JP5953249B2 - Composite graphite particles and their use in lithium ion secondary batteries - Google Patents

Composite graphite particles and their use in lithium ion secondary batteries Download PDF

Info

Publication number
JP5953249B2
JP5953249B2 JP2013039479A JP2013039479A JP5953249B2 JP 5953249 B2 JP5953249 B2 JP 5953249B2 JP 2013039479 A JP2013039479 A JP 2013039479A JP 2013039479 A JP2013039479 A JP 2013039479A JP 5953249 B2 JP5953249 B2 JP 5953249B2
Authority
JP
Japan
Prior art keywords
graphite particles
negative electrode
particles
lithium ion
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013039479A
Other languages
Japanese (ja)
Other versions
JP2013216563A (en
Inventor
江口 邦彦
邦彦 江口
古川 聡
聡 古川
間所 靖
靖 間所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2013039479A priority Critical patent/JP5953249B2/en
Publication of JP2013216563A publication Critical patent/JP2013216563A/en
Application granted granted Critical
Publication of JP5953249B2 publication Critical patent/JP5953249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複合黒鉛質粒子、リチウムイオン二次電池用導電材、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。   The present invention relates to composite graphite particles, a conductive material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

近年、電子機器の小型化あるいは高性能化に伴い、電池のエネルギー密度を高める要望がますます高まる中、他の二次電池よりも高電圧化が可能で、高いエネルギー密度が達成されるリチウムイオン二次電池が特に注目されている。
リチウムイオン二次電池は、リチウム塩を含む電解液(非水電解質)、リチウム化合物を正極活物質とする正極、および負極を主たる構成要素とし、両極はそれぞれリチウムイオンの担持体として作用する。負極の電池機構(充電時のリチウムイオン吸蔵/放電時のリチウムイオン離脱)を担う負極材料には、通常、リチウムイオン吸蔵量が高く高容量となる炭素材料が用いられる。なかでも、負極活物質として、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛が汎用されている(たとえば特許文献1参照)。
In recent years, as the demand for increasing the energy density of batteries increases with the miniaturization or performance of electronic devices, lithium ions that can achieve higher voltages and achieve higher energy densities than other secondary batteries. Secondary batteries are particularly attracting attention.
A lithium ion secondary battery mainly includes an electrolyte solution (nonaqueous electrolyte) containing a lithium salt, a positive electrode using a lithium compound as a positive electrode active material, and a negative electrode, and both electrodes each function as a lithium ion carrier. As the negative electrode material responsible for the negative electrode battery mechanism (lithium ion occlusion during charge / lithium release during discharge), a carbon material having a high lithium ion occlusion and a high capacity is usually used. Among these, graphite having excellent charge / discharge characteristics and high discharge capacity and potential flatness is widely used as a negative electrode active material (see, for example, Patent Document 1).

上記黒鉛を負極材料とする具体例としては、代表的に、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させた細孔を有する黒鉛粒子(特許文献2参照)、直径方向に垂直な方向に黒鉛のベーサル面(黒鉛結晶の六角網目状に平行な面)が層状に配列したブルックス・テーラー型の単結晶からなるメソカーボン小球体の黒鉛化物(特許文献3参照)、球状に加工された天然黒鉛に炭素質物質を被覆処理した複合黒鉛粒子(特許文献4参照)、バルクメソフェーズを粉砕、酸化、黒鉛化してなる塊状の黒鉛粒子(特許文献5参照)などが挙げられる。   As a specific example using the graphite as the negative electrode material, typically, graphite particles having pores in which a plurality of flat particles are aggregated or bonded so that the orientation planes are non-parallel (see Patent Document 2), Graphite of mesocarbon microspheres composed of Brooks-Taylor single crystals in which basal planes of graphite (planes parallel to the hexagonal network of graphite crystals) are arranged in layers in a direction perpendicular to the diameter direction (see Patent Document 3) Composite graphite particles obtained by coating a carbonaceous material on natural graphite processed into a spherical shape (see Patent Document 4), bulk graphite particles obtained by pulverizing, oxidizing, and graphitizing bulk mesophase (see Patent Document 5) It is done.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特開平10−158005号公報JP-A-10-158005 特開2000−323127号公報JP 2000-323127 A 特開2004−63321号公報JP 2004-63321 A 特開平10−139410号公報JP-A-10-139410

近年、特に携帯用電子機器や電気自動車に搭載されるリチウムイオン二次電池の負極材料には、高容量に加え、急速充電性、急速放電性、さらには充放電を繰り返しても初期の放電容量が劣化しないサイクル特性が求められている。しかしながら、上記従来の黒鉛系負極材料では、高い要求を満たす急速充電性、急速放電性およびサイクル特性は得られていない。これは、充放電に伴う黒鉛の膨張、収縮によって、黒鉛粒子間の接触が外れ、充放電に関与しない孤立した黒鉛粒子を生じることが一因となっている。
このため、黒鉛粒子間の接触を維持するための導電材を併用することが通例となっている。この導電材としては、一般的に、カーボンブラックなどの炭素質微粒子、人造黒鉛、天然黒鉛などの鱗片状黒鉛、気相成長炭素繊維、カーボンナノチューブなどの炭素質または黒鉛質の繊維などが知られている。
In recent years, the negative electrode materials of lithium-ion secondary batteries, especially for portable electronic devices and electric vehicles, have high capacity, rapid chargeability, rapid discharge, and initial discharge capacity even after repeated charge / discharge. There is a need for cycle characteristics that do not deteriorate. However, the conventional graphite-based negative electrode material described above does not have rapid chargeability, rapid discharge property, and cycle characteristics that satisfy high demands. This is partly due to the contact between the graphite particles coming off due to the expansion and contraction of the graphite accompanying charging / discharging, resulting in isolated graphite particles not involved in charging / discharging.
For this reason, it is customary to use together a conductive material for maintaining contact between graphite particles. As the conductive material, carbonaceous fine particles such as carbon black, scaly graphite such as artificial graphite and natural graphite, vapor grown carbon fiber, carbonaceous or graphitic fiber such as carbon nanotube, etc. are generally known. ing.

しかしながら、上記各種導電材の配合により様々な問題を生じることがある。
たとえば上記炭素質微粒子についていえば、カーボンブラックの粒子径は通常10〜500nm程で微細すぎるため、活物質である黒鉛粒子の導電パスを形成させるためには大量の配合が必要となり、炭素質微粒子自体の高い反応性に起因して、充放電初期効率やサイクル特性が低下する。
また、炭素質または黒鉛質の繊維は、繊維を完全に解繊することが難しく、導電材としての効果を得るために本来必要な量を超える配合量が必要となり、高価であるため工業的な普及が難しい。
However, various problems may be caused by the blending of the various conductive materials.
For example, in the case of the above carbonaceous fine particles, the particle size of carbon black is usually about 10 to 500 nm, which is too fine. Therefore, a large amount of compounding is required to form a conductive path of graphite particles as an active material. Due to its high reactivity, the initial charge / discharge efficiency and cycle characteristics are reduced.
In addition, carbonaceous or graphitic fibers are difficult to completely defibrate, and the amount of the carbonaceous or graphitic fiber that exceeds the amount necessary for obtaining an effect as a conductive material is necessary, and is expensive and industrial. Difficult to spread.

鱗片状黒鉛は、公知の導電材のなかでも経済性に優れ、広く利用されているが、その形状ゆえに、電極表面や内部が閉塞しやすく、電解液の浸透性や保持性を阻害したり、電解液の枯渇を生じて急速放電性やサイクル特性が低下する。また充電膨張が大きくなるといった課題がある。すなわち、鱗片状黒鉛は、負極材の主要構成成分である黒鉛粒子が充放電に伴う膨張収縮によって、その一部が孤立した場合に、黒鉛粒子同士をつなぎとめる役割を有する半面、鱗片状黒鉛自体が電解液の動きを阻害するほか、充電膨張が大きいものである。また、鱗片状黒鉛は比表面積が大きいため、負極合剤スラリーの粘度が高くなり、生産性が低下することもある。このように鱗片状黒鉛は、配合量の増加に伴って導電性付与の効果が相殺され、過剰の場合には悪影響が大きく現れてしまう。   Scale-like graphite is excellent in economic efficiency among known conductive materials and is widely used, but due to its shape, the electrode surface and the inside are likely to be blocked, impeding the permeability and retention of the electrolyte, Electrolyte depletion is caused and rapid discharge and cycle characteristics are deteriorated. In addition, there is a problem that charging expansion is increased. That is, scaly graphite has a role of holding graphite particles together when the graphite particles, which are the main constituent components of the negative electrode material, are partially isolated by expansion and contraction associated with charge and discharge. In addition to hindering the movement of the electrolyte, it has a large charge expansion. In addition, since scaly graphite has a large specific surface area, the viscosity of the negative electrode mixture slurry increases, and the productivity may decrease. As described above, the scale-like graphite cancels out the effect of imparting conductivity as the blending amount increases, and if it is excessive, adverse effects appear greatly.

本発明の目的は、リチウムイオン二次電池の既知の負極活物質に配合した場合に、優れたサイクル特性を発現することができる導電材としての負極材料を提供することにある。特に、負極を高い密度にプレスした場合でも、電解液の浸透性や保持性を損なうことがなく、優れた急速充電性、急速放電性およびサイクル特性を発現でき、体積当たりの放電容量が高い負極を提供することにある。   The objective of this invention is providing the negative electrode material as a electrically conductive material which can express the outstanding cycling characteristics, when it mix | blends with the known negative electrode active material of a lithium ion secondary battery. In particular, even when the negative electrode is pressed to a high density, the negative electrode has a high discharge capacity per volume, without impairing the permeability and retention of the electrolyte, exhibiting excellent rapid chargeability, rapid discharge properties and cycle characteristics Is to provide.

本発明者は、急速充電性、急速放電性およびサイクル特性に対する高い要求を満たすリチウムイオン二次電池を実現するため、負極材料の導電材に注目し、特に経済性に優れる鱗片状黒鉛について鋭意検討するうちに、鱗片状黒鉛を中空構造の複合黒鉛質粒子に成形することを着想した。そして、実際、該中空構造の複合黒鉛質粒子を導電材とする負極材料によれば、上記鱗片状黒鉛の導電材としての課題を解決することができ、リチウムイオン二次電池に求められる所望の効果を得ることができることを確認できた。したがって、以下のような本発明(1)〜(13)を提供する。   The present inventor has paid attention to the conductive material of the negative electrode material in order to realize a lithium ion secondary battery that satisfies high demands for quick chargeability, rapid discharge performance, and cycle characteristics, and has intensively studied scaly graphite that is particularly economical. In the meantime, the idea was to form scale-like graphite into hollow composite graphite particles. And in fact, according to the negative electrode material using the composite graphite particles having the hollow structure as a conductive material, the problem as the conductive material of the above-mentioned flaky graphite can be solved, and a desired demand for a lithium ion secondary battery can be achieved. It was confirmed that an effect could be obtained. Therefore, the following present inventions (1) to (13) are provided.

(1)鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下である、複合黒鉛質粒子からなり、
前記複合黒鉛質粒子の空隙の容積率が30〜95体積%である、リチウムイオン二次電池用導電材
記複合黒鉛質粒子は、通常、該複合黒鉛質粒子の平均粒子径の30%以上、特に50%以上の大きさの空洞を有することが望ましい。
)炭素質または黒鉛質の繊維(C)をさらに含む(1)記載の複合黒鉛質粒子。
)前記複合黒鉛質粒子100質量部に対する、前記炭素質材料(B)が0.1〜20質量部である(1)または(2)に記載の複合黒鉛質粒子。
(1) Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 Consisting of composite graphite particles ,
The electrically conductive material for lithium ion secondary batteries whose volume ratio of the space | gap of the said composite graphite particle | grain is 30-95 volume% .
Upper Symbol composite graphite particles is usually more than 30% of the average particle diameter of the composite graphite particles, it is desirable, particularly with a cavity of 50% or more in size.
( 2 ) The composite graphite particles according to (1) , further comprising carbonaceous or graphite fibers (C).
( 3 ) The composite graphite particles according to (1) or (2) , wherein the carbonaceous material (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the composite graphite particles.

上記複合黒鉛質粒子において、鱗片状黒鉛質粒子(A)の平均粒子径は、1〜15μmであることが望ましい。   In the composite graphite particles, the average particle diameter of the scaly graphite particles (A) is preferably 1 to 15 μm.

)前記(1)〜()のいずれかに記載のリチウムイオン二次電池用導電材と、負極活物質とを1〜40:99〜60の質量比で含むリチウムイオン二次電池用負極材料。
)前記負極活物質の平均粒子径が、前記複合黒鉛質粒子の平均粒子径よりも大きい()に記載のリチウムイオン二次電池用負極材料。
( 4 ) For a lithium ion secondary battery comprising the conductive material for a lithium ion secondary battery according to any one of (1) to ( 3 ) and a negative electrode active material in a mass ratio of 1 to 40:99 to 60. Negative electrode material.
( 5 ) The negative electrode material for a lithium ion secondary battery according to ( 4 ), wherein an average particle size of the negative electrode active material is larger than an average particle size of the composite graphite particles.

)前記()または()に記載の負極材料を用いてなるリチウムイオン二次電池負極。
)前記()に記載の負極を用いてなるリチウムイオン二次電池。
( 6 ) A lithium ion secondary battery negative electrode formed using the negative electrode material according to ( 4 ) or ( 5 ).
( 7 ) A lithium ion secondary battery using the negative electrode according to ( 6 ).

(8)球状ないし略球状である炭素質材料(B)の前駆体および鱗片状黒鉛質粒子(A)を混合して、前記前駆体の表面に前記鱗片状黒鉛質粒子(A)を付着させた付着体を得る付着工程と、
前記付着工程で得られた付着体を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%である複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法。
)球状ないし略球状である炭素質材料(B)の前駆体、鱗片状黒鉛質粒子(A)および炭素質または黒鉛質の繊維(C)を混合して、前記前駆体の表面に前記鱗片状黒鉛質粒子(A)および前記繊維(C)を付着させた付着体を得る付着工程と、
前記付着工程で得られた付着体を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%であり、炭素質または黒鉛質の繊維(C)をさらに含む焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法。
(8) A precursor of the carbonaceous material (B) that is spherical or substantially spherical and the scaly graphite particles (A) are mixed, and the scaly graphite particles (A) are adhered to the surface of the precursor. An attaching step to obtain a adhered body;
The adhering body obtained in the adhering step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing flaky graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less Ri has a firing step of the void volume fraction to obtain a 30 to 95 vol% der Ru composite graphite particles, method for producing a composite graphite particles used in the conductive material for lithium ion secondary battery.
( 9 ) A spherical or substantially spherical carbonaceous material (B) precursor, scaly graphite particles (A), and carbonaceous or graphitic fibers (C) are mixed, and the precursor is coated on the surface of the precursor. An attachment step of obtaining an adherend to which the scaly graphite particles (A) and the fibers (C) are attached;
The adhering body obtained in the adhering step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less The manufacturing method of the composite graphite particle | grains used for the electrically conductive material for lithium ion secondary batteries which has the baking process which the volume ratio of a space | gap is 30-95 volume% and further contains carbonaceous or a graphite fiber (C).

10)鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体を分散媒体中に分散させて分散液を得る分散工程と、
前記分散工程で得られた分散液を噴霧、乾燥して、前記鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体からなる中空構造体を得る噴霧乾燥工程と、
前記噴霧乾燥工程で得られた中空構造体および炭素質材料(B)の前駆体を混合する混合工程と、
前記混合工程で得られた混合物を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%である複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法。
11)鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体を分散媒体中に分散させて分散液を得る分散工程と、
前記分散工程で得られた分散液を噴霧、乾燥して、前記鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体からなる中空構造体を得る噴霧乾燥工程と、
前記噴霧乾燥工程で得られた中空構造体、炭素質材料(B)の前駆体および炭素質または黒鉛質の繊維(C)を混合する混合工程と、
前記混合工程で得られた混合物を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%であり、炭素質または黒鉛質の繊維(C)をさらに含む複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複複合黒鉛質粒子の製造方法。
( 10 ) a dispersion step of dispersing a precursor of the scaly graphite particles (A) and the carbonaceous material (B) in a dispersion medium to obtain a dispersion;
Spraying and drying the dispersion obtained in the dispersion step to obtain a hollow structure composed of precursors of the scaly graphite particles (A) and the carbonaceous material (B); and
A mixing step of mixing the hollow structure obtained in the spray drying step and the precursor of the carbonaceous material (B);
The mixture obtained in the mixing step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing flaky graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less Ri has a firing step of the void volume fraction to obtain a 30 to 95 vol% der Ru composite graphite particles, method for producing a composite graphite particles used in the conductive material for lithium ion secondary battery.
( 11 ) a dispersion step of dispersing the precursors of the scaly graphite particles (A) and the carbonaceous material (B) in a dispersion medium to obtain a dispersion;
Spraying and drying the dispersion obtained in the dispersion step to obtain a hollow structure composed of precursors of the scaly graphite particles (A) and the carbonaceous material (B); and
A mixing step of mixing the hollow structure obtained in the spray drying step, the precursor of the carbonaceous material (B) and the carbonaceous or graphitic fiber (C);
The mixture obtained in the mixing step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less And a composite composite used for a conductive material for a lithium ion secondary battery having a firing step of obtaining composite graphite particles having a void volume ratio of 30 to 95% by volume and further containing carbonaceous or graphite fibers (C) A method for producing graphite particles.

本発明の特定構造を有する複合黒鉛質粒子は、リチウムイオン二次電池負極材料として既知の黒鉛粒子に特定の比率で配合して活物質層を形成することにより、黒鉛粒子の粒子間空隙に介在し、黒鉛粒子と効果的に接触して高い導電性を発揮するとともに、複合黒鉛質粒子自体の配向度が低く、充電膨張が小さく、電解液の浸透性、保持性に優れている。負極を高密度化してもその特徴を維持することができる。そのため、本発明の複合黒鉛質粒子を含む負極を用いたリチウムイオン二次電池は、体積当たりの放電容量が高く、急速充電性、急速放電性、サイクル特性等の電池性能が良好である。よって、本発明のリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。   The composite graphite particles having the specific structure of the present invention are interspersed in the interparticle voids of the graphite particles by forming an active material layer by blending with graphite particles known as lithium ion secondary battery negative electrode materials at a specific ratio. In addition, the graphite particles are effectively brought into contact with each other to exhibit high conductivity, and the degree of orientation of the composite graphite particles themselves is low, the charge expansion is small, and the electrolyte permeability and retention are excellent. Even if the density of the negative electrode is increased, the characteristics can be maintained. Therefore, the lithium ion secondary battery using the negative electrode containing the composite graphite particles of the present invention has a high discharge capacity per volume and good battery performance such as rapid chargeability, rapid discharge performance, and cycle characteristics. Therefore, the lithium ion secondary battery of the present invention satisfies the recent demand for higher energy density of batteries, and is useful for downsizing and higher performance of equipment to be mounted.

実施例で得られた複合黒鉛質粒子の走査型電子顕微鏡写真を示す。The scanning electron micrograph of the composite graphite particle | grains obtained in the Example is shown. 実施例で得られた複合黒鉛質粒子の断面の偏光顕微鏡写真を示す。The polarizing microscope photograph of the cross section of the composite graphite particle | grains obtained in the Example is shown. 実施例において充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test in an Example.

以下、本発明について具体的に説明する。
本発明の複合黒鉛質粒子は、少なくとも鱗片状黒鉛質粒子(A)と炭素質材料(B)とから造粒(成形)された球状ないし略球状の粒子である。特に、該複合黒鉛質粒子は、炭素質材料(B)で結着された鱗片状黒鉛質粒子(A)で形成される骨格を有し、その内部に鱗片状黒鉛質粒子(A)および炭素質材料(B)のどちらも存在しない空隙を有する中空構造であることを特徴とする。
まず造粒材料について説明する。
Hereinafter, the present invention will be specifically described.
The composite graphite particles of the present invention are spherical or substantially spherical particles granulated (formed) from at least scaly graphite particles (A) and a carbonaceous material (B). In particular, the composite graphite particles have a skeleton formed of scaly graphite particles (A) bound with a carbonaceous material (B), and inside the scaly graphite particles (A) and carbon A hollow structure having voids in which neither of the quality materials (B) exists.
First, the granulated material will be described.

[(A)鱗片状黒鉛質粒子]
本発明で用いられる鱗片状黒鉛質粒子(A)は、鱗片状、板状、タブレット状の人造黒鉛もしくは天然黒鉛であり、複数個が積層した状態であってもよいが、単一粒子として分散している状態が好ましい。鱗片形状の途中で屈曲した状態や、粒子端部が丸められた状態であってもよい。
鱗片状黒鉛質粒子(A)の平均粒子径は、複合黒鉛質粒子の平均粒子径の1/2以下であればよく、その体積換算の平均粒子径は1〜15μm、特に2〜8μmであることが好ましい。1μm以上であれば、最終的に得られる複合黒鉛質粒子は負極に導電性を付与でき、急速充電性やサイクル特性が向上するほか、電解液の反応性を抑え、高い初期充放電効率を得ることができる。そして、複合黒鉛質粒子の平均粒子径の1/2以下、概ね15μm以下であると、最終的に得られる複合黒鉛質粒子は、急速充電性、急速放電性やサイクル特性が向上する。
ここで、本明細書における体積換算の平均粒子径とは、レーザー回折式粒度分布計によって測定した粒度分布の累積度数が、体積百分率で50%となる粒子径を意味する。他の黒鉛質粒子の平均粒子径についても同じである。
[(A) scale-like graphite particles]
The scaly graphite particles (A) used in the present invention are scaly, plate-like, or tablet-like artificial graphite or natural graphite, and a plurality of them may be laminated, but dispersed as a single particle. The state which is carrying out is preferable. It may be in a state where it is bent in the middle of the scale shape or in a state where the end of the particle is rounded.
The average particle size of the scale-like graphite particles (A) may be ½ or less of the average particle size of the composite graphite particles, and the volume-converted average particle size is 1 to 15 μm, particularly 2 to 8 μm. It is preferable. If it is 1 μm or more, the finally obtained composite graphite particles can impart conductivity to the negative electrode, improve quick chargeability and cycle characteristics, suppress the reactivity of the electrolyte, and obtain high initial charge / discharge efficiency. be able to. When the average particle diameter of the composite graphite particles is ½ or less, generally about 15 μm or less, the composite graphite particles finally obtained have improved quick chargeability, rapid discharge properties, and cycle characteristics.
Here, the average particle diameter in terms of volume in the present specification means a particle diameter at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume. The same applies to the average particle diameter of other graphite particles.

鱗片状黒鉛質粒子(A)の平均アスペクト比は、5以上であることが好ましく、20以上であることがより好ましく、60以下であることが好ましい。アスペクト比が大きく厚みが薄いものであるほど、最終的に得られる複合黒鉛質粒子が、他の負極活物質と均等に接触し、負極の導電性を充分に高めることができ、急速充電性やサイクル特性が向上する。平均アスペクト比が5未満の場合には、最終的に得られる複合黒鉛質粒子が、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがある。
なお、アスペクト比とは、測定対象の1粒子の長軸長の短軸長に対する比を意味する。ここで、長軸長は測定対象の粒子の最も長い径を意味し、短軸長は測定対象の粒子の長軸に直交する短い径を意味する。また、平均アスペクト比は、走査型電子顕微鏡によって100個の鱗片状黒鉛質粒子(A)を観察して測定した各粒子のアスペクト比の単純平均値である。ここで、走査型電子顕微鏡で観察する際の倍率は、測定対象粒子の形状を確認できる倍率とする。他の黒鉛質粒子の平均アスペクト比についても同じである。
The average aspect ratio of the scaly graphite particles (A) is preferably 5 or more, more preferably 20 or more, and preferably 60 or less. The smaller the aspect ratio and the smaller the thickness, the more the composite graphite particles finally obtained are in contact with other negative electrode active materials, and the conductivity of the negative electrode can be sufficiently increased. Cycle characteristics are improved. When the average aspect ratio is less than 5, the finally obtained composite graphite particles require a high pressure in order to make the active material layer high density, and the deformation and elongation of the copper foil as the current collector, Problems such as breakage may occur.
The aspect ratio means the ratio of the major axis length to the minor axis length of one particle to be measured. Here, the long axis length means the longest diameter of the particle to be measured, and the short axis length means a short diameter perpendicular to the long axis of the particle to be measured. The average aspect ratio is a simple average value of the aspect ratio of each particle measured by observing 100 scaly graphite particles (A) with a scanning electron microscope. Here, the magnification at the time of observing with a scanning electron microscope is a magnification at which the shape of the particles to be measured can be confirmed. The same applies to the average aspect ratio of other graphite particles.

鱗片状黒鉛質粒子(A)は、高い結晶性を有する。結晶性が高いがゆえに軟質であり、活物質層の密度を高くすることにも寄与する。結晶性の指標として、X線広角回折における格子面(002)の平均格子面間隔d002(以下、単に平均格子面間隔d002とも記す)が0.3363nm未満、特に0.3360nm以下であることが好ましい。
ここで、平均格子面間隔d002とは、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して、小球体黒鉛化物(A)の(002)面の回折ピークを測定し、そのピーク位置から算出する。算出方法は、学振法(日本学術振興会第17委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」(大谷杉郎著、733−742頁(1986年3月)、近代編集社)に記載された方法によって測定した値である。
The scaly graphite particles (A) have high crystallinity. Since it has high crystallinity, it is soft and contributes to increasing the density of the active material layer. It as an index of crystalline lattice plane in X-ray wide angle diffraction (002) average lattice spacing d 002 (hereinafter, simply referred to as an average lattice spacing d 002) of less than 0.3363 nm, in particular 0.3360nm or less Is preferred.
Here, the average lattice spacing d 002 is a diffraction peak on the (002) plane of the microsphere graphitized product (A) using CuKα rays as X-rays and using high-purity silicon as a standard material, Calculate from the peak position. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 17th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” (written by Suguro Otani, pages 733-742 (1986) (Month) and Modern Editing Company).

鱗片状黒鉛質粒子(A)の比表面積は、大きすぎると最終的に得られる複合黒鉛質粒子とした場合に、二次電池の初期充放電効率の低下を招くため、窒素ガス吸着BET比表面積(以下、単に、比表面積とも記す)で20m/g以下が好ましい。
複合黒鉛質粒子100質量部に対する鱗片状黒鉛質粒子(A)の量は、99.9〜80質量部であることが好ましく、98〜90質量部であることがより好ましい。鱗片状黒鉛質粒子(A)の量がこの範囲であると得られる複合黒鉛質粒子の結晶性が高く、軟質となり、負極合剤層の密度を高くした場合に負極合剤層の一部剥離や銅箔の延びが生じない。
If the specific surface area of the scaly graphite particles (A) is too large, the resulting composite graphite particles will eventually reduce the initial charge / discharge efficiency of the secondary battery. 20 m 2 / g or less is preferable (hereinafter simply referred to as a specific surface area).
The amount of the scaly graphite particles (A) with respect to 100 parts by mass of the composite graphite particles is preferably 99.9 to 80 parts by mass, and more preferably 98 to 90 parts by mass. When the amount of the scaly graphite particles (A) is within this range, the resulting composite graphite particles have high crystallinity, become soft, and partly peel off the negative electrode mixture layer when the density of the negative electrode mixture layer is increased. And copper foil does not stretch.

[(B)炭素質材料]
炭素質材料(B)は、鱗片状黒鉛質粒子(A)の結着材(結着剤)として用いられる。炭素質材料(B)は鱗片状黒鉛質粒子(A)の少なくとも一部に付着し、複数の鱗片状黒鉛質粒子(A)同士をつなぎ止めることが出来ていればよく、最終的に得られる複合黒鉛質粒子の表面に均一に被覆されていてもよい。
[(B) Carbonaceous material]
The carbonaceous material (B) is used as a binder (binder) for the scaly graphite particles (A). The carbonaceous material (B) is only required to adhere to at least a part of the scaly graphite particles (A) and to connect the plurality of scaly graphite particles (A) to each other. The surface of the graphite particles may be uniformly coated.

炭素質材料(B)としては、前駆体を、最終的に500℃以上1500℃未満で加熱処理してなる炭化物が挙げられる。前駆体は、加熱処理後に炭化物が形成されるものであればいかなるものも使用でき、たとえば石炭系または石油系の重質油、タール類、ピッチ類、各種熱可塑性樹脂、熱硬化性樹脂などが用いられる。   Examples of the carbonaceous material (B) include carbides obtained by finally heat-treating the precursor at 500 ° C. or more and less than 1500 ° C. Any precursor can be used as long as a carbide is formed after heat treatment, such as coal-based or petroleum-based heavy oil, tars, pitches, various thermoplastic resins, thermosetting resins, and the like. Used.

複合黒鉛質粒子100質量部に対する炭素質材料(B)の量は、0.1〜20質量部、特に0.5〜10質量部であることが好ましい。0.1質量部未満の場合、最終的に得られる複合黒鉛質粒子の中空構造を維持することが難しくなり、負極合剤調製時などにおいて複合黒鉛質粒子を構成する鱗片状黒鉛質粒子(A)が一次粒子化し、鱗片状黒鉛質粒子(A)を単独で用いた場合にみられる電解液の浸透性や保持性の低下、充電膨張の増大などの問題を生じることがある。一方、20質量部超の場合には、最終的に得られる複合黒鉛質粒子が硬質となり、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがある。   The amount of the carbonaceous material (B) with respect to 100 parts by mass of the composite graphite particles is preferably 0.1 to 20 parts by mass, particularly 0.5 to 10 parts by mass. When the amount is less than 0.1 part by mass, it becomes difficult to maintain the hollow structure of the finally obtained composite graphite particles, and the scale-like graphite particles (A ) Become primary particles, which may cause problems such as a decrease in the permeability and retention of the electrolyte and an increase in charge expansion, which are observed when the scaly graphite particles (A) are used alone. On the other hand, in the case of more than 20 parts by mass, the finally obtained composite graphite particles become hard and require high pressure to make the active material layer high in density, deformation of the copper foil as a current collector, Problems such as elongation and breakage may occur.

[複合黒鉛質粒子]
本発明の複合黒鉛質粒子(以下複合黒鉛質粒子(I)と称すことがある)は、上記のような鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状の中空粒子である。複合黒鉛質粒子の平均粒子径は、5〜25μm、特に8〜15μmであることが好ましい。5μm以上であれば、他の負極活物質に高い導電性を付与しつつ、高い初期充放電効率を得ることができる。25μm以下であれば急速充電性やサイクル特性が向上する。
[Composite Graphite Particles]
The composite graphite particles of the present invention (hereinafter sometimes referred to as composite graphite particles (I)) are spherical or substantially spherical containing the scaly graphite particles (A) and the carbonaceous material (B) as described above. Hollow particles. The average particle size of the composite graphite particles is preferably 5 to 25 μm, particularly preferably 8 to 15 μm. If it is 5 micrometers or more, high initial stage charge / discharge efficiency can be obtained, providing high electroconductivity to another negative electrode active material. If it is 25 μm or less, rapid chargeability and cycle characteristics are improved.

複合黒鉛質粒子の平均アスペクト比は、5以下であることが好ましく、2以下であることがより好ましい。アスペクト比が小さく、真球状に近い形状であるほど、他の負極活物質と均等に接触し、負極の導電性を充分に高めることができ、急速充電性やサイクル特性が向上する。平均アスペクト比が5超の場合には、複合黒鉛質粒子自体の充電膨張が大きくなったり、電解液の浸透性、保持性を損ない、急速放電性やサイクル特性の低下を生じることがある。   The average aspect ratio of the composite graphite particles is preferably 5 or less, and more preferably 2 or less. The smaller the aspect ratio and the more nearly a spherical shape, the more uniformly the other negative electrode active materials can be contacted, and the conductivity of the negative electrode can be sufficiently increased, and the quick chargeability and cycle characteristics are improved. When the average aspect ratio is more than 5, the charge expansion of the composite graphite particles themselves may be increased, the electrolyte permeability and retention may be impaired, and rapid discharge properties and cycle characteristics may be deteriorated.

複合黒鉛質粒子内部の空隙は、一つの大きな空隙であることが好ましいが、複数の空隙が分散した状態であってもよい。たとえば、後述する実施例(図1〜2)では、中心部に空洞を有する中空構造の粒子を示す。このような空洞の大きさは、その最長部の長さが複合黒鉛質粒子の平均粒子径の30%以上、特に50%以上であることが望ましい。
中心部の最も大きな空洞の空隙率は、複合黒鉛質粒子内部の全空隙率を100とした場合に対し、3以上、特に12以上、50以下であることが望ましい。
The voids inside the composite graphite particles are preferably one large void, but a plurality of voids may be dispersed. For example, in Examples (FIGS. 1-2) described later, hollow structure particles having a cavity in the center are shown. As for the size of such a cavity, the length of the longest portion is desirably 30% or more, particularly 50% or more of the average particle diameter of the composite graphite particles.
The porosity of the largest cavity at the center is preferably 3 or more, particularly 12 or more and 50 or less, when the total porosity in the composite graphite particles is 100.

複合黒鉛質粒子の空隙の容積率は、平均30〜95体積%が好ましく、特に平均30〜90体積%が好ましい。10体積%未満の場合、複合黒鉛質粒子が緻密で硬質となり、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがある。95体積%超の場合には、複合黒鉛質粒子の中空構造を維持することが難しくなり、負極合剤調製時などにおいて複合黒鉛質粒子を構成する鱗片状黒鉛質粒子(A)が一次粒子化し、鱗片状黒鉛質粒子(A)を単独で用いた場合にみられる電解液の浸透性や保持性の低下、充電膨張の増大などの問題を生じることがある。
複合黒鉛質粒子はその表面に開孔部を有し、その開孔部が該複合黒鉛質粒子内部の空隙とつながっていることが好ましい。すなわち、リチウムイオン電池に電解液を注入した場合に、複合黒鉛質粒子内部の空隙内にまで電解液が浸透する空隙構造とすることが好ましい。この構造とすることで、複合黒鉛質粒子の表面および内部において、リチウムイオンのイオン伝導性が高くなり、急速充電性や急速放電性が高くなる。
The void volume ratio of the composite graphite particles is preferably 30 to 95% by volume on average, and particularly preferably 30 to 90% by volume on average. If it is less than 10% by volume, the composite graphite particles become dense and hard, and a high pressure is required to increase the density of the active material layer, resulting in problems such as deformation, elongation, and breakage of the copper foil as the current collector. Sometimes. If it exceeds 95% by volume, it becomes difficult to maintain the hollow structure of the composite graphite particles, and the flaky graphite particles (A) constituting the composite graphite particles become primary particles when the negative electrode mixture is prepared. When the scaly graphite particles (A) are used alone, problems such as a decrease in the permeability and retention of the electrolyte and an increase in charge expansion may occur.
It is preferable that the composite graphite particles have pores on the surface, and the pores are connected to the voids inside the composite graphite particles. That is, it is preferable to have a void structure in which the electrolyte solution penetrates into the voids inside the composite graphite particles when the electrolyte solution is injected into the lithium ion battery. By adopting this structure, the ion conductivity of lithium ions is increased on the surface and inside of the composite graphite particles, and rapid chargeability and rapid discharge properties are enhanced.

なお、本発明において、空隙の容積率は以下に示すような簡易方法で算出した。
複合黒鉛質粒子100個について、粒子を切削研磨して断面を形成し、粒子形状が認識できる倍率で顕微鏡撮影した。1個の複合黒鉛質粒子の外表面輪郭の面積に対する、粒子内部の空隙部輪郭の面積の比率を求め、100個の単純平均値を空隙の容積率とした。
In the present invention, the void volume ratio was calculated by the following simple method.
About 100 composite graphite particles, the particles were cut and polished to form a cross-section, and microscopically photographed at a magnification at which the particle shape could be recognized. The ratio of the area of the void contour inside the particle to the area of the outer surface contour of one composite graphite particle was determined, and the simple average value of 100 particles was defined as the void volume ratio.

本発明の複合黒鉛質粒子において、鱗片状黒鉛質粒子(A)は主要構成成分であり、複数の鱗片状黒鉛質粒子(A)が炭素質材料(B)で結着されて粒子の骨格を形成するが、鱗片状黒鉛質粒子(A)が複合黒鉛質粒子の外周部に偏在して、最表面が鱗片状黒鉛質粒子(A)のベーサル面となるように、鱗片状黒鉛質粒子(A)が同心円状に配置されていることが好ましい。   In the composite graphite particles of the present invention, the scaly graphite particles (A) are main constituents, and a plurality of scaly graphite particles (A) are bound by the carbonaceous material (B) to form a skeleton of the particles. The scaly graphite particles (A) are unevenly distributed on the outer periphery of the composite graphite particles, and the outermost surface is the basal surface of the scaly graphite particles (A). A) are preferably arranged concentrically.

また複合黒鉛質粒子は、高い結晶性を有する鱗片状黒鉛質粒子(A)を主要構成成分とするため結晶性が高い。平均格子面間隔d002の好ましい範囲は鱗片状黒鉛質粒子(A)の場合と同一である。本発明の複合黒鉛質粒子は、結晶性が高く、かつ、粒子内部が中空であることからも軟質であり、活物質層の密度を高くすることに寄与する。 The composite graphite particles have high crystallinity because the scaly graphite particles (A) having high crystallinity are the main constituent components. A preferable range of the average lattice spacing d 002 is the same as that of the scaly graphite particles (A). The composite graphite particles of the present invention are soft because they have high crystallinity and the inside of the particles are hollow, and contribute to increasing the density of the active material layer.

複合黒鉛質粒子は、本発明の効果を損なわない範囲において、さらに他の成分を含むことができる。上記(A)および(B)からなる骨格に、たとえば非鱗片状の炭素質または黒鉛質粒子を付着または複合化したものであってもよく、界面活性剤、高分子などの有機化合物を付着または被覆したものであってもよく、シリカ、アルミナ、チタニアなどの金属酸化物の微粒子を付着または埋設したものであってもよく、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を、付着、埋設、複合、内包したものであってもよい。   The composite graphite particles can further contain other components as long as the effects of the present invention are not impaired. For example, non-flaky carbonaceous or graphite particles may be attached to or combined with the skeleton consisting of the above (A) and (B), and an organic compound such as a surfactant or a polymer may be attached or combined. It may be coated, or may be deposited or embedded with fine particles of metal oxide such as silica, alumina, titania, etc., silicon, tin, cobalt, nickel, copper, silicon oxide, tin oxide, titanium A metal or a metal compound such as lithium acid may be attached, embedded, combined, or encapsulated.

[(C)繊維]
上記のうちでも、複合黒鉛質粒子の内部および/または表面に炭素質または黒鉛質の繊維(C)が介在、付着したものであることが好ましい。内部に介在させる場合には、複数の鱗片状黒鉛質粒子(A)と接触するように配置したり、中空部分を貫通するように配置することが好ましい。表面に付着させる場合には、該表面に繊維(C)が突き出るように配置することが好ましい。このように繊維(C)を介在、付着させることによって、導電性がさらに増し、急速充電性、急速放電性、サイクル特性などの電池特性が向上する。
[(C) Fiber]
Among the above, it is preferable that carbonaceous or graphite fibers (C) intervene and adhere to the inside and / or the surface of the composite graphite particles. When interposing inside, it is preferable to arrange so that it may contact with several scale-like graphite particles (A), or to penetrate a hollow part. When making it adhere to the surface, it is preferable to arrange | position so that a fiber (C) may protrude in this surface. By interposing and adhering the fibers (C) in this way, the conductivity is further increased, and battery characteristics such as rapid chargeability, rapid discharge properties, and cycle characteristics are improved.

繊維(C)は500℃以上、1500℃未満で炭化したもの、1500℃以上、3300℃未満で黒鉛化したもののいずれもが使用できるが、黒鉛化したものがより好ましい。一般に、カーボンナノファイバー、カーボンナノチューブ、気相成長炭素繊維と呼ばれる繊維が例示される。   As the fiber (C), any carbonized carbonized at 500 ° C. or more and less than 1500 ° C. or graphitized at 1500 ° C. or more and less than 3300 ° C. can be used, but graphitized one is more preferable. Generally, fibers called carbon nanofibers, carbon nanotubes, and vapor grown carbon fibers are exemplified.

繊維(C)の平均繊維径は、1nm〜2μmの範囲であることが好ましい。特に好ましくは10nm〜500nmである。1nm未満の場合には、繊維(C)の均一分散が難しくなるほか、最終的に得られる複合黒鉛質粒子の初期充放電効率が低下することがある。2μm超の場合は、最終的に得られる複合黒鉛質粒子(I)が硬質となり、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがある。   The average fiber diameter of the fibers (C) is preferably in the range of 1 nm to 2 μm. Especially preferably, it is 10 nm-500 nm. If it is less than 1 nm, uniform dispersion of the fibers (C) becomes difficult, and the initial charge / discharge efficiency of the finally obtained composite graphite particles may be lowered. In the case of more than 2 μm, the composite graphite particles (I) finally obtained are hard, and a high pressure is required to make the active material layer high in density, and the deformation and elongation of the copper foil as a current collector, Problems such as breakage may occur.

繊維(C)の平均繊維長は、2〜30μmであることが好ましい。特に好ましくは3〜15μmである。2μm以上であれば導電性の向上効果が顕著に現れ、30μm以下であれば繊維(C)を均一に介在させることができ好ましい。   The average fiber length of the fiber (C) is preferably 2 to 30 μm. Especially preferably, it is 3-15 micrometers. If it is 2 micrometers or more, the electrical conductivity improvement effect will appear notably, and if it is 30 micrometers or less, a fiber (C) can be interposed uniformly and is preferable.

繊維(C)の付着量は、最終的に得られる複合黒鉛質粒子100質量部に対して、0超、10質量部以下、特に5質量部以下であることが好ましい。10質量部超の場合、繊維(C)による導電性向上効果が飽和するとともに、負極合剤スラリーの粘度上昇によって生産性を損なうことがあるほか、電解液との反応性が過剰となり、初期充放電効率が低下することがある。   The adhesion amount of the fiber (C) is preferably more than 0, 10 parts by mass or less, particularly 5 parts by mass or less, with respect to 100 parts by mass of the finally obtained composite graphite particles. In the case of more than 10 parts by mass, the effect of improving the conductivity by the fiber (C) is saturated, the productivity of the negative electrode mixture slurry may be impaired, and the reactivity with the electrolyte becomes excessive, resulting in an initial charge. Discharge efficiency may decrease.

[複合黒鉛質粒子(I)の製造方法例]
上記のような複合黒鉛質粒子は、本発明で規定した構造を有していればその製法は特に制限されず、いかなる製造方法も採用することができるが、以下にその製造方法を2例示す。
(1)焼成処理によってわずかに残炭分を有する球状の樹脂ビーズと、鱗片状黒鉛質粒子(A)を混合し、圧縮、せん断、衝突、摩擦などの機械的エネルギーを付与するメカノケミカル処理を施す。この処理によって、樹脂ビーズの表面に鱗片状黒鉛質粒子(A)が貼り付けられ、鱗片状黒鉛質粒子(A)が樹脂ビーズの表面に同心円状に積層された構造となる。次いでこれを不活性雰囲気中500〜1500℃で焼成処理し、樹脂ビーズを消失させる。樹脂ビーズのわずかな残炭分(B)が鱗片状黒鉛質(A)に付着し、結着剤として作用する。得られた複合黒鉛質粒子は、焼成処理前の鱗片状黒鉛質粒子(A)の同心円状構造をほぼ維持した中空構造を形成する。
前記の方法にて、複合黒鉛質粒子に炭素質または黒鉛質の繊維(C)を複合化させるには、鱗片状黒鉛質粒子(A)、樹脂ビーズとともに繊維(C)を混合する、あるいは、あらかじめ樹脂と繊維(C)を溶融混練したものをビーズ化して用いることも有効である。
[Example of production method of composite graphite particles (I)]
As long as the composite graphite particles as described above have the structure defined in the present invention, the production method is not particularly limited, and any production method can be adopted. .
(1) A mechanochemical treatment in which spherical resin beads that have a slight residual carbon content by baking treatment and scaly graphite particles (A) are mixed to impart mechanical energy such as compression, shear, collision, and friction. Apply. By this treatment, the scaly graphite particles (A) are attached to the surface of the resin beads, and the scaly graphite particles (A) are concentrically laminated on the surface of the resin beads. Subsequently, this is baked at 500-1500 degreeC in inert atmosphere, and a resin bead is lose | disappeared. A small amount of residual carbon (B) of the resin beads adheres to the scaly graphite (A) and acts as a binder. The obtained composite graphite particles form a hollow structure that substantially maintains the concentric structure of the scaly graphite particles (A) before the firing treatment.
In order to complex the carbonaceous or graphite fiber (C) with the composite graphite particles by the above method, the fiber (C) is mixed with the scaly graphite particles (A) and the resin beads, or It is also effective to use a resin-fiber (C) melt-kneaded in advance.

(2)鱗片状黒鉛質粒子(A)と炭素質材料(B)の前駆体、必要に応じて繊維(C)とを溶液(分散媒体液)に分散させ、この分散液を気流とともにスプレー散布し、熱風によって瞬時に溶媒を乾燥させる。分散液の表面張力によって乾燥後の粒子は真球状を形成するとともに、気流の調整によって、スプレーの液滴の中に気泡を意図的に介在させることで、中空構造を形成(中空構造体)することができる。前記同様、これを不活性雰囲気中500〜1500℃で焼成処理することで複合黒鉛質粒子が得られる。 (2) The scaly graphite particles (A), the precursor of the carbonaceous material (B), and, if necessary, the fibers (C) are dispersed in a solution (dispersion medium liquid), and this dispersion is sprayed together with an air current. The solvent is instantly dried with hot air. The particles after drying form a spherical shape by the surface tension of the dispersion, and by adjusting the air flow, bubbles are intentionally interposed in the droplets of the spray to form a hollow structure (hollow structure). be able to. As above, composite graphite particles can be obtained by firing this at 500 to 1500 ° C. in an inert atmosphere.

なお、上記(1)、(2)のいずれの製造例においても、繊維(C)をあらかじめ鱗片状黒鉛質粒子(A)に付着させておき、この付着物を原料に用いることによっても、繊維(C)を含む複合黒鉛質粒子が得られる。   In any of the above production examples (1) and (2), the fiber (C) is attached to the scaly graphite particles (A) in advance, and the attached material is used as a raw material. Composite graphite particles containing (C) are obtained.

また、上記(1)もしくは(2)の製造例で得られた複合黒鉛質粒子または(2)で得られた中空構造体の外表面に炭素質材料(B)の前駆体を付着または被覆したのちに焼成処理(不活性雰囲気、500℃〜1500℃)を行い、表面に炭素質材料(B)を有する複合黒鉛質粒子を調製することもできる。その際に炭素質材料(B)の前駆体とともに繊維(C)を付着させることもできる。   Further, the precursor of the carbonaceous material (B) is attached or coated on the outer surface of the composite graphite particles obtained in the production example (1) or (2) or the hollow structure obtained in (2). It is possible to prepare composite graphite particles having a carbonaceous material (B) on the surface by performing a firing treatment (inert atmosphere, 500 ° C. to 1500 ° C.) later. At that time, the fiber (C) can be adhered together with the precursor of the carbonaceous material (B).

本発明の複合黒鉛質粒子は、リチウムイオン二次電池の既知の負極活物質に配合した場合に、優れたサイクル特性を発現することができる導電材として有用である。特に、負極を高い密度にプレスした場合でも、電解液の浸透性や保持性を損なうことがなく、優れた急速充電性、急速放電性およびサイクル特性を発現でき、体積当たりの放電容量が高い負極を得ることができる。   The composite graphite particles of the present invention are useful as a conductive material that can exhibit excellent cycle characteristics when blended with a known negative electrode active material of a lithium ion secondary battery. In particular, even when the negative electrode is pressed to a high density, the negative electrode has a high discharge capacity per volume, without impairing the permeability and retention of the electrolyte, exhibiting excellent rapid chargeability, rapid discharge properties and cycle characteristics Can be obtained.

以下、本発明の複合黒鉛質粒子を用いるリチウムイオン二次電池について説明する。リチウムイオン二次電池(以下、単に、二次電池とも称す)は、通常、電解液(非水電解質)、負極および正極を主たる電池構成要素とし、これら要素が、例えば、二次電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時には、リチウムイオンが負極に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。負極は、一般に、銅箔からなる集電材とバインダーによって結着された負極材料(活物質)から構成される。
本発明では、本発明の複合黒鉛質粒子をこの負極材料として用いること以外、特に限定されず、非水電解質、正極、セパレータなどの他の電池構成要素については一般的な二次電池の要素に準じる。
Hereinafter, a lithium ion secondary battery using the composite graphite particles of the present invention will be described. A lithium ion secondary battery (hereinafter also simply referred to as a secondary battery) usually has an electrolyte solution (non-aqueous electrolyte), a negative electrode, and a positive electrode as main battery components, and these elements are, for example, in a secondary battery can. It is enclosed. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging and lithium ions are released from the negative electrode during discharging. The negative electrode is generally composed of a current collector made of copper foil and a negative electrode material (active material) bound by a binder.
In the present invention, there is no particular limitation except that the composite graphite particles of the present invention are used as the negative electrode material, and other battery components such as a non-aqueous electrolyte, a positive electrode, a separator and the like are general secondary battery elements. Follow.

[負極材料]
本発明では、上記のような本発明の複合黒鉛質粒子(I)と既知の負極活物質(II)を混合して負極材料を調製する。
負極活物質(II)には各種公知の材料を用いることができるが、代表例には下記のものがある。
扁平状の粒子を複数、配向面が非平行となるように集合または結合させてなり、粒子に細孔を有する黒鉛粒子。
球状のメソカーボン小球体の黒鉛化物、または、メソカーボン小球体の粉砕物の黒鉛化物。天然黒鉛を球状化または楕円体化してなる造粒物の黒鉛粒子間の空隙に炭素質物が充填してなる複合黒鉛粒子、または、該造粒物の表面を炭素質物が被覆してなる複合黒鉛粒子。コークス類を黒鉛化してなる人造黒鉛粒子。
バルクメソフェーズピッチを粉砕、酸化、炭化、黒鉛化してなる塊状の黒鉛粒子。
[Negative electrode material]
In the present invention, the negative graphite material is prepared by mixing the composite graphite particles (I) of the present invention as described above and the known negative electrode active material (II).
Various known materials can be used for the negative electrode active material (II), and typical examples include the following.
Graphite particles obtained by assembling or bonding a plurality of flat particles so that their orientation planes are non-parallel.
Graphitized product of spherical mesocarbon spherules or pulverized product of mesocarbon spherules. Composite graphite particles in which a carbonaceous material is filled in the voids between graphite particles of a granulated product obtained by spheroidizing or ellipsoidizing natural graphite, or composite graphite in which the surface of the granulated material is coated with a carbonaceous material particle. Artificial graphite particles made by graphitizing coke.
Bulk graphite particles obtained by pulverizing, oxidizing, carbonizing, and graphitizing bulk mesophase pitch.

負極活物質(II)は、異種の黒鉛材料、炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素材料、有機材料、無機材料、金属材料との混合物、複合物であってもよい。具体的には、界面活性剤、高分子などの有機化合物を付着または被覆したものであってもよく、シリカ、アルミナ、チタニアなどの金属酸化物の微粒子を付着または埋設したものであってもよく、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を、付着、埋設、複合、内包したものであってもよい。   The negative electrode active material (II) may be a heterogeneous graphite material, a carbonaceous or graphite fiber, a carbon material such as amorphous hard carbon, an organic material, an inorganic material, a mixture with a metal material, or a composite. . Specifically, a surfactant, a polymer or other organic compound may be attached or coated, or a metal oxide fine particle such as silica, alumina or titania may be attached or embedded. In addition, a metal or a metal compound such as silicon, tin, cobalt, nickel, copper, silicon oxide, tin oxide, or lithium titanate may be attached, embedded, combined, or encapsulated.

負極活物質(II)の平均粒子径は、前記複合黒鉛質粒子(I)の平均粒子径よりも大きいことが好ましい。好ましい平均粒子径は、8〜30μm、特に好ましくは10〜25μmである。   The average particle size of the negative electrode active material (II) is preferably larger than the average particle size of the composite graphite particles (I). A preferable average particle diameter is 8-30 micrometers, Most preferably, it is 10-25 micrometers.

負極活物質(II)の平均粒子径を、前記複合黒鉛質粒子(I)の平均粒子径よりも大きくすることによって、高密度の負極を調製した場合でも、複合黒鉛質粒子(I)が粒子内の中空構造を維持し、負極活物質(II)の粒子間の空隙に介在して、複数の負極活物質(II)と均等に接触し、高い導電性を発現することができる。高密度の負極では、複合黒鉛質粒子(I)が圧縮されて、その粒子内の中空構造が潰される場合もある。しかし、負極活物質(II)の粒子間の空隙に選択的に複合黒鉛質粒子(I)を介在させることができ、鱗片状黒鉛質粒子(A)を単独で用いた場合にみられる電解液の浸透性や保持性の低下、充電膨張の増大などの問題を生じない。   Even when a high-density negative electrode is prepared by making the average particle diameter of the negative electrode active material (II) larger than the average particle diameter of the composite graphite particles (I), the composite graphite particles (I) are particles. The inner hollow structure is maintained, and is interposed in the space between the particles of the negative electrode active material (II) so as to be in uniform contact with the plurality of negative electrode active materials (II), thereby exhibiting high conductivity. In the high-density negative electrode, the composite graphite particles (I) may be compressed and the hollow structure in the particles may be crushed. However, the composite graphite particles (I) can be selectively interposed in the gaps between the particles of the negative electrode active material (II), and the electrolytic solution found when the scaly graphite particles (A) are used alone. This does not cause problems such as a decrease in permeability and retention of the battery and an increase in charge expansion.

本発明では前記複合黒鉛質粒子(I)とこれらの負極活物質(II)を、(I)と(II)の質量割合が、(I):(II)=1〜40:99〜60の範囲となるように混合して負極材料を調製する。
前記複合黒鉛質粒子(I)が1%未満の場合には、負極活物質(II)の導電性向上効果が不足し、40%超の場合には、活物質層を高密度にプレスした場合に複合黒鉛質粒子(I)が過度に潰れて扁平化し、電解液の浸透性や保持性、急速放電率、サイクル特性の低下を生じることがある。
In the present invention, the composite graphite particles (I) and these negative electrode active materials (II) have a mass ratio of (I) and (II) of (I) :( II) = 1-40: 99-60. A negative electrode material is prepared by mixing in a range.
When the composite graphite particle (I) is less than 1%, the effect of improving the conductivity of the negative electrode active material (II) is insufficient, and when it exceeds 40%, the active material layer is pressed at a high density In addition, the composite graphite particles (I) may be excessively crushed and flattened, resulting in deterioration of electrolyte permeability, retention, rapid discharge rate, and cycle characteristics.

[リチウムイオン二次電池用負極]
本発明のリチウムイオン二次電池用負極(以下、単に負極とも記す)の作製は、通常の負極の作製方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる作製方法であれば何ら制限されない。
負極の作製には、前記負極材料に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、さらにはカルボキシメチルセルロース等が用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中1〜20質量%の割合であることが好ましい。
負極の作製には、負極作製用の通常の溶媒であるN−メチルピロリドン、ジメチルホルムアミド、水、アルコール等を用いることができる。
[Anode for lithium ion secondary battery]
The negative electrode for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a negative electrode) can be produced in accordance with a normal method for producing a negative electrode, but a chemically and electrochemically stable negative electrode is obtained. There is no limitation as long as it is a manufacturing method capable of satisfying the requirements.
For the production of the negative electrode, a negative electrode mixture obtained by adding a binder to the negative electrode material can be used. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene. Butadiene rubber, carboxymethyl cellulose and the like are used. These can also be used together. Usually, the binder is preferably in a proportion of 1 to 20% by mass in the total amount of the negative electrode mixture.
For the production of the negative electrode, N-methylpyrrolidone, dimethylformamide, water, alcohol, etc., which are ordinary solvents for producing the negative electrode, can be used.

負極は、例えば、負極合剤を溶媒に分散させ、ペースト状の負極合剤を調製した後、該負極合剤を集電体の片面または両面に塗布し、乾燥して作製される。これにより、負極合剤層(活物質層)が均一かつ強固に集電体に接着した負極が得られる。
より具体的には、例えば、前記負極材料の粒子、フッ素系樹脂粉末またはスチレンブタジエンゴムの水分散剤と溶媒を混合してスラリーとした後、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。これを集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着する。負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。
The negative electrode is produced, for example, by dispersing a negative electrode mixture in a solvent to prepare a paste-like negative electrode mixture, applying the negative electrode mixture to one or both sides of a current collector, and drying. Thereby, a negative electrode in which the negative electrode mixture layer (active material layer) is uniformly and firmly bonded to the current collector is obtained.
More specifically, for example, after mixing the negative electrode material particles, fluorine resin powder or styrene butadiene rubber water dispersant and solvent into a slurry, a known stirrer, mixer, kneader, kneader or the like is used. The mixture is stirred and mixed to prepare a negative electrode mixture paste. When this is applied to the current collector and dried, the negative electrode mixture layer adheres uniformly and firmly to the current collector. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、負極合剤層は、前記負極材料の粒子と、ポリエチレン、ポリビニルアルコール等の樹脂粉末とを乾式混合し、金型内でホットプレス成形して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、放電容量や急速充放電効率が低下することがある。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。
負極合剤層の密度は、負極の体積容量を高めることから、1.70g/cm以上、特に1.75g/cm以上であることが好ましい。
負極に用いる集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状物等が好ましい。集電体の材質としては、銅、ステンレス、ニッケル等が好ましい。集電体の厚みは、箔状の場合、好ましくは5〜20μmである。
The negative electrode mixture layer can also be produced by dry-mixing the particles of the negative electrode material and resin powder such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient negative electrode strength, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency may be reduced.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The density of the negative electrode mixture layer is preferably 1.70 g / cm 3 or more, particularly preferably 1.75 g / cm 3 or more in order to increase the volume capacity of the negative electrode.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. When the current collector has a foil shape, the thickness is preferably 5 to 20 μm.

[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、前記負極を用いて形成される。
本発明の二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については、一般的な二次電池の要素に準じる。すなわち、電解液、負極および正極を主たる電池構成要素とし、これら要素が、例えば電池缶内に封入されている。そして負極および正極はそれぞれリチウムイオンの担持体として作用し、充電時には負極からリチウムイオンが離脱する。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention is formed using the negative electrode.
The secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components conform to the elements of a general secondary battery. That is, an electrolytic solution, a negative electrode, and a positive electrode are the main battery constituent elements, and these elements are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier, and lithium ions are released from the negative electrode during charging.

[正極]
本発明の二次電池に使用される正極は、例えば正極材料と結合剤および導電材よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)としては、リチウム化合物が用いられるが、充分な量のリチウムを吸蔵/脱離し得るものを選択するのが好ましい。例えば、リチウ含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物、その他のリチウム化合物、化学式MMoOS8−Y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは少なくとも一種の遷移金属元素である)で表されるシュブレル相化合物、活性炭、活性炭素繊維等を用いることができる。前記バナジウム酸化物はV、V13、V、V等である。
[Positive electrode]
The positive electrode used in the secondary battery of the present invention is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive material to the surface of the current collector. As the positive electrode material (positive electrode active material), a lithium compound is used, but it is preferable to select a material that can occlude / desorb a sufficient amount of lithium. For example, lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium compounds, chemical formula M X Mo 6 OS 8-Y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) And the like, and M is at least one kind of transition metal element), and the like can be used. The vanadium oxide is V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 or the like.

前記リチウム含有遷移金属複合酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独でも、2種類以上組合せて用いてもよい。リチウム含有遷移金属複合酸化物は、具体的には、LiM1 1−X (式中Xは0≦X≦1の範囲の数値であり、M1、Mは少なくとも一種の遷移金属元素である)またはLiM1 1−Y (式中Yは0≦Y≦1の範囲の数値であり、M1、Mは少なくとも一種の遷移金属元素である)で示される。
1、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Sn等であり、好ましいのはCo、Mn、Cr、Ti、V、Fe、Al等である。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5等である。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal composite oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Complex oxides may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal composite oxide is LiM 1 1-X M 2 X O 2 (wherein X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind) Is a transition metal element) or LiM 1 1-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1, and M 1 and M 2 are at least one transition metal element). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Mn, Cr, Ti, V Fe, Al and the like. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.

正極活物質は、前記リチウム化合物を単独で使用しても2種類以上併用してもよい。また、正極中に炭酸リチウム等のアルカリ炭酸塩を添加することができる。
正極は、例えば、前記リチウム化合物、結合剤、および正極に導電性を付与するための導電材よりなる正極合剤を、集電体の片面または両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電材としては、黒鉛、カーボンブラック等の炭素材料が使用される。
As the positive electrode active material, the lithium compound may be used alone or in combination of two or more. Moreover, alkali carbonates, such as lithium carbonate, can be added in a positive electrode.
The positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, the binder, and a conductive material for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer. Produced. As the binder, the same one as that used for producing the negative electrode can be used. Carbon materials such as graphite and carbon black are used as the conductive material.

正極も負極と同様に、正極合剤を溶媒に分散させ、ペースト状にした正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状等のものが好ましい。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは、箔状の場合、10〜40μmが好適である。
Similarly to the negative electrode, the positive electrode mixture may be formed by dispersing the positive electrode mixture in a solvent and applying the paste-like positive electrode mixture to a current collector and drying to form a positive electrode mixture layer. After that, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
The shape of the current collector is not particularly limited, but is preferably a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material of the current collector is aluminum, stainless steel, nickel or the like. In the case of a foil shape, the thickness is preferably 10 to 40 μm.

[非水電解質]
本発明の二次電池に用いる非水電解質(電解液)は、通常の非水電解液に使用される電解質塩である。電解質塩としては、例えば、LiPF、LiBF、LiAsF、LiClO、LiB(C、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN[(CFCHOSO、LiB[C(CF、LiAlCl、LiSiF等のリチウム塩を用いることができる。特にLiPF、LiBFが酸化安定性の点から好ましい。
電解液の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜3mol/Lがより好ましい。
[Nonaqueous electrolyte]
The nonaqueous electrolyte (electrolytic solution) used for the secondary battery of the present invention is an electrolyte salt used for a normal nonaqueous electrolytic solution. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 5 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
The electrolyte salt concentration of the electrolytic solution is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3 mol / L.

非水電解質は液状としてもよく、固体、ゲル状等の高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、それぞれ高分子固体電解質電池、高分子ゲル電解質電池等の高分子電解質電池として構成される。
非水電解質液を構成する溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテル等のエーテル、スルホラン、メチルスルホラン等のチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリル等のニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、ジメチルサルファイト等の非プロトン性有機溶媒等を用いることができる。
The non-aqueous electrolyte may be liquid, or may be a solid or gel polymer electrolyte. In the former case, the nonaqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the nonaqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery or a polymer gel electrolyte battery.
As a solvent constituting the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, di Sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite, and the like.

前記高分子電解質を用いる場合には、可塑剤(非水電解液)でゲル化された高分子化合物をマトリックスとして使用することが好ましい。マトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体等のエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体等のフッ素系高分子化合物等を単独または混合して用いることができる。ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物を用いることが特に好ましい。   When the polymer electrolyte is used, it is preferable to use a polymer compound gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer compound constituting the matrix include ether-based polymer compounds such as polyethylene oxide and its crosslinked products, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. Fluorine polymer compounds such as copolymers can be used alone or in combination. It is particularly preferable to use a fluorine-based polymer compound such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.

前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、可塑剤として前記の電解質塩や非水溶媒を使用することができる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜2mol/Lがより好ましい。   A plasticizer is blended in the polymer solid electrolyte or polymer gel electrolyte, and the electrolyte salt or non-aqueous solvent can be used as the plasticizer. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 2 mol / L.

前記高分子固体電解質の作製方法は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、混合用有機溶媒に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線、分子線等を照射して、重合性モノマーを重合させ、高分子化合物を得る方法などを挙げることができる。
高分子固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、製膜しにくくなる。
The method for producing the polymer solid electrolyte is not particularly limited. For example, the polymer compound constituting the matrix, the lithium salt, and the nonaqueous solvent (plasticizer) are mixed and heated to melt the polymer compound. Method of evaporating organic solvent for mixing after dissolving polymer compound, lithium salt, and non-aqueous solvent (plasticizer) in organic solvent, mixing polymerizable monomer, lithium salt and non-aqueous solvent (plasticizer) In addition, a method of obtaining a polymer compound by irradiating the mixture with ultraviolet rays, an electron beam, a molecular beam or the like to polymerize a polymerizable monomer can be exemplified.
10-90 mass% is preferable, and, as for the ratio of the nonaqueous solvent (plasticizer) in a polymer solid electrolyte, 30-80 mass% is more preferable. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.

本発明の二次電池は、前記負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順に積層し、電池の外装材内に収容することで作製される。
さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
The secondary battery of the present invention is produced by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material.
Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.

本発明の二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量等に応じて、円筒型、角型、コイン型、ボタン型等の中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。
高分子電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
The structure of the secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, and the like. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging.
In the case of a polymer electrolyte battery, a structure enclosed in a laminate film can also be used.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例および比較例においては、図3に示すような構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の目的に基づき、公知の方法に準拠して作製することができる。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, button-type secondary batteries for evaluation having a configuration as shown in FIG. 3 were produced and evaluated. The battery can be produced according to a known method based on the object of the present invention.

(実施例1)
[鱗片状黒鉛質材料(A)の調製]
天然黒鉛を粉砕して、平均粒子径3μm、平均アスペクト比が35、d002が0.3357nm、比表面積が14.5m/gに調整した。
Example 1
[Preparation of scale-like graphite material (A)]
Natural graphite was pulverized and adjusted to an average particle size of 3 μm, an average aspect ratio of 35, a d 002 of 0.3357 nm, and a specific surface area of 14.5 m 2 / g.

[炭素質材料(B)の前駆体の調製]
平均粒子径5μmのベンゾグアナミンホルムアルデヒド縮合物からなる真球状樹脂ビーズを準備した。あらかじめ1000℃で焼成処理した場合の残炭率を求めた結果、20質量%であった。
[Preparation of precursor of carbonaceous material (B)]
Spherical resin beads made of a benzoguanamine formaldehyde condensate having an average particle size of 5 μm were prepared. It was 20 mass% as a result of calculating | requiring the residual carbon rate at the time of baking processing at 1000 degreeC previously.

[黒鉛質の繊維(C)の調製]
平均繊維径150nm、平均繊維長10μmの気相成長炭素繊維を準備した。
[Preparation of Graphite Fiber (C)]
Vapor growth carbon fibers having an average fiber diameter of 150 nm and an average fiber length of 10 μm were prepared.

[複合黒鉛質粒子(I)の調製]
前記鱗片状黒鉛質材料(A)、炭素質材料(B)の前駆体(真球状樹脂ビーズ)および黒鉛質の繊維(C)を、それぞれ、93、25、2質量部の割合で混合し、混合物に圧縮力、せん断力を繰り返し付与できる装置にてメカノケミカル処理を行った。
得られた複合物を窒素気流中1000℃で焼成処理し、複合黒鉛質粒子(I)を調製した。得られた複合黒鉛質粒子(I)は鱗片状黒鉛質材料(A)が同心円状に積層し、炭素質材料(B)の前駆体の焼成物が鱗片状黒鉛質材料(A)に付着し、黒鉛質の繊維(C)が鱗片状黒鉛質材料(A)の周囲に均一に分散して付着していた。複合黒鉛質粒子(I)の断面を観察したところ、粒子内部は中空の構造を有していた。その平均粒子径は8μm、平均アスペクト比が1.2、d002が0.3359nm、比表面積が4.2m/g、粒子内部の空隙率が62%であった。なお、複合黒鉛質粒子(I)中の炭素質材料(B)の割合を、炭素質材料(B)の前駆体の残炭率から計算すると、複合黒鉛質粒子(I)100質量部に対して5質量部となる。
複合黒鉛質粒子(I)の粒子内部には、中心部に一つの大きな球形の空洞があり、その周囲に微細な空隙を有していた。中心部の空洞は平均直径が4.5μmであり、粒子内部の全空隙率を100とした場合に、この中心部の空洞が占める空隙率は29であった。
[Preparation of Composite Graphite Particles (I)]
The scaly graphite material (A), the carbonaceous material (B) precursor (spherical resin beads) and the graphite fiber (C) were mixed at a ratio of 93, 25, and 2 parts by mass, respectively. The mixture was subjected to mechanochemical treatment in an apparatus capable of repeatedly applying compressive force and shearing force.
The obtained composite was fired at 1000 ° C. in a nitrogen stream to prepare composite graphite particles (I). In the obtained composite graphite particles (I), the scaly graphite material (A) is concentrically laminated, and the calcined product of the precursor of the carbonaceous material (B) adheres to the scaly graphite material (A). The graphite fibers (C) were uniformly dispersed and adhered around the scaly graphite material (A). When the cross section of the composite graphite particle (I) was observed, the inside of the particle had a hollow structure. The average particle diameter was 8 μm, the average aspect ratio was 1.2, d 002 was 0.3359 nm, the specific surface area was 4.2 m 2 / g, and the porosity inside the particles was 62%. In addition, when the ratio of the carbonaceous material (B) in the composite graphite particles (I) is calculated from the residual carbon ratio of the precursor of the carbonaceous material (B), it is 100 parts by mass of the composite graphite particles (I). 5 parts by mass.
Inside the composite graphite particles (I), there was one large spherical cavity at the center and a fine void around it. The central cavity had an average diameter of 4.5 μm, and when the total porosity inside the particles was 100, the porosity occupied by this central cavity was 29.

[負極活物質(II)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均アスペクト比1.4、平均粒子径18μm、平均格子面間隔d002 0.3356nm、比表面積5.0m/g)100質量部に、軟化点120℃のピッチ粉末(平均粒子径2μm)3質量部、前記気相成長炭素繊維(平均繊維径150nm、平均繊維長10μm)2質量部を混合し、圧縮力、せん断力を繰り返し付与できる装置にてメカノケミカル処理を行った。得られた試料を黒鉛るつぼに充填し、非酸化性雰囲気中1000℃で3時間かけて焼成を行った。得られた球状化または楕円体状化天然黒鉛はその表面に炭化物が膜状に付着しており、平均アスペクト比1.4、平均粒子径18μm、平均格子面間隔d0020.3357nm、比表面積2.7m/gであった。
[Preparation of negative electrode active material (II)]
100 parts by mass of natural graphite particles granulated into a spherical to ellipsoidal shape (average aspect ratio 1.4, average particle diameter 18 μm, average lattice spacing d 002 0.3356 nm, specific surface area 5.0 m 2 / g) , 3 parts by weight of pitch powder (average particle diameter 2 μm) with a softening point of 120 ° C. and 2 parts by weight of the above vapor-grown carbon fiber (average fiber diameter 150 nm, average fiber length 10 μm) are mixed to repeatedly apply compressive force and shear force. The mechanochemical treatment was performed with the equipment that can be used. The obtained sample was filled in a graphite crucible and fired at 1000 ° C. for 3 hours in a non-oxidizing atmosphere. The obtained spheroidized or ellipsoidized natural graphite has carbides deposited on its surface in the form of a film, with an average aspect ratio of 1.4, an average particle diameter of 18 μm, an average lattice spacing of d 002 0.3357 nm, and a specific surface area. It was 2.7 m 2 / g.

[負極材料の調製]
前記複合黒鉛質粒子(I)12質量部および前記負極活物質(II)88質量部を混合し、負極材料を調製した。
[Preparation of negative electrode material]
12 parts by mass of the composite graphite particles (I) and 88 parts by mass of the negative electrode active material (II) were mixed to prepare a negative electrode material.

[負極合剤の調製]
前記負極材料98質量部、結合剤カルボキシメチルセルロース1質量部およびスチレンブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
[Preparation of negative electrode mixture]
98 parts by mass of the negative electrode material, 1 part by mass of the binder carboxymethyl cellulose and 1 part by mass of styrene butadiene rubber were put in water and stirred to prepare a negative electrode mixture paste.

[作用電極の作製]
前記負極合剤ペーストを、厚さ16μmの銅箔上に均一な厚さで塗布し、さらに真空中90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をハンドプレスによって12kN/cm(120MPa)で加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔に密着した負極合剤層(厚み60μm)を有する作用電極を作製した。負極合剤層の密度は1.75g/cmであった。作用電極には伸び、変形がなく、断面から見た集電体に凹みがなかった。
[Production of working electrode]
The negative electrode mixture paste was applied on a copper foil having a thickness of 16 μm to a uniform thickness, and further, water in a dispersion medium was evaporated at 90 ° C. in a vacuum to dry the paste. Next, the negative electrode mixture applied on the copper foil was pressed with a hand press at 12 kN / cm 2 (120 MPa), and further punched into a circular shape with a diameter of 15.5 mm. A working electrode having an agent layer (thickness 60 μm) was prepared. The density of the negative electrode mixture layer was 1.75 g / cm 3 . The working electrode was stretched and not deformed, and the current collector viewed from the cross section had no dent.

[対極の作製]
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔(厚さ0.5mm)からなる対極(正極)を作製した。
[Production of counter electrode]
A lithium metal foil is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm, and consists of a current collector made of nickel net and a lithium metal foil (thickness 0.5 mm) in close contact with the current collector. A counter electrode (positive electrode) was produced.

[電解液・セパレータ]
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6 を1mol/Lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚さ20μm)に含浸させ、電解液が含浸されたセパレータを作製した。
[Electrolyte / Separator]
LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.

[評価電池の作製]
評価電池として図3に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸したセパレータ5、負極合剤からなる円盤状の作用電極(負極)2および銅箔からなる集電体7bが積層された電池である。
評価電池は、電解液が含浸したセパレータ5を、集電体7bに密着した作用電極2と、集電材7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
評価電池は、実電池において、負極活物質として使用可能な黒鉛質物粒子を含有する作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 3 was produced as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. Inside, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolyte, and a disk-like action made of a negative electrode mixture A battery in which an electrode (negative electrode) 2 and a current collector 7b made of copper foil are laminated.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the working electrode 2 was attached to the exterior cup 1. The counter electrode 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and an insulating gasket 6 is interposed between the outer cup 1 and the outer can 3, It was made by sealing and sealing.
The evaluation battery is a battery composed of a working electrode 2 containing graphite particles that can be used as a negative electrode active material and a counter electrode 4 made of a lithium metal foil in an actual battery.

前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、質量当たりの放電容量、体積当たりの放電容量、初期充放電効率、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表1に示す。   The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., discharge capacity per mass, discharge capacity per volume, initial charge / discharge efficiency, rapid charge rate, rapid discharge. Rate and cycle characteristics were evaluated. The evaluation results are shown in Table 1.

[質量当たりの放電容量、体積当たりの放電容量]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から質量当たりの充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たりの放電容量を求めた。これを第1サイクルとした。第1サイクルにおける充電容量と放電容量から、次式により初期充放電効率を計算した。
初期充放電効率(%)=(放電容量/充電容量)×100
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
[Discharge capacity per mass, discharge capacity per volume]
After constant current charging of 0.9 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity per mass was determined from the energization amount during that time. Then, it rested for 120 minutes. Next, constant current discharge was carried out at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity per mass was determined from the amount of electricity supplied during this period. This was the first cycle. From the charge capacity and discharge capacity in the first cycle, the initial charge / discharge efficiency was calculated by the following equation.
Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharged.

[急速充電率]
第1サイクルに引続き、第2サイクルにて急速充電を行なった。
回路電圧が0mVに達するまで、電流値を第1サイクルの5倍の4.5mAとして、定電流充電を行い、定電流充電容量を求め、次式から急速充電率を計算した。
[Quick charge rate]
Following the first cycle, rapid charging was performed in the second cycle.
Until the circuit voltage reached 0 mV, the current value was set to 4.5 mA, which is five times the first cycle, constant current charging was performed, the constant current charging capacity was obtained, and the rapid charging rate was calculated from the following equation.

[急速放電率]
別の評価電池を用い、第1サイクルに引続き、第2サイクルにて急速放電を行なった。前記同様に、第1サイクルを行った後、第1サイクルと同様に充電し、次いで、電流値を第1サイクルの20倍の18mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。この間の通電量から質量当たりの放電容量を求め、次式により急速放電率を計算した。
[Rapid discharge rate]
Using another evaluation battery, rapid discharge was performed in the second cycle following the first cycle. As described above, after performing the first cycle, charging is performed in the same manner as in the first cycle. Then, the current value is set to 18 mA, which is 20 times the first cycle, and constant current discharge is performed until the circuit voltage reaches 1.5V. went. The discharge capacity per mass was calculated | required from the amount of electricity supply in the meantime, and the rapid discharge rate was computed by following Formula.

[サイクル特性]
質量当たりの放電容量、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行なった。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰返し、得られた質量当たりの放電容量から、次式を用いてサイクル特性を計算した。
[Cycle characteristics]
An evaluation battery different from the evaluation battery that evaluated the discharge capacity per mass, the rapid charge rate, and the rapid discharge rate was produced and evaluated as follows.
After performing 4.0 mA constant current charging until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity per mass using the following formula.

表1に示すように、作用電極に実施例1の負極材料を用いて得られた評価電池は、活物質層の密度を高くすることができ、かつ、高い質量当たりの放電容量を示す。このため、体積当たりの放電容量を大幅に向上させることができる。その高い密度においても、急速充電率、急速放電率およびサイクル特性は優れた結果を維持している。   As shown in Table 1, the evaluation battery obtained by using the negative electrode material of Example 1 as the working electrode can increase the density of the active material layer and exhibits a high discharge capacity per mass. For this reason, the discharge capacity per volume can be improved significantly. Even at its high density, the rapid charge rate, rapid discharge rate, and cycle characteristics maintain excellent results.

(比較例1)
実施例1において、複合黒鉛質粒子(I)を用いず、負極活物質(II)を単独で負極材料とした以外は、実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Example 1)
In Example 1, the density of the negative electrode mixture layer was 1.75 g / in the same manner as in Example 1 except that the composite graphite particles (I) were not used and the negative electrode active material (II) was used alone as the negative electrode material. A working electrode was prepared by adjusting to cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(比較例2)
実施例1において、複合黒鉛質粒子(I)に替えて、鱗片状黒鉛質材料(A)をそのまま用いた以外は、実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Example 2)
In Example 1, instead of the composite graphite particles (I), the density of the negative electrode mixture layer was 1.75 g / cm in the same manner as in Example 1 except that the scaly graphite material (A) was used as it was. A working electrode was prepared by adjusting to 3 , and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(実施例2〜6)
実施例1において、鱗片状黒鉛質材料(A)の平均粒子径、炭素質材料(B)の前駆体の平均粒子径、形状、複合黒鉛質粒子(I)と負極活物質(II)の混合比率、黒鉛質の繊維(C)の有無を操作した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Examples 2 to 6)
In Example 1, the average particle diameter of the scaly graphite material (A), the average particle diameter and shape of the precursor of the carbonaceous material (B), and the mixing of the composite graphite particles (I) and the negative electrode active material (II) The working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 except that the ratio and the presence or absence of the graphite fiber (C) were manipulated. Produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(比較例3〜5、参考例1)
実施例1において、鱗片状黒鉛質材料(A)の平均粒子径、炭素質材料(B)の前駆体の平均粒子径、複合黒鉛質粒子(I)と負極活物質(II)の混合比率を、本発明の規定外に操作した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Examples 3-5, Reference Example 1)
In Example 1, the average particle diameter of the scaly graphite material (A), the average particle diameter of the precursor of the carbonaceous material (B), and the mixing ratio of the composite graphite particles (I) and the negative electrode active material (II) A working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 except that the battery was operated outside the scope of the present invention, and an evaluation battery was prepared. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(実施例7)
[鱗片状黒鉛質材料(A)の調製]
天然黒鉛を粉砕して、平均粒子径2μm、平均アスペクト比が25、d002が0.3357nm、比表面積が16.3m/gに調整した。
(Example 7)
[Preparation of scale-like graphite material (A)]
Natural graphite was pulverized and adjusted to an average particle size of 2 μm, an average aspect ratio of 25, a d 002 of 0.3357 nm, and a specific surface area of 16.3 m 2 / g.

[炭素質材料(B)の前駆体の調製]
固形分濃度10%のポリアクリル酸の水溶液を用意した。あらかじめ1000℃で焼成処理した場合の残炭率を求めた結果、溶質であるポリアクリル酸固形分に対して1質量%であった。
また、コールタールの重質油溶液を用意した。あらかじめ1000℃で焼成処理した場合の残炭率を求めた結果、20質量%であった。
[Preparation of precursor of carbonaceous material (B)]
An aqueous solution of polyacrylic acid having a solid content concentration of 10% was prepared. As a result of obtaining the residual carbon ratio in the case of firing at 1000 ° C. in advance, it was 1% by mass with respect to the solid content of polyacrylic acid.
A heavy oil solution of coal tar was also prepared. It was 20 mass% as a result of calculating | requiring the residual carbon rate at the time of baking processing at 1000 degreeC previously.

[黒鉛質の繊維(C)の調製]
平均繊維径150nm、平均繊維長10μmの気相成長炭素繊維を準備した。
[Preparation of Graphite Fiber (C)]
Vapor growth carbon fibers having an average fiber diameter of 150 nm and an average fiber length of 10 μm were prepared.

[複合黒鉛質粒子(I)の調製]
前記鱗片状黒鉛質材料(A)、炭素質材料(B)の前駆体としてポリアクリル酸水溶液を、それぞれ95、100質量部の割合として混合し、分散液を調製した。この分散液をスプレー散布し、窒素雰囲気中で瞬時に200℃で溶媒を乾燥させた。スプレーに導入する窒素ガスの圧力を調整して、液滴中に気泡を介在させるように調整した。得られた真球状の複合物、炭素質材料(B)の前駆体としてコールタールの重質油溶液、および黒鉛質の繊維(C)をそれぞれ96、10、2質量部の割合で常温で1時間均一混合した。
次いで、窒素気流中1000℃で焼成処理し、複合黒鉛質粒子(I)を調製した。得られた複合黒鉛質粒子(I)は鱗片状黒鉛質材料(A)が同心円状に積層し、炭素質材料(B)の前駆体の焼成物が鱗片状黒鉛質材料(A)に付着し、黒鉛質の繊維(C)が鱗片状黒鉛質材料(A)の周囲に均一に分散して付着していた。複合黒鉛質粒子(I)の断面を観察したところ、粒子内部は中空の構造を有していた。その平均粒子径は12μm、平均アスペクト比が1.1、d002が0.3359nm、比表面積が3.3m/g、粒子内部の空隙率が55%であった。なお、複合黒鉛質粒子(I)中の炭素質材料(B)の割合を、炭素質材料(B)の前駆体の残炭率から計算すると、複合黒鉛質粒子(I)100質量部に対して3質量部となる。
図1に得られた複合黒鉛質粒子(I)の走査型電子顕微鏡写真を示す。
図2に得られた複合黒鉛質粒子(I)の断面の偏光顕微鏡写真を示す。
複合黒鉛質粒子(I)の粒子内部には、中心部に一つの大きな球形の空洞があり、その周囲に微細な空隙を有していた。中心部の空洞は平均直径が6.8μmであり、粒子内部の全空隙率を100とした場合に、この中心部の空洞が占める空隙率は33であった。
[Preparation of Composite Graphite Particles (I)]
A polyacrylic acid aqueous solution was mixed as a precursor of the scaly graphite material (A) and the carbonaceous material (B) in proportions of 95 and 100 parts by mass, respectively, to prepare a dispersion. The dispersion was sprayed and the solvent was instantly dried at 200 ° C. in a nitrogen atmosphere. The pressure of nitrogen gas introduced into the spray was adjusted so that bubbles were interposed in the droplets. The obtained spherical composite, the coal tar heavy oil solution as the precursor of the carbonaceous material (B), and the graphite fiber (C) at a ratio of 96, 10, and 2 parts by mass, respectively, at room temperature. Mix evenly for hours.
Subsequently, it baked at 1000 degreeC in nitrogen stream, and prepared composite graphite particle | grains (I). In the obtained composite graphite particles (I), the scaly graphite material (A) is concentrically laminated, and the calcined product of the precursor of the carbonaceous material (B) adheres to the scaly graphite material (A). The graphite fibers (C) were uniformly dispersed and adhered around the scaly graphite material (A). When the cross section of the composite graphite particle (I) was observed, the inside of the particle had a hollow structure. The average particle size was 12 μm, the average aspect ratio was 1.1, d 002 was 0.3359 nm, the specific surface area was 3.3 m 2 / g, and the porosity inside the particles was 55%. In addition, when the ratio of the carbonaceous material (B) in the composite graphite particles (I) is calculated from the residual carbon ratio of the precursor of the carbonaceous material (B), it is 100 parts by mass of the composite graphite particles (I). 3 parts by mass.
FIG. 1 shows a scanning electron micrograph of the composite graphite particles (I) obtained.
FIG. 2 shows a polarizing microscope photograph of a cross section of the obtained composite graphite particle (I).
Inside the composite graphite particles (I), there was one large spherical cavity at the center and a fine void around it. The central cavity had an average diameter of 6.8 μm, and the porosity occupied by the central cavity was 33 when the total porosity inside the particles was 100.

[負極活物質(II)の調製]
メソフェーズ小球体の黒鉛化物(平均アスペクト比1.1、平均粒子径28μm、平均格子面間隔d002 0.3359nm、比表面積0.6m/g)を準備した。
[Preparation of negative electrode active material (II)]
Mesophase microsphere graphitized material (average aspect ratio 1.1, average particle diameter 28 μm, average lattice spacing d 002 0.3359 nm, specific surface area 0.6 m 2 / g) was prepared.

[負極材料の調製]
前記複合黒鉛質粒子(I)20質量部および前記負極活物質(II)80質量部を混合し、負極材料を調製した。
[Preparation of negative electrode material]
20 parts by mass of the composite graphite particles (I) and 80 parts by mass of the negative electrode active material (II) were mixed to prepare a negative electrode material.

実施例1と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。 In the same manner as in Example 1, the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 to produce a working electrode, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(比較例6)
実施例7において、複合黒鉛質粒子(I)に替えて、鱗片状黒鉛質材料(A)をそのまま用いた以外は、実施例7と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Example 6)
In Example 7, the density of the negative electrode mixture layer was 1.75 g / cm in the same manner as in Example 7 except that the scaly graphite material (A) was used as it was instead of the composite graphite particles (I). A working electrode was prepared by adjusting to 3 , and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(実施例8〜10、参考例2)
実施例7において、複合黒鉛質粒子(I)と負極活物質(II)の混合比率、黒鉛質の繊維(C)の有無を操作した以外は、実施例7と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Examples 8 to 10, Reference Example 2)
In Example 7, the negative electrode mixture layer was prepared in the same manner as in Example 7 except that the mixing ratio of the composite graphite particles (I) and the negative electrode active material (II) and the presence or absence of the graphite fibers (C) were manipulated. A working electrode was prepared by adjusting the density to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(比較例7)
平均粒子径2μmの鱗片状天然黒鉛を50質量部と、コールタールピッチ(残炭率20%)50質量部を、二軸式ニーダーに投入して150℃で30分混練した。混練物を非酸化性雰囲気下、500℃で5時間一次焼成処理した。
一次焼成品を粉砕して平均粒子径12μmに調整したのち、窒素気流中1000℃で二次焼成処理し、複合黒鉛質粒子(I)を調製した。得られた複合黒鉛質粒子(I)は複数の鱗片状黒鉛質材料が炭素質材料を介して積層、凝集しており、粒子内部は緻密な構造を有していた。内部に中空状の空洞は見られなかった。その平均粒子径は12μm、平均アスペクト比が4.8、d002が0.3363nm、比表面積が4.2m/g、粒子内部の空隙率が5%であった。
実施例7と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Example 7)
50 parts by mass of scaly natural graphite having an average particle diameter of 2 μm and 50 parts by mass of coal tar pitch (remaining carbon ratio 20%) were put into a biaxial kneader and kneaded at 150 ° C. for 30 minutes. The kneaded product was subjected to primary baking treatment at 500 ° C. for 5 hours in a non-oxidizing atmosphere.
The primary fired product was pulverized and adjusted to an average particle size of 12 μm, and then subjected to secondary firing in a nitrogen stream at 1000 ° C. to prepare composite graphite particles (I). In the obtained composite graphite particles (I), a plurality of scaly graphite materials were laminated and aggregated via a carbonaceous material, and the inside of the particles had a dense structure. There was no hollow cavity inside. The average particle diameter was 12 μm, the average aspect ratio was 4.8, d 002 was 0.3363 nm, the specific surface area was 4.2 m 2 / g, and the porosity inside the particles was 5%.
In the same manner as in Example 7, the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 to produce a working electrode, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

(比較例8)
鱗片状黒鉛の代りに粒状の黒鉛(メソフェーズ小球体の粉砕物を黒鉛化した粒状黒鉛、平均粒子径3μm)を用いた以外は、実施例7と同様にして内部に中空状の空洞がみられない複合黒鉛質粒子を得た。実施例7と同様に負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(比較例9)
実施例7において、複合黒鉛質粒子(I)に替えて、カーボンブラック(花王製EC300J,平均一次粒子径40nm)を用いた以外は、実施例7と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(比較例10)
実施例7において、複合黒鉛質粒子(I)に替えて、気相成長炭素繊維(昭和電工製VGCF,平均繊維径150nm、平均繊維長10μm)を用いた以外は、実施例7と同様にして負極合剤層の密度を1.75g/cmに調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示す。
(Comparative Example 8)
A hollow cavity is seen inside as in Example 7 except that granular graphite (granular graphite obtained by graphitizing pulverized mesophase spheres, average particle diameter of 3 μm) is used instead of flaky graphite. No composite graphite particles were obtained. In the same manner as in Example 7, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
(Comparative Example 9)
In Example 7, the density of the negative electrode mixture layer was set to 1 in the same manner as in Example 7 except that carbon black (EC300J manufactured by Kao, average primary particle size 40 nm) was used instead of the composite graphite particles (I). A working electrode was prepared by adjusting to .75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
(Comparative Example 10)
In Example 7, instead of the composite graphite particles (I), vapor-grown carbon fiber (VGCF manufactured by Showa Denko, average fiber diameter 150 nm, average fiber length 10 μm) was used in the same manner as in Example 7. A working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.

本発明に規定される負極材料によって作用電極を作製した場合、負極合剤層の密度を高くすることができ、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれもが優れていた。一方、本発明の規定を外れる負極材料によって作用電極を作製した場合、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のうちのいずれかが不十分であった。   When the working electrode is made of the negative electrode material defined in the present invention, the density of the negative electrode mixture layer can be increased, and any of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics can be obtained. Was excellent. On the other hand, when the working electrode was made of a negative electrode material that does not fall within the scope of the present invention, any of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics was insufficient.

本発明の負極材料は、搭載する機器の小型化および高性能化に有効に寄与しリチウムイオン二次電池の負極材料に用いることができる。   The negative electrode material of the present invention contributes effectively to downsizing and high performance of the equipment to be mounted and can be used as a negative electrode material for lithium ion secondary batteries.

1 外装カップ
2 作用電極(負極)
3 外装缶
4 対極(正極)
5 セパレータ
6 絶縁ガスケット
7a、7b集電体
1 exterior cup 2 working electrode (negative electrode)
3 Exterior can 4 Counter electrode (positive electrode)
5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (11)

鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下である、複合黒鉛質粒子からなり、
前記複合黒鉛質粒子の空隙の容積率が30〜95体積%である、リチウムイオン二次電池用導電材。
Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), having an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less , Composed of composite graphite particles,
The electrically conductive material for lithium ion secondary batteries whose volume ratio of the space | gap of the said composite graphite particle | grain is 30-95 volume%.
炭素質または黒鉛質の繊維(C)をさらに含む請求項1に記載のリチウムイオン二次電池用導電材。   The conductive material for a lithium ion secondary battery according to claim 1, further comprising a carbonaceous or graphitic fiber (C). 前記複合黒鉛質粒子100質量部に対する、前記炭素質材料(B)が0.1〜20質量部である請求項1または2に記載のリチウムイオン二次電池用導電材。   The conductive material for a lithium ion secondary battery according to claim 1 or 2, wherein the carbonaceous material (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the composite graphite particles. 請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用導電材と、負極活物質とを1〜40:99〜60の質量比で含むリチウムイオン二次電池用負極材料。   The negative electrode material for lithium ion secondary batteries containing the electrically conductive material for lithium ion secondary batteries of any one of Claims 1-3, and a negative electrode active material by mass ratio of 1-40: 99-60. 前記負極活物質の平均粒子径が、前記複合黒鉛質粒子の平均粒子径よりも大きい請求項4に記載のリチウムイオン二次電池用負極材料。   The negative electrode material for a lithium ion secondary battery according to claim 4, wherein an average particle size of the negative electrode active material is larger than an average particle size of the composite graphite particles. 請求項4または5に記載の負極材料を用いてなるリチウムイオン二次電池負極。   A lithium ion secondary battery negative electrode using the negative electrode material according to claim 4. 請求項6に記載の負極を用いてなるリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode according to claim 6. 球状ないし略球状である炭素質材料(B)の前駆体および鱗片状黒鉛質粒子(A)を混合して、前記前駆体の表面に前記鱗片状黒鉛質粒子(A)を付着させた付着体を得る付着工程と、
前記付着工程で得られた付着体を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%である複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法。
Adherent in which a precursor of carbonaceous material (B) having a spherical or substantially spherical shape and scaly graphite particles (A) are mixed and the scaly graphite particles (A) are adhered to the surface of the precursor. An adhesion step to obtain,
The adhering body obtained in the adhering step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing flaky graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less Ri has a firing step of the void volume fraction to obtain a 30 to 95 vol% der Ru composite graphite particles, method for producing a composite graphite particles used in the conductive material for lithium ion secondary battery.
球状ないし略球状である炭素質材料(B)の前駆体、鱗片状黒鉛質粒子(A)および炭素質または黒鉛質の繊維(C)を混合して、前記前駆体の表面に前記鱗片状黒鉛質粒子(A)および前記繊維(C)を付着させた付着体を得る付着工程と、A precursor of carbonaceous material (B) that is spherical or substantially spherical, scaly graphite particles (A), and carbonaceous or graphite fibers (C) are mixed, and the scaly graphite is formed on the surface of the precursor. An attaching step for obtaining an adherent in which the fine particles (A) and the fibers (C) are attached;
前記付着工程で得られた付着体を焼成して、前記前駆体を炭素質材料(B)にして、The adhering body obtained in the adhering step is baked to make the precursor a carbonaceous material (B),
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%であり、炭素質または黒鉛質の繊維(C)をさらに含む複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法。Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less Composite graphite used for a conductive material for a lithium ion secondary battery, having a firing step of obtaining composite graphite particles having a void volume ratio of 30 to 95% by volume and further containing carbonaceous or graphitic fibers (C) A method for producing fine particles.
鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体を分散媒体中に分散させて分散液を得る分散工程と、
前記分散工程で得られた分散液を噴霧、乾燥して、前記鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体からなる中空構造体を得る噴霧乾燥工程と、
前記噴霧乾燥工程で得られた中空構造体および炭素質材料(B)の前駆体を混合する混合工程と、
前記混合工程で得られた混合物を焼成して、前記前駆体を炭素質材料(B)にして、鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%である複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法
A dispersion step of dispersing the precursors of the scaly graphite particles (A) and the carbonaceous material (B) in a dispersion medium to obtain a dispersion;
Spraying and drying the dispersion obtained in the dispersion step to obtain a hollow structure composed of precursors of the scaly graphite particles (A) and the carbonaceous material (B); and
A mixing step of mixing the hollow structure obtained in the spray drying step and the precursor of the carbonaceous material (B);
The mixture obtained in the mixing step is calcined, and the precursor is made into a carbonaceous material (B), which is spherical or substantially spherical and contains flaky graphite particles (A) and carbonaceous material (B). Hollow particles having an average particle diameter of 5 to 25 μm, an average aspect ratio of 5 or less, and a firing step of obtaining composite graphite particles having a void volume ratio of 30 to 95% by volume, The manufacturing method of the composite graphite particle | grains used for the electrically conductive material for lithium ion secondary batteries .
鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体を分散媒体中に分散させて分散液を得る分散工程と、
前記分散工程で得られた分散液を噴霧、乾燥して、前記鱗片状黒鉛質粒子(A)および炭素質材料(B)の前駆体からなる中空構造体を得る噴霧乾燥工程と、
前記噴霧乾燥工程で得られた中空構造体、炭素質材料(B)の前駆体および炭素質または黒鉛質の繊維(C)を混合する混合工程と、
前記混合工程で得られた混合物を焼成して、前記前駆体を炭素質材料(B)にして、
鱗片状黒鉛質粒子(A)および炭素質材料(B)を含む球状ないし略球状でかつ内部に空洞を有する中空粒子であって、平均粒子径が5〜25μm、平均アスペクト比が5以下であり、空隙の容積率が30〜95体積%であり、炭素質または黒鉛質の繊維(C)をさらに含む複合黒鉛質粒子を得る焼成工程を有する、リチウムイオン二次電池用導電材に用いる複合黒鉛質粒子の製造方法
A dispersion step of dispersing the precursors of the scaly graphite particles (A) and the carbonaceous material (B) in a dispersion medium to obtain a dispersion;
Spraying and drying the dispersion obtained in the dispersion step to obtain a hollow structure composed of precursors of the scaly graphite particles (A) and the carbonaceous material (B); and
A mixing step of mixing the hollow structure obtained in the spray drying step, the precursor of the carbonaceous material (B) and the carbonaceous or graphitic fiber (C);
The mixture obtained in the mixing step is baked to make the precursor a carbonaceous material (B),
Spherical or substantially spherical hollow particles containing scaly graphite particles (A) and carbonaceous material (B), with an average particle diameter of 5 to 25 μm and an average aspect ratio of 5 or less Composite graphite used for a conductive material for a lithium ion secondary battery, having a firing step of obtaining composite graphite particles having a void volume ratio of 30 to 95% by volume and further containing carbonaceous or graphitic fibers (C) A method for producing fine particles .
JP2013039479A 2012-03-16 2013-02-28 Composite graphite particles and their use in lithium ion secondary batteries Expired - Fee Related JP5953249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013039479A JP5953249B2 (en) 2012-03-16 2013-02-28 Composite graphite particles and their use in lithium ion secondary batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012060160 2012-03-16
JP2012060160 2012-03-16
JP2013039479A JP5953249B2 (en) 2012-03-16 2013-02-28 Composite graphite particles and their use in lithium ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2013216563A JP2013216563A (en) 2013-10-24
JP5953249B2 true JP5953249B2 (en) 2016-07-20

Family

ID=49589150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039479A Expired - Fee Related JP5953249B2 (en) 2012-03-16 2013-02-28 Composite graphite particles and their use in lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP5953249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767193A (en) * 2018-06-06 2018-11-06 江苏卓高新材料科技有限公司 Anode and lithium battery containing low swelling equadag coating

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162848A1 (en) * 2014-04-21 2015-10-29 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, process for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102477729B1 (en) 2014-07-07 2022-12-14 미쯔비시 케미컬 주식회사 Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
KR102500915B1 (en) * 2015-01-16 2023-02-16 미쯔비시 케미컬 주식회사 Carbon material and nonaqueous secondary battery using carbon material
KR101993625B1 (en) * 2015-02-24 2019-06-27 쇼와 덴코 가부시키가이샤 Carbon material, production method thereof and use thereof
CN114556638B (en) 2019-10-07 2023-12-26 住友电气工业株式会社 Surface-coated metal porous body
CN113644243A (en) * 2021-07-30 2021-11-12 清华大学 Nitrogen-doped hollow-structure graphite microsphere, composite negative electrode material and preparation method of composite negative electrode material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208079A (en) * 1981-06-18 1982-12-21 Sanyo Electric Co Ltd Rechargeable lithium cell
JP3236002B2 (en) * 1990-11-22 2001-12-04 大阪瓦斯株式会社 Lithium secondary battery
JP3285520B2 (en) * 1996-08-08 2002-05-27 日立化成工業株式会社 Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3223144B2 (en) * 1996-09-13 2001-10-29 アドケムコ株式会社 Method for producing carbonaceous material and battery
JP3787030B2 (en) * 1998-03-18 2006-06-21 関西熱化学株式会社 Scale-like natural graphite modified particles, process for producing the same, and secondary battery
JP2000223121A (en) * 1999-01-27 2000-08-11 Tdk Corp Carbon material and its manufacture
JP4416232B2 (en) * 1999-11-16 2010-02-17 三菱化学株式会社 Anode material for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
CA2435980C (en) * 2001-01-25 2008-07-29 Hitachi Chemical Co., Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell negative electrode and method for manufacturing same, and lithium secondary cell
JP2002222650A (en) * 2001-01-25 2002-08-09 Hitachi Chem Co Ltd Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4635413B2 (en) * 2003-07-04 2011-02-23 日立化成工業株式会社 Method for producing graphite particles for non-aqueous electrolyte secondary battery negative electrode
KR20120045053A (en) * 2003-09-05 2012-05-08 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
US20130344391A1 (en) * 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767193A (en) * 2018-06-06 2018-11-06 江苏卓高新材料科技有限公司 Anode and lithium battery containing low swelling equadag coating

Also Published As

Publication number Publication date
JP2013216563A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP6040022B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6240586B2 (en) Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6087648B2 (en) Composite graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5953249B2 (en) Composite graphite particles and their use in lithium ion secondary batteries
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2009187939A (en) Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016122516A (en) Negative electrode material for lithium ion secondary battery and manufacturing method thereof, negative electrode for lithium ion secondary battery arranged by use thereof, and lithium ion secondary battery
JP2015110506A (en) Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP4785341B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees