227189A (en) | Method for manufacturing graphite material and lithium ion secondary battery thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5156195 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |