JP5133543B2 - Method for producing mesocarbon microsphere graphitized material - Google Patents

Method for producing mesocarbon microsphere graphitized material Download PDF

Info

Publication number
JP5133543B2
JP5133543B2 JP2006246420A JP2006246420A JP5133543B2 JP 5133543 B2 JP5133543 B2 JP 5133543B2 JP 2006246420 A JP2006246420 A JP 2006246420A JP 2006246420 A JP2006246420 A JP 2006246420A JP 5133543 B2 JP5133543 B2 JP 5133543B2
Authority
JP
Japan
Prior art keywords
mesocarbon
negative electrode
graphitized
graphitized product
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006246420A
Other languages
Japanese (ja)
Other versions
JP2008069016A (en
Inventor
邦彦 江口
則夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2006246420A priority Critical patent/JP5133543B2/en
Publication of JP2008069016A publication Critical patent/JP2008069016A/en
Application granted granted Critical
Publication of JP5133543B2 publication Critical patent/JP5133543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、メソカーボン小球体黒鉛化物およびその製造方法、該メソカーボン小球体黒鉛化物からなるリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池に関する。   The present invention relates to a mesocarbon microsphere graphitized product and a method for producing the same, a negative electrode material for a lithium ion secondary battery, the negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery comprising the mesocarbon microsphere graphitized product.

近年、電子機器の小型化あるいは高性能化に伴い、電池のエネルギー密度を高める要望がますます高まっている。特に、リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能なので、高いエネルギー密度が達成されるため注目されている。リチウムイオン二次電池は、負極、正極および電解液(非水電解質)を主たる構成要素とする。   In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for increasing the energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they can achieve higher voltages than other secondary batteries, and thus achieve high energy density. A lithium ion secondary battery includes a negative electrode, a positive electrode, and an electrolytic solution (nonaqueous electrolyte) as main components.

負極は、一般に、銅箔からなる集電材とバインダーによって結着された負極材料(活物質)から構成される。通常、負極材料には炭素材料が使用される。このような炭素材料として、例えば特許文献1に記載されているように、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛が汎用的に用いられている。   The negative electrode is generally composed of a current collector made of copper foil and a negative electrode material (active material) bound by a binder. Usually, a carbon material is used for the negative electrode material. As such a carbon material, for example, as described in Patent Document 1, graphite having excellent charge / discharge characteristics and high discharge capacity and potential flatness is generally used.

最近の携帯用電子機器に搭載されるリチウムイオン二次電池には、優れた急速充電性、急速放電性が要求されるとともに、充放電を繰り返しても初期の放電容量が劣化しないこと(サイクル特性)が求められている。   Lithium ion secondary batteries installed in recent portable electronic devices are required to have excellent rapid chargeability and rapid discharge characteristics, and the initial discharge capacity does not deteriorate even after repeated charge and discharge (cycle characteristics) ) Is required.

従来の黒鉛系負極材料の代表例を挙げると、特許文献2には、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなり、粒子に細孔を有する黒鉛粒子が開示されている。また、特許文献3には、直径方向に垂直な方向に黒鉛のベーサル面が層状に配列したブルックス・テーラー型の単結晶からなるメソカーボン小球体の黒鉛化物が開示されている。   As a typical example of a conventional graphite-based negative electrode material, Patent Document 2 discloses a graphite particle in which a plurality of flat particles are aggregated or bonded so that their orientation planes are non-parallel, and the particles have pores. Is disclosed. Patent Document 3 discloses graphitized mesocarbon spherules made of Brooks-Taylor single crystals in which graphite basal planes are arranged in layers in a direction perpendicular to the diameter direction.

従来の代表的なメソカーボン小球体黒鉛化物の外観写真を図6に、断面偏光顕微鏡写真を図7に示す。従来のメソカーボン小球体は表面に亀裂がなく真球に近いことが分かる。   An external appearance photograph of a typical representative mesocarbon microsphere graphitized material is shown in FIG. 6, and a cross-sectional polarization micrograph is shown in FIG. It can be seen that conventional mesocarbon spherules are close to true spheres without cracks on the surface.

これらの黒鉛系負極材料は、活物質層の中では黒鉛のベーサル面の向きがランダムとなり、天然黒鉛のような配向の問題が軽減されており、天然黒鉛に比べて、特許文献2の負極材料は、急速充電性、急速放電性、サイクル特性が改善されている。特許文献3の負極材料も急速放電性、サイクル特性が改善されている。   These graphite-based negative electrode materials have a random orientation of the basal plane of graphite in the active material layer, which reduces the problem of orientation as natural graphite. Compared to natural graphite, the negative electrode material of Patent Document 2 Has improved quick chargeability, rapid discharge properties, and cycle characteristics. The negative electrode material of Patent Document 3 also has improved rapid discharge properties and cycle characteristics.

しかしながら、近年の高容量化の要求に応えるべく、活物質層の密度を高くし、体積当たりの放電容量を高く設定しようとした場合、すなわち、負極材料を集電材に塗布したのち、高い圧力でプレスして高密度化した場合には、これら従来の負極材料では種々の課題がある。   However, in order to meet the demand for higher capacity in recent years, when the density of the active material layer is increased and the discharge capacity per volume is set higher, that is, after the negative electrode material is applied to the current collector, the pressure is increased. When densified by pressing, these conventional negative electrode materials have various problems.

特許文献2に記載の負極材料は、活物質層の密度が1.7g/cm3を超えると、複合粒子が潰れ、複合粒子を構成している扁平状の黒鉛質一次粒子が天然黒鉛のように一方向に配向してしまう。このため、リチウムイオンのイオン拡散性が低下し、急速充電性、急速放電性、サイクル特性の低下を引き起こす。また、活物質層の表面が閉塞しやすく、電解液の浸透性が低下して、電池の生産性が低下するほか、活物質層内部において電解液の枯渇を生じることもサイクル特性低下の一因になっている。 In the negative electrode material described in Patent Document 2, when the density of the active material layer exceeds 1.7 g / cm 3 , the composite particles are crushed, and the flat primary graphite particles constituting the composite particles are like natural graphite. It will be oriented in one direction. For this reason, the ion diffusibility of lithium ions is reduced, causing rapid chargeability, rapid discharge, and cycle characteristics to be deteriorated. In addition, the surface of the active material layer is likely to be clogged, the electrolyte permeability is lowered, the battery productivity is lowered, and the electrolyte is depleted inside the active material layer, which is also a cause of the deterioration of cycle characteristics. It has become.

特許文献3の負極材料は、球状の黒鉛質粒子であり、高密度化しても黒鉛ベーサル面の配向は比較的抑えられる。しかしながら、黒鉛質粒子が緻密で硬質であるため、高密度化するために高い圧力を必要とし、集電材である銅箔の変形、延び、破断といった問題を生じる。また、電解液との反応面積が小さい。これらの影響によって、特に急速充電性が低い。充電性の低下は、充電時に負極表面にリチウムの電析を生じる原因となり、サイクル特性の低下を引き起こす。   The negative electrode material of Patent Document 3 is spherical graphite particles, and the orientation of the graphite basal surface can be relatively suppressed even when the density is increased. However, since the graphite particles are dense and hard, high pressure is required to increase the density, and problems such as deformation, extension, and breakage of the copper foil as the current collector arise. In addition, the reaction area with the electrolytic solution is small. Due to these effects, particularly quick chargeability is low. The decrease in chargeability causes the electrodeposition of lithium on the negative electrode surface during charging and causes a decrease in cycle characteristics.

このように、高密度においても優れた急速充電性、急速放電性およびサイクル特性を維持し、かつ、軟質で、低いプレス圧力でも容易に高密度化できる負極材料が望まれていた。
特公昭62−23433号公報 特開2002−83587号公報 特開2000−323127号公報
Thus, a negative electrode material that maintains excellent rapid chargeability, rapid discharge performance, and cycle characteristics even at high density, is soft, and can be easily densified even at a low press pressure has been desired.
Japanese Examined Patent Publication No. 62-23433 JP 2002-83587 A JP 2000-323127 A

本発明の目的は、リチウムイオン二次電池の負極材料として用いた場合に、低いプレス圧力で高い密度に到達し、体積当たりの放電容量が高く、かつ、高い密度でありながら、配向を抑え、電解液の浸透性や保持性を損なうことのない新たな黒鉛化物とその製造方法、その黒鉛化物を用いた負極材料を提供することにある。   The purpose of the present invention, when used as a negative electrode material for a lithium ion secondary battery, reaches a high density at a low pressing pressure, has a high discharge capacity per volume, and a high density while suppressing orientation, It is an object of the present invention to provide a new graphitized material that does not impair the permeability and retention of the electrolyte, a method for producing the same, and a negative electrode material using the graphitized material.

本発明のメソカーボン小球体黒鉛化物の特徴は、黒鉛化物表面に亀裂を設けた点にある。亀裂が存在するため、亀裂を起点にして変形しやすく、高密度化し易い。また、負極とした際に、黒鉛化物間のみならず、黒鉛化物内にも電解液が浸透しやすくなり、電解液と黒鉛化物との反応面積が増大する。また、本発明のメソカーボン小球体黒鉛化物は、従来品よりも高い結晶性を有するので、従来品よりも柔らかくなり、高密度化しやすくなる。なお、本発明のメソカーボン小球体黒鉛化物の形態は、基本的には従来のメソカーボン小球体黒鉛化物と同じ球状をほぼ維持しているので、高密度化しても黒鉛ベーサル面の配向は比較的抑えられる。
本発明の要旨は以下の通りである。
The mesocarbon microsphere graphitized product of the present invention is characterized in that a crack is provided on the graphitized surface. Since there is a crack, it is easy to be deformed starting from the crack, and it is easy to increase the density. Moreover, when it is set as a negative electrode, it becomes easy to osmose | permeate electrolyte solution not only between graphitized materials but in graphitized materials, and the reaction area of electrolyte solution and graphitized materials increases. Moreover, since the mesocarbon microsphere graphitized material of the present invention has higher crystallinity than the conventional product, it becomes softer and more easily densified than the conventional product. In addition, since the form of the mesocarbon microsphere graphitized material of the present invention basically maintains the same spherical shape as the conventional mesocarbon microsphere graphitized material, the orientation of the graphite basal surface is comparable even if the density is increased. It can be suppressed.
The gist of the present invention is as follows.

(1)第一の発明は、石炭系および/または石油系の重質油、タール類ならびにピッチ類から選ばれる1種または2種以上の原料に、炭素と反応する性質および炭素を溶解する性質のうち少なくとも一方の性質を有する金属材料と、熱硬化性樹脂とを加えて加熱し、メソカーボン小球体を生成するメソカーボン小球体生成工程と、該メソカーボン小球体生成工程で得られたメソカーボン小球体を加熱して、黒鉛化する黒鉛化工程を有するメソカーボン小球体黒鉛化物の製造方法であって、前記メソカーボン小球体黒鉛化物が、式(1)で定義する外周長比(L)の平均値が1.2以上であり、表面に亀裂部分を有することを特徴とするメソカーボン小球体黒鉛化物の製造方法(1) The first invention relates to the property of reacting with carbon and the property of dissolving carbon in one or more raw materials selected from coal-based and / or petroleum-based heavy oil, tars and pitches. A mesocarbon microsphere generating step of generating a mesocarbon microsphere by adding a metal material having at least one of the above properties and a thermosetting resin, and the mesocarbon microsphere generating step. A method for producing a mesocarbon small sphere graphitized product having a graphitization step of heating and graphitizing carbon small spheres, wherein the mesocarbon small sphere graphitized product has an outer circumference length ratio (L ) Having an average value of 1.2 or more, and having a cracked portion on the surface, a method for producing mesocarbon microsphere graphitized material.

(2)第二の発明は、前記金属材料が、前記熱硬化性樹脂に付着および/または内包されていることを特徴とする第一の発明に記載のメソカーボン小球体黒鉛化物の製造方法(2) The second invention is the method for producing a mesocarbon microsphere graphitized product according to the first invention, wherein the metal material is attached to and / or included in the thermosetting resin .

(3)第三の発明は、前記メソカーボン小球体黒鉛化物の平均格子面間隔d 002 の値が0.3363nm未満であることを特徴する第一または第二の発明に記載のメソカーボン小球体黒鉛化物の製造方法(3) The third invention is, mesocarbon spherules according to the first or second invention features that the value of the average lattice spacing d 002 of the mesocarbon spherules graphitized product is less than 0.3363nm Method for producing graphitized material.

(4)第四の発明は、前記メソカーボン小球体黒鉛化物が、リチウムイオン二次電池負極用であることを特徴とする第一乃至第三の発明の何れかに記載のメソカーボン小球体黒鉛化物の製造方法(4) The fourth invention is the mesocarbon microsphere graphite according to any one of the first to third inventions , wherein the mesocarbon microsphere graphitized material is for a negative electrode of a lithium ion secondary battery. Method for producing chemicals .

本発明のメソカーボン小球体黒鉛化物を負極材料としたリチウムイオン二次電池用負極は、活物質層の密度を高くした場合においても、集電体の変形や破断を生じることがなく、また、電解液の浸透性に優れる。メソカーボン小球体黒鉛化物の周りに、電解液が存在しやすいのでLiの拡散性が良くなる。このため、本発明のメソカーボン小球体黒鉛化物を負極材料としたリチウムイオン二次電池は、体積当たりの放電容量が高く、急速充電性、急速放電性、サイクル特性などの電池特性が良好である。
The negative electrode for a lithium ion secondary battery using the mesocarbon microsphere graphitized material of the present invention as a negative electrode material does not cause deformation or breakage of the current collector even when the density of the active material layer is increased. Excellent electrolyte permeability. Since the electrolyte is likely to exist around the mesocarbon microsphere graphitized material, the diffusibility of Li + is improved. For this reason, the lithium ion secondary battery using the mesocarbon microsphere graphitized material of the present invention as a negative electrode material has a high discharge capacity per volume and good battery characteristics such as quick chargeability, rapid discharge performance, and cycle characteristics. .

以下、本発明をより具体的に説明する。
リチウムイオン二次電池は、通常、電解液(非水電解質)、負極および正極を主たる電池構成要素とし、これら要素が、例えば、電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。
Hereinafter, the present invention will be described more specifically.
A lithium ion secondary battery usually has an electrolyte solution (non-aqueous electrolyte), a negative electrode, and a positive electrode as main battery components, and these elements are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging, and lithium ions are released from the negative electrode during discharging.

1.メソカーボン小球体黒鉛化物について
本発明のメソカーボン小球体黒鉛化物は、非造粒、非破砕型の黒鉛粒子であり、表面に亀裂を有することを特徴とする。本発明のメソカーボン小球体黒鉛化物の断面模式図を図1に示す。図1(a)は、従来のメソカーボン小球体黒鉛化物を、図1(b)は、本発明のメソカーボン小球体黒鉛化物を示す。
1. Mesocarbon small sphere graphitized material The mesocarbon small sphere graphitized material of the present invention is non-granulated, non-crushed graphite particles, and has a feature of having cracks on the surface. A schematic cross-sectional view of the mesocarbon microsphere graphitized product of the present invention is shown in FIG. FIG. 1 (a) shows a conventional mesocarbon microsphere graphitized product, and FIG. 1 (b) shows a mesocarbon microsphere graphitized product of the present invention.

メソカーボン小球体黒鉛化物は概ね真球状からなるが、本発明のメソカーボン小球体黒鉛化物は、外周部は球状を呈し、表面に亀裂部分(凹み)を有している。   The mesocarbon small sphere graphitized material has a substantially spherical shape, but the mesocarbon small sphere graphitized material of the present invention has a spherical outer periphery and a cracked portion (dent) on the surface.

本発明のメソカーボン小球体黒鉛化物は、式(1)で定義する外周長比(L)の平均値が1.2以上の値を有する。   The mesocarbon microsphere graphitized product of the present invention has a value of an outer peripheral length ratio (L) defined by the formula (1) of 1.2 or more.

ここで、メソカーボン小球体黒鉛化物の断面の外周長さは、粒子(黒鉛化物)の形状が認識できる倍率で、粒子の断面を観察し、外周の長さを測定して求める。外周長さの平均値は、任意の50個以上の粒子についての平均値とする。
また、メソカーボン小球体を真球と仮定した場合の断面の外周長さは、レーザー回折式粒度分布計により粒度分布の累積度数が体積百分率で50%となる粒子直径を測定し、該粒子が真球と仮定した場合の外周長さとする。
Here, the outer peripheral length of the cross section of the mesocarbon microsphere graphitized material is obtained by observing the cross section of the particle at a magnification at which the shape of the particle (graphitized material) can be recognized and measuring the outer peripheral length. The average value of the outer peripheral length is an average value for arbitrary 50 or more particles.
Further, when the mesocarbon microsphere is assumed to be a true sphere, the outer peripheral length of the cross section is measured by measuring the particle diameter at which the cumulative frequency of particle size distribution is 50% by volume using a laser diffraction particle size distribution meter. The outer circumference is assumed to be a true sphere.

後述するように、特定の金属材料を製造時に用いるので本発明のメソカーボン小球体黒鉛化物は高い結晶性を有する。結晶性が高いがゆえに軟質であり、活物質層の密度を高くすることに寄与する。結晶性の指標として、X線広角回折における(002)面の平均格子面間隔d002が0.3363nm未満、特に0.3360nm以下であることが好ましい。 As will be described later, since a specific metal material is used during production, the mesocarbon microsphere graphitized product of the present invention has high crystallinity. Because of its high crystallinity, it is soft and contributes to increasing the density of the active material layer. As an index of crystallinity, average lattice spacing d 002 of (002) plane in the X-ray wide angle diffraction of less than 0.3363 nm, it is preferable that particularly 0.3360nm or less.

ここで、X線広角回折における(002)面の平均格子面間隔d002とは、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して黒鉛粒子の(002)面の回折ピークを測定し、そのピーク位置から算出する。算出方法は、学振法(日本学術振興会第17委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」[大谷杉郎、733−742頁(1986年3月)、近代編集社]に記載された方法によって測定された値である。 Here, the average lattice spacing d 002 of (002) plane in X-ray wide angle diffraction is a diffraction peak of (002) plane of graphite particles using CuKα ray as X-ray and using high purity silicon as a standard substance. Is calculated from the peak position. The calculation method follows the Japan Science and Technology Act (measurement method established by the 17th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” [Sugirou Otani, 733-742 (March 1986) ), Measured by the method described in Modern Editorial Company].

本発明のメソカーボン小球体黒鉛化物の平均粒子径は、体積換算の平均粒子径で3〜100μm、特に5〜50μmであることが好ましい。3μm以上であれば、活物質層の密度を高められ、体積当たりの放電容量が向上するし、100μm以下の方が、急速充電性やサイクル特性が向上するからである。体積換算の平均粒子径とは、レーザー回折式粒度分布計により粒度分布の累積度数が体積百分率で50%となる粒子径である。   The average particle size of the mesocarbon microsphere graphitized product of the present invention is preferably 3 to 100 μm, particularly preferably 5 to 50 μm, in terms of volume average particle size. If it is 3 μm or more, the density of the active material layer can be increased, and the discharge capacity per volume is improved, and if it is 100 μm or less, quick chargeability and cycle characteristics are improved. The average particle diameter in terms of volume is a particle diameter at which the cumulative frequency of particle size distribution is 50% by volume by a laser diffraction particle size distribution meter.

2.リチウムイオン二次電池用負極材料について
本発明の負極材料は、本発明のメソカーボン小球体黒鉛化物を含むものであって、本発明のメソカーボン小球体黒鉛化物を単独で用いてもよいし、炭素材料、黒鉛材料、金属材料などの公知の各種負極材料との混合物、複合物であってもよい。
2. Regarding the negative electrode material for lithium ion secondary battery, the negative electrode material of the present invention contains the mesocarbon microsphere graphitized product of the present invention, and the mesocarbon microsphere graphitized product of the present invention may be used alone, It may be a mixture or composite with various known negative electrode materials such as carbon materials, graphite materials, and metal materials.

混合物とする場合を例示すると、天然黒鉛や人造黒鉛などの黒鉛粒子、あるいは易黒鉛化性炭素質材料、例えば、従来品のメソフェーズ小球体やメソフェーズ焼成体(バルクメソフェーズ)、メソフェーズ繊維などのメソフェーズ系炭素質材料、石油コークス、ニードルコークス、生コークス、グリーンコークス、ピッチコークスなどのコークス系炭素質材料を1500℃以上、好ましくは2800℃以上で黒鉛化してなる黒鉛質粒子などを混合することができる。また、非晶質ハードカーボンなどの炭素質材料や、有機物、金属、金属化合物などを含有する炭素質粒子または黒鉛質粒子を混合してもよい。   For example, graphite particles such as natural graphite and artificial graphite, or graphitizable carbonaceous materials such as mesophase microspheres, mesophase fired bodies (bulk mesophase), mesophase fibers, etc. Carbonaceous materials such as carbonaceous materials, petroleum coke, needle coke, raw coke, green coke, pitch coke, etc. can be mixed with graphitic particles formed by graphitizing coke-based carbonaceous materials at 1500 ° C or higher, preferably 2800 ° C or higher. . Also, carbonaceous materials such as amorphous hard carbon, carbonaceous particles or graphite particles containing organic substances, metals, metal compounds, etc. may be mixed.

複合物とする場合を例示すると、本発明の黒鉛化物に、異種黒鉛化物、非晶質ハードカーボンなどの炭素質材料、有機物、SiやSnなどのリチウムと合金を形成する金属または該金属の化合物などを、被覆、付着、埋設、内包などの形態によって複合化することが挙げられる。   Examples of the case of a composite include the graphitized material of the present invention, a carbonaceous material such as a heterogeneous graphitized material, amorphous hard carbon, an organic material, a metal that forms an alloy with lithium such as Si or Sn, or a compound of the metal And the like may be combined by forms such as coating, adhesion, embedding, and inclusion.

3.メソカーボン小球体黒鉛化物の製造方法について
メソカーボン小球体は、石炭系、石油系の重質油、タール類、ピッチ類を300〜500℃で加熱処理することにより生成する光学的的異方性の球状の重合物であるが、本発明の製造方法では、前記の石炭系および/または石油系の重質油、タール類ならびにピッチ類から選ばれる1種または2種以上の原料に、さらに、炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料と、熱硬化性樹脂とを加えることを特徴とする。
3. Method for producing mesocarbon microsphere graphitized material Mesocarbon microspheres are produced by heat-treating coal-based and petroleum-based heavy oils, tars and pitches at 300 to 500 ° C. In the production method of the present invention, one or more raw materials selected from the above-mentioned coal-based and / or petroleum-based heavy oils, tars and pitches are further added. A metal material having at least one of a property of reacting with carbon and a property of dissolving carbon and a thermosetting resin are added.

炭素と反応する性質および炭素を溶解する性質のうちの少なくとも一方の性質を有する金属材料は、後述する黒鉛化の工程で、分解、蒸発して、最終的に得られる黒鉛化物の中に実質的に残存しないものが好ましい。   The metal material having at least one of the property of reacting with carbon and the property of dissolving carbon decomposes and evaporates in the graphitization step described later, and is substantially contained in the finally obtained graphitized product. Those which do not remain in are preferred.

金属材料を構成する金属種を例示すると、Na,Kなどのアルカリ金属、Mg,Caなどのアルカリ土類金属、Ti,V,Cr,Mn,Fe,Co,Ni,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Hf,Ta,W,Re,Os,Ir,Ptなどの遷移金属、Al,Geなどの金属、B,Siなどの半金属が例示される。これらの金属材料は金属単体でもよく、化合物であってもよい。化合物としては、水酸化物、酸化物、窒化物、塩化物、硫化物などが例示される。このような金属材料は単独で用いてもよいし、2以上を混合して用いてもよいし、2以上の合金として用いてもよい。   Examples of metal species constituting the metal material include alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, and Tc. , Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, and other transition metals, Al, Ge, and the like, and B, Si, and the like. These metal materials may be a single metal or a compound. Examples of the compound include hydroxide, oxide, nitride, chloride, sulfide and the like. Such metal materials may be used alone, in combination of two or more, or may be used as two or more alloys.

これらの金属材料は、あらかじめ微粒子状に加工して、熱硬化性樹脂に、内包および/または付着させることが好ましい。その場合の微粒子の平均粒子径は、5μm以下、特に1μm以下であることが好ましい。金属材料を熱硬化性樹脂に、内包および/または付着させることによりメソカーボン小球体の黒鉛化物の表面に確実に亀裂を生じさせることができる。金属材料の配合量は、金属材料と熱硬化性樹脂の総量に対して、5〜80質量%添加することが好ましい。   These metal materials are preferably processed into fine particles in advance and encapsulated and / or attached to the thermosetting resin. In this case, the average particle size of the fine particles is preferably 5 μm or less, particularly preferably 1 μm or less. By enclosing and / or adhering the metal material to the thermosetting resin, the surface of the graphitized material of the mesocarbon spherule can be surely cracked. The blending amount of the metal material is preferably 5 to 80% by mass based on the total amount of the metal material and the thermosetting resin.

熱硬化性樹脂は、メソフェーズ小球体の生成温度である300〜500℃において、熱分解、変形、溶融をできるだけ生じないものが好ましく、ユリア樹脂、マレイン樹脂、クマロン樹脂、キシレン樹脂やフェノール樹脂などが例示される。熱硬化性樹脂の平均粒子径は、最終的に得られるメソフェーズ小球体黒鉛化物の平均粒子径よりも小さいものを用いる。好ましい平均粒子径は15μm以下、特に1〜10μmであることが好ましい。平均粒子径が15μm超の場合には、メソフェーズ小球体黒鉛化物の質量当たり放電容量が低下することがある。   The thermosetting resin is preferably one that does not cause thermal decomposition, deformation, and melting as much as possible at 300 to 500 ° C., which is the formation temperature of mesophase spherules, such as urea resin, malein resin, coumarone resin, xylene resin, and phenol resin. Illustrated. The average particle diameter of the thermosetting resin is smaller than the average particle diameter of the mesophase microsphere graphitized product finally obtained. The average particle diameter is preferably 15 μm or less, particularly 1 to 10 μm. When the average particle size is more than 15 μm, the discharge capacity per mass of the mesophase microsphere graphitized product may be lowered.

石炭系および/または石油系の重質油、タール類ならびにピッチ類から選ばれる原料に対し、熱硬化性樹脂を0.5〜20質量%添加することが好ましい。添加量が0.5〜20質量%の範囲であると、メソフェーズ小球体黒鉛化物に亀裂を与えられ、優れた急速充電性、急速放電性、サイクル特性を発現することができる。熱硬化性樹脂の形状は特に限定されないが、球状のものが特に好ましい。   It is preferable to add 0.5 to 20% by mass of a thermosetting resin to a raw material selected from coal-based and / or petroleum-based heavy oil, tars and pitches. When the addition amount is in the range of 0.5 to 20% by mass, the mesophase microsphere graphitized material is cracked, and excellent rapid chargeability, rapid discharge property, and cycle characteristics can be exhibited. The shape of the thermosetting resin is not particularly limited, but a spherical one is particularly preferable.

石炭系および/または石油系の重質油、タール類ならびにピッチ類から選ばれる原料に、金属材料が付着および/または内包された熱硬化性樹脂を所定量配合し、300〜500℃、好ましくは380〜480℃で、10〜120分間熱処理する。原料にコールタールピッチを用いる場合には、コールタールピッチ中のフリーカーボン量を調整することによって、生成するメソカーボン小球体の含有量、粒子径を制御することができる。ピッチマトリックス中に占めるメソカーボン小球体の含有率は、10〜50質量%に制御することが好ましい。   A raw material selected from coal-based and / or petroleum-based heavy oil, tars, and pitches is blended with a predetermined amount of a thermosetting resin in which a metal material is attached and / or included, and is 300 to 500 ° C., preferably Heat treatment is performed at 380 to 480 ° C. for 10 to 120 minutes. When coal tar pitch is used as the raw material, the content and particle size of the mesocarbon microspheres to be produced can be controlled by adjusting the amount of free carbon in the coal tar pitch. The content of mesocarbon microspheres in the pitch matrix is preferably controlled to 10 to 50% by mass.

生成したメソカーボン小球体の分離方法、熱処理方法について例示すると、まず、ピッチマトリックス中に生成したメソカーボン小球体を抽出油で抽出し、ろ過や遠心分離などの方法によってメソカーボン小球体を分離し乾燥する。抽出油としては、ベンゼン、トルエン、キノリン、タール中油、タール重油などが例示される。抽出条件の操作によって、メソフェーズ小球体にピッチを少量残炭させてもよい。   To illustrate the separation method and heat treatment method of the produced mesocarbon spherules, first, the mesocarbon spherules produced in the pitch matrix are extracted with extracted oil, and the mesocarbon spherules are separated by a method such as filtration or centrifugation. dry. Examples of the extracted oil include benzene, toluene, quinoline, tar oil, and tar heavy oil. A small amount of residual charcoal may be left on the mesophase spherules by operating the extraction conditions.

分離したメソカーボン小球体を、直接、または、350〜1300℃で予備焼成したのち、非酸化性雰囲気中1500〜3300℃で熱処理して黒鉛化する。黒鉛化方法としては、アチェソン炉などの公知の高温炉を用いることができる。   The separated mesocarbon spherules are pre-fired directly or at 350 to 1300 ° C., and then heat-treated at 1500 to 3300 ° C. in a non-oxidizing atmosphere to graphitize. As the graphitization method, a known high-temperature furnace such as an Acheson furnace can be used.

黒鉛化に際しては、金属材料が蒸発または分解して実質的に除去される温度とすることが好ましい。1500℃未満では黒鉛化できないほか、金属材料が残存して、負極に用いた場合に放電容量が不足することがある。3300℃超の場合は、黒鉛粒子の一部が昇華することがあり、収率が低下するので好ましくない。黒鉛化に要する時間は一概には言えないが、1〜50時間程度である。   In graphitization, it is preferable to set the temperature so that the metal material is substantially removed by evaporation or decomposition. In addition to being unable to graphitize at temperatures below 1500 ° C., the metal material may remain and the discharge capacity may be insufficient when used as a negative electrode. When the temperature exceeds 3300 ° C., some of the graphite particles may sublime, which is not preferable because the yield decreases. Although the time required for graphitization cannot be generally stated, it is about 1 to 50 hours.

前述の製造方法の例によって本発明の亀裂を有するメソフェーズ小球体黒鉛化物が得られる理由は明らかではないが、熱硬化性樹脂および金属材料の混合物がメソフェーズ小球体の内部に配置され、熱処理する過程において、熱硬化性樹脂から生じる揮発物や分解物、金属材料を構成する金属の蒸発、あるいは金属と炭素の反応物の分解物などに由来するガスの生成が関与しているものと予想される。また、金属材料がメソフェーズ小球体および/または熱硬化性樹脂の黒鉛化触媒として作用し、メソフェーズ小球体および/または熱硬化性樹脂の結晶性を高め、軟質で高い放電容量の発現に寄与しているものと考えられる。   The reason why the cracked mesophase microsphere graphitized product of the present invention can be obtained by the above-described manufacturing method is not clear, but a process in which a mixture of a thermosetting resin and a metal material is disposed inside the mesophase microsphere and heat-treated. Is expected to be involved in the generation of gases derived from volatiles and decomposition products generated from thermosetting resins, evaporation of metals constituting metal materials, or decomposition products of reaction products of metals and carbon . In addition, the metal material acts as a graphitization catalyst for mesophase spherules and / or thermosetting resins, improves the crystallinity of mesophase spherules and / or thermosetting resins, and contributes to the development of soft and high discharge capacity. It is thought that there is.

4.リチウムイオン二次電池用負極について
リチウムイオン二次電池の負極の作製は、通常の負極の成形方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる成形方法であれば何ら制限されない。
4). About the negative electrode for lithium ion secondary batteries Although the production of the negative electrode of a lithium ion secondary battery can be carried out according to a normal method of forming a negative electrode, it is possible to obtain a chemically and electrochemically stable negative electrode. The method is not limited at all.

また、負極の作製時には、前記負極材料に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、さらにはカルボキシメチルセルロースなどが用いられる。また、これらを併用することもできる。結合剤は、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。   Moreover, the negative electrode mixture which added the binder to the said negative electrode material can be used at the time of preparation of a negative electrode. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene Butadiene rubber, carboxymethyl cellulose and the like are used. Moreover, these can also be used together. In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.

負極の作製の具体例として、前記負極材料の粒子を結合剤と混合することによって負極合剤を調製し、この負極合剤を、通常、集電体の片面または両面に塗布することで負極合剤層を形成する方法が挙げられる。   As a specific example of the preparation of the negative electrode, a negative electrode mixture is prepared by mixing the particles of the negative electrode material with a binder, and this negative electrode mixture is usually applied to one or both sides of a current collector to form a negative electrode mixture. The method of forming an agent layer is mentioned.

負極の作製には、負極作製用の通常の溶媒を用いることができる。負極合剤を溶媒中に分散させ、ペースト状にした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着される。   A normal solvent for preparing a negative electrode can be used for preparing the negative electrode. When the negative electrode mixture is dispersed in a solvent and made into a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector.

より具体的には、例えば、前記負極材料の粒子とポリフッ化ビニリデンなどのフッ素系樹脂粉末またはスチレンブタジエンゴムなどの水分散粘結剤、カルボキシメチルセルロースなどの水溶性粘結剤とを、N−メチルピロリドン、ジメチルホルムアルデヒドまたは水、アルコールなどの溶媒と混合してスラリーとした後、ニーダーなどで混練し、ペーストを調製する。このペーストを集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。前記負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。   More specifically, for example, the negative electrode material particles and a fluorine-based resin powder such as polyvinylidene fluoride or a water-dispersible binder such as styrene butadiene rubber, or a water-soluble binder such as carboxymethyl cellulose are used. A paste is prepared by mixing with pyrrolidone, dimethylformaldehyde or a solvent such as water or alcohol to form a slurry, and then kneading with a kneader. If this paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded can be obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、前記負極材料の粒子と、結合剤としてのポリエチレン、ポリビニルアルコールなどの樹脂粉末とを乾式混合し、金型内でホットプレス成形して負極を作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電特性が低下することがある。   Alternatively, the negative electrode material particles can be dry-mixed with resin powders such as polyethylene and polyvinyl alcohol as a binder, and hot-press molded in a mold to produce a negative electrode. However, dry mixing requires a large amount of binder to obtain sufficient negative electrode strength, and if the binder is excessive, the discharge capacity and rapid charge / discharge characteristics of the lithium ion secondary battery may be reduced. .

前記負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。   When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.

前記負極に用いる集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタルなどの網状等のものが好ましい。また、前記集電体の材質としては、銅、ステンレス、ニッケルなどが好ましい。また、集電体の厚みは、箔状の場合、5〜20μm程度とすることが好ましい。   The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil shape or a net shape such as a mesh or expanded metal. Moreover, as a material of the said electrical power collector, copper, stainless steel, nickel, etc. are preferable. Moreover, it is preferable that the thickness of an electrical power collector shall be about 5-20 micrometers in the case of foil shape.

5.リチウムイオン二次電池について
また、本発明は、前記リチウムイオン二次電池用負極を用いて形成されるリチウムイオン二次電池でもある。
本発明のリチウムイオン二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については、一般的なリチウムイオン二次電池の要素に準じる。
5. About lithium ion secondary battery Moreover, this invention is also a lithium ion secondary battery formed using the said negative electrode for lithium ion secondary batteries.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components are in accordance with elements of a general lithium ion secondary battery.

5.1正極材について
本発明のリチウムイオン二次電池に使用される正極材(正極活物質)としては、リチウム化合物が用いられるが、充分な量のリチウムを吸蔵/脱離し得るものを選択することが好ましい。例えば、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物、その他のリチウム含有化合物、一般式MMo8−Y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは少なくとも一種の遷移金属を表す)で表されるシュブレル相化合物、活性炭、活性炭素繊維などを用いることができる。前記バナジウム酸化物としては、V、V13、V、Vで示されるものなどを用いることができる。
5.1 Cathode Material As the cathode material (positive electrode active material) used in the lithium ion secondary battery of the present invention, a lithium compound is used, but a material capable of occluding / desorbing a sufficient amount of lithium is selected. It is preferable. For example, lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium-containing compounds, general formula M x Mo 6 S 8-Y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y) A numerical value in the range of ≦ 1, and M represents at least one kind of transition metal) can be used. Examples of the vanadium oxide, or the like can be used those represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.

前記リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組み合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 2(式中Xは0≦X≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)またはLiM1 1-Y2 Y4(式中Yは0≦Y≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)で示される。式中M1、M2で示される遷移金属はCo、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどである。好ましくはCo、Mn、Cr、Ti、V、Fe、Alなどである。具体例としては、LiCoO2、LiNiO2、LiMnO2、LiNi0.9Co0.12、LiNi0.5Co0.52などを挙げることができる。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 x O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition. A metal element) or LiM 1 1-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1, and M 1 and M 2 are at least one transition metal element) It is. In the formula, transition metals represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, and the like. Preferably, Co, Mn, Cr, Ti, V, Fe, Al and the like are used. Specific examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.

また、前記リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、塩類などを出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。なお、出発原料は酸化物および塩類に限定されず、水酸化物などであってもよい。   Further, the lithium-containing transition metal oxide is, for example, lithium, transition metal oxide, salts and the like as a starting material, these starting materials are mixed according to the composition of the desired metal oxide, and 600 ~ It can be obtained by firing at a temperature of 1000 ° C. The starting materials are not limited to oxides and salts, and may be hydroxides.

本発明のリチウムイオン二次電池においては、正極活物質は前記のリチウム化合物を単独で使用しても、2種類以上併用して使用してもよい。また、正極中に炭酸リチウムなどの炭酸アルカリ塩を添加することもできる。   In the lithium ion secondary battery of the present invention, the positive electrode active material may be used alone or in combination of two or more of the above lithium compounds. Further, an alkali carbonate such as lithium carbonate can be added to the positive electrode.

正極は、例えば、前記リチウム化合物と結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の片面または両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛やカーボンブラックなどの炭素材料が使用される。   The positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, a binder, and a conductive agent for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer. Produced. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, a carbon material such as graphite or carbon black is used.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電体に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタルなどの網状等のものが好ましい。また、前記集電体の材質としては、アルミニウム、ステンレス、ニッケルなどが好ましい。また、集電体の厚みは、箔状の場合、10〜40μm程度とすることが好ましい。   The shape of the current collector is not particularly limited, but is preferably a foil shape or a mesh shape such as a mesh or expanded metal. Moreover, as a material of the said electrical power collector, aluminum, stainless steel, nickel, etc. are preferable. The thickness of the current collector is preferably about 10 to 40 μm in the case of a foil shape.

5.2非水電解質について
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である。LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C65)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO22、LiC(CF3SO3、LiN(CF3CH2OSO22、LiN(CF3CF2OSO22、LiN(HCF2CF2CH2OSO22、LiN((CF32CHOSO22、LiB[{C63(CF32}]4、LiAlCl4 、LiSiF6などのリチウム塩を用いることができる。酸化安定性の点からは、特に、LiPF6、LiBF4が好ましい。
電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜3.0mol/lがより好ましい。
5.2 Nonaqueous Electrolyte The nonaqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte salt used in a normal nonaqueous electrolytic solution. LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB Lithium salts such as [{C 6 H 3 (CF 3 ) 2 }] 4 , LiAlCl 4 , LiSiF 6 can be used. From the viewpoint of oxidation stability, LiPF 6 and LiBF 4 are particularly preferable.
The electrolyte salt concentration in the electrolytic solution is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3.0 mol / l.

前記非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。   The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .

非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。   As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

前記非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリックスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリックスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。   When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.

前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、この可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜2.0mol/lがより好ましい。   A plasticizer is blended in the polymer solid electrolyte or polymer gel electrolyte, and the electrolyte salt or non-aqueous solvent can be used as the plasticizer. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte solution that is a plasticizer is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 2.0 mol / l.

前記高分子固体電解質の作製方法は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。   The method for producing the polymer solid electrolyte is not particularly limited. For example, a method in which a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) are mixed and heated to melt the polymer compound, organic After dissolving a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) in a solvent, a method of evaporating an organic solvent for mixing, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, Examples include a method of obtaining a polymer by irradiating the mixture with ultraviolet rays, an electron beam, a molecular beam or the like to polymerize a polymerizable monomer.

ここで、前記固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。   Here, the ratio of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

5.3セパレータについて
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。
5.3 Separator In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

5.4リチウムイオン二次電池について
本発明のリチウムイオン二次電池は、上述した構成の、黒鉛質物を含有する負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
5.4 Lithium Ion Secondary Battery The lithium ion secondary battery of the present invention is composed of the negative electrode, the positive electrode, and the nonaqueous electrolyte containing the graphite material in the above-described configuration, for example, in order of the negative electrode, the nonaqueous electrolyte, and the positive electrode. It is configured by stacking and housing in a battery exterior material. Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.

また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。   In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.

リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例では、図2に示すような構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の目的に基づき、公知の方法に準拠して作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In the following Examples and Comparative Examples, a button type secondary battery for evaluation having a configuration as shown in FIG. 2 was produced and evaluated. The battery can be produced according to a known method based on the object of the present invention.

[本発明例1]
1(a)熱硬化性樹脂と金属材料の混合物の調製
平均粒子径7μmの球状のフェノール樹脂(図3に用いたフェノール樹脂のSEM写真を示す)100質量部に、平均粒子径0.2μmのニッケル超微粉100質量部を混合し、ボールミルによって両者を一体化させ、フェノール樹脂の表面にニッケル超微粉が埋設された複合体を調整した。
[Invention Example 1]
1 (a) Preparation of mixture of thermosetting resin and metal material 100 parts by mass of spherical phenol resin with an average particle size of 7 μm (shown in SEM photograph of the phenol resin used in FIG. 3), nickel with an average particle size of 0.2 μm 100 parts by mass of ultrafine powder was mixed, and both were integrated by a ball mill to prepare a composite in which nickel ultrafine powder was embedded on the surface of the phenol resin.

1(b)メソカーボン小球体の調製
フリーカーボンを1質量%含有するコールタールピッチ90質量部に、前記の金属材料と熱硬化性樹脂の複合物を10質量部混合し、不活性雰囲気中450℃で30分加熱処理し、メソカーボン小球体をピッチマトリックス中に30質量%生成させた。その後、タール中油を用いて、コールタールピッチからピッチマトリックスを溶解抽出し、メソカーボン小球体をろ過によって分離し、窒素雰囲気中120℃で乾燥した。これを窒素雰囲気中600℃で3時間加熱処理して、メソカーボン小球体の焼成物を調製した。
1 (b) Preparation of mesocarbon microspheres 90 parts by mass of coal tar pitch containing 1% by mass of free carbon was mixed with 10 parts by mass of the composite of the above metal material and thermosetting resin, and 450 in an inert atmosphere. Heat treatment was carried out at 30 ° C. for 30 minutes to produce 30% by mass of mesocarbon microspheres in the pitch matrix. Thereafter, the pitch matrix was dissolved and extracted from the coal tar pitch using tar oil, and the mesocarbon spherules were separated by filtration and dried at 120 ° C. in a nitrogen atmosphere. This was heat-treated at 600 ° C. for 3 hours in a nitrogen atmosphere to prepare a fired product of mesocarbon microspheres.

1(c)メソカーボン小球体黒鉛化物の調製
得られたメソカーボン小球体の焼成物を黒鉛るつぼに充填し、非酸化性雰囲気下3150℃で5時間かけて黒鉛化処理を行い、メソカーボン小球体黒鉛化物を調製した。
得られたメソカーボン小球体黒鉛化物について分析すると、平均粒子径が22μm、X線広角回折における(002)面の平均格子面間隔d002が0.3358nmであった。
1 (c) Preparation of mesocarbon microsphere graphitized product The obtained mesocarbon microsphere calcined product was filled in a graphite crucible and graphitized at 3150 ° C. for 5 hours in a non-oxidizing atmosphere. Spherical graphitized material was prepared.
When the obtained mesocarbon microsphere graphitized product was analyzed, the average particle size was 22 μm, and the average lattice spacing d 002 of the (002) plane in X-ray wide angle diffraction was 0.3358 nm.

走査型電子顕微鏡で観察すると、図4に外観写真を示すように、外観は真球状を呈しているが、亀裂を有していることが確認された。
さらに、図5に示すように、断面を偏光顕微鏡で観察すると亀裂を有することが明らかであり、50個について、外周長さを測定し、外周長比(L)を求めたところ外周長比(L)は1.6であった。
When observed with a scanning electron microscope, as shown in the appearance photograph in FIG. 4, it was confirmed that the appearance had a true spherical shape but had cracks.
Furthermore, as shown in FIG. 5, when the cross section is observed with a polarizing microscope, it is clear that there are cracks. About 50 pieces, the outer peripheral length was measured, and the outer peripheral length ratio (L) was obtained. L) was 1.6.

1(d)負極合剤ペーストの調製
前記メソカーボン小球体黒鉛化物98質量部、結合剤としてのカルボキシメチルセルロース1質量部およびスチレンーブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
1 (d) Preparation of Negative Electrode Mixture Paste 98 parts by mass of the mesocarbon microsphere graphitized material, 1 part by mass of carboxymethyl cellulose as a binder and 1 part by mass of styrene-butadiene rubber were put in water and stirred to mix the negative electrode mixture paste. Was prepared.

1(e)作用電極の作製
前記負極合剤ペーストを厚み16μmの銅箔上に均一な厚さで塗布し、さらに真空中90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をハンドプレスによって20kN/cm2(200MPa)の圧力で加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔からなる集電材に密着した負極合剤層(厚み60μm)からなる作用電極12を作成した。なお、活物質層の密度は1.80g/cm3に到達した。密度の測定は次のように行った。
1 (e) Production of Working Electrode The negative electrode mixture paste was applied on a copper foil having a thickness of 16 μm with a uniform thickness, and further, water in a dispersion medium was evaporated at 90 ° C. in a vacuum and dried. Next, the negative electrode mixture applied on the copper foil is pressed with a hand press at a pressure of 20 kN / cm 2 (200 MPa), and then punched into a circular shape with a diameter of 15.5 mm. A working electrode 12 comprising a negative electrode mixture layer (thickness 60 μm) in close contact with was prepared. The density of the active material layer reached 1.80 g / cm 3 . The density was measured as follows.

作用電極の端部、中央部の計5箇所について、接触部が直径5mmの鏡面であるマイクロメーターを用いて平均厚みを計測し、銅箔の厚みを減じて負極合剤の厚みを求めた。次に、作用電極の質量から同一サイズの銅箔の質量を減じて負極合剤の質量を求めた。
式(2)から密度を算出した。
The average thickness was measured using a micrometer whose contact portion was a mirror surface having a diameter of 5 mm at the end portion and the central portion of the working electrode, and the thickness of the copper foil was reduced to determine the thickness of the negative electrode mixture. Next, the mass of the negative electrode mixture was determined by subtracting the mass of the copper foil of the same size from the mass of the working electrode.
The density was calculated from equation (2).

1(f)対極の作製
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
1 (f) Production of counter electrode Lithium metal foil was pressed against a nickel net, punched into a circular shape with a diameter of 15.5 mm, and a current collector made of nickel net, and a lithium metal foil (thickness 0) adhered to the current collector 0.5 mm) was prepared.

1(g)電解液、セパレータの製作
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶剤に、LiPFを1mol/lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
1 (g) Production of Electrolytic Solution and Separator LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate 33 vol% -methylethyl carbonate 67 vol% to prepare a nonaqueous electrolytic solution. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

1(h)評価電池の作製
評価電池として図2に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極合剤からなる円盤状の作用電極(負極)2および銅箔からなる集電体7bが積層された電池系である。
1 (h) Production of Evaluation Battery A button type secondary battery shown in FIG. 2 was produced as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. Inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolyte, and a disk-like made of a negative electrode mixture A battery system in which a working electrode (negative electrode) 2 and a current collector 7b made of copper foil are laminated.

前記評価電池は電解液を含浸させたセパレータ5を集電体7bに密着した作用電極2と、集電体7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。   In the evaluation battery, the separator 5 impregnated with the electrolytic solution was stacked between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the working electrode 2 was attached to the exterior cup. 1, the counter electrode 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3. The part was crimped and sealed.

評価電池は実電池において負極用活物質として使用可能な黒鉛質物粒子を含有する作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。
前記のように作製した評価電池について、25℃の温度下で以下に示すような充放電試験を行い、質量当たり放電容量、体積当たり放電容量、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表1に示した。
The evaluation battery is a battery composed of a working electrode 2 containing graphite particles that can be used as a negative electrode active material in a real battery and a counter electrode 4 made of a lithium metal foil.
The evaluation battery produced as described above was subjected to a charge / discharge test as shown below at a temperature of 25 ° C. to evaluate discharge capacity per mass, discharge capacity per volume, rapid charge rate, rapid discharge rate, and cycle characteristics. . The evaluation results are shown in Table 1.

1(i)質量当たり放電容量、体積当たり放電容量の評価
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切り替え、電流値が20μAになるまで充電を続けた。その間の通電量から質量当たり充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たり放電容量を求めた。これを第1サイクルとした。
1 (i) Evaluation of discharge capacity per mass and discharge capacity per volume After constant-current charging at 0.9 mA until the circuit voltage reaches 0 mV, switching to constant-voltage charging is continued until the current value reaches 20 μA. It was. The charge capacity per mass was determined from the energization amount during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity per mass was determined from the amount of electricity supplied during this period. This was the first cycle.

式(3)から体積当たり放電容量を計算した。   The discharge capacity per volume was calculated from equation (3).

なお、式(3)で0.98を掛けたのは、電池容量に寄与しないバインダー(2質量%)が含まれているからである。   The reason why 0.98 is multiplied by the expression (3) is because it contains a binder (2% by mass) that does not contribute to the battery capacity.

1(j)急速充電率、急速放電率の評価
回路電圧が0mVに達するまで、電流値を第1サイクルの4倍の3.6mAとして、定電流充電を行った後、定電圧充電に切り替え、電流値が20μAになるまで充電を続けて満充電した。その後、120分間休止した。次に電流値を第1サイクルの16倍の14.4mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。得られた定電流充電容量から、式(4)により急速充電率を求めた。また、得られた放電容量から、式(5)により急速放電率を計算した。
1 (j) Rapid charge rate and rapid discharge rate evaluation circuit Until the circuit voltage reaches 0 mV, the current value is set to 3.6 mA, which is four times the first cycle, and then the constant current charge is performed. The battery was fully charged until the value reached 20 μA. Then, it rested for 120 minutes. Next, the current value was set to 14.4 mA, 16 times the first cycle, and constant current discharge was performed until the circuit voltage reached 1.5V. From the obtained constant current charging capacity, the rapid charging rate was determined by the equation (4). Moreover, the rapid discharge rate was calculated by the formula (5) from the obtained discharge capacity.

1(k)サイクル特性の評価
質量当たり放電容量、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行った。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切り替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰り返し、得られた質量当たり放電容量から、式(6)を用いてサイクル特性を計算した。
Evaluation of 1 (k) cycle characteristics An evaluation battery different from the evaluation battery evaluated for the discharge capacity per mass, the rapid charge rate, and the rapid discharge rate was prepared and evaluated as follows.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity per mass using Equation (6).

表1に示すように、作用電極に本発明例1の負極材料を用いて得られた評価電池は、活物質層の密度を高くすることができ、かつ高い質量当たり放電容量を有する。このため、体積当たりの放電容量を大幅に向上することができる。その高い密度においても、急速充電率、急速放電率、サイクル特性は優れた値を維持している。   As shown in Table 1, the evaluation battery obtained using the negative electrode material of Inventive Example 1 as the working electrode can increase the density of the active material layer and has a high discharge capacity per mass. For this reason, the discharge capacity per volume can be improved significantly. Even at the high density, the rapid charge rate, rapid discharge rate, and cycle characteristics maintain excellent values.

[比較例1]
本発明例1において、熱硬化性樹脂および金属材料を配合しない以外は本発明例1と同様にしてメソカーボン小球体黒鉛化物を調製した。
[Comparative Example 1]
In Example 1 of the present invention, mesocarbon microsphere graphitized material was prepared in the same manner as Example 1 except that the thermosetting resin and the metal material were not blended.

最終的に得られたメソカーボン小球体黒鉛化物は、平均粒子径が23μm、X線広角回折における(002)面の平均格子面間隔d002が0.3363nmであった。走査型電子顕微鏡で観察すると、ほぼ真球状を呈しており、断面を偏光顕微鏡で観察した結果、亀裂は存在せず、球状の外周長に対する実際の輪郭長さの平均値は1.0であった。 Finally mesocarbon spherules graphitized product obtained had an average particle diameter of 23 .mu.m, the average lattice spacing d 002 of (002) plane in the X-ray wide angle diffraction was 0.3363 nm. When observed with a scanning electron microscope, it was almost spherical, and as a result of observing the cross section with a polarizing microscope, there was no crack, and the average value of the actual contour length with respect to the spherical outer circumference was 1.0.

この黒鉛化物を用いて、本発明例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表1に示した。
なお、充填密度は1.65g/cm3にまでしか到達しなかった。
Using this graphitized product, a working electrode and an evaluation battery were produced under the same method and conditions as in Invention Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 1.
The packing density reached only 1.65 g / cm 3 .

表1に示されるように、作用電極に、従来技術からなるメソカーボン小球体黒鉛化物を負極材料として用いた場合には、密度を高めることができず、体積当たり放電容量が不十分なものとなる。また、急速充電率が不足する。   As shown in Table 1, when mesocarbon microsphere graphitized material of the prior art is used as the negative electrode material for the working electrode, the density cannot be increased and the discharge capacity per volume is insufficient. Become. In addition, the rapid charging rate is insufficient.

[比較例2]
比較例1で作製したメソカーボン小球体黒鉛化物を用いて、本発明例1と同様な方法と条件で、作用電極および評価電池を作製したが、銅箔上に塗布された負極合剤をハンドプレスする際に、本発明例1と同じ充填密度(1.80g/cm3)に到達するまでプレス圧力を高めた。
[Comparative Example 2]
Using the mesocarbon microsphere graphitized material produced in Comparative Example 1, a working electrode and an evaluation battery were produced in the same manner and under the same conditions as in Invention Example 1, but the negative electrode mixture coated on the copper foil was hand-held. During the pressing, the pressing pressure was increased until the same packing density (1.80 g / cm 3 ) as Example 1 was reached.

その結果、35kN/cm2(350MPa)の圧力で加圧することで充填密度1.80g/cm3に到達したが、銅箔にシワを生じた。得られた作用電極について、本発明例1と同様の充放電試験を行った。電池特性の評価結果を表1に示した。 As a result, the packing density reached 1.80 g / cm 3 by applying a pressure of 35 kN / cm 2 (350 MPa), but wrinkles were formed on the copper foil. The obtained working electrode was subjected to the same charge / discharge test as Example 1 of the present invention. The evaluation results of the battery characteristics are shown in Table 1.

表1に示されるように、作用電極に、従来技術からなるメソカーボン小球体黒鉛化物を負極材料として用い、プレス圧力を高めて充填密度を高くした場合には、集電材である銅箔の変形を生じるほか、急速放電率とサイクル特性が大きく低下する。   As shown in Table 1, when the mesocarbon microsphere graphitized material of the prior art is used as the negative electrode material for the working electrode and the press pressure is increased to increase the packing density, the deformation of the copper foil as the current collector is changed. In addition, the rapid discharge rate and cycle characteristics are greatly reduced.

[本発明例2〜5]
本発明例1において、熱硬化性樹脂の配合量や金属材料の種類や配合量を変えたほかは本発明例1と同様にしてメソカーボン小球体黒鉛化物を調製した。
この黒鉛化物を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表1に示した。
[Invention Examples 2 to 5]
A mesocarbon microsphere graphitized product was prepared in the same manner as in Invention Example 1 except that the amount of the thermosetting resin and the kind and amount of the metal material were changed.
Using this graphitized product, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was performed. The evaluation results of the battery characteristics are shown in Table 1.

表1に示されるように、作用電極に、本発明のメソカーボン小球体黒鉛化物からなる負極材料を用いた場合には、体積当たり放電容量が高く、急速充電率、急速放電率、サイクル特性も良好なリチウムイオン二次電池が得られる。   As shown in Table 1, when the negative electrode material made of the mesocarbon microsphere graphitized material of the present invention was used for the working electrode, the discharge capacity per volume was high, and the rapid charge rate, rapid discharge rate, and cycle characteristics were also high. A good lithium ion secondary battery can be obtained.

[比較例3]
負極材料として平均粒径10μmの鱗片状天然黒鉛を用いた。X線広角回折における(002)面の平均格子面間隔d002が0.3357nmであった。
この天然黒鉛を用いて、実施例1と同様な方法と条件で、作用電極および評価電池を作製して、充放電試験を行った。電池特性の評価結果を表1に示した。
[Comparative Example 3]
As the negative electrode material, scaly natural graphite having an average particle diameter of 10 μm was used. Average lattice spacing d 002 of the X-ray wide angle diffraction (002) plane was 0.3357Nm.
Using this natural graphite, a working electrode and an evaluation battery were produced under the same method and conditions as in Example 1, and a charge / discharge test was conducted. The evaluation results of the battery characteristics are shown in Table 1.

なお、13kN/cm2(130MPa)でプレスした際に充填密度が1.80g/cm3に到達した。充填密度1.80g/cm3で作用電極を作製した。表1に示されるように、作用電極に、従来技術である天然黒鉛を負極材料として用いた場合には、体積当たり放電容量は高いものの、急速充電率、急速放電率およびサイクル特性が極めて低いものとなる。
The packing density reached 1.80 g / cm 3 when pressed at 13 kN / cm 2 (130 MPa). A working electrode was prepared at a packing density of 1.80 g / cm 3 . As shown in Table 1, when natural graphite as a negative electrode material is used for the working electrode, the discharge capacity per volume is high, but the rapid charge rate, rapid discharge rate, and cycle characteristics are extremely low. It becomes.

本発明のメソカーボン小球体黒鉛化品は、搭載する機器の小型化および高性能化に有効に寄与するリチウムイオン二次電池の負極材料に用いることができる。また、該黒鉛化品は、導電性を有するので、導電材料として、樹脂などと混合することもできる。   The mesocarbon microsphere graphitized product of the present invention can be used as a negative electrode material for a lithium ion secondary battery that contributes effectively to downsizing and high performance of the mounted equipment. Further, since the graphitized product has conductivity, it can be mixed with a resin or the like as a conductive material.

メソカーボン小球体黒鉛化物の模式断面図である。(a)は従来のもの、(b)は本発明品である。It is a schematic cross section of a mesocarbon microsphere graphitized material. (A) is a conventional product, and (b) is a product of the present invention. 充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test. 本発明例で用いた球状のフェノール樹脂の外観を示すSEM写真である。It is a SEM photograph which shows the external appearance of the spherical phenol resin used by the example of this invention. 本発明のメソカーボン小球体黒鉛化物の外観を示すSEM写真である。It is a SEM photograph which shows the external appearance of the mesocarbon microsphere graphitized material of this invention. 本発明のメソカーボン小球体黒鉛化物断面の偏光顕微鏡写真である。It is a polarization microscope photograph of the section of mesocarbon microsphere graphitized material of the present invention. 従来のメソカーボン小球体黒鉛化物の外観を示すSEM写真である。It is a SEM photograph which shows the external appearance of the conventional mesocarbon microsphere graphitized material. 従来のメソカーボン小球体黒鉛化物断面の偏光顕微鏡写真である。It is a polarizing microscope photograph of the cross section of the conventional mesocarbon microsphere graphitized material.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極(負極)
3 外装缶
4 対極(正極)
5 セパレータ
6 絶縁ガスケット
7a、7b 集電体
1 exterior cup 2 working electrode (negative electrode)
3 Exterior can 4 Counter electrode (positive electrode)
5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (4)

石炭系および/または石油系の重質油、タール類ならびにピッチ類から選ばれる1種または2種以上の原料に、炭素と反応する性質および炭素を溶解する性質のうち少なくとも一方の性質を有する金属材料と、熱硬化性樹脂とを加えて加熱し、メソカーボン小球体を生成するメソカーボン小球体生成工程と、該メソカーボン小球体生成工程で得られたメソカーボン小球体を加熱して、黒鉛化する黒鉛化工程を有するメソカーボン小球体黒鉛化物の製造方法であって、前記メソカーボン小球体黒鉛化物が、式(1)で定義する外周長比(L)の平均値が1.2以上であり、表面に亀裂部分を有することを特徴とするメソカーボン小球体黒鉛化物の製造方法。
(数1)
外周長比(L)=(メソカーボン小球体黒鉛化物の断面の外周長さ)/(メソカーボン
小球体を真球と仮定した場合の断面の外周長さ) ・・・・・(1)
Metal having at least one of the property of reacting with carbon and the property of dissolving carbon in one or more raw materials selected from coal-based and / or petroleum-based heavy oil, tars and pitches A material and a thermosetting resin are added and heated to produce mesocarbon spherules, and the mesocarbon spherules obtained in the mesocarbon spherule production step are heated to produce graphite. A mesocarbon small sphere graphitized product having a graphitization step to be converted, wherein the mesocarbon small sphere graphitized product has an average outer peripheral length ratio (L) defined by the formula (1) of 1.2 or more. And a method for producing a mesocarbon microsphere graphitized material having a crack portion on the surface .
(Equation 1)
Peripheral length ratio (L) = (peripheral length of cross section of mesocarbon microsphere graphitized material) / (mesocarbon
Perimeter length of cross section assuming small sphere as true sphere) (1)
前記金属材料が、前記熱硬化性樹脂に付着および/または内包されていることを特徴とする請求項1に記載のメソカーボン小球体黒鉛化物の製造方法。 The method for producing a mesocarbon microsphere graphitized product according to claim 1 , wherein the metal material is attached to and / or included in the thermosetting resin. 前記メソカーボン小球体黒鉛化物の平均格子面間隔d002の値が0.3363nm未満であることを特徴する請求項1または2に記載のメソカーボン小球体黒鉛化物の製造方法 Method for producing mesocarbon spherules graphitized product according to claim 1 or 2, characterized in that the value of the average lattice spacing d 002 of the mesocarbon spherules graphitized product is less than 0.3363 nm. 前記メソカーボン小球体黒鉛化物が、リチウムイオン二次電池負極用であることを特徴とする請求項1乃至3の何れかに記載のメソカーボン小球体黒鉛化物の製造方法The method for producing a mesocarbon microsphere graphitized product according to any one of claims 1 to 3, wherein the mesocarbon microsphere graphitized product is used for a negative electrode of a lithium ion secondary battery.
JP2006246420A 2006-09-12 2006-09-12 Method for producing mesocarbon microsphere graphitized material Expired - Fee Related JP5133543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246420A JP5133543B2 (en) 2006-09-12 2006-09-12 Method for producing mesocarbon microsphere graphitized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246420A JP5133543B2 (en) 2006-09-12 2006-09-12 Method for producing mesocarbon microsphere graphitized material

Publications (2)

Publication Number Publication Date
JP2008069016A JP2008069016A (en) 2008-03-27
JP5133543B2 true JP5133543B2 (en) 2013-01-30

Family

ID=39290951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246420A Expired - Fee Related JP5133543B2 (en) 2006-09-12 2006-09-12 Method for producing mesocarbon microsphere graphitized material

Country Status (1)

Country Link
JP (1) JP5133543B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551883B2 (en) * 2008-04-22 2014-07-16 Jfeケミカル株式会社 Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP5892200B2 (en) * 2014-07-02 2016-03-23 ソニー株式会社 Electrode, battery, and electrode manufacturing method
CN109179367B (en) * 2018-09-10 2020-08-14 山西金源煤化科技有限公司 Method and system for preparing mesocarbon microbeads by thermal polycondensation method
CN114477126B (en) * 2020-10-27 2023-04-07 中国石油化工股份有限公司 Mesocarbon microbeads and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260709A (en) * 1986-05-07 1987-11-13 Kawasaki Steel Corp Formed carbon article and production thereof
JP2646383B2 (en) * 1988-11-01 1997-08-27 日本カーボン株式会社 Adsorbent production method
JP4029232B2 (en) * 1998-03-31 2008-01-09 大阪瓦斯株式会社 Negative electrode for lithium secondary battery and method for producing the same
JP4354723B2 (en) * 2003-03-31 2009-10-28 Jfeケミカル株式会社 Method for producing graphite particles
JP2005281098A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery

Also Published As

Publication number Publication date
JP2008069016A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2012086826A1 (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018163886A (en) Carbonaceous coated graphite particle for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
JP5953249B2 (en) Composite graphite particles and their use in lithium ion secondary batteries
JP2018190732A (en) Method for producing carbonaceous-coated graphite particle for lithium ion secondary battery negative electrode material
JP2018092916A (en) Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP2003263982A (en) Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery
JP5021979B2 (en) Mesocarbon microsphere graphitized material for lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP2015153496A (en) Method for manufacturing carbonaceous substance-coated graphite particles for lithium ion secondary battery negative electrodes, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP7123831B2 (en) Method for producing carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
JP5865273B2 (en) Method for producing graphite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees