JP6322525B2 - Method for producing carbon-coated graphite particles - Google Patents

Method for producing carbon-coated graphite particles Download PDF

Info

Publication number
JP6322525B2
JP6322525B2 JP2014183283A JP2014183283A JP6322525B2 JP 6322525 B2 JP6322525 B2 JP 6322525B2 JP 2014183283 A JP2014183283 A JP 2014183283A JP 2014183283 A JP2014183283 A JP 2014183283A JP 6322525 B2 JP6322525 B2 JP 6322525B2
Authority
JP
Japan
Prior art keywords
graphite particles
carbonaceous
negative electrode
mass
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014183283A
Other languages
Japanese (ja)
Other versions
JP2015110507A (en
Inventor
間所 靖
靖 間所
江口 邦彦
邦彦 江口
長山 勝博
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014183283A priority Critical patent/JP6322525B2/en
Publication of JP2015110507A publication Critical patent/JP2015110507A/en
Application granted granted Critical
Publication of JP6322525B2 publication Critical patent/JP6322525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、炭素質被覆黒鉛粒子の製造方法および得られた炭素質被覆黒鉛粒子を含むリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにその負極を用いたリチウムイオン二次電池に関する。   The present invention relates to a method for producing carbonaceous coated graphite particles, a negative electrode material for a lithium ion secondary battery containing the obtained carbonaceous coated graphite particles, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the negative electrode About.

リチウムイオン二次電池は携帯電子機器に広く搭載されており、今後はハイブリッド自動車や電気自動車への利用も期待される。このような状況の中で、リチウムイオン二次電池にはいつそうの高容量、高速充放電特性、サイクル特性が要求されている。
リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素としており、リチウムイオンが放電過程および充電過程で負極と正極との間を移動することで二次電池として作用する。現在、上記負極材料には黒鉛が広く用いられている。黒鉛は天然黒鉛と人造黒鉛に大別される。天然黒鉛は結晶性が高く容量が高いという利点を有するが、鱗片形状ゆえ電極内で粒子が一方向に配向してしまい、高速充放電特性やサイクル特性に劣るという欠点があった。
これを補うために、鱗片形状の黒鉛を球状に加工し、さらに表面被覆処理を施した材料が多く提案されている。
Lithium ion secondary batteries are widely used in portable electronic devices and are expected to be used in hybrid and electric vehicles. Under such circumstances, the lithium ion secondary battery is required to have such high capacity, high-speed charge / discharge characteristics, and cycle characteristics.
The lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components, and acts as a secondary battery by moving lithium ions between the negative electrode and the positive electrode during a discharging process and a charging process. Currently, graphite is widely used as the negative electrode material. Graphite is roughly classified into natural graphite and artificial graphite. Natural graphite has the advantage of high crystallinity and high capacity, but due to the scale shape, the particles are oriented in one direction within the electrode, resulting in inferior high-speed charge / discharge characteristics and cycle characteristics.
In order to compensate for this, many materials have been proposed in which scaly graphite is processed into a spherical shape and surface-treated.

特許文献1では、天然黒鉛をバインダーを用いて略球状に造粒成形して得た黒鉛粒子にバインダーピッチを添加し、加熱混合した後、非酸化性雰囲気下で800〜1400℃で焼成することを特徴とするリチウムイオン二次電池用負極材の製造方法が開示されている。しかしながら炭素被覆量を増やすと粒子が融着し、解砕工程が必要となり、前記解砕面は電解液との反応活性が高く、その結果として充放電効率やサイクル特性の低下を招くという問題があった。また電極作製時のバインダーとしてポリフッ化ビニリデンを用いた場合に、電極の剥離強度が著しく低下するという問題があった。
特許文献2では、黒鉛造粒物への炭素被覆に関して、不活性雰囲気において二段階で焼成する方法が開示されている。本願発明者が検討したところ、焼成条件によっては粒子の融着を生じず解砕工程が不要であり、前述したような解砕にともなう充放電効率やサイクル特性の低下はなかった。しかしながら電極の剥離強度は改善せず、依然低いままであった。
特許文献3では、特定のX線広角回折法によるd002値、タップ密度およびラマンR値を有する炭素材料に機械的処理を施すことによる非水電解液二次電池負極用炭素材の製造方法が記載されている。しかし、この方法は特定の炭素材料を工業的に再現性よく原料として得ることが困難であり、また、本発明者等の実験によると1回の焼成後に機械的処理を施して得られた炭素材を負極材として負極を製造すると、電極剥離強度が不十分であった。
In Patent Document 1, a binder pitch is added to graphite particles obtained by granulating and forming natural graphite into a substantially spherical shape using a binder, heated and mixed, and then fired at 800 to 1400 ° C. in a non-oxidizing atmosphere. A method for producing a negative electrode material for a lithium ion secondary battery is disclosed. However, when the carbon coating amount is increased, the particles are fused, and a pulverization step is required, and the pulverization surface has a high reaction activity with the electrolytic solution, resulting in a decrease in charge / discharge efficiency and cycle characteristics. there were. Further, when polyvinylidene fluoride is used as a binder at the time of electrode preparation, there is a problem that the peel strength of the electrode is remarkably reduced.
Patent Document 2 discloses a method of firing in two stages in an inert atmosphere with respect to carbon coating on a graphite granulated product. As a result of investigation by the inventors of the present application, there is no need for a crushing step due to particle fusion depending on firing conditions, and there was no reduction in charge / discharge efficiency and cycle characteristics associated with crushing as described above. However, the peel strength of the electrode did not improve and remained low.
Patent Document 3 discloses a method for producing a carbon material for a negative electrode of a non-aqueous electrolyte secondary battery by subjecting a carbon material having a d 002 value, a tap density, and a Raman R value by a specific X-ray wide angle diffraction method to mechanical processing. Have been described. However, in this method, it is difficult to obtain a specific carbon material as a raw material industrially with good reproducibility, and according to experiments by the present inventors, carbon obtained by performing mechanical treatment after one firing is obtained. When a negative electrode was produced using the raw material as a negative electrode material, the electrode peel strength was insufficient.

特許第3716818号公報Japanese Patent No. 3716818 特開2004−63321号公報JP 2004-63321 A 特開2012−94505号公報JP 2012-94505 A

本発明は、上記のような状況を鑑みてなされたものである。すなわち、リチウムイオン二次電池用負極材料に用いた場合に、優れた電池特性、および優れた電極剥離強度を得ることが可能な負極材料を提供することを目的とする。また、その負極材料の製造方法と、その負極材料を含有する負極、およびその負極を用いたリチウムイオン二次電池を提供することが目的である。ここで、優れた電池特性とは、高い放電容量、高い初回充放電効率、および優れた高速充放電特性から選択される少なくとも1つである。   The present invention has been made in view of the above situation. That is, it aims at providing the negative electrode material which can obtain the outstanding battery characteristic and the outstanding electrode peeling strength, when it uses for the negative electrode material for lithium ion secondary batteries. Another object is to provide a method for producing the negative electrode material, a negative electrode containing the negative electrode material, and a lithium ion secondary battery using the negative electrode. Here, the excellent battery characteristics are at least one selected from high discharge capacity, high initial charge / discharge efficiency, and excellent high-speed charge / discharge characteristics.

本発明は、以下を提供する。
(1) 平均粒径20〜50μmの球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、上記混合工程で得られた混合物を、酸化性雰囲気中、300℃以上700℃未満の温度範囲で焼成する第1の焼成工程と、上記第1の焼成工程で得られた第1の焼成物を非酸化性雰囲気中、700℃〜2000℃の温度範囲で焼成する第2の焼成工程と、上記第2の焼成工程で得られた第2の焼成物をメカノケミカル処理して、上記黒鉛粒子:70〜91質量%を炭素質:〜30質量%で被覆した炭素質被覆黒鉛粒子を得る圧縮剪断工程とを有する炭素質被覆黒鉛粒子の製造方法。
(2) 上記圧縮剪断工程において、上記黒鉛粒子:85〜91質量%を炭素質:9〜15質量%で被覆した炭素質被覆黒鉛粒子を得る、上記(1)に記載の炭素質被覆黒鉛粒子の製造方法。
(3) 上記第1の焼成工程において、500℃以上700℃未満の温度範囲で3〜50時間焼成する、上記(1)または(2)に記載の炭素質被覆黒鉛粒子の製造方法。
(4) 上記混合工程において、上記黒鉛粒子が平均粒径20〜50μmの球状の黒鉛粒子である、上記(1)〜(3)のいずれか1つに記載の炭素質被覆黒鉛粒子の製造方法。
The present invention provides the following.
(1) A mixing step of mixing spherical or ellipsoidal graphite particles having an average particle diameter of 20 to 50 μm and a carbonaceous precursor, and a mixture obtained in the mixing step, in an oxidizing atmosphere, at 300 ° C. to 700 ° C. A first baking step of baking in a temperature range of less than ° C., and a second baking of the first baking product obtained in the first baking step in a temperature range of 700 ° C. to 2000 ° C. in a non-oxidizing atmosphere. And the second calcined product obtained in the second calcining step are mechanochemically processed to coat the graphite particles: 70 to 91 % by mass with carbonaceous: 9 to 30% by mass. A method for producing carbonaceous coated graphite particles, comprising a compression shearing step for obtaining coated graphite particles.
(2) The carbonaceous coated graphite particles according to (1) above, wherein carbonaceous coated graphite particles obtained by coating the graphite particles: 85 to 91 mass% with carbonaceous materials: 9 to 15 mass% are obtained in the compression shearing step. Manufacturing method.
(3) The method for producing carbonaceous coated graphite particles according to (1) or (2), wherein in the first firing step, firing is performed at a temperature range of 500 ° C. or higher and lower than 700 ° C. for 3 to 50 hours.
(4) The method for producing carbonaceous coated graphite particles according to any one of (1) to (3), wherein in the mixing step, the graphite particles are spherical graphite particles having an average particle diameter of 20 to 50 μm. .

本発明の炭素質被覆黒鉛粒子は、リチウムイオン二次電池用負極材料として良好な放電容量、初回充放電効率および高速充放電特性から選択される少なくとも1つ、ならびに優れた電極剥離強度を有する負極材料である。そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。また、電極剥離強度が高いので製造中の不良品が少なく、製造歩留まりが高くなる。   The carbon-coated graphite particles of the present invention are at least one selected from a good discharge capacity, initial charge / discharge efficiency and fast charge / discharge characteristics as a negative electrode material for a lithium ion secondary battery, and a negative electrode having excellent electrode peel strength Material. Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density of the battery, and is useful for downsizing and higher performance of equipment to be mounted. In addition, since the electrode peel strength is high, there are few defective products during production, and the production yield is increased.

本発明の負極の電池特性を評価するための評価電池の断面図である。It is sectional drawing of the evaluation battery for evaluating the battery characteristic of the negative electrode of this invention. 負極材料の電極剥離強度を測定する測定系を説明する断面図である。It is sectional drawing explaining the measuring system which measures the electrode peeling strength of negative electrode material.

以下、本発明をより具体的に説明する。
1.炭素質被覆黒鉛粒子の原料
〔芯材〕
本発明の炭素質被覆黒鉛粒子の芯材は、球状または楕円体状の黒鉛粒子で、好ましくは球状または楕円体状に加工された黒鉛粒子である。好ましくは平均粒径1〜50μm、より好ましくは平均粒径5〜30μmの範囲である。好ましくは平均アスペクト比5以下、より好ましくは平均アスペクト比2以下である。平均比表面積は10m/g以下であることが好ましく、8m/g以下であることがより好ましい。
黒鉛粒子は、天然黒鉛粒子または人造黒鉛粒子を用いることができる。結晶性が高いなどの理由で天然黒鉛粒子の方が好ましい。市販品の球状または楕円体状に加工された天然黒鉛粒子を用いることもできる。球状または楕円体状以外の形状の天然黒鉛、例えば鱗片状の黒鉛粒子の場合は、天然の鱗片状黒鉛を、機械的外力で造粒球状化して球状黒鉛粒子とすることができる。球状または楕円体状に加工する方法は、例えば、接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、両者の併用などが挙げられる。しかし、造粒助剤を用いずに機械的外力を加えて球状に造粒する方法が最も好ましい。機械的外力とは、機械的に粉砕および造粒することであり、鱗片状黒鉛を造粒して球状化することができる。鱗片状黒鉛の粉砕装置としては、例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、カウンタジェットミル(ホソカワミクロン(株)製)カレントジェット(日清エンジニアリング(株)製)などの粉砕装置が使用可能である。
Hereinafter, the present invention will be described more specifically.
1. Raw material for carbon-coated graphite particles (core material)
The core material of the carbonaceous coated graphite particles of the present invention is a spherical or ellipsoidal graphite particle, preferably a graphite particle processed into a spherical or ellipsoidal shape. The average particle size is preferably 1 to 50 μm, more preferably the average particle size is 5 to 30 μm. The average aspect ratio is preferably 5 or less, and more preferably the average aspect ratio is 2 or less. The average specific surface area is preferably 10 m 2 / g or less, and more preferably 8 m 2 / g or less.
As the graphite particles, natural graphite particles or artificial graphite particles can be used. Natural graphite particles are preferred for reasons such as high crystallinity. Commercially available natural graphite particles processed into a spherical or ellipsoidal shape can also be used. In the case of natural graphite having a shape other than spherical or ellipsoidal shape, for example, flaky graphite particles, natural flaky graphite can be granulated and spheroidized by mechanical external force to obtain spherical graphite particles. The method of processing into a spherical or ellipsoidal shape is, for example, a method of mixing a plurality of scaly graphites in the presence of a granulating aid such as an adhesive or a resin, without using an adhesive for a plurality of scaly graphites. The method of applying mechanical external force, the combined use of both, etc. are mentioned. However, the most preferable method is to apply a mechanical external force to granulate into a spherical shape without using a granulating aid. The mechanical external force is mechanically pulverizing and granulating, and scaly graphite can be granulated and spheroidized. Examples of the pulverized graphite crushing device include a kneader such as a pressure kneader and two rolls, a rotating ball mill, a counter jet mill (manufactured by Hosokawa Micron Corporation), a current jet (manufactured by Nisshin Engineering Co., Ltd.), and the like. The device is ready for use.

上記粉砕品は、その表面が鋭角な部分を有しているが、粉砕品を造粒球状化して使用しても良い。粉砕品の造粒球状化装置としては、例えば、GRANUREX〔フロイント産業(株)製〕、ニューグラマシン〔(株)セイシン企業〕、アグロマスター〔ホソカワミクロン(株)製〕などの造粒機、ハイブリダイゼーション〔(株)奈良機械製作所製〕、メカノマイクロス〔(株)奈良機械製作所製〕、メカノフュージョンシステム〔ホソカワミクロン(株)製〕などのせん断圧縮加工装置が使用可能である。   The pulverized product has an acute-angled surface, but the pulverized product may be granulated and used. Examples of granulated spheroidizing devices for pulverized products include granulators such as GRANUREX (manufactured by Freund Sangyo Co., Ltd.), Newgra Machine (manufactured by Seisin Corporation), Agromaster (manufactured by Hosokawa Micron Co., Ltd.), and hybridization. Shear compression processing devices such as [manufactured by Nara Machinery Co., Ltd.], Mechano Micros [manufactured by Nara Machinery Co., Ltd.], and mechanofusion system [manufactured by Hosokawa Micron Co., Ltd.] can be used.

炭素質被覆黒鉛粒子の芯材として用いる黒鉛粒子のX線回折の測定値であるLcは40nm以上、Laは40nm以上が好ましい。ここで、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laはa軸方向の結晶子の大きさLa(110)である。d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm−1バンドの半値幅が10〜60であるのが好ましい。 Lc, which is a measured value of X-ray diffraction of graphite particles used as a core material of carbonaceous coated graphite particles, is preferably 40 nm or more, and La is preferably 40 nm or more. Here, Lc is the crystallite size Lc (002) in the c-axis direction of the graphite structure, and La is the crystallite size La (110) in the a-axis direction. The ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser with d 002 of 0.337 nm or less It is preferable that the half-value width of 0.06 to 0.30 and 1580 cm −1 band is 10 to 60.

〔炭素質前駆体〕
本発明の球状または楕円体状の黒鉛粒子である芯材には炭素質前駆体を原料として後述する製造方法によって炭素質が被覆される。用いられる炭素質前駆体としては、特に限定されないがタールピッチ類および・または樹脂類が例示される。具体的には、重質油、特にはタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。樹脂類としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が例示される。好ましくは樹脂類を含まず、タールピッチ類のみとするとコスト的に有利である。炭素前駆体は上記に例示したいかなるものを用いてもよいが、コールタールピッチが80質量%以上であるのが特に好ましい。
[Carbonaceous precursor]
The core material which is the spherical or ellipsoidal graphite particles of the present invention is coated with carbonaceous matter by a production method described later using a carbonaceous precursor as a raw material. Although it does not specifically limit as a carbonaceous precursor used, Tar pitches and / or resin are illustrated. Specifically, as heavy oils, particularly tar pitches, coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, Examples include heavy oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resins and furan resins. It is advantageous in terms of cost if only tar pitches are used without containing resins. Any of the carbon precursors exemplified above may be used, but the coal tar pitch is particularly preferably 80% by mass or more.

2.炭素質被覆黒鉛粒子の製造方法
〔混合工程〕
本発明の炭素質被覆黒鉛粒子の製造方法は、まず上述した芯材の黒鉛粒子と炭素質前駆体とを混合する。混合工程は均質に混合できれば特に限定されず公知の混合方法を用いることができる。好ましくは固体の黒鉛粒子と固体または半固体(粘調液状を含む)の炭素質前駆体とを混合する。重質油は、常温で固体である。タール軽油、タール中油等の液体の炭素質前駆体を溶媒として混合した場合には200℃以下程度の温度で予め溶媒を揮発させて次の第1の焼成工程を行うのが好ましい。混合比率は最終製品(炭素質被覆黒鉛粒子)の比率で黒鉛粒子が70〜99質量%、炭素質1〜30質量%の範囲となるように原料を混合する。好ましくは最終製品の混合比で、黒鉛粒子80〜95質量%、炭素質5〜20質量%の範囲である。混合は後述する第1の加熱工程のための昇温工程とともに行っても良い。加熱混合の方法は特に限定されないが、ヒーターや熱媒などの加熱機構を有する二軸式のニーダーなどが例示される。
2. Method for producing carbon-coated graphite particles [mixing step]
In the method for producing carbonaceous coated graphite particles of the present invention, first, the graphite particles of the core material and the carbonaceous precursor are mixed. A mixing process will not be specifically limited if it can mix uniformly, A well-known mixing method can be used. Preferably, solid graphite particles and a solid or semi-solid (including viscous liquid) carbonaceous precursor are mixed. Heavy oil is solid at room temperature. When a liquid carbonaceous precursor such as tar light oil or tar medium oil is mixed as a solvent, it is preferable to volatilize the solvent in advance at a temperature of about 200 ° C. or lower to perform the next first firing step. The mixing ratio is the ratio of the final product (carbonaceous coated graphite particles), and the raw materials are mixed so that the graphite particles are in the range of 70 to 99 mass% and carbonaceous 1 to 30 mass%. Preferably, the mixing ratio of the final product is in the range of 80 to 95% by mass of graphite particles and 5 to 20% by mass of carbonaceous material. You may perform mixing with the temperature rising process for the 1st heating process mentioned later. The heating and mixing method is not particularly limited, and examples thereof include a biaxial kneader having a heating mechanism such as a heater and a heat medium.

〔第1の焼成工程〕
得られた混合物または原料を混合しながら、第1の焼成工程で、酸化性雰囲気中で300℃以上から700℃未満の範囲で焼成する。この温度範囲であると炭素質前駆体が均一に芯材に被覆できる。焼成処理の方法は特に限定されないが、攪拌しながら焼成するのが好ましく、ロータリーキルンを使用すると均質な焼成ができるので好ましい。用いる酸化性雰囲気は限定されないが5〜50体積%の酸素を含む不活性ガス雰囲気が好ましい。この範囲の酸素を含む雰囲気を用いれば酸化反応の程度が適切であるからである。酸化反応により炭素質前駆体同士に結合が生成すると考えられる。不活性ガスとしては、アルゴン、ヘリウム、窒素等が例示できる。空気中での300℃以上から700℃未満の範囲での焼成が好ましい。この温度範囲であると、炭素質前駆体が均一に芯材に被覆できるので好ましい。本発明の製造方法は、第1の焼成工程を低温、酸化性雰囲気で行うことにより炭素質前駆体が黒鉛粒子の芯材に結着して最終製品の炭素材に小さな細孔が増加し、負極材料に用いるとアンカー効果などにより負極材料同士の接着強度が高くなるという効果があると考えられる。第1の焼成工程は、複数段階で熱処理を行っても良い。焼成温度は、300〜550℃の範囲が好ましく、300〜500℃の範囲がさらに好ましい。第1の焼成温度を好ましい温度範囲とすると、炭素質が芯材に均一に被覆出来るので最終製品の炭素質被覆黒鉛粒子を容易に製造できる。第1の焼成時間は5分〜50時間が好ましい。
[First firing step]
While mixing the obtained mixture or raw material, in the first baking step, baking is performed in an oxidizing atmosphere in the range of 300 ° C. or higher and lower than 700 ° C. Within this temperature range, the carbonaceous precursor can be uniformly coated on the core material. The method for the baking treatment is not particularly limited, but baking is preferably performed while stirring, and a rotary kiln is preferable because homogeneous baking can be performed. The oxidizing atmosphere to be used is not limited, but an inert gas atmosphere containing 5 to 50% by volume of oxygen is preferable. This is because the degree of oxidation reaction is appropriate if an atmosphere containing oxygen in this range is used. It is considered that a bond is generated between carbonaceous precursors by an oxidation reaction. Examples of the inert gas include argon, helium, nitrogen, and the like. Firing in the range of 300 ° C. or higher and lower than 700 ° C. in air is preferable. This temperature range is preferred because the carbonaceous precursor can be uniformly coated on the core material. In the production method of the present invention, by performing the first firing step at a low temperature and in an oxidizing atmosphere, the carbonaceous precursor is bound to the core material of the graphite particles and small pores are increased in the carbon material of the final product, When used as a negative electrode material, it is considered that there is an effect that the adhesion strength between the negative electrode materials is increased due to an anchor effect or the like. In the first baking step, heat treatment may be performed in a plurality of stages. The firing temperature is preferably in the range of 300 to 550 ° C, and more preferably in the range of 300 to 500 ° C. When the first firing temperature is within a preferable temperature range, the carbonaceous material can be uniformly coated on the core material, so that the final carbonaceous coated graphite particles can be easily produced. The first baking time is preferably 5 minutes to 50 hours.

〔第2の焼成工程〕
次に第2の焼成工程として、非酸化性雰囲気中で700〜2000℃で焼成する。焼成処理の方法は特に限定されないが、攪拌しながら焼成するのが好ましく、ロータリーキルンを使用すると均質な焼成ができるので好ましい。用いる非酸化性雰囲気は、限定されないがアルゴン、ヘリウム、窒素等が例示できる。窒素気流中での700〜2000℃での焼成が好ましい。第2の焼成工程は、複数段階で熱処理を行っても良い。焼成温度は、900〜1300℃の範囲が好ましく、900〜1200℃の範囲がさらに好ましい。
第2の焼成時間は5分〜30時間が好ましい。
第1または第2の工程のいずれにおいても、昇温時および焼成時の温度プロファイルとしては、直線的な昇温、一定間隔で温度をホールドする段階的な昇温などの様々な形態をとることが可能であり、複数回の加熱処理も可能である。
本発明の炭素質被覆黒鉛粒子の製造方法は、焼成後に粉砕工程を含まないのが好ましい。
また焼成処理の前に、異種の黒鉛材料同士を、付着、埋設、複合して用いても良い。炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素質前駆体材料、有機材料、無機材料を芯材の黒煙粒子に付着、埋設、複合してから第1および・または第2の焼成工程を行ってもよい。
[Second firing step]
Next, as a second baking step, baking is performed at 700 to 2000 ° C. in a non-oxidizing atmosphere. The method for the baking treatment is not particularly limited, but baking is preferably performed while stirring, and a rotary kiln is preferable because homogeneous baking can be performed. The non-oxidizing atmosphere to be used is not limited, and examples thereof include argon, helium, and nitrogen. Firing at 700 to 2000 ° C. in a nitrogen stream is preferred. In the second baking step, heat treatment may be performed in a plurality of stages. The firing temperature is preferably in the range of 900 to 1300 ° C, and more preferably in the range of 900 to 1200 ° C.
The second baking time is preferably 5 minutes to 30 hours.
In either the first or second step, the temperature profile at the time of temperature rise and at the time of firing takes various forms such as linear temperature rise and stepwise temperature rise in which the temperature is held at a constant interval. It is possible to perform heat treatment a plurality of times.
The method for producing carbonaceous coated graphite particles of the present invention preferably does not include a pulverization step after firing.
Further, different types of graphite materials may be attached, embedded, or combined before firing. First and / or second after carbonaceous or graphite fiber, carbonaceous precursor material such as amorphous hard carbon, organic material, inorganic material is attached to, embedded in, or combined with black smoke particles of the core material You may perform a baking process.

本発明者等の実験によると第2の焼成工程として1250℃を超える温度を用いると焼成時間が短くできるので生産効率が上がり、放電容量も大きくなる。しかし、その後の圧縮剪断工程を行わないと負極材とした場合に電極剥離強度が下がる場合がある。次工程で説明する圧縮剪断工程は、黒鉛粒子を被覆する炭素質が高温焼成で劣化した場合でも被覆炭素質を修復できる工程であると本発明者等は考えている。   According to experiments by the present inventors, when a temperature exceeding 1250 ° C. is used as the second baking step, the baking time can be shortened, so that the production efficiency is increased and the discharge capacity is increased. However, if the subsequent compressive shearing step is not performed, the electrode peel strength may be lowered when the negative electrode material is used. The present inventors consider that the compressive shearing step described in the next step is a step in which the coated carbonaceous material can be repaired even when the carbonaceous material covering the graphite particles is deteriorated by high-temperature firing.

〔圧縮剪断工程〕
得られた焼成物に圧縮剪断力を付与する。このときの温度や雰囲気は特に限定されないが、通常は常温、空気中で行う。圧縮剪断力を付与する方法はメカノケミカル処理とも呼ばれ特に限定されないが、このような操作が可能な装置としては、例えば、GRANUREX〔フロイント産業(株)製〕、ニューグラマシン〔(株)セイシン企業製〕、アグロマスター〔ホソカワミクロン(株)製〕などの造粒機、ロールミル、ハイブリダイゼーションシステム〔(株)奈良機械製作所製〕、メカノマイクロシステム〔(株)奈良機械製作所製〕、メカノフュージョシステム〔ホソカワミクロン(株)〕などの圧縮剪断式加工装置などが挙げられる。圧縮剪断力を付与する際、炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素質前駆体材料、有機材料、無機材料、金属材料を加えてもよい。
[Compression shearing process]
A compression shearing force is applied to the obtained fired product. The temperature and atmosphere at this time are not particularly limited, but are usually performed at room temperature and in air. The method for applying the compressive shearing force is also called mechanochemical treatment and is not particularly limited. Examples of devices capable of such operations include GRANUREX (manufactured by Freund Sangyo Co., Ltd.) and Newgra Machine (Seishin Enterprise Co., Ltd.). , Granulators such as Agromaster [made by Hosokawa Micron Co., Ltd.], roll mill, hybridization system [made by Nara Machinery Co., Ltd.], mechano micro system [made by Nara Machinery Co., Ltd.], mechano fusion system Examples include compression shearing processing devices such as Hosokawa Micron Corporation. When applying the compressive shear force, carbonaceous or graphite fibers, carbonaceous precursor materials such as amorphous hard carbon, organic materials, inorganic materials, and metal materials may be added.

剪断力および圧縮力は、一般的には圧縮剪断処理による熱処理生成物の平均粒径の低下率を20%以下に抑える程度であることが好ましい。
圧縮剪断処理の条件は、使用する装置によっても異なり一概に言えないが、例えば、「メカノフュージョシステム」の場合には、回転ドラムと内部部材との周速度差が5〜50m/sec、両者間の距離が1〜100mm、処理時間が3〜90minであることが好ましい。また、「ハイブリダイゼーションシステム」の場合には、固定ドラムと回転ローターとの周速度差が10〜100m/s、処理時間が30s〜10minであることが好ましい。
In general, the shearing force and the compressive force are preferably such that the reduction rate of the average particle diameter of the heat-treated product by the compressive shearing treatment is suppressed to 20% or less.
The conditions of the compression shearing process vary depending on the apparatus used, and cannot be said unconditionally. For example, in the case of “Mechano-Fusion System”, the peripheral speed difference between the rotating drum and the internal member is 5 to 50 m / sec. It is preferable that the distance between them is 1 to 100 mm and the processing time is 3 to 90 min. In the case of the “hybridization system”, it is preferable that the peripheral speed difference between the fixed drum and the rotating rotor is 10 to 100 m / s, and the processing time is 30 s to 10 min.

本発明の圧縮剪断処理は、解砕処理、粉砕処理とは異なり、圧縮力と共に剪断力が加わり平均粒径の低下率を20%以下に抑える程度であることが好ましい。圧縮剪断処理を行うことにより、焼成後に粒子どうしがこすり合わされるため、得られる粒子は、表面の割れや亀裂が修復され、放電容量等の電池特性が向上するとともに、角がとれ丸みを帯びた形状となり、電極密度が向上し、プレス性を高めることができると発明者等は考えている。しかし圧縮剪断処理の機能はこれに限定されない。   Unlike the pulverization process and the pulverization process, the compression shear process of the present invention is preferably such that the shear force is applied together with the compression force to suppress the reduction rate of the average particle diameter to 20% or less. By compressing and shearing, the particles are rubbed together after firing, so the resulting particles are repaired with cracks and cracks on the surface, improving battery characteristics such as discharge capacity, and rounded corners. The inventors believe that the shape, the electrode density can be improved, and the pressability can be improved. However, the function of the compression shearing process is not limited to this.

3.炭素質被覆黒鉛粒子
本発明の最終製品である炭素質被覆黒鉛粒子中の炭素質の割合は、1〜30質量%であり、黒鉛粒子の割合は、70〜99質量%である。炭素質の割合が1質量%未満の場合は、活性な黒鉛エッヂ面を完全に被覆することが難しくなり、初期充放電効率が低下することがある。一方、30質量%を越える場合には、相対的に放電容量の低い炭素材の割合が多すぎて、炭素質被覆黒鉛粒子の放電容量が低下する。また、炭素質を形成するための原料(熱硬化性樹脂類やタールピッチ類)の割合が多く、被覆工程やその後の熱処理工程において、粒子が融着しやすく、最終的に得られる炭素質被覆黒鉛粒子の炭素質層の一部に割れや剥離を生じ、初期充放電効率の低下を生じることがある。炭素質被覆黒鉛粒子中の炭素質の割合は、特に1〜20質量%、さらには1〜15質量%であり、さらには3質量%超〜15質量%であることが好ましい。なお、炭素質の含有量は炭素質被覆黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲以外の粒子を一部含んでいてもよい。
3. Carbonaceous coated graphite particles The carbonaceous proportion in the carbonaceous coated graphite particles, which is the final product of the present invention, is 1 to 30 mass%, and the proportion of the graphite particles is 70 to 99 mass%. When the carbonaceous content is less than 1% by mass, it becomes difficult to completely cover the active graphite edge surface, and the initial charge / discharge efficiency may be lowered. On the other hand, when it exceeds 30% by mass, the proportion of the carbon material having a relatively low discharge capacity is too large, and the discharge capacity of the carbonaceous coated graphite particles is lowered. In addition, the ratio of raw materials (thermosetting resins and tar pitches) for forming carbonaceous matter is large, and the carbonaceous coating is finally obtained in the coating step and the subsequent heat treatment step. Cracking and peeling may occur in a part of the carbonaceous layer of the graphite particles, and the initial charge / discharge efficiency may be reduced. The carbonaceous ratio in the carbon-coated graphite particles is particularly 1 to 20% by mass, further 1 to 15% by mass, and more preferably more than 3% by mass to 15% by mass. In addition, carbon content should just exist in the said range as an average of the whole carbonaceous covering graphite particle. It is not necessary that all the individual particles are within the above range, and some particles outside the above range may be included.

最終製品である炭素質被覆黒鉛粒子の平均粒子径は1〜50μmの範囲であることが好ましく、5〜30μmの範囲であることがさらに好ましい。BET法により測定した比表面積は5.0m/g以下であることが好ましく、3.0m/g以下であることがさらに好ましい。
また、上記炭素質被覆黒鉛粒子が、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が黒鉛のR値より大きく、0.05〜0.80であることが好ましい。
The average particle diameter of the carbon-coated graphite particles as the final product is preferably in the range of 1 to 50 μm, and more preferably in the range of 5 to 30 μm. The specific surface area measured by the BET method is preferably 5.0 m 2 / g or less, and more preferably 3.0 m 2 / g or less.
Further, the carbon-coated graphite particles had a ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. ) Is larger than the R value of graphite and is preferably 0.05 to 0.80.

〔負極〕
本発明はまた、上記の負極材料を含有するリチウムイオン二次電池用負極であり、また該負極を用いるリチウムイオン二次電池である。
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の負極材料に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
より具体的には、まず、本発明の負極材料を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の負極材料と、結合剤を、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。
また、本発明の負極は、本発明の負極材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。
なお、本発明の負極は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを混合しても、内包しても、被覆しても、または積層してもよい。
[Negative electrode]
The present invention is also a negative electrode for a lithium ion secondary battery containing the above negative electrode material, and a lithium ion secondary battery using the negative electrode.
The negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal negative electrode molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the negative electrode material of the present invention. As the binder, those showing chemical and electrochemical stability with respect to the electrolyte are preferable. For example, fluorine-based resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, and resin powders such as polyethylene and polyvinyl alcohol Carboxymethyl cellulose and the like are used. These can also be used together. A binder is normally used in the ratio of about 1-20 mass% in the whole quantity of a negative electrode mixture.
More specifically, first, the negative electrode material of the present invention is adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, a slurry obtained by mixing the negative electrode material of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, etc., using a known stirrer, mixer, kneader, kneader, etc. Use to stir and mix to prepare paste. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 100 μm.
The negative electrode of the present invention can also be produced by dry-mixing the negative electrode material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.
It should be noted that the negative electrode of the present invention can be included even if different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, and the like are mixed within a range that does not impair the object of the present invention. Alternatively, it may be coated or laminated.

〔正極〕
本発明のリチウム二次電池に用いる正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MMo8−Y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物は、V、V13、V、Vで示されるものである。
リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM 1−X (式中M、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM 1−Y (式中M、Mは少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
[Positive electrode]
The positive electrode used in the lithium secondary battery of the present invention is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / release a sufficient amount of lithium, and lithium such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides, and lithium compounds thereof. containing compound, the general formula M X Mo 6 S 8-Y (M in the formula is a transition metal element of at least one, X is 0 ≦ X ≦ 4, Y is a number in the range from 0 ≦ Y ≦ 1) Chevrel phase compounds, activated carbon, activated carbon fibers and the like. Vanadium oxide is one represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in a range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.
The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.

[正極の製造]
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
[Production of positive electrode]
The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.
The shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.
Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

〔非水電解質〕
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl、LiSiFなどのリチウム塩を用いることができる。酸化安定性の点からは、特に、LiPF、LiBFが好ましい。
電解液中の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜3.0mol/Lがより好ましい。
非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2) 2, LiN ( HCF 2 CF 2 CH 2 OSO 2) 2, LiN ((CF 3) 2 CHOSO 2) 2, LiB [{C 6 H 3 (CF 3) 2}] 4, LiAlCl 4, Lithium salts such as LiSiF 6 can be used. From the viewpoint of oxidation stability, LiPF 6 and LiBF 4 are particularly preferable.
The electrolyte salt concentration in the electrolytic solution is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3.0 mol / L.
The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .
As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリクスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。
前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、該可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜2.0mol/Lがより好ましい。
高分子固体電解質の作製方法は特に限定されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。
ここで、前記固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。
When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.
The polymer solid electrolyte or polymer gel electrolyte is mixed with a plasticizer, and as the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the nonaqueous electrolytic solution that is a plasticizer is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 2.0 mol / L.
The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) are dissolved in, and an organic solvent for mixing is evaporated, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, and the mixture is mixed Examples thereof include a method of polymerizing a polymerizable monomer by irradiating an ultraviolet ray, an electron beam, a molecular beam or the like to obtain a polymer.
Here, the ratio of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

〔セパレータ〕
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。
[Separator]
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

〔リチウムイオン二次電池の製造〕
本発明のリチウムイオン二次電池は、上述した構成の負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
[Manufacture of lithium ion secondary batteries]
The lithium ion secondary battery of the present invention is configured by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte having the above-described configuration in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material. The Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

本明細書における各物性は以下の方法により測定する。
1)平均粒子径(μm):レーザー回折式粒度分布計により測定した粒度分布の累積度数が、体積百分率で50%となる粒子径とした。
2)平均アスペクト比:被測定粒子の300倍の走査型電子顕微鏡をイメージアナライザー(東洋紡績(株)製)を用いて画像処理し、任意の50個の黒鉛粒子のアスペクト比(長軸方向の長さとそれに直交する短軸方向の長さの比)の平均値とした。
Each physical property in this specification is measured by the following method.
1) Average particle size (μm): The particle size at which the cumulative frequency of the particle size distribution measured with a laser diffraction particle size distribution meter is 50% by volume percentage.
2) Average aspect ratio: An image analyzer (manufactured by Toyobo Co., Ltd.) was used for image processing of a scanning electron microscope 300 times the particle to be measured, and the aspect ratio (major axis direction) of any 50 graphite particles The average value of the ratio of the length to the length in the minor axis direction perpendicular to the length).

3)電極剥離強度試験:用いる試験片を図2に示す。負極合剤ペーストを作製し、負極材15をプレスしていない状態で活物質側の一部を両面テープ12でアルミ板10に貼り付け作製した。試験片は、引張試験機(島津製作所製オートグラフ)を用いて負極材15の一部をつかみ180°方向(矢印方向17)に引張試験を行い、平均引張試験応力を剥離強度とした。
4)炭素質の割合(%):炭素質前駆体の原料(複数種の場合を含む)単体に炭素質被覆黒鉛粒子と同一の熱履歴を付与して、炭素質単体の炭化物を調製し、原料の残炭率を求めた。得られた残炭率から換算して炭素質被覆黒鉛粒子に占める炭素質の割合を算出した。
3) Electrode peel strength test: The test piece used is shown in FIG. A negative electrode mixture paste was prepared, and a part of the active material side was bonded to the aluminum plate 10 with a double-sided tape 12 in a state where the negative electrode material 15 was not pressed. The test piece was gripped by a part of the negative electrode material 15 using a tensile tester (manufactured by Shimadzu Corporation) and subjected to a tensile test in the 180 ° direction (arrow direction 17), and the average tensile test stress was defined as the peel strength.
4) Carbonaceous ratio (%): A carbonaceous precursor raw material (including a plurality of types) is provided with the same thermal history as that of carbonaceous coated graphite particles to prepare a carbonaceous carbide. The residual coal rate of the raw material was obtained. The ratio of carbonaceous matter in the carbonaceous coated graphite particles was calculated in terms of the residual carbon ratio obtained.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図1に示すように、少なくとも表面の一部に本発明の負極材料2が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following examples and comparative examples, as shown in FIG. 1, from a current collector (negative electrode) 7b having a negative electrode material 2 of the present invention attached to at least a part of the surface and a counter electrode (positive electrode) 4 made of lithium foil. A button-type secondary battery for single electrode evaluation was prepared and evaluated. An actual battery can be produced according to a known method based on the concept of the present invention.

(実施例1)
[負極材料の作製]
球状に加工された天然黒鉛粒子(平均粒子径20μm、平均アスペクト比1.4)100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が30質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。得られた混合物を、ロータリーキルン(表でRKと略称する)を用い、空気5L/min流通下350℃で3時間の第1の焼成工程の熱処理を行った。次いでこの熱処理物を、管状炉(表で管状と略称する)を用い窒素2L/min流通下1000℃で3時間の第2の焼成工程の熱処理を行なった。
第2の焼成工程の熱処理品に乾式粉体複合化装置(メカノフュージョンシステム、ホソカワミクロン(株)製)を用いて、回転ドラムの周速20m/秒、処理時間10分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を付与し、メカノケミカル処理を行うことで最終製品を得た。
[負極合剤ペーストの作製]
前記負極材料95質量%と、ポリフッ化ビニリデン5質量%をN−メチルピロリドン中に入れ、ホモミキサーを用いて2000rpmで30分間攪拌混合し、有機溶剤系負極合剤を調製した。
Example 1
[Production of negative electrode material]
For 100 parts by mass of spherical natural graphite particles (average particle size 20 μm, average aspect ratio 1.4), a tar-in-oil solution of coal tar pitch (residual carbon ratio 50%) has a solid content ratio of 30 mass. And heated to 150 ° C. with a biaxial kneader and mixed for 60 minutes. The obtained mixture was subjected to heat treatment in the first firing step for 3 hours at 350 ° C. under a flow of 5 L / min using a rotary kiln (abbreviated as RK in the table). Next, this heat-treated product was subjected to a heat treatment in a second firing step for 3 hours at 1000 ° C. under a flow of nitrogen 2 L / min using a tubular furnace (abbreviated as tubular in the table).
Using a dry powder compounding device (Mechano-Fusion System, manufactured by Hosokawa Micron Co., Ltd.) for the heat treatment product of the second firing step, the peripheral speed of the rotating drum is 20 m / second, the processing time is 10 minutes, the rotating drum and the internal member The final product was obtained by applying a compressive force and a shearing force under the condition of 5 mm distance and performing mechanochemical treatment.
[Preparation of negative electrode mixture paste]
The negative electrode material (95% by mass) and polyvinylidene fluoride (5% by mass) were placed in N-methylpyrrolidone and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture.

[作用電極(負極)の作製]
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で溶剤を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に密着した負極合剤とからなる作用電極(負極)を作製した。
[対極(正極)の作製]
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、この集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
[電解液、セパレータ]
エチレンカーボネート50wt%−プロピレンカーボネート50wt%の混合溶剤に、LiPFを1mol/kgとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
[Production of working electrode (negative electrode)]
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, the solvent was volatilized in a vacuum at 90 ° C., dried, and the negative electrode mixture layer was pressed by a hand press. The copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm to prepare a working electrode (negative electrode) composed of a current collector and a negative electrode mixture adhered to the current collector.
[Production of counter electrode (positive electrode)]
A lithium metal foil is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm. A current collector made of nickel net and a counter electrode made of a lithium metal foil (thickness 0.5 mm) in close contact with the current collector ( Positive electrode) was prepared.
[Electrolyte, separator]
LiPF 6 was dissolved at a concentration of 1 mol / kg in a mixed solvent of ethylene carbonate 50 wt% and propylene carbonate 50 wt% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

[評価電池の作製]
評価電池として図1に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極材料2が付着した銅箔からなる集電体7bが積層された電池系である。
前記評価電池は電解液を含浸させたセパレータ5を集電体7bと、集電体7aに密着した対極4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。充放電特性は以下の方法により測定した。結果を表1および表2に示した。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. A copper foil in which a current collector 7a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolyte, and a negative electrode material 2 are attached in that order from the inner surface of the outer can 3 This is a battery system in which current collectors 7b made of
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was laminated between the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the current collector 7b was placed in the outer cup 1 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and further, an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3, and both peripheral portions are caulked and sealed. And produced. The charge / discharge characteristics were measured by the following method. The results are shown in Tables 1 and 2.

[充放電試験]
回路電圧が1mVに達するまで0.9mAの定電流充電を行った後、回路電圧が1mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるその間の通電量から充電容量(単位:mAh/g)を求めた。その後、10分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。次いで充電電流を1C、放電電流を2Cとして、第1サイクルと同様に充放電を行った。ここで、Cは電池の容量を基準にした相対的な電流の単位であり、1Cは電池の容量(mAh)を1時間(hr)で充電または放電する電流の量を表す。1C、2Cの電流値は、第1サイクルの放電容量と負極の活物質質量から計算した。
[Charge / discharge test]
After constant current charging of 0.9 mA until the circuit voltage reaches 1 mV, switching to constant voltage charging is performed when the circuit voltage reaches 1 mV, and further, the charging capacity (unit: : MAh / g). Then, it rested for 10 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of electricity supplied during this period. This was the first cycle. Next, charging and discharging were performed in the same manner as in the first cycle, with the charging current being 1C and the discharging current being 2C. Here, C is a unit of relative current based on the battery capacity, and 1C represents the amount of current that charges or discharges the battery capacity (mAh) in one hour (hr). The current values of 1C and 2C were calculated from the discharge capacity of the first cycle and the active material mass of the negative electrode.

初回充放電効率は次式(1)から計算した。
初回充放電効率(%)=100×((第1サイクルの充電容量―第1サイクルの放電容量)/第1サイクルの放電容量)・・・(1)
また、1C充電率は次式(2)から計算した。
1C充電率(%)=100×(1C電流値におけるCC(constant current)部分の充電容量/第1サイクルの放電容量)・・・(2)
また、2C放電率は次式(3)から計算した。
2C放電率(%)=100×(2C電流値における放電容量/第1サイクルの放電容量)・・・(3)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料からリチウムイオンが脱離する過程を放電とした。
The initial charge / discharge efficiency was calculated from the following equation (1).
Initial charge / discharge efficiency (%) = 100 × ((charge capacity of first cycle−discharge capacity of first cycle) / discharge capacity of first cycle) (1)
Moreover, 1C charge rate was computed from following Formula (2).
1C charge rate (%) = 100 × (charge capacity of CC (constant current) portion at 1C current value / discharge capacity of first cycle) (2)
The 2C discharge rate was calculated from the following equation (3).
2C discharge rate (%) = 100 × (discharge capacity at 2C current value / discharge capacity of first cycle) (3)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.

(例2〜4、実施例5)
実施例1において、炭素質前駆体含有量を表に示すように変化させた以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(実施例6、7)
実施例1において、第2の焼成工程の温度を表に示すように変化させた以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(例8)
実施例1において、第1の焼成工程の温度を表に示すように変化させた以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(例9、実施例10)
実施例1において、原材料の天然黒鉛の平均径を表に示すように変化させた以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(Examples 2 to 4, Example 5)
In Example 1, carbonaceous coated graphite particles were produced and evaluated in the same manner as in Example 1 except that the carbonaceous precursor content was changed as shown in the table.
(Examples 6 and 7)
In Example 1, carbon-coated graphite particles were produced and evaluated in the same manner as in Example 1 except that the temperature of the second firing step was changed as shown in the table.
(Example 8)
In Example 1, carbon-coated graphite particles were produced and evaluated in the same manner as in Example 1 except that the temperature of the first firing step was changed as shown in the table.
(Example 9, Example 10)
In Example 1, carbon-coated graphite particles were produced and evaluated in the same manner as in Example 1 except that the average diameter of the raw material natural graphite was changed as shown in the table.

(比較例1)
実施例1において、第2の焼成工程後に圧縮剪断工程を行わなかった以外は、実施例1と同様に負極材料の作製、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を表1に示した。圧縮剪断工程を実施していない比較例1は実施例1に比べて電極剥離強度が劣る結果であった。
(Comparative Example 1)
In Example 1, except that the compression shearing step was not performed after the second firing step, the production of the negative electrode material, the preparation of the negative electrode mixture, the production of the negative electrode, the production of the lithium ion secondary battery, and Characterization was performed. The evaluation results are shown in Table 1. In Comparative Example 1 in which the compression shearing process was not performed, the electrode peel strength was inferior to that in Example 1.

(比較例2)
比較例1において、炭素質前駆体含有量を表に示すように変化させた以外は、比較例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(比較例3)
球状に加工された天然黒鉛粒子(粒子平均粒子径20μm、平均アスペクト比1.4)100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が30質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。得られた混合物を、ロータリーキルンを用い、窒素5L/min流通下1000℃で3時間の焼成工程の熱処理を行った。該熱処理品を最終製品である炭素質被覆黒鉛粒子として、評価した。評価結果を表1に示した。
(比較例4)
比較例3において、炭素質前駆体含有量を表に示すように変化させた以外は、比較例3と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。評価結果を表1に示した。
(Comparative Example 2)
In Comparative Example 1, carbonaceous coated graphite particles were produced and evaluated in the same manner as in Comparative Example 1 except that the carbonaceous precursor content was changed as shown in the table.
(Comparative Example 3)
An oil-in-tar solution with a coal tar pitch (residual carbon ratio of 50%) is added to 100 parts by mass of spherical natural graphite particles (particle average particle diameter of 20 μm, average aspect ratio of 1.4) with a solid content ratio of 30. It added so that it might become a mass part, and it heated to 150 degreeC with the biaxial kneader, and mixed for 60 minutes. The obtained mixture was subjected to a heat treatment in a firing process for 3 hours at 1000 ° C. under a flow of nitrogen 5 L / min using a rotary kiln. The heat-treated product was evaluated as carbon-coated graphite particles as the final product. The evaluation results are shown in Table 1.
(Comparative Example 4)
In Comparative Example 3, carbonaceous coated graphite particles were produced and evaluated in the same manner as in Comparative Example 3 except that the carbonaceous precursor content was changed as shown in the table. The evaluation results are shown in Table 1.

(比較例5)
球状に加工された天然黒鉛粒子(粒子平均粒子径20μm、平均アスペクト比1.4)100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が13質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。
得られた混合物を、ロータリーキルンを用い、窒素5L/min流通下1000℃で3時間の焼成工程の熱処理を行った。
さらに乾式粉体複合化装置(メカノフュージョンシステム、ホソカワミクロン(株)製)を用いて、回転ドラムの周速20m/秒、処理時間10分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰り返し付与し、メカノケミカル処理を行うことで最終製品を得た。評価結果を表1に示した。
(Comparative Example 5)
An oil-in-tar solution of coal tar pitch (residual carbon ratio: 50%) is added to 100 parts by mass of spherically processed natural graphite particles (average particle diameter of 20 μm, average aspect ratio of 1.4). It added so that it might become a mass part, and it heated to 150 degreeC with the biaxial kneader, and mixed for 60 minutes.
The obtained mixture was subjected to a heat treatment in a firing process for 3 hours at 1000 ° C. under a flow of nitrogen 5 L / min using a rotary kiln.
Furthermore, using a dry powder compounding device (Mechano-Fusion System, manufactured by Hosokawa Micron Co., Ltd.), compression is performed under the conditions of a peripheral speed of the rotating drum of 20 m / second, a processing time of 10 minutes, and a distance of 5 mm between the rotating drum and the internal member. The final product was obtained by applying force and shear force repeatedly and performing mechanochemical treatment. The evaluation results are shown in Table 1.

(比較例6)
球状に加工された天然黒鉛粒子(粒子平均粒子径20μm、平均アスペクト比1.4)100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が30質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。
得られた混合物を、ロータリーキルンを用い、窒素5L/min流通下1300℃で3時間の焼成工程の熱処理を行った。
該熱処理品には塊が発生したので、平均粒子径が20μmになるように解砕した。該解砕品を最終製品である炭素質被覆黒鉛粒子として、評価した。評価結果を表1に示した。
(比較例7)
球状に加工された天然黒鉛粒子(粒子平均粒子径20μm、平均アスペクト比1.4)100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が57質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。
得られた混合物を、ロータリーキルンを用い、窒素5L/min流通下1300℃で3時間の焼成工程の熱処理を行った。
該熱処理品には塊が発生したので、平均粒子径が20μmになるように解砕した。
該解砕品に乾式粉体複合化装置(メカノフュージョンシステム、ホソカワミクロン(株)製)を用いて、回転ドラムの周速20m/秒、処理時間10分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を付与し、メカノケミカル処理を行うことで最終製品を得た。評価結果を表1に示した。
(Comparative Example 6)
An oil-in-tar solution with a coal tar pitch (residual carbon ratio of 50%) is added to 100 parts by mass of spherical natural graphite particles (particle average particle diameter of 20 μm, average aspect ratio of 1.4) with a solid content ratio of 30. It added so that it might become a mass part, and it heated to 150 degreeC with the biaxial kneader, and mixed for 60 minutes.
The obtained mixture was subjected to heat treatment in a firing step for 3 hours at 1300 ° C. under a flow of nitrogen of 5 L / min using a rotary kiln.
Since the lump was generated in the heat-treated product, it was crushed so that the average particle size became 20 μm. The crushed product was evaluated as carbon-coated graphite particles as the final product. The evaluation results are shown in Table 1.
(Comparative Example 7)
An oil-in-tar solution with a coal tar pitch (residual carbon ratio of 50%) is added to 100 parts by mass of spherical natural graphite particles (average particle size 20 μm, average aspect ratio 1.4), and the solid content ratio is 57. It added so that it might become a mass part, and it heated to 150 degreeC with the biaxial kneader, and mixed for 60 minutes.
The obtained mixture was subjected to heat treatment in a firing step for 3 hours at 1300 ° C. under a flow of nitrogen of 5 L / min using a rotary kiln.
Since the lump was generated in the heat-treated product, it was crushed so that the average particle size became 20 μm.
Using a dry powder compounding device (Mechano-Fusion System, manufactured by Hosokawa Micron Co., Ltd.) for the pulverized product, a rotating drum has a peripheral speed of 20 m / second, a processing time of 10 minutes, and a distance between the rotating drum and an internal member of 5 mm. The final product was obtained by applying a compressive force and a shearing force and performing a mechanochemical treatment. The evaluation results are shown in Table 1.

Figure 0006322525
Figure 0006322525

[実施例、比較例の評価]
実施例1〜7、10は、放電容量、初回充放電効率、および高速充放電特性のいずれにも優れバランスの良い電池特性を示す。球状化天然黒鉛粒子の平均径が20〜25μmで、炭素質含有量が〜15質量%である実施例1、5〜7および10、例2〜4および8に比べて、電極剥離強度が高い。比較例1,2では非酸化性雰囲気で2回の焼成工程を行っているが圧縮剪断工程がないので電極剥離強度が低い。比較例3〜7では、第1の焼成工程のみで高温焼成をしているので圧縮剪断工程があってもなくても電極剥離強度が低い。
[Evaluation of Examples and Comparative Examples]
Examples 1 , 5 to 7 and 10 exhibit excellent and well-balanced battery characteristics in all of discharge capacity, initial charge / discharge efficiency, and high-speed charge / discharge characteristics. Examples 1, 5 to 7 and 10 in which the average diameter of the spheroidized natural graphite particles is 20 to 25 μm and the carbonaceous content is 9 to 15% by mass are compared with Examples 2 to 4 and 8 in electrode peel strength. Is expensive. In Comparative Examples 1 and 2, the firing process is performed twice in a non-oxidizing atmosphere, but since there is no compression shearing process, the electrode peel strength is low. In Comparative Examples 3 to 7, since the high temperature firing is performed only in the first firing step, the electrode peel strength is low whether or not there is a compression shearing step.

本発明の炭素質被覆黒鉛粒子からなる負極材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池の負極に使用することができる。   The negative electrode material comprising the carbonaceous coated graphite particles of the present invention can be used for the negative electrode of high performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a 集電体
10 アルミ板
12 両面テープ
15 負極材
17 矢印方向
DESCRIPTION OF SYMBOLS 1 Exterior cup 3 Exterior can 4 Counter electrode 5 Electrolyte solution impregnation separator 6 Insulation gasket 7a Current collector 10 Aluminum plate 12 Double-sided tape 15 Negative electrode material 17 Arrow direction

Claims (4)

平均粒径20〜50μmの球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、
前記混合工程で得られた混合物を、酸化性雰囲気中、300℃以上700℃未満の温度範囲で焼成する第1の焼成工程と、
前記第1の焼成工程で得られた第1の焼成物を非酸化性雰囲気中、700℃〜2000℃の温度範囲で焼成する第2の焼成工程と、
前記第2の焼成工程で得られた第2の焼成物をメカノケミカル処理して、前記黒鉛粒子:70〜91質量%を炭素質:〜30質量%で被覆した炭素質被覆黒鉛粒子を得る圧縮剪断工程と
を有する炭素質被覆黒鉛粒子の製造方法。
A mixing step of mixing spherical or ellipsoidal graphite particles having an average particle diameter of 20 to 50 μm and a carbonaceous precursor;
A first baking step of baking the mixture obtained in the mixing step in an oxidizing atmosphere in a temperature range of 300 ° C. or higher and lower than 700 ° C .;
A second firing step of firing the first fired product obtained in the first firing step in a non-oxidizing atmosphere in a temperature range of 700 ° C. to 2000 ° C .;
The second calcined product obtained in the second calcining step is subjected to mechanochemical treatment to obtain carbonaceous coated graphite particles in which the graphite particles: 70 to 91 % by mass are coated with carbonaceous: 9 to 30% by mass. The manufacturing method of the carbonaceous covering graphite particle which has a compression shearing process.
前記圧縮剪断工程において、前記黒鉛粒子:85〜91質量%を炭素質:9〜15質量%で被覆した炭素質被覆黒鉛粒子を得る、請求項1に記載の炭素質被覆黒鉛粒子の製造方法。  The method for producing carbonaceous coated graphite particles according to claim 1, wherein in the compression shearing step, carbonaceous coated graphite particles obtained by coating the graphite particles: 85 to 91 mass% with carbonaceous materials: 9 to 15 mass% are obtained. 前記第1の焼成工程において、500℃以上700℃未満の温度範囲で3〜50時間焼成する、請求項1または2に記載の炭素質被覆黒鉛粒子の製造方法。  The method for producing carbonaceous coated graphite particles according to claim 1 or 2, wherein in the first firing step, firing is performed at a temperature range of 500 ° C or higher and lower than 700 ° C for 3 to 50 hours. 前記混合工程において、前記黒鉛粒子が平均粒径20〜50μmの球状の黒鉛粒子である、請求項1〜3のいずれか1項に記載の炭素質被覆黒鉛粒子の製造方法。  The method for producing carbonaceous coated graphite particles according to any one of claims 1 to 3, wherein in the mixing step, the graphite particles are spherical graphite particles having an average particle diameter of 20 to 50 µm.
JP2014183283A 2013-11-07 2014-09-09 Method for producing carbon-coated graphite particles Active JP6322525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183283A JP6322525B2 (en) 2013-11-07 2014-09-09 Method for producing carbon-coated graphite particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013231351 2013-11-07
JP2013231351 2013-11-07
JP2014183283A JP6322525B2 (en) 2013-11-07 2014-09-09 Method for producing carbon-coated graphite particles

Publications (2)

Publication Number Publication Date
JP2015110507A JP2015110507A (en) 2015-06-18
JP6322525B2 true JP6322525B2 (en) 2018-05-09

Family

ID=53525734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183283A Active JP6322525B2 (en) 2013-11-07 2014-09-09 Method for producing carbon-coated graphite particles

Country Status (1)

Country Link
JP (1) JP6322525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358200B (en) * 2018-02-12 2020-05-22 黑龙江省牡丹江农垦奥宇石墨深加工有限公司 Integrated spherical graphite processing device and processing method thereof
CN112670459B (en) * 2019-12-09 2022-11-08 宁波杉杉新材料科技有限公司 Graphite negative electrode material and preparation and application thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803866B2 (en) * 1995-11-14 2006-08-02 大阪瓦斯株式会社 Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3054379B2 (en) * 1997-04-18 2000-06-19 日本カーボン株式会社 Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
JP3945928B2 (en) * 1998-11-27 2007-07-18 三菱化学株式会社 Method for producing carbon material for negative electrode of lithium ion secondary battery
JP5373388B2 (en) * 2001-08-10 2013-12-18 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP4672955B2 (en) * 2001-08-10 2011-04-20 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP2003346796A (en) * 2002-05-23 2003-12-05 Hitachi Ltd Compound carbon material and lithium ion secondary battery
JP4252846B2 (en) * 2002-07-31 2009-04-08 パナソニック株式会社 Lithium secondary battery
JP2004067494A (en) * 2002-08-09 2004-03-04 Sumitomo Metal Ind Ltd Method for manufacturing graphite powder
JP2004185989A (en) * 2002-12-03 2004-07-02 Hitachi Chem Co Ltd Graphite particle for electrode, its manufacturing method, negative electrode for nonaqueous secondary battery using the same, and nonaqueous electrolyte secondary battery
JP2007076929A (en) * 2005-09-12 2007-03-29 Jfe Chemical Corp Manufacturing method for graphitized powder of mesocarbon microspheres
JP5343347B2 (en) * 2007-11-08 2013-11-13 三菱化学株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
TWI458676B (en) * 2008-03-31 2014-11-01 派諾得公司 Anode powders for batteries
JP5394721B2 (en) * 2008-12-19 2014-01-22 Jfeケミカル株式会社 Lithium ion secondary battery, negative electrode material and negative electrode therefor
KR102020753B1 (en) * 2010-10-29 2019-09-11 미쯔비시 케미컬 주식회사 Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
WO2013125710A1 (en) * 2012-02-24 2013-08-29 三菱化学株式会社 Multilayer-structure carbon material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries using same, and nonaqueous secondary battery
JP6097706B2 (en) * 2013-01-29 2017-03-15 Jfeケミカル株式会社 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6278870B2 (en) * 2013-11-07 2018-02-14 Jfeケミカル株式会社 Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same

Also Published As

Publication number Publication date
JP2015110507A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6412520B2 (en) Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6585238B2 (en) Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6858691B2 (en) Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6618848B2 (en) Lithium ion secondary battery
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP7123831B2 (en) Method for producing carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2013227189A (en) Method for manufacturing graphite material and lithium ion secondary battery thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150