JP4029232B2 - Negative electrode for lithium secondary battery and method for producing the same - Google Patents

Negative electrode for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4029232B2
JP4029232B2 JP08632098A JP8632098A JP4029232B2 JP 4029232 B2 JP4029232 B2 JP 4029232B2 JP 08632098 A JP08632098 A JP 08632098A JP 8632098 A JP8632098 A JP 8632098A JP 4029232 B2 JP4029232 B2 JP 4029232B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
graphite material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08632098A
Other languages
Japanese (ja)
Other versions
JPH11283625A (en
Inventor
賢 藤原
宏之 藤本
昭弘 馬淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP08632098A priority Critical patent/JP4029232B2/en
Publication of JPH11283625A publication Critical patent/JPH11283625A/en
Application granted granted Critical
Publication of JP4029232B2 publication Critical patent/JP4029232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池並びにその負極に用いるための黒鉛材料及びその製造方法に関し、詳しくは、高い放電容量と初期効率を有するリチウム二次電池並びにそのための負極、負極用黒鉛材料及びその製造方法に関する。
【0002】
【従来の技術】
負極活物質としてリチウムを用い、正極活物質として金属カルコゲン化物又は金属酸化物を用い、電解液として非プロトン性有機溶媒に種々の塩を溶解させたものを用いた二次電池(いわゆるリチウム二次電池)は、高エネルギー密度型二次電池の一種として注目され、盛んに研究されている。
【0003】
しかしながら、従来のリチウム二次電池では、負極活物質としてのリチウムは箔状の如き単体で用いられることが多く、充放電を繰り返すうちに、樹枝状リチウムが析出して両極が短格するため充放電のサイクル寿命が短いという欠点がある。
【0004】
そこで、リチウム二次電池の負極に、アルミニウムを用いて又は鉛、カドミウム及びインジウムを含む可融性合金を用いて、負極活物質であるリチウムを、充電時には合金として析出させ、放電時には合金から溶解させる方法が提案されている〔米国特許第4002492号(1977)参照〕。この方法によれば、樹枝状リチウムの析出を抑止することができる。しかし、この方法には、電極の加工性が低いという課題がある。
【0005】
近年、こうした課題を解決することを目的として、リチウム二次電池の負極に各種炭素材料を用いて該炭素材料にリチウムを担持させようという研究が盛んに行われている。
【0006】
リチウム二次電池負極にリチウムの担持体として作用する黒鉛を用いた場合、一般にLiC6という組成から求められる理論的な容量は372Ah/kg(炭素ベース)である。しかし、多くの炭素材料において、放電容量が黒鉛の理論容量を下回っており、要求される特性を満足していない。従って、こうした炭素材料を用いる方法には、リチウムを貯蔵できる量が充分ではないという課題がある。
【0007】
【発明が解決しようとする課題】
本発明は、かかる事情を鑑みてなされたものであり、高い放電容量及び初期効率を有するリチウム二次電池を提供することを目的とし、詳しくは、そのための負極用材料を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、(1)負極に従来の炭素材料を用いたリチウム二次電池の放電容量が理論値を下回るのは、リチウムイオンがインターカレートしにくい結晶構造(乱層構造)を有するためであること、(2)炭素材料の黒鉛化度を向上させることにより、乱層構造が低下すること、(3)メソカーボンマイクロビーズ(MCMB)を焼成して黒鉛材料を製造する際にホウ素化合物を存在させることにより、黒鉛化が促進されて、負極に用いた場合に、放電容量が理論放電容量に匹敵するリチウム二次電池を可能とする黒鉛材料が得られることを見出し、本発明を完成した。
【0009】
本発明は、以下のリチウム二次電池負極用黒鉛材料及びその製造方法並びにリチウム二次電池用負極及びリチウム二次電池に係る。
【0010】
1.ホウ素化合物の存在下でMCMBを焼成することにより得られる黒鉛材料であって、黒鉛化度P1が0.72以上であることを特徴とするリチウム二次電池負極用黒鉛材料。
【0011】
2.ホウ素化合物の存在下でMCMBを焼成することを特徴とするリチウム二次電池負極用黒鉛材料の製造方法。
【0012】
3. 前記項1に記載の黒鉛材料を構成材料とするリチウム二次電池用負極。
【0013】
4. 前記項3に記載の負極を用いたリチウム二次電池。
【0014】
黒鉛化度P1は、最近接網面が黒鉛的配列をとる確率に相当し、炭素の黒鉛化の進行に伴って変形をうけたX線回折図中の二次元(hk)回折の強度分布のフーリエ解析から求められる。
【0015】
すなわち、黒鉛化度の低い炭素材料の二次元(hk)回折は、低角側で鋭く立ち上がり高角側でゆっくり減少する非対称なものとなる。こうした回折は、炭素網面の積層中で、各網面がその法線方向に無秩序に回転しているときに認められ、黒鉛化が始まって一部の網面対が黒鉛的な関係に位置すると変形が起る。
【0016】
黒鉛化の進行に伴って変形を受けた(hk)回折の高角度側のプロファイルは下記式(1)で表される(C.R.Houska & B.E.Warren,J.Appl.Phys.,25,1503(1954))。Kは定数、mは多重度、λはX線波長、Fは構造因子、θ0はhk0面に対する回折角、d002は002面の面間隔である。
【0017】
【数1】

Figure 0004029232
【0018】
黒鉛化度P1は、式(1)中のフーリエ係数An(hk)より下記式(2)に従って求められる。
【0019】
P1=−2A1(10)=A1(11) (2)
【0020】
【作用】
リチウム二次電池の負極に黒鉛材料を使用する場合、充放電反応により、LiC6型の黒鉛層間化合物が生成するとされており、この組成に基づく理論放電容量は372Ah/kgである。しかしながら、多くの黒鉛材料において、この理論値に匹敵する放電容量が得られていない。その最も大きな原因として炭素の乱層構造性があげられる。
【0021】
理想黒鉛の場合、互いに隣接する炭素網面は図1に示すようなAB型の積層構造をとる。しかし、リチウムがインターカレートするには図2に示すようなAA型の積層構造をとる必要がある。従って、黒鉛にリチウムがインターカレートすると、炭素網面の積層構造がAB型からAA型へのスリッピングを起こす。
【0022】
しかしながら、黒鉛化度が低い黒鉛材料では、乱層構造の程度が強く、隣接炭素網面は、若干AA型の積層構造の割合が増大し、AB型の積層構造の割合が減少している(図3参照)。このような黒鉛材料にリチウムがインターカレートすると、スリッピングにより、AB型の積層構造をとっていた部位はAA型の積層構造に移行し、逆にAA型の積層構造をとっていた部位はAB型の積層構造に移行する。
【0023】
従って、黒鉛化度が低い黒鉛材料では、リチウムがインターカレートできる部位が減少しており、インターカレート後の組成がLiC6からずれる(LiCx;x>6)。その結果、負極に黒鉛化度が低い黒鉛材料を用いたリチウム二次電池では放電容量が理論値を下回るものと考えられる。
【0024】
そこで、負極用黒鉛材料の黒鉛化度を向上させることが非常に重要となる。従来より、ホウ素化合物の存在下で炭素材料を焼成すると、黒鉛化が促進されること、例えば、得られる黒鉛材料の炭素網面間距離が減少すること、結晶子サイズが増加すること等が知られている。
【0025】
本発明者らは、炭素の黒鉛化が促進される際に、上記乱層構造性も低下させられる(黒鉛化度も高められる)と予想し、鋭意研究を重ねた結果、黒鉛化を促進させる物質であるホウ素化合物の存在下でMCMBを焼成することにより、黒鉛化度が高く、リチウム二次電池の負極に使用した場合に従来より大きい放電容量を可能とする黒鉛材料が得られることを見出し、本発明を完成した。
【0026】
【発明の実施の形態】
負極用黒鉛材料
本発明のリチウム二次電池負極用黒鉛材料は、ホウ素化合物の存在下でMCMBを焼成して黒鉛化させることにより製造することができる。
【0027】
MCMBは、出発原料となる有機物質を、例えば、常圧〜2MPa・Gの加圧下、350〜450℃の温度で熱処理して生成させた球晶を、反応液中より分離、精製することにより得ることができる。出発原料としては、例えば、コールタール、コールタールピッチ、石油系重質油(例えば、アスファルト)、エチレンボトム油等の有機物質を用いることができる。
【0028】
本発明においては、上記のようにして得られるMCMBをそのまま、又は、必要に応じて、例えば、粉体のまま不活性雰囲気中で炭化した炭化物若しくはさらに黒鉛化した黒鉛化物として用いることができる。
【0029】
好ましい実施の形態では、層状構造が発達する前のMCMB又はその炭化物を使用する。層状構造が発達し、より黒鉛に近い結晶構造を有するMCMBは、例えば、(1)コールタール若しくはコールタールピッチ等の石炭系材料を出発原料とし、それらを熱処理することにより、又は(2)コールタールピッチを水素化処理した後、熱処理してメソフェーズピッチとし、これを不活性雰囲気中に噴霧したり、シリコーン等の液中で球状化処理することにより得ることができる。
【0030】
ホウ素化合物としては、ホウ素原子を含む化合物であれば、いかなる化合物でもよく、例えば、ホウ素単体、ホウ酸、酸化ホウ素、炭化ホウ素、塩化ホウ素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸ニッケルが例示される。
【0031】
MCMBに対して、ホウ素原子基準で、例えば0.1重量%以上、好ましくは1重量%以上、更に好ましくは3重量%以上、通常は25重量%以下、好ましくは20重量%以下、更に好ましくは15重量%以下、特に好ましくは10重量%以下のホウ素化合物を添加し、例えば2000℃以上の温度で焼成することにより、黒鉛材料を得ることができる。
【0032】
前述のように、高度に黒鉛化させることが重要であり、そのため、好ましい実施の形態では2000℃以上、好ましくは2200℃以上、更に好ましくは2300℃以上の温度で焼成する。一般に炭素材料を3370℃以上の温度で焼成すると炭素が昇華するため、通常は3300℃以下で焼成することが好ましい。
【0033】
ホウ素化合物の存在下でMCMBを焼成すると、ホウ素化合物の一部が分解するものと考えられ、ホウ素原子が炭素六員環中に取り込まれ、炭素網面の電子密度を変化させるものと考えられるが、ホウ素化合物の作用の詳細については不明である。
【0034】
リチウム二次電池用負極
本発明の黒鉛材料は、常法により、リチウム二次電池用負極の構成材料として使用することができる。本発明の黒鉛材料を、常法により、必要に応じて端子と組み合わせて成形することにより、任意な形状のリチウム二次電池用負極とすることができる。
【0035】
本発明の黒鉛材料は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の樹脂の分散液と混合することにより、ペースト状として用いることもできる。樹脂の混合量については、特に限定はないが、通常、黒鉛材料100重量部に対して、例えば、下限は3重量部以上、好ましくは5重量部以上とし、上限は30重量部以下、好ましくは20重量部以下とすることができる。分散液の溶媒としては、例えば、N−メチルピロリドン等の有機溶媒を用いることができる。
【0036】
リチウム二次電池
本発明の黒鉛材料を用いた負極を、正極、電解液と組み合わせて、更に必要に応じて、通常使用される電池構成要素、例えば、多孔質膜のセパレータ、集電体、ガスケット、封口板、ケース等を使用し、常法により組み立てることにより、本発明のリチウム二次電池を製造することができる。本発明のリチウム二次電池は、円筒型、角型又はボタン型等の各種の形態のリチウム二次電池として組み立てることができる。
【0037】
正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn24等を用いることができる。電解液としては、非水溶媒にリチウムイオン源となる支持電解質を溶解させたものを用いることができる。
【0038】
支持電解質としては、溶媒和しにくいアニオンを生成するリチウム塩、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiSbF6、LiAlO4、LiAlCl4、LiCl、LiIを用いることができる。
【0039】
非水溶媒としては、非プロトン性溶媒、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン、スルホラン、1,2−ジメトシキエタン、ジメチルスルホキシド、アセトニトリル、N,N−ジメチルホルムアミド、ジエチレングリコール、ジメチルエーテルを単独で又は2種類以上の混合溶媒として用いることができる。
【0040】
【実施例】
実施例1
〔負極用黒鉛材料の製造〕
1000℃で炭化させたMCMBに対してホウ素化合物として15重量%の酸化ホウ素を添加し、アルゴン雰囲気下で2900℃で黒鉛化を行った。
【0041】
〔黒鉛化度P1の測定〕
得られた黒鉛材料の回折パターンを、理学電機(株)製のX線広角回折装置(RIN2500)を用いて、管電圧−管電流を40kV-200mAとして、2θの角度が70−100゜の範囲で測定し、黒鉛化度P1を算出した(Carbon,34,1115-1118)。
【0042】
すなわち、ベースライン補正、ローレンツ補正、吸収補正、偏光補正、構造因子補正を行った後、pseido-voigt関数を用いてピーク分離を行った。その後、006回折線の分離を行った後、回折強度関数をフーリエ積分し、前記式(1)に従ってフーリエ係数A1(11)を求め、前記式(2)に従って黒鉛化度P1を求めた。結果を表1に示す。
【0043】
〔負極体の作製〕
得られた黒鉛材料に対して6重量%のポリフッ化ビニリデンを加え、N,N−ジメチルホルムアミドを溶媒として混合することにより、スラリーにした。そのスラリーを銅箔ロール上に負極成型機を用いて一定の速度で塗布し、厚み100〜140μmの負極体を作製した。こうして得られた負極体を200℃で6時間真空乾燥した。
【0044】
〔電池の作製〕
得られた負極体を、正極体(LiCoO2)、電解液(エチレンカーボネートとジエチルカーボネートとの1:1の混合溶媒に過塩素酸リチウムを1mol/lの割合で溶解したもの)及びセパレータ(ポリプロピレン不織布)と組み合わせてリチウム二次電池を作製した。
【0045】
〔電池特性の測定〕
得られたリチウム二次電池の放電特性を測定した。すなわち、1mA/cm2の定電流で充電した後、1mVの定電位で充電を行い、全充電時間を12時間とし、充電後、1mA/cm2の定電流で放電させ、電池電圧が1.3Vに低下するまでの放電量(放電容量)を測定した。初期効率は、第1サイクルの放電容量を第1サイクルの充電容量で割ることにより求めた。結果を表1に示す。
【0046】
実施例2
ホウ素化合物として5重量%の炭化ホウ素を添加したこと以外は、実施例1と同様に評価を行った。結果を表1に示す。
【0047】
実施例3
ホウ素化合物として30重量%のホウ酸を添加したこと以外は、実施例1と同様に評価を行った。結果を表1に示す。
【0048】
比較例1
ホウ素化合物を使用しないこと以外は実施例1と同様に評価を行った。結果を表1に示す。
【0049】
【表1】
Figure 0004029232
【0050】
【発明の効果】
本発明によれば、放電容量が非常に大きく且つ初期効率が高いリチウム二次電池及びそのために有用な負極用黒鉛材料を提供することができる。
【0051】
本発明により、放電容量が理論放電容量(372Ah/kg)に近い黒鉛材料を提供することができるのは、ホウ素化合物の触媒作用(黒鉛化作用)によって、黒鉛材料(MCMB)の黒鉛化度を高め、それによって炭素網面の積層構造の秩序を高め、結果としてリチウムが超格子構造をとって吸蔵されやすいようにすることができるためであると考えられる。
【0052】
本発明のリチウム二次電池負極用黒鉛材料によれば、ホウ素を含有しない従来の方法で調製された炭素材料を用いる場合と比較して、リチウム二次電池の放電容量を、例えば、数十Ah/kg程度増加させることができる。
【図面の簡単な説明】
【図1】黒鉛材料の炭素網面のAB型の積層構造を示す模式図である。
【図2】黒鉛材料の炭素網面のAA型の積層構造を示す模式図である。
【図3】黒鉛化度が低下した黒鉛材料の炭素網面の積層構造を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, a graphite material for use in the negative electrode, and a method for producing the same, and more specifically, a lithium secondary battery having high discharge capacity and initial efficiency, and a negative electrode, a graphite material for the negative electrode, and the production thereof. Regarding the method.
[0002]
[Prior art]
A secondary battery (so-called lithium secondary battery) using lithium as the negative electrode active material, metal chalcogenide or metal oxide as the positive electrode active material, and various electrolytes dissolved in an aprotic organic solvent Batteries) are attracting attention as a kind of high energy density type secondary batteries and are being actively studied.
[0003]
However, in conventional lithium secondary batteries, lithium as a negative electrode active material is often used alone as a foil, and as charging and discharging are repeated, dendritic lithium precipitates and both electrodes become shorter. There is a disadvantage that the cycle life of the discharge is short.
[0004]
Therefore, using lithium or a fusible alloy containing lead, cadmium and indium as a negative electrode of a lithium secondary battery, lithium as a negative electrode active material is precipitated as an alloy during charging and dissolved from the alloy during discharging. Has been proposed (see U.S. Pat. No. 4,024,492 (1977)). According to this method, precipitation of dendritic lithium can be suppressed. However, this method has a problem that the processability of the electrode is low.
[0005]
In recent years, for the purpose of solving such problems, researches have been actively conducted to support lithium on the carbon material using various carbon materials for the negative electrode of the lithium secondary battery.
[0006]
When graphite acting as a lithium support is used for the lithium secondary battery negative electrode, the theoretical capacity generally determined from the composition of LiC 6 is 372 Ah / kg (carbon base). However, in many carbon materials, the discharge capacity is lower than the theoretical capacity of graphite, and the required characteristics are not satisfied. Therefore, the method using such a carbon material has a problem that the amount capable of storing lithium is not sufficient.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object thereof is to provide a lithium secondary battery having high discharge capacity and initial efficiency, and specifically, to provide a negative electrode material therefor. To do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention (1) that the discharge capacity of a lithium secondary battery using a conventional carbon material for the negative electrode is lower than the theoretical value is that lithium ions are This is because it has a crystal structure that is difficult to intercalate (turbulent layer structure), (2) the disordered layer structure is lowered by improving the graphitization degree of the carbon material, and (3) mesocarbon microbeads ( The presence of a boron compound when MCMB) is fired to produce a graphite material promotes graphitization and enables a lithium secondary battery whose discharge capacity is comparable to the theoretical discharge capacity when used as a negative electrode. As a result, the present inventors completed the present invention.
[0009]
The present invention relates to the following graphite material for a negative electrode of a lithium secondary battery, a production method thereof, a negative electrode for a lithium secondary battery, and a lithium secondary battery.
[0010]
1. A graphite material obtained by firing MCMB in the presence of a boron compound, wherein the graphite material has a graphitization degree P1 of 0.72 or more.
[0011]
2. A method for producing a graphite material for a negative electrode of a lithium secondary battery, comprising firing MCMB in the presence of a boron compound.
[0012]
3. A negative electrode for a lithium secondary battery, comprising the graphite material according to Item 1 as a constituent material.
[0013]
4). A lithium secondary battery using the negative electrode according to Item 3.
[0014]
The degree of graphitization P1 corresponds to the probability that the nearest network surface takes a graphite arrangement, and the intensity distribution of the two-dimensional (hk) diffraction in the X-ray diffraction diagram that is deformed as the graphitization of carbon proceeds. Obtained from Fourier analysis.
[0015]
That is, the two-dimensional (hk) diffraction of a carbon material having a low degree of graphitization is asymmetric, rising sharply on the low angle side and slowly decreasing on the high angle side. This diffraction is observed when each network surface rotates randomly in the normal direction in the carbon network layer stack, and graphitization starts and some network surface pairs are positioned in a graphitic relationship. Then, deformation occurs.
[0016]
The profile on the high angle side of (hk) diffraction that has undergone deformation with the progress of graphitization is expressed by the following formula (1) (CRHouska & BEWarren, J. Appl. Phys., 25, 1503 (1954)) . K is a constant, m is a multiplicity, λ is an X-ray wavelength, F is a structural factor, θ 0 is a diffraction angle with respect to the hk0 plane, and d 002 is a plane spacing of the 002 plane.
[0017]
[Expression 1]
Figure 0004029232
[0018]
The graphitization degree P1 is calculated | required according to following formula (2) from the Fourier coefficient An (hk) in Formula (1).
[0019]
P1 = -2A 1 (10) = A 1 (11) (2)
[0020]
[Action]
When a graphite material is used for the negative electrode of a lithium secondary battery, it is said that a LiC 6 type graphite intercalation compound is generated by a charge / discharge reaction, and the theoretical discharge capacity based on this composition is 372 Ah / kg. However, in many graphite materials, discharge capacity comparable to this theoretical value has not been obtained. The most prominent cause is the structure of the carbon layer.
[0021]
In the case of ideal graphite, the carbon network surfaces adjacent to each other have an AB type laminated structure as shown in FIG. However, in order for lithium to intercalate, it is necessary to have an AA type laminated structure as shown in FIG. Therefore, when lithium intercalates with graphite, the laminated structure of the carbon network surface causes slipping from AB type to AA type.
[0022]
However, in the graphite material having a low graphitization degree, the degree of the turbulent layer structure is strong, and the ratio of the AA type laminated structure is slightly increased and the ratio of the AB type laminated structure is decreased on the adjacent carbon network surface ( (See FIG. 3). When lithium is intercalated into such a graphite material, the portion that has taken the AB type laminated structure is shifted to the AA type laminated structure by slipping, and conversely, the portion that has taken the AA type laminated structure is It moves to AB type laminated structure.
[0023]
Therefore, in the graphite material having a low degree of graphitization, the sites where lithium can be intercalated are reduced, and the composition after intercalation is shifted from LiC 6 (LiC x ; x> 6). As a result, it is considered that the discharge capacity is lower than the theoretical value in a lithium secondary battery using a graphite material having a low degree of graphitization for the negative electrode.
[0024]
Therefore, it is very important to improve the degree of graphitization of the negative electrode graphite material. Conventionally, it is known that when a carbon material is fired in the presence of a boron compound, graphitization is promoted, for example, the distance between carbon net surfaces of the obtained graphite material is decreased, and the crystallite size is increased. It has been.
[0025]
The present inventors expect that when the graphitization of carbon is promoted, the structure of the above-mentioned turbulent layer is also reduced (the degree of graphitization is also increased), and as a result of intensive research, the graphitization is promoted. It has been found that by firing MCMB in the presence of a boron compound as a substance, a graphite material having a high degree of graphitization and capable of a larger discharge capacity when used for a negative electrode of a lithium secondary battery can be obtained. The present invention has been completed.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Graphite material for negative electrode The graphite material for the negative electrode of the lithium secondary battery of the present invention can be produced by firing MCMB in the presence of a boron compound to graphitize it.
[0027]
MCMB is obtained by separating and purifying spherulites formed by heat treatment of organic materials as starting materials at a temperature of 350 to 450 ° C. under a pressure of normal pressure to 2 MPa · G, for example. Obtainable. As a starting material, for example, an organic substance such as coal tar, coal tar pitch, petroleum heavy oil (for example, asphalt), ethylene bottom oil, or the like can be used.
[0028]
In the present invention, the MCMB obtained as described above can be used as it is or as needed, for example, as a carbonized carbonized powder in an inert atmosphere or further graphitized graphitized material.
[0029]
In a preferred embodiment, MCMB or a carbide thereof before the layered structure is developed is used. MCMB, which has a layered structure and has a crystal structure closer to graphite, can be obtained, for example, by (1) using a coal-based material such as coal tar or coal tar pitch as a starting material and heat-treating them, or (2) coal. After the tar pitch is hydrogenated, it can be obtained by heat-treating it into a mesophase pitch and spraying it in an inert atmosphere or spheroidizing in a liquid such as silicone.
[0030]
The boron compound may be any compound as long as it contains a boron atom. Examples thereof include boron alone, boric acid, boron oxide, boron carbide, boron chloride, sodium borate, potassium borate, and nickel borate. The
[0031]
For MCMB, for example, 0.1% by weight or more, preferably 1% by weight or more, more preferably 3% by weight or more, usually 25% by weight or less, preferably 20% by weight or less, more preferably 15% by weight or more based on boron atom. % Or less, particularly preferably 10% by weight or less of a boron compound is added, and, for example, by baking at a temperature of 2000 ° C. or higher, a graphite material can be obtained.
[0032]
As described above, it is important to highly graphitize. Therefore, in a preferred embodiment, firing is performed at a temperature of 2000 ° C. or higher, preferably 2200 ° C. or higher, more preferably 2300 ° C. or higher. In general, when a carbon material is fired at a temperature of 3370 ° C. or higher, carbon is sublimated.
[0033]
When MCMB is fired in the presence of a boron compound, it is considered that a part of the boron compound is decomposed, and boron atoms are taken into the carbon six-membered ring, which changes the electron density of the carbon network surface. The details of the action of boron compounds are unclear.
[0034]
Negative electrode for lithium secondary battery The graphite material of the present invention can be used as a constituent material of a negative electrode for lithium secondary battery by a conventional method. The graphite material of the present invention can be formed into a negative electrode for a lithium secondary battery having an arbitrary shape by molding in combination with a terminal as necessary according to a conventional method.
[0035]
The graphite material of the present invention can also be used as a paste by mixing with a dispersion of a resin such as polyvinylidene fluoride or polytetrafluoroethylene. The mixing amount of the resin is not particularly limited. Usually, the lower limit is 3 parts by weight or more, preferably 5 parts by weight or more, and the upper limit is 30 parts by weight or less, preferably 100 parts by weight of the graphite material. It can be 20 parts by weight or less. As a solvent for the dispersion, for example, an organic solvent such as N-methylpyrrolidone can be used.
[0036]
Lithium secondary battery A negative electrode using the graphite material of the present invention is combined with a positive electrode and an electrolytic solution, and further, if necessary, commonly used battery components such as a separator of a porous membrane, a collector The lithium secondary battery of the present invention can be manufactured by using an electric body, a gasket, a sealing plate, a case, and the like and assembling by a conventional method. The lithium secondary battery of the present invention can be assembled as various types of lithium secondary batteries such as a cylindrical type, a square type, and a button type.
[0037]
As the positive electrode active material, for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like can be used. As the electrolytic solution, a solution obtained by dissolving a supporting electrolyte serving as a lithium ion source in a nonaqueous solvent can be used.
[0038]
As the supporting electrolyte, lithium salt to produce a solvated hard anion, for example, LiPF 6, LiClO 4, LiBF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, can be used LiI.
[0039]
Nonaqueous solvents include aprotic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxyethane, dimethyl sulfoxide, acetonitrile, N, N-dimethylformamide, diethylene glycol, and dimethyl ether can be used alone or as a mixture of two or more.
[0040]
【Example】
Example 1
[Manufacture of negative electrode graphite material]
15% by weight of boron oxide was added as a boron compound to MCMB carbonized at 1000 ° C., and graphitized at 2900 ° C. in an argon atmosphere.
[0041]
[Measurement of graphitization degree P1]
Using the X-ray wide angle diffractometer (RIN 2500) manufactured by Rigaku Corporation, the diffraction pattern of the obtained graphite material is set to a tube voltage-tube current of 40 kV-200 mA, and the angle of 2θ is in the range of 70-100 °. And graphitization degree P1 was calculated (Carbon, 34, 1115-1118).
[0042]
That is, after baseline correction, Lorentz correction, absorption correction, polarization correction, and structure factor correction, peak separation was performed using the pseido-voigt function. Then, after separating the 006 diffraction lines, the diffraction intensity function was Fourier-integrated to obtain the Fourier coefficient A 1 (11) according to the equation (1), and the graphitization degree P1 was obtained according to the equation (2). The results are shown in Table 1.
[0043]
(Production of negative electrode body)
6% by weight of polyvinylidene fluoride was added to the obtained graphite material, and N, N-dimethylformamide was mixed as a solvent to form a slurry. The slurry was applied onto a copper foil roll at a constant speed using a negative electrode molding machine to prepare a negative electrode body having a thickness of 100 to 140 μm. The negative electrode body thus obtained was vacuum-dried at 200 ° C. for 6 hours.
[0044]
[Production of battery]
The obtained negative electrode body was divided into a positive electrode body (LiCoO 2 ), an electrolytic solution (lithium perchlorate dissolved at a ratio of 1 mol / l in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate) and a separator (polypropylene). In combination with a non-woven fabric, a lithium secondary battery was produced.
[0045]
[Measurement of battery characteristics]
The discharge characteristics of the obtained lithium secondary battery were measured. That is, after charging at a constant current of 1 mA / cm 2 , charging is performed at a constant potential of 1 mV, and the total charging time is 12 hours. After charging, the battery is discharged at a constant current of 1 mA / cm 2 and the battery voltage is 1.3 V. The amount of discharge (discharge capacity) until it dropped to 0.25 was measured. The initial efficiency was determined by dividing the discharge capacity of the first cycle by the charge capacity of the first cycle. The results are shown in Table 1.
[0046]
Example 2
Evaluation was performed in the same manner as in Example 1 except that 5% by weight of boron carbide was added as a boron compound. The results are shown in Table 1.
[0047]
Example 3
Evaluation was performed in the same manner as in Example 1 except that 30% by weight of boric acid was added as a boron compound. The results are shown in Table 1.
[0048]
Comparative Example 1
Evaluation was performed in the same manner as in Example 1 except that no boron compound was used. The results are shown in Table 1.
[0049]
[Table 1]
Figure 0004029232
[0050]
【The invention's effect】
According to the present invention, it is possible to provide a lithium secondary battery having a very large discharge capacity and high initial efficiency, and a graphite material for a negative electrode useful therefor.
[0051]
According to the present invention, a graphite material having a discharge capacity close to the theoretical discharge capacity (372 Ah / kg) can be provided because the graphitization degree of the graphite material (MCMB) is increased by the catalytic action (graphitization action) of the boron compound. This is because the order of the laminated structure of the carbon network surface can be increased, and as a result, lithium can take a superlattice structure and be easily occluded.
[0052]
According to the graphite material for the negative electrode of the lithium secondary battery of the present invention, compared with the case of using a carbon material prepared by a conventional method not containing boron, the discharge capacity of the lithium secondary battery is, for example, several tens Ah. / Kg can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an AB type laminated structure of a carbon net surface of a graphite material.
FIG. 2 is a schematic diagram showing an AA-type laminated structure of a carbon network surface of a graphite material.
FIG. 3 is a schematic view showing a laminated structure of a carbon network surface of a graphite material having a reduced graphitization degree.

Claims (4)

石炭系材料を熱処理することにより得られるメソカーボンマイクロビーズの炭化物をホウ素化合物の存在下で焼成することにより得られる黒鉛材料であって、黒鉛化度P1が0.75以上であることを特徴とするリチウム二次電池負極用黒鉛材料。 A graphite material obtained by firing carbides of mesocarbon microbeads obtained by heat-treating a coal-based material in the presence of a boron compound, wherein the graphitization degree P1 is 0.75 or more. A graphite material for a negative electrode of a lithium secondary battery. 石炭系材料を熱処理することにより得られるメソカーボンマイクロビーズの炭化物をホウ素化合物の存在下で焼成することを特徴とするリチウム二次電池負極用黒鉛材料の製造方法。 A method for producing a graphite material for a negative electrode of a lithium secondary battery, comprising calcining a carbide of mesocarbon microbeads obtained by heat-treating a coal-based material in the presence of a boron compound. 請求項1に記載の黒鉛材料を構成材料とするリチウム二次電池用負極。 A negative electrode for a lithium secondary battery comprising the graphite material according to claim 1 as a constituent material. 請求項3に記載の負極を用いたリチウム二次電池。 A lithium secondary battery using the negative electrode according to claim 3.
JP08632098A 1998-03-31 1998-03-31 Negative electrode for lithium secondary battery and method for producing the same Expired - Fee Related JP4029232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08632098A JP4029232B2 (en) 1998-03-31 1998-03-31 Negative electrode for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08632098A JP4029232B2 (en) 1998-03-31 1998-03-31 Negative electrode for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11283625A JPH11283625A (en) 1999-10-15
JP4029232B2 true JP4029232B2 (en) 2008-01-09

Family

ID=13883555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08632098A Expired - Fee Related JP4029232B2 (en) 1998-03-31 1998-03-31 Negative electrode for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4029232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908749B2 (en) * 2003-10-08 2012-04-04 大阪瓦斯株式会社 Negative electrode carbon material and lithium secondary battery including the same
JP5133543B2 (en) * 2006-09-12 2013-01-30 Jfeケミカル株式会社 Method for producing mesocarbon microsphere graphitized material
CN113066977B (en) * 2021-03-18 2022-09-23 宁德新能源科技有限公司 Anode material, and electrochemical device and electronic device including same

Also Published As

Publication number Publication date
JPH11283625A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
KR101685765B1 (en) Negative active material for lithium secondary battery and method of preparing for the same
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP4760379B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR102316342B1 (en) Silicon-based composite, negative electrode and lithium secondary battery comprising the same
US20080193831A1 (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
EP2698848A1 (en) Negative active material for rechargeable lithium battery, and negative electrode and rechargeable lithium battery including same
JP6673331B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR101571917B1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
US20180019472A1 (en) Method for manufacturing graphite powder for negative-electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US10211461B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use, and secondary battery
US10164255B2 (en) Silicon material and negative electrode of secondary battery
JP7407377B2 (en) Magnesium ion secondary batteries, positive electrode active materials for magnesium ion secondary batteries, and positive electrodes for magnesium ion secondary batteries
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP4314087B2 (en) Nonaqueous electrolyte secondary battery
JP4232404B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4029232B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2017027772A (en) Lithium ion secondary battery and method for manufacturing the same
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JPH087895A (en) Carbon material for lithium secondary battery electrode and manufacture thereof
JP4335596B2 (en) Method for producing polycrystalline mesocarbon microsphere graphitized product
KR102604921B1 (en) Lithium transition metal oxide, positive electrode additive for lithium secondary battery, lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees