JP6285350B2 - Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery - Google Patents

Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP6285350B2
JP6285350B2 JP2014260622A JP2014260622A JP6285350B2 JP 6285350 B2 JP6285350 B2 JP 6285350B2 JP 2014260622 A JP2014260622 A JP 2014260622A JP 2014260622 A JP2014260622 A JP 2014260622A JP 6285350 B2 JP6285350 B2 JP 6285350B2
Authority
JP
Japan
Prior art keywords
graphite particles
negative electrode
carbonaceous
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014260622A
Other languages
Japanese (ja)
Other versions
JP2016122516A (en
Inventor
間所 靖
靖 間所
江口 邦彦
邦彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014260622A priority Critical patent/JP6285350B2/en
Publication of JP2016122516A publication Critical patent/JP2016122516A/en
Application granted granted Critical
Publication of JP6285350B2 publication Critical patent/JP6285350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、炭素質被覆黒鉛粒子の製造方法および得られた炭素質被覆黒鉛粒子を含むリチウムイオン二次電池用負極材料、ならびにリチウムイオン二次電池用負極、およびその負極を用いたリチウムイオン二次電池に関する。   The present invention relates to a method for producing carbonaceous coated graphite particles, a negative electrode material for lithium ion secondary batteries containing the obtained carbonaceous coated graphite particles, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary using the negative electrode. Next battery.

リチウムイオン二次電池は携帯電子機器に広く搭載されており、ハイブリッド自動車や電気自動車への利用も広がっている。このような状況の中で、リチウムイオン二次電池には一層の高容量、高充放電効率、高速充放電特性等が要求されている。   Lithium ion secondary batteries are widely used in portable electronic devices, and their use in hybrid vehicles and electric vehicles is also expanding. Under such circumstances, lithium ion secondary batteries are required to have higher capacity, high charge / discharge efficiency, high-speed charge / discharge characteristics, and the like.

リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素としており、リチウムイオンが放電過程および充電過程で負極と正極との間を移動することで二次電池として作用する。現在、上記負極材料には黒鉛が広く用いられている。黒鉛は天然黒鉛と人造黒鉛に大別される。天然黒鉛は結晶性が高く容量や初回充放電効率が高いという利点を有するが、鱗片形状ゆえ電極内で粒子が一方向に配向してしまい、高速充放電特性に劣るという欠点がある。   The lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components, and acts as a secondary battery by moving lithium ions between the negative electrode and the positive electrode during a discharging process and a charging process. Currently, graphite is widely used as the negative electrode material. Graphite is roughly classified into natural graphite and artificial graphite. Natural graphite has the advantage of high crystallinity and high capacity and initial charge / discharge efficiency, but due to the scale shape, the particles are oriented in one direction within the electrode, resulting in inferior high-speed charge / discharge characteristics.

これを補うために、鱗片形状の黒鉛を球状に加工し、さらに表面被覆処理を施した材料が多く提案されている。   In order to compensate for this, many materials have been proposed in which scaly graphite is processed into a spherical shape and surface-treated.

特許文献1では、コア材の粒子表面が黒鉛骨格で形成される基底面(100)面および/またはアモルファスな被覆部分で覆われた全体が黒鉛からなることを特徴とするリチウムイオン系二次電池用負極材の製造方法が開示されている。しかしながら、この製造方法では、コア材にピッチを被覆したのち、不融化、炭素化および黒鉛化処理という三段階での熱処理を必要とするため、製造コストの低減に限界がある。また最終の黒鉛化処理を2800〜3200℃で実施しているため、被膜の結晶性が過度に発達してしまい、高速充放電特性が低下するおそれがある。   In Patent Document 1, a lithium ion secondary battery is characterized in that the entire particle surface of the core material covered with a basal plane (100) surface formed of a graphite skeleton and / or an amorphous covering portion is made of graphite. A negative electrode material manufacturing method is disclosed. However, in this manufacturing method, since the core material is coated with pitch and then heat treatment in three stages of infusibilization, carbonization, and graphitization is required, there is a limit in reducing the manufacturing cost. Moreover, since the final graphitization process is implemented at 2800-3200 degreeC, the crystallinity of a film may develop excessively and there exists a possibility that a high-speed charge / discharge characteristic may fall.

特許第3709987号公報Japanese Patent No. 3709987

上記のような状況を鑑み、本発明は、リチウムイオン二次電池用負極材料として用いた場合に優れた電池特性を得ることが可能な炭素質被覆黒鉛粒子を提供することを課題とする。ここで、優れた電池特性とは、高い放電容量、高い初回充放電効率および優れた高速充放電特性から選択される少なくとも1つをいう。   In view of the above situation, an object of the present invention is to provide carbonaceous coated graphite particles capable of obtaining excellent battery characteristics when used as a negative electrode material for a lithium ion secondary battery. Here, the excellent battery characteristic means at least one selected from a high discharge capacity, a high initial charge / discharge efficiency, and an excellent high-speed charge / discharge characteristic.

本発明者らは、上記課題を解決すべく鋭意検討した結果、球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合し、得られた混合物を酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で焼成処理し、得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度で黒鉛化処理することによって得られた炭素質被覆黒鉛粒子をリチウムイオン二次電池用負極材料として用いると、優れた電池特性を有するリチウムイオン二次電池を得られることを知得し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors mixed spherical or ellipsoidal graphite particles and a carbonaceous precursor, and obtained the resulting mixture with an oxygen concentration of 0.1 to 5% (v / V), a carbonaceous coating obtained by firing at a temperature of 300 ° C. or higher and lower than 700 ° C., and subjecting the fired product to graphitization at a temperature of 2000 ° C. or higher and 2800 ° C. or lower in a non-oxidizing atmosphere. It has been found that when graphite particles are used as a negative electrode material for a lithium ion secondary battery, a lithium ion secondary battery having excellent battery characteristics can be obtained, and the present invention has been completed.

すなわち、本発明は以下の(1)および)を提供する。
(1)球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で加熱する焼成工程と、焼成工程で得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度で加熱する黒鉛化工程とを備える炭素質被覆黒鉛粒子の製造方法。
2)球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で加熱する焼成工程と、焼成工程で得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度で加熱する黒鉛化工程とを備えるリチウムイオン二次電池用負極材料の製造方法
That is, the present invention provides the following (1) and ( 2 ).
(1) Mixing step of mixing spherical or ellipsoidal graphite particles and carbonaceous precursor, and mixing the mixture obtained in the mixing step with an oxygen concentration of 0.1 to 5% (v / v), 300 ° C. or higher A carbonaceous coated graphite particle comprising: a firing step of heating at a temperature of less than 700 ° C; and a graphitization step of heating the fired product obtained in the firing step in a non-oxidizing atmosphere at a temperature higher than 2000 ° C and lower than 2800 ° C. Production method.
( 2) Mixing step of mixing spherical or ellipsoidal graphite particles and carbonaceous precursor, and mixing the mixture obtained in the mixing step with an oxygen concentration of 0.1 to 5% (v / v), 300 ° C. or higher A lithium ion secondary battery comprising: a baking step of heating at a temperature lower than 700 ° C .; and a graphitization step of heating the fired product obtained in the baking step in a non-oxidizing atmosphere at a temperature higher than 2000 ° C. and not higher than 2800 ° C. Manufacturing method of negative electrode material .

本発明の炭素質被覆黒鉛粒子の製造方法によって製造された炭素質被覆黒鉛粒子は、リチウムイオン二次電池用負極材料として良好な放電容量、初回充放電効率、高速充放電特性およびサイクル特性から選択される少なくとも1つを有する負極材料である。そのため、本発明の製造方法によって製造された炭素質被覆黒鉛粒子を負極材料として用いたリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。   Carbonaceous coated graphite particles produced by the method for producing carbonaceous coated graphite particles of the present invention are selected from good discharge capacity, initial charge / discharge efficiency, high-speed charge / discharge characteristics and cycle characteristics as a negative electrode material for lithium ion secondary batteries. A negative electrode material having at least one of the following. Therefore, the lithium ion secondary battery using the carbonaceous coated graphite particles produced by the production method of the present invention as a negative electrode material satisfies the recent demand for higher energy density of the battery, and the equipment to be mounted is reduced in size and heightened. Useful for performance.

本発明の負極の電池特性を評価するための評価電池の断面図である。It is sectional drawing of the evaluation battery for evaluating the battery characteristic of the negative electrode of this invention.

本発明の炭素質被覆黒鉛粒子の製造方法は、球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、前記混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で焼成する焼成工程と、前記焼成工程で得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度範囲で黒鉛化処理することを特徴とする。
以下、本発明をより具体的に説明する。
The method for producing carbonaceous coated graphite particles of the present invention comprises a mixing step of mixing spherical or ellipsoidal graphite particles and a carbonaceous precursor, and a mixture obtained in the mixing step, with an oxygen concentration of 0.1 to 0.1. 5% (v / v), a firing step of firing at a temperature of 300 ° C. or more and less than 700 ° C., and a fired product obtained by the firing step in a non-oxidizing atmosphere in a temperature range of more than 2000 ° C. and 2800 ° C. or less. It is characterized in that it is processed.
Hereinafter, the present invention will be described more specifically.

1.炭素質被覆黒鉛粒子の原料
(1)原料黒鉛粒子
本発明の炭素質被覆黒鉛粒子の芯材となる原料黒鉛粒子は、球状または楕円体状の黒鉛粒子である。球状または楕円体状であればよく、球状または楕円体状でない黒鉛粒子を加工して球状または楕円体状とした黒鉛粒子を芯材として用いてもよい。
1. Raw material of carbonaceous coated graphite particles (1) Raw material graphite particles The raw material graphite particles that are the core material of the carbonaceous coated graphite particles of the present invention are spherical or ellipsoidal graphite particles. Any spherical or ellipsoidal shape may be used, and graphite particles that are not spherical or ellipsoidal and processed into a spherical or ellipsoidal shape may be used as the core material.

球状または楕円体状の黒鉛粒子(原料黒鉛粒子)の平均粒径は特に限定されないが、1〜50μmが好ましく、5〜30μmがより好ましい。また、原料黒鉛粒子の平均アスペクト比は特に限定されないが、5以下が好ましく、2以下がより好ましい。原料黒鉛粒子の比表面積は特に限定されないが、10m/g以下であることが好ましく、8m/g以下であることがより好ましい。 The average particle diameter of the spherical or ellipsoidal graphite particles (raw material graphite particles) is not particularly limited, but is preferably 1 to 50 μm, and more preferably 5 to 30 μm. The average aspect ratio of the raw material graphite particles is not particularly limited, but is preferably 5 or less, and more preferably 2 or less. The specific surface area of the raw graphite particles is not particularly limited, but is preferably 10 m 2 / g or less, and more preferably 8 m 2 / g or less.

球状または楕円体状の黒鉛粒子(原料黒鉛粒子)は、天然黒鉛粒子または人造黒鉛粒子を用いることができる。結晶性が高いなどの理由で天然黒鉛粒子の方が好ましい。市販品の球状または楕円体状に加工された天然黒鉛粒子を用いることもできる。球状または楕円体状以外の形状の天然黒鉛、例えば鱗片状の黒鉛粒子の場合は、天然の鱗片状黒鉛を、機械的外力で造粒球状化して球状黒鉛粒子とすることができる。球状または楕円体状に加工する方法は、例えば、接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、両者の併用などが挙げられる。しかし、造粒助剤を用いずに機械的外力を加えて球状に造粒する方法が最も好ましい。機械的外力とは、機械的に粉砕および造粒することであり、鱗片状黒鉛を造粒して球状化することができる。鱗片状黒鉛の粉砕装置としては、例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、カウンタジェットミル(ホソカワミクロン社製)、カレントジェット(R)(日清エンジニアリング社製)等の粉砕装置が使用可能である。 As the spherical or ellipsoidal graphite particles (raw material graphite particles), natural graphite particles or artificial graphite particles can be used. Natural graphite particles are preferred for reasons such as high crystallinity. Commercially available natural graphite particles processed into a spherical or ellipsoidal shape can also be used. In the case of natural graphite having a shape other than spherical or ellipsoidal shape, for example, flaky graphite particles, natural flaky graphite can be granulated and spheroidized by mechanical external force to obtain spherical graphite particles. The method of processing into a spherical or ellipsoidal shape is, for example, a method of mixing a plurality of scaly graphites in the presence of a granulating aid such as an adhesive or a resin, without using an adhesive for a plurality of scaly graphites. The method of applying mechanical external force, the combined use of both, etc. are mentioned. However, the most preferable method is to apply a mechanical external force to granulate into a spherical shape without using a granulating aid. The mechanical external force is mechanically pulverizing and granulating, and scaly graphite can be granulated and spheroidized. Examples of the pulverized graphite crusher include a kneader such as a pressure kneader and a two-roll mill, a rotating ball mill, a counter jet mill (manufactured by Hosokawa Micron), and a current jet (R) (manufactured by Nisshin Engineering Co., Ltd.). The device is ready for use.

上記粉砕品は、その表面が鋭角な部分を有しているが、粉砕品を造粒球状化して使用しても良い。粉砕品の造粒球状化装置としては、例えば、GRANUREX(フロイント産業社製)、ニューグラマシン(セイシン企業社製)、アグロマスター(ホソカワミクロン社製)などの造粒機、ハイブリダイゼーション(奈良機械製作所社製)、メカノマイクロス(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)などのせん断圧縮加工装置が使用可能である。   The pulverized product has an acute-angled surface, but the pulverized product may be granulated and used. Examples of granulated spheroidizing devices for pulverized products include granulators such as GRANUREX (manufactured by Freund Sangyo Co., Ltd.), Newgra Machine (manufactured by Seishin Enterprise Co., Ltd.), Agromaster (manufactured by Hosokawa Micron Corporation), and hybridization (Nara Machinery Co., Ltd.). ), Mechanomicros (manufactured by Nara Machinery Co., Ltd.), and mechanofusion system (manufactured by Hosokawa Micron) can be used.

球状または楕円体状の黒鉛粒子(原料黒鉛粒子)のX線回折の測定値であるLcは40nm以上、Laは40nm以上が好ましい。ここで、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laはa軸方向の結晶子の大きさLa(110)である。また、d002は0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30であり、1580cm−1バンドの半値幅が10〜60であることが好ましい。 Lc, which is a measured value of X-ray diffraction of spherical or ellipsoidal graphite particles (raw material graphite particles), is preferably 40 nm or more, and La is preferably 40 nm or more. Here, Lc is the crystallite size Lc (002) in the c-axis direction of the graphite structure, and La is the crystallite size La (110) in the a-axis direction. D 002 is 0.337 nm or less, and the ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. ) Is 0.06 to 0.30, and the full width at half maximum of the 1580 cm −1 band is preferably 10 to 60.

(2)炭素質前駆体
炭素質被覆黒鉛粒子の芯材である球状または楕円体状の黒鉛粒子(原料黒鉛粒子)には、炭素質前駆体を原料として、後述する製造方法によって炭素質が被覆される。用いられる炭素質前駆体としてはタールピッチ類および/または樹脂類が例示される。具体的には、重質油、特にタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。樹脂類としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が例示される。好ましくは樹脂類を含まず、タールピッチ類のみとするとコスト的に有利である。炭素前駆体は上記に例示したいかなるものを用いてもよいが、コールタールピッチが80%(w/w)以上であるものが特に好ましい。
(2) Carbonaceous precursor Spherical or ellipsoidal graphite particles (raw material graphite particles), which are the core material of carbonaceous coated graphite particles, are coated with carbonaceous material using a carbonaceous precursor as a raw material by the production method described later. Is done. Examples of the carbonaceous precursor used include tar pitches and / or resins. Specifically, heavy oils, particularly tar pitches, include coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, heavy Examples include oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resins and furan resins. It is advantageous in terms of cost if only tar pitches are used without containing resins. Any of the carbon precursors exemplified above may be used, but those having a coal tar pitch of 80% (w / w) or more are particularly preferred.

2.炭素質被覆黒鉛粒子の製造方法
(1)混合工程
球状または楕円体状の黒鉛粒子(原料黒鉛粒子)と炭素質前駆体とを混合する。
混合する方法は原料を均質に混合できるものであれば特に限定されず、公知の混合方法を用いることができる。
固体の原料黒鉛粒子と固体または半固体(粘調液状を含む)の炭素質前駆体とを混合する。重質油は、常温で固体である。タール軽油、タール中油等の液体の炭素質前駆体を溶媒として混合した場合には200℃以下程度の温度で予め溶媒を揮発させて次の焼成工程を行うことが好ましい。
原料黒鉛粒子と炭素質前駆体との混合比率は特に限定されないが、最終製品(炭素質被覆黒鉛粒子)の比率で、黒鉛粒子70〜99%(w/w)、炭素質1〜30%(w/w)の範囲となるように設定することが好ましい。
混合は後述する焼成工程のための昇温とともに行っても良い。昇温とともに混合する方法は特に限定されないが、ヒーター、熱媒等の加熱手段を有する二軸式のニーダーなどを使用する方法が例示される。
2. Method for Producing Carbonaceous Coated Graphite Particles (1) Mixing Step Spherical or ellipsoidal graphite particles (raw material graphite particles) and a carbonaceous precursor are mixed.
The mixing method is not particularly limited as long as the raw materials can be mixed homogeneously, and a known mixing method can be used.
Solid raw material graphite particles and a solid or semi-solid (including viscous liquid) carbonaceous precursor are mixed. Heavy oil is solid at room temperature. When a liquid carbonaceous precursor such as tar light oil or tar medium oil is mixed as a solvent, it is preferable to volatilize the solvent in advance at a temperature of about 200 ° C. or lower to perform the next firing step.
The mixing ratio of the raw material graphite particles and the carbonaceous precursor is not particularly limited, but the ratio of the final product (carbonaceous coated graphite particles) is 70 to 99% (w / w) of graphite particles, 1 to 30% of carbonaceous matter ( It is preferable to set so as to be in the range of w / w).
You may perform mixing with the temperature rise for the baking process mentioned later. A method of mixing with increasing temperature is not particularly limited, but a method of using a biaxial kneader having heating means such as a heater and a heating medium is exemplified.

(2)焼成工程
混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で加熱することにより焼成処理を行う。
焼成処理は、酸素濃度0.1〜5%(v/v)、好ましくは酸素濃度0.8〜4%(v/v)、より好ましくは酸素濃度0.8〜3%(v/v)、さらに好ましくは酸素濃度1〜2%(v/v)の雰囲気中で行う。焼成処理の際の雰囲気中の酸素濃度がこの範囲内であると、焼成処理により炭素質前駆体が架橋され、後述する黒鉛化工程において過度の結晶発達を抑制する効果がある。焼成処理の際の雰囲気としては、上記濃度の酸素を含む不活性ガス雰囲気(酸素・不活性ガス混合雰囲気)が好ましい。雰囲気中の酸素濃度が上記範囲内である微酸化性雰囲気を用いることにより、酸化反応の程度が適切なものとなる。不活性ガスとしては、アルゴン、ヘリウム、窒素等が例示できる。なお、雰囲気中には不可避的不純物として、酸素および不活性ガス以外のガスを微量含んでいてもよい。
焼成処理は、300℃以上700℃未満、好ましくは350〜650℃の温度で行う。焼成処理の際の温度がこの範囲内であると、炭素質前駆体を芯材に均一に被覆することができる。
焼成処理の方法は特に限定されないが、攪拌しながら行うことが好ましい。ロータリーキルンを使用して撹拌すると、均質な焼成ができるので特に好ましい。
焼成処理の時間は特に限定されないが、5分〜50時間が好ましい。
焼成品はそのまま後述の黒鉛化工程に供することができ、炭化処理を省略することができるため、製造コストの低減にも効果がある。
(2) Firing process A baking process is performed by heating the mixture obtained at the mixing process at a temperature of oxygen concentration 0.1 to 5% (v / v) and 300 ° C or higher and lower than 700 ° C.
The baking treatment is performed at an oxygen concentration of 0.1 to 5% (v / v), preferably an oxygen concentration of 0.8 to 4% (v / v), more preferably an oxygen concentration of 0.8 to 3% (v / v). More preferably, it is performed in an atmosphere having an oxygen concentration of 1 to 2% (v / v). When the oxygen concentration in the atmosphere during the firing treatment is within this range, the carbonaceous precursor is cross-linked by the firing treatment, and there is an effect of suppressing excessive crystal development in the graphitization step described later. As an atmosphere in the firing treatment, an inert gas atmosphere (oxygen / inert gas mixed atmosphere) containing oxygen at the above concentration is preferable. By using a slightly oxidizing atmosphere in which the oxygen concentration in the atmosphere is within the above range, the degree of oxidation reaction becomes appropriate. Examples of the inert gas include argon, helium, nitrogen, and the like. Note that the atmosphere may contain a trace amount of gas other than oxygen and inert gas as an inevitable impurity.
The baking treatment is performed at a temperature of 300 ° C. or higher and lower than 700 ° C., preferably 350 to 650 ° C. When the temperature during the firing treatment is within this range, the carbonaceous precursor can be uniformly coated on the core material.
The method for the firing treatment is not particularly limited, but it is preferably performed while stirring. Stirring using a rotary kiln is particularly preferable because uniform firing is possible.
The time for the baking treatment is not particularly limited, but is preferably 5 minutes to 50 hours.
The fired product can be used as it is in the graphitization process described later, and the carbonization treatment can be omitted, which is effective in reducing manufacturing costs.

(3)黒鉛化工程
焼成工程で得られた焼成物を、非酸化性雰囲気中、2000℃超2800℃以下の温度で加熱することにより黒鉛化処理を行う。
黒鉛化処理の際の雰囲気は非酸化性雰囲気であれば特に限定されず、例えば、アルゴンンガス中、ヘリウムガス中、窒素ガス中等の不活性雰囲気、水素ガス中、一酸化炭素ガス中等の還元性雰囲気が挙げられるが、アルゴン気流中が特に好ましい。
黒鉛化処理の際の温度は2000℃超2800℃以下であり、2200〜2800℃の範囲内が好ましい。黒鉛化処理の際の温度がこの範囲内であると、被膜の結晶性が過度に発達することを抑制することができる。
黒鉛化処理の時間は特に限定されないが、5分〜30時間が好ましい。
黒鉛化処理の方法は特に限定されないが、黒鉛坩堝等に封入した状態で処理することが好ましい。
(3) Graphitization process Graphitization is performed by heating the fired product obtained in the firing process in a non-oxidizing atmosphere at a temperature higher than 2000 ° C and not higher than 2800 ° C.
The atmosphere during the graphitization treatment is not particularly limited as long as it is a non-oxidizing atmosphere. For example, in an inert atmosphere such as argon gas, helium gas, nitrogen gas, etc., reduction in hydrogen gas, carbon monoxide gas, etc. Atmosphere is preferable, but an argon stream is particularly preferable.
The temperature during the graphitization treatment is more than 2000 ° C. and not more than 2800 ° C., preferably in the range of 2200 to 2800 ° C. When the temperature during the graphitization treatment is within this range, it is possible to prevent the crystallinity of the coating from developing excessively.
The time for the graphitization treatment is not particularly limited, but is preferably 5 minutes to 30 hours.
The method of graphitization is not particularly limited, but it is preferable to perform the treatment in a state of being enclosed in a graphite crucible or the like.

また昇温時および加熱時の温度プロファイルとしては、直線的な昇温、一定間隔で温度をホールドする段階的な昇温などの様々な形態をとることが可能である。   Further, the temperature profile at the time of temperature rise and at the time of heating can take various forms such as a linear temperature rise and a stepwise temperature rise in which the temperature is held at a constant interval.

また黒鉛化処理の前に、異種の黒鉛材料同士を、付着、埋設、複合して用いても良い。炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素質前駆体材料、有機材料、無機材料を芯材の黒鉛粒子に付着、埋設、複合してから黒鉛化工程を行ってもよい。   Prior to the graphitization treatment, different types of graphite materials may be attached, embedded, or combined. The graphitization step may be performed after carbonaceous or graphite fibers, carbonaceous precursor materials such as amorphous hard carbon, organic materials, and inorganic materials are attached to, embedded in, and combined with the graphite particles of the core material.

3.炭素質被覆黒鉛粒子
製造される炭素質被覆黒鉛粒子中の黒鉛粒子の割合は70〜99%(w/w)であり、炭素質の割合は1〜30%(w/w)である。
炭素質被覆黒鉛粒子中の炭素質の割合が1%(w/w)未満であると、活性な黒鉛エッヂ面を完全に被覆することが難しくなり、初回充放電効率が低下することがある。
炭素質被覆黒鉛粒子中の炭素質の割合が30%(w/w)超であると、相対的に放電容量が低い炭素材の割合が多すぎるので、炭素質被覆黒鉛粒子の放電容量が低下する。また、炭素質を形成するための原料(熱硬化性樹脂類やタールピッチ類)の割合が多いと、混合工程やその後の焼成工程および黒鉛化工程において、粒子が融着しやすく、最終的に得られる炭素質被覆黒鉛粒子の炭素質層の一部に割れや剥離を生じ、初回充放電効率の低下を生じることがある。
炭素質被覆黒鉛粒子中の炭素質の割合は、好ましくは1〜20%(w/w)、より好ましくは1〜15%(w/w)、さらに好ましくは3%(w/w)超15%(w/w)以下であり、残部黒鉛粒子と一体化していることが好ましい。なお、炭素質の含有量は炭素質被覆黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲外の粒子を一部含んでいてもよい。
3. Carbonaceous coated graphite particles The proportion of graphite particles in the produced carbonaceous coated graphite particles is 70 to 99% (w / w), and the proportion of carbonaceous material is 1 to 30% (w / w).
If the carbonaceous ratio in the carbonaceous coated graphite particles is less than 1% (w / w), it becomes difficult to completely coat the active graphite edge surface, and the initial charge / discharge efficiency may be lowered.
If the carbonaceous proportion in the carbonaceous coated graphite particles exceeds 30% (w / w), the proportion of the carbon material having a relatively low discharge capacity is too large, so the discharge capacity of the carbonaceous coated graphite particles decreases. To do. In addition, if the ratio of the raw materials (thermosetting resins and tar pitches) for forming the carbonaceous material is large, the particles are likely to be fused in the mixing step and the subsequent firing step and graphitization step. Cracking and peeling may occur in a part of the carbonaceous layer of the obtained carbonaceous coated graphite particles, and the initial charge / discharge efficiency may be reduced.
The carbonaceous ratio in the carbonaceous coated graphite particles is preferably 1 to 20% (w / w), more preferably 1 to 15% (w / w), and even more preferably more than 3% (w / w) 15 % (W / w) or less and preferably integrated with the remaining graphite particles. In addition, carbon content should just exist in the said range as an average of the whole carbonaceous covering graphite particle. It is not necessary that all the individual particles are within the above range, and some particles outside the above range may be included.

製造される炭素質被覆黒鉛粒子の平均粒子径は特に限定されないが、1〜50μmの範囲内であることが好ましく、5〜30μmの範囲内であることがさらに好ましい。   The average particle diameter of the produced carbonaceous coated graphite particles is not particularly limited, but is preferably in the range of 1 to 50 μm, and more preferably in the range of 5 to 30 μm.

また、炭素質被覆黒鉛粒子のBET比表面積(BET法により測定した比表面積)は特に限定されないが、8.0m/g以下であることが好ましく、6.0m/g以下であることがより好ましい。 Further, the BET specific surface area (specific surface area measured by the BET method) of the carbonaceous coated graphite particles is not particularly limited, but is preferably 8.0 m 2 / g or less, and preferably 6.0 m 2 / g or less. More preferred.

また、炭素質被覆黒鉛粒子のアルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が黒鉛のR値より大きく、0.05〜0.80であることが好ましい。 Further, a ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser of carbonaceous coated graphite particles is It is preferably larger than the R value of graphite and 0.05 to 0.80.

4.リチウムイオン二次電池
(1)作用電極(負極)
本発明はまた、上記の炭素質被覆黒鉛粒子を負極材料として含有するリチウムイオン二次電池用負極およびそのリチウムイオン二次電池用負極を用いるリチウムイオン二次電池を提供する。
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の負極材料に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20%(w/w)程度の割合で用いられる。
4). Lithium ion secondary battery (1) Working electrode (negative electrode)
The present invention also provides a negative electrode for a lithium ion secondary battery containing the carbon-coated graphite particles as a negative electrode material and a lithium ion secondary battery using the negative electrode for the lithium ion secondary battery.
The negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal negative electrode molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the negative electrode material of the present invention. As the binder, those showing chemical and electrochemical stability with respect to the electrolyte are preferable. For example, fluorine-based resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, and resin powders such as polyethylene and polyvinyl alcohol Carboxymethyl cellulose and the like are used. These can also be used together. The binder is usually used at a ratio of about 1 to 20% (w / w) in the total amount of the negative electrode mixture.

より具体的には、まず、本発明の負極材料を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の負極材料と、結合剤を、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は特に限定されないが、10〜200μmの範囲内であることが好ましく、20〜100μmの範囲内であることがより好ましい。   More specifically, first, the negative electrode material of the present invention is adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, a slurry obtained by mixing the negative electrode material of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, etc., using a known stirrer, mixer, kneader, kneader, etc. Use to stir and mix to prepare paste. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. Although the film thickness of a negative mix layer is not specifically limited, It is preferable to exist in the range of 10-200 micrometers, and it is more preferable to exist in the range of 20-100 micrometers.

また、本発明の負極は、本発明の負極材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。   The negative electrode of the present invention can also be produced by dry-mixing the negative electrode material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold.

負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。   When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.

負極の作製に用いる集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状などが好ましい。集電材の材質は特に限定されないが、銅、ステンレス、ニッケル等が好ましい。また、集電体の厚みは特に限定されないが、箔状の場合で約5μm〜約20μmの範囲内であることが好ましい。   The shape of the current collector used for producing the negative electrode is not particularly limited, but a foil shape, a mesh shape, a net shape such as expanded metal, and the like are preferable. The material of the current collector is not particularly limited, but copper, stainless steel, nickel and the like are preferable. The thickness of the current collector is not particularly limited, but is preferably in the range of about 5 μm to about 20 μm in the case of a foil.

なお、本発明の負極は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを混合しても、内包しても、被覆しても、または積層してもよい。   It should be noted that the negative electrode of the present invention can be included even if different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, and the like are mixed within a range that does not impair the object of the present invention. Alternatively, it may be coated or laminated.

(2)対局(正極)
本発明のリチウム二次電池に用いる正極は、例えば、正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MMo8−Y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物は、V、V13、V、Vで示されるものである。
(2) Play (positive electrode)
The positive electrode used for the lithium secondary battery of the present invention is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / release a sufficient amount of lithium, and lithium such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides, and lithium compounds thereof. containing compound, the general formula M X Mo 6 S 8-Y (M in the formula is a transition metal element of at least one, X is 0 ≦ X ≦ 4, Y is a number in the range from 0 ≦ Y ≦ 1) Chevrel phase compounds, activated carbon, activated carbon fibers and the like. Vanadium oxide is one represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組み合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM 1−X (式中M、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM 1−Y (式中M、Mは少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などである。
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in a range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.

リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。   Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.

正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。   The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.

正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。   The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.

正極の作製に用いる集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状などが好ましい。集電体の材質は特に限定されないが、アルミニウム、ステンレス、ニッケル等が好ましい。また、集電体の厚みは特に限定されないが、箔状の場合で約10〜約40μmの範囲内であることが好ましい。   The shape of the current collector used for producing the positive electrode is not particularly limited, but a foil shape or a mesh shape such as a mesh or an expanded metal is preferable. Although the material of a collector is not specifically limited, Aluminum, stainless steel, nickel, etc. are preferable. The thickness of the current collector is not particularly limited, but is preferably in the range of about 10 to about 40 μm in the case of a foil.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(3)非水電解質
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩を用いることができ、例えば、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl、LiSiFなどのリチウム塩を用いることができる。これらのうちでも、酸化安定性の点から、特に、LiPFまたはLiBFが好ましい。
(3) Non-aqueous electrolyte As the non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in a normal non-aqueous electrolyte can be used, for example, LiPF 6 , LiBF 4 , LiAsF. 6 , LiClO 4 , LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB [{C 6 H 3 ( A lithium salt such as CF 3 ) 2 }] 4 , LiAlCl 4 , or LiSiF 6 can be used. Among these, LiPF 6 or LiBF 4 is particularly preferable from the viewpoint of oxidation stability.

電解液中の電解質塩濃度は特に限定されないが、0.1〜5mol/Lが好ましく、0.5〜3.0mol/Lがより好ましい。   The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 3.0 mol / L.

非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。   The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .

非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。   As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリクスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。
前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、該可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/Lが好ましく、0.5〜2.0mol/Lがより好ましい。
When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.
The polymer solid electrolyte or polymer gel electrolyte is mixed with a plasticizer, and as the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the nonaqueous electrolytic solution that is a plasticizer is preferably 0.1 to 5 mol / L, and more preferably 0.5 to 2.0 mol / L.

高分子固体電解質の作製方法は特に限定されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。   The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) are dissolved in, and an organic solvent for mixing is evaporated, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, and the mixture is mixed Examples thereof include a method of polymerizing a polymerizable monomer by irradiating an ultraviolet ray, an electron beam, a molecular beam or the like to obtain a polymer.

固体電解質中の非水溶媒(可塑剤)の割合は10〜90%(w/w)が好ましく、30〜80%(w/w)がより好ましい。固体電解質中の非水溶媒の割合がこの範囲内であると、導電率が高く、さらに、機械的強度が高くて成膜しやすい。   The ratio of the nonaqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% (w / w), more preferably 30 to 80% (w / w). When the proportion of the nonaqueous solvent in the solid electrolyte is within this range, the electrical conductivity is high, and the mechanical strength is high, so that the film is easily formed.

(4)セパレータ
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。
(4) Separator In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

4.リチウムイオン二次電池の製造
本発明のリチウムイオン二次電池は、上述した構成の負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
4). Production of Lithium Ion Secondary Battery The lithium ion secondary battery of the present invention comprises a negative electrode, a positive electrode, and a nonaqueous electrolyte having the above-described configuration, for example, laminated in the order of a negative electrode, a nonaqueous electrolyte, and a positive electrode. It is comprised by accommodating in. Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

本明細書における各物性は以下の方法により測定する。
1)比表面積〔m/g〕:窒素ガス吸着によるBET比表面積を求めた。
2)平均粒子径〔μm〕:レーザー回折式粒度分布計により測定した粒度分布の累積度数が50%(v/v)となる粒子径とした。
3)平均アスペクト比:被測定粒子の300倍の走査型電子顕微鏡をイメージアナライザー(東洋紡績(株)製)を用いて画像処理し、任意の50個の黒鉛粒子のアスペクト比(長軸方向の長さとそれに直交する短軸方向の長さの比)の平均値とした。
4)炭素質の割合〔%(w/w)〕:炭素質前駆体の原料(複数種の場合を含む)単体に炭素質被覆黒鉛粒子と同一の熱履歴を付与して、炭素質単体の炭化物を調製し、原料の残炭率を求めた。得られた残炭率から換算して炭素質被覆黒鉛粒子に占める炭素質の割合を質量百分率で算出した。
Each physical property in this specification is measured by the following method.
1) Specific surface area [m 2 / g]: The BET specific surface area by nitrogen gas adsorption was determined.
2) Average particle size [μm]: The particle size was determined so that the cumulative frequency of the particle size distribution measured with a laser diffraction particle size distribution meter was 50% (v / v).
3) Average aspect ratio: An image analyzer (manufactured by Toyobo Co., Ltd.) was used to perform image processing on a scanning electron microscope 300 times the particle to be measured, and the aspect ratio (major axis direction) of any 50 graphite particles The average value of the ratio of the length to the length in the minor axis direction perpendicular to the length).
4) Carbonaceous ratio [% (w / w)]: Carbonaceous precursor raw material (including plural types) is given the same thermal history as carbonaceous coated graphite particles, Carbide was prepared and the residual carbon ratio of the raw material was calculated | required. The ratio of carbonaceous matter in the carbonaceous coated graphite particles was calculated in terms of mass percentage in terms of the residual carbon ratio obtained.

なお、本発明において、「%(w/w)」は質量百分率を表し、「%(v/v)」は体積百分率を表すものとする。また、AおよびB(AおよびBはA<Bを満たす実数とする。)を両端とする数値範囲について、「A〜B」はAからBまでの全範囲を含むことを表し、「A以上B未満」はAからBまでのBを除く全範囲を含むことを表し、「A超B以下」はAからBまでのAを除く全範囲を含むことを表し、「A超B未満」はAからBまでのうちAおよびBを除く全範囲を表すものとする。   In the present invention, “% (w / w)” represents a mass percentage, and “% (v / v)” represents a volume percentage. In addition, regarding a numerical range having both ends of A and B (A and B are real numbers satisfying A <B), “A to B” represents that the entire range from A to B is included. "Less than B" indicates that the entire range excluding B from A to B is included. "Over A and below B" indicates that the entire range excluding A from A to B is included. It shall represent the whole range except A and B among A to B.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図1に示すように、少なくとも表面の一部に本発明の負極材料2が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following examples and comparative examples, as shown in FIG. 1, from a current collector (negative electrode) 7b having a negative electrode material 2 of the present invention attached to at least a part of the surface and a counter electrode (positive electrode) 4 made of lithium foil. A button-type secondary battery for single electrode evaluation was prepared and evaluated. An actual battery can be produced according to a known method based on the concept of the present invention.

[実施例1]
1.負極材料の作製
平均粒子径15μmの球状に加工された平均アスペクト比1.4の天然黒鉛粒子100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が35質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。
得られた混合物を、ロータリーキルンを用い、酸素濃度1%(v/v)の酸素・窒素混合ガスを流通させた酸素・窒素混合雰囲気中、500℃で3時間の焼成処理を行った。次いでこの処理物を、タンマン炉を用い、アルゴン(Ar)雰囲気下2200℃で3時間の黒鉛化処理を行うことで炭素質被覆黒鉛粒子を得た。こうして得られた炭素質被覆黒鉛粒子を負極材料として用いた。
[Example 1]
1. Production of negative electrode material For 100 parts by mass of natural graphite particles having an average aspect ratio of 1.4 processed into a spherical shape with an average particle diameter of 15 μm, a tar-in-oil solution with a coal tar pitch (residual carbon ratio of 50%) is mixed with a solid content ratio. Was added to 35 parts by mass, heated to 150 ° C. with a biaxial kneader and mixed for 60 minutes.
The obtained mixture was baked at 500 ° C. for 3 hours in an oxygen / nitrogen mixed atmosphere in which an oxygen / nitrogen mixed gas having an oxygen concentration of 1% (v / v) was circulated using a rotary kiln. Next, this treated product was graphitized at 2200 ° C. for 3 hours in an argon (Ar) atmosphere using a Tamman furnace to obtain carbon-coated graphite particles. The carbonaceous coated graphite particles thus obtained were used as a negative electrode material.

2.負極合剤ペーストの作製
負極材料98%(w/w)と、結合剤としてカルボキシメチルセルロース1%(w/w)およびスチレンブタジエンゴム1%(w/w)とを水に入れ、攪拌して負極合剤ペーストを調製した。
2. Preparation of Negative Electrode Mixture Paste Negative electrode material 98% (w / w), carboxymethyl cellulose 1% (w / w) and styrene butadiene rubber 1% (w / w) as binders were stirred in a negative electrode A mixture paste was prepared.

3.作用電極(負極)の作製
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で分散媒の水を蒸発させて乾燥し、ハンドプレスによって加圧して、負極合剤層を形成した。銅箔および負極合剤層を直径15.5mmの円柱状に打ち抜いて、集電体と、集電体に密着した負極合剤とからなる作用電極(負極)を作製した。
3. Production of Working Electrode (Negative Electrode) The negative electrode mixture paste was applied to a copper foil with a uniform thickness, the dispersion medium water was evaporated and dried in a vacuum at 90 ° C., and pressurized by a hand press to form a negative electrode mixture. A layer was formed. The copper foil and the negative electrode mixture layer were punched into a columnar shape with a diameter of 15.5 mm to produce a working electrode (negative electrode) composed of a current collector and a negative electrode mixture adhered to the current collector.

4.対極(正極)の作製
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、この集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
4). Production of Counter Electrode (Positive Electrode) A lithium metal foil was pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm, and a current collector made of nickel net and a lithium metal foil (thickness 0. 5 mm) adhered to the current collector. A counter electrode (positive electrode) made of 5 mm) was produced.

5.電解液およびセパレータ
エチレンカーボネート33%(v/v)−メチルエチルカーボネート67%(v/v)の混合溶媒に、LiPFを1mol/Lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
5. Electrolytic Solution and Separator LiPF 6 was dissolved in a mixed solvent of ethylene carbonate 33% (v / v) -methyl ethyl carbonate 67% (v / v) at a concentration of 1 mol / L to prepare a nonaqueous electrolytic solution. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

6.評価電池の作製
評価電池として図1に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極材料が付着した銅箔からなる作用電極(負極)2、集電体7bが積層された電池系である。
評価電池は電解液を含浸させたセパレータ5を集電体7bに密着した作用電極(負極)2と、集電体7aに密着した対極(正極)4との間に挟んで積層した後、集電体7bを外装カップ1内に、集電体7aを外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
6.電池性能の評価
充放電試験により、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)は以下の方法により測定した。結果を表1に示した。
(充放電試験)
回路電圧が1mVに達するまで0.9mAの定電流充電を行った後、回路電圧が1mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるその間の通電量から充電容量(単位:mAh/g)を求めた。その後、10分間休止した。
次に、0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。
次いで充電電流を1C、放電電流を2Cとして、第1サイクルと同様に充放電を行った。
ここで、Cは電池の容量を基準にした相対的な電流の単位であり、1Cは電池の容量(mAh)を1時間(hr)で充電または放電する電流の量を表す。1C、2Cの電流値は、第1サイクルの放電容量と負極の活物質質量から計算した。
初回充放電効率は次式(1)から計算した。
初回充放電効率(%)=100×((第1サイクルの充電容量―第1サイクルの放電容量)/第1サイクルの放電容量)・・・(1)
また、1C充電率は次式(2)から計算した。
1C充電率(%)=100×(1C電流値におけるCC(constant current)部分の充電容量/第1サイクルの放電容量)・・・(2)
また、2C放電率は次式(3)から計算した。
2C放電率(%)=100×(2C電流値における放電容量/第1サイクルの放電容量)・・・(3)
なお、充放電試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料からリチウムイオンが脱離する過程を放電とした。
6). Production of Evaluation Battery A button type secondary battery shown in FIG. 1 was produced as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. From the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolytic solution, and a copper foil to which a negative electrode material is attached This is a battery system in which a working electrode (negative electrode) 2 and a current collector 7b are stacked.
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the working electrode (negative electrode) 2 in close contact with the current collector 7b and the counter electrode (positive electrode) 4 in intimate contact with the current collector 7a. The current collector 7b is accommodated in the exterior cup 1 and the current collector 7a is accommodated in the exterior can 3. The exterior cup 1 and the exterior can 3 are combined, and further insulated at the peripheral edge between the exterior cup 1 and the exterior can 3. A gasket 6 was interposed, and both peripheral edges were caulked and sealed.
6). Evaluation of Battery Performance The discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) were measured by the following methods by a charge / discharge test. The results are shown in Table 1.
(Charge / discharge test)
After constant current charging of 0.9 mA until the circuit voltage reaches 1 mV, switching to constant voltage charging is performed when the circuit voltage reaches 1 mV, and further, the charging capacity (unit: : MAh / g). Then, it rested for 10 minutes.
Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of current applied during this period. This was the first cycle.
Next, charging and discharging were performed in the same manner as in the first cycle, with the charging current being 1C and the discharging current being 2C.
Here, C is a unit of relative current based on the battery capacity, and 1C represents the amount of current that charges or discharges the battery capacity (mAh) in one hour (hr). The current values of 1C and 2C were calculated from the discharge capacity of the first cycle and the active material mass of the negative electrode.
The initial charge / discharge efficiency was calculated from the following equation (1).
Initial charge / discharge efficiency (%) = 100 × ((charge capacity of first cycle−discharge capacity of first cycle) / discharge capacity of first cycle) (1)
Moreover, 1C charge rate was computed from following Formula (2).
1C charge rate (%) = 100 × (charge capacity of CC (constant current) portion at 1C current value / discharge capacity of first cycle) (2)
The 2C discharge rate was calculated from the following equation (3).
2C discharge rate (%) = 100 × (discharge capacity at 2C current value / discharge capacity of first cycle) (3)
In the charge / discharge test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.

[実施例2、3]
黒鉛化処理の際の温度を2500℃(実施例2)または2800℃(実施例3)に変更した点を除いて、実施例1と同様にして、炭素質被覆黒鉛粒子を製造した。
製造した炭素質被覆黒鉛粒子を負極材料として用いて、実施例1と同様に、評価電池を作製し、充放電試験を行い、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)を評価した。電池特性の評価結果を表1に示す。
[Examples 2 and 3]
Carbonaceous coated graphite particles were produced in the same manner as in Example 1 except that the temperature during graphitization was changed to 2500 ° C. (Example 2) or 2800 ° C. (Example 3).
Using the produced carbonaceous coated graphite particles as a negative electrode material, an evaluation battery was prepared and charged / discharged as in Example 1, and the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) was evaluated. The evaluation results of the battery characteristics are shown in Table 1.

[実施例4]
焼成処理の際の雰囲気中酸素濃度を2%(v/v)に変更した点を除いて、実施例1と同様にして、炭素質被覆黒鉛粒子を製造した。
製造した炭素質被覆黒鉛粒子を負極材料として用いて、実施例1と同様に、評価電池を作製し、充放電試験を行い、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)を評価した。電池特性の評価結果を表1に示す。
[Example 4]
Carbonaceous coated graphite particles were produced in the same manner as in Example 1 except that the oxygen concentration in the atmosphere during the firing treatment was changed to 2% (v / v).
Using the produced carbonaceous coated graphite particles as a negative electrode material, an evaluation battery was prepared and charged / discharged as in Example 1, and the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) was evaluated. The evaluation results of the battery characteristics are shown in Table 1.

[実施例5、6]
焼成処理の際の温度を350℃(実施例5)または650℃(実施例6)に変更した点を除いて、実施例1と同様にして、炭素質被覆黒鉛粒子を製造した。
製造した炭素質被覆黒鉛粒子を負極材料として用いて、実施例1と同様に、評価電池を作製し、充放電試験を行い、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)を評価した。電池特性の評価結果を表1に示す。
[Examples 5 and 6]
Carbonaceous coated graphite particles were produced in the same manner as in Example 1 except that the temperature during the firing treatment was changed to 350 ° C. (Example 5) or 650 ° C. (Example 6).
Using the produced carbonaceous coated graphite particles as a negative electrode material, an evaluation battery was prepared and charged / discharged as in Example 1, and the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) was evaluated. The evaluation results of the battery characteristics are shown in Table 1.

[比較例1、4]
焼成処理の際の雰囲気中酸素濃度を0%(v/v)(比較例1)または20%(v/v)(比較例4)とした点を除いて、実施例2と同様にして、炭素質被覆黒鉛粒子を製造した。
製造した炭素質被覆黒鉛粒子を負極材料として用いて、実施例1と同様に、評価電池を作製し、充放電試験を行い、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)を評価した。電池特性の評価結果を表1に示す。
[Comparative Examples 1 and 4]
Except for the point that the oxygen concentration in the atmosphere during the firing treatment was 0% (v / v) (Comparative Example 1) or 20% (v / v) (Comparative Example 4), the same as in Example 2, Carbonaceous coated graphite particles were produced.
Using the produced carbonaceous coated graphite particles as a negative electrode material, an evaluation battery was prepared and charged / discharged as in Example 1, and the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) was evaluated. The evaluation results of the battery characteristics are shown in Table 1.

[比較例2、3]
黒鉛化処理の際の温度を2000℃(比較例2)または3000℃(比較例3)に変更した点を除いて、実施例1と同様にして、炭素質被覆黒鉛粒子を製造した。
製造した炭素質被覆黒鉛粒子を負極材料として用いて、実施例1と同様に、評価電池を作製し、充放電試験を行い、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C放電率)を評価した。電池特性の評価結果を表1に示す。
[Comparative Examples 2 and 3]
Carbonaceous coated graphite particles were produced in the same manner as in Example 1 except that the temperature during graphitization was changed to 2000 ° C. (Comparative Example 2) or 3000 ° C. (Comparative Example 3).
Using the produced carbonaceous coated graphite particles as a negative electrode material, an evaluation battery was prepared and charged / discharged as in Example 1, and the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C discharge rate) was evaluated. The evaluation results of the battery characteristics are shown in Table 1.

(実施例、比較例の評価)
実施例1〜6の炭素質被覆黒鉛粒子を負極用黒鉛材料として用いたリチウムイオン二次電池は、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C充電率)のすべてが優れ、バランスの良い電池特性を示した(表1参照)。
比較例1は焼成処理を非酸化性雰囲気で実施した。そのため、比較例1の炭素質被覆黒鉛粒子を負極用黒鉛材料として用いたリチウムイオン二次電池は、実施例1〜6のリチウムイオン二次電池に比べ、高速充放電特性(1C充電率、2C充電率)が劣る。
比較例2は黒鉛化処理の際の温度を2000℃と低く設定した。そのため、比較例2の炭素質被覆黒鉛粒子を負極用黒鉛材料として用いたリチウムイオン二次電池は、実施例1〜6のリチウムイオン二次電池に比べ、放電容量および高速充放電特性(1C充電率、2C充電率)がともに劣る(表1参照)。
比較例3は黒鉛化処理の際の温度を3000℃と高く設定した。そのため、比較例3の炭素質被覆黒鉛粒子を負極用黒鉛材料として用いたリチウムイオン二次電池は、実施例1〜6のリチウムイオン二次電池に比べ、高速充放電特性(1C充電率、2C充電率)が劣る(表1参照)。
比較例4は焼成処理を酸化性雰囲気で実施した。そのため、比較例4の炭素質被覆黒鉛粒子を負極用黒鉛材料として用いたリチウムイオン二次電池は、実施例1〜6のリチウムイオン二次電池に比べ、放電容量、初回充放電効率および高速充放電特性(1C充電率、2C充電率)が劣る(表1参照)。
(Evaluation of Examples and Comparative Examples)
The lithium ion secondary battery using the carbonaceous coated graphite particles of Examples 1 to 6 as the graphite material for the negative electrode has all of the discharge capacity, initial charge / discharge efficiency, and fast charge / discharge characteristics (1C charge rate, 2C charge rate). Excellent and well-balanced battery characteristics were shown (see Table 1).
In Comparative Example 1, the firing treatment was performed in a non-oxidizing atmosphere. Therefore, the lithium ion secondary battery using the carbon-coated graphite particles of Comparative Example 1 as the graphite material for the negative electrode has higher charge / discharge characteristics (1C charge rate, 2C) than the lithium ion secondary batteries of Examples 1-6. The charging rate is inferior.
In Comparative Example 2, the temperature during graphitization was set as low as 2000 ° C. Therefore, the lithium ion secondary battery using the carbonaceous coated graphite particles of Comparative Example 2 as the graphite material for the negative electrode has a discharge capacity and high-speed charge / discharge characteristics (1C charging) as compared with the lithium ion secondary batteries of Examples 1-6. Rate and 2C charging rate) are both inferior (see Table 1).
In Comparative Example 3, the temperature during graphitization was set as high as 3000 ° C. Therefore, the lithium ion secondary battery using the carbonaceous coated graphite particles of Comparative Example 3 as the negative electrode graphite material is faster than the lithium ion secondary batteries of Examples 1 to 6 (1C charge rate, 2C). (Charge rate) is inferior (see Table 1).
In Comparative Example 4, the baking treatment was performed in an oxidizing atmosphere. Therefore, the lithium ion secondary battery using the carbon-coated graphite particles of Comparative Example 4 as the graphite material for the negative electrode has a discharge capacity, initial charge / discharge efficiency, and high-speed charge as compared with the lithium ion secondary batteries of Examples 1-6. Discharge characteristics (1C charge rate, 2C charge rate) are inferior (see Table 1).

本発明の炭素質被覆黒鉛粒子からなる負極材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池の負極に使用することができる。   The negative electrode material comprising the carbonaceous coated graphite particles of the present invention can be used for the negative electrode of high performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
2 作用電極(負極)
3 外装缶
4 対極(正極)
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a,7b 集電体
1 exterior cup 2 working electrode (negative electrode)
3 Exterior can 4 Counter electrode (positive electrode)
5 Electrolyte solution impregnated separator 6 Insulating gasket 7a, 7b Current collector

Claims (2)

球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、前記混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で加熱する焼成工程と、前記焼成工程で得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度で加熱する黒鉛化工程とを備える炭素質被覆黒鉛粒子の製造方法。   A mixing step of mixing spherical or ellipsoidal graphite particles and a carbonaceous precursor, and a mixture obtained in the mixing step are mixed at an oxygen concentration of 0.1 to 5% (v / v), 300 ° C to 700 ° C. Production of carbonaceous coated graphite particles comprising: a firing step of heating at a temperature lower than the temperature; and a graphitization step of heating the fired product obtained in the firing step in a non-oxidizing atmosphere at a temperature of 2000 ° C. to 2800 ° C. Method. 球状または楕円体状の黒鉛粒子と炭素質前駆体とを混合する混合工程と、前記混合工程で得られた混合物を、酸素濃度0.1〜5%(v/v)、300℃以上700℃未満の温度で加熱する焼成工程と、前記焼成工程で得られた焼成物を非酸化性雰囲気中、2000℃超2800℃以下の温度で加熱する黒鉛化工程とを備えるリチウムイオン二次電池用負極材料の製造方法。   A mixing step of mixing spherical or ellipsoidal graphite particles and a carbonaceous precursor, and a mixture obtained in the mixing step are mixed at an oxygen concentration of 0.1 to 5% (v / v), 300 ° C to 700 ° C. A negative electrode for a lithium ion secondary battery comprising: a firing step for heating at a temperature lower than the temperature; and a graphitization step for heating the fired product obtained in the firing step in a non-oxidizing atmosphere at a temperature higher than 2000 ° C. and not higher than 2800 ° C. Material manufacturing method.
JP2014260622A 2014-12-24 2014-12-24 Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery Active JP6285350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260622A JP6285350B2 (en) 2014-12-24 2014-12-24 Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260622A JP6285350B2 (en) 2014-12-24 2014-12-24 Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016122516A JP2016122516A (en) 2016-07-07
JP6285350B2 true JP6285350B2 (en) 2018-02-28

Family

ID=56329104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260622A Active JP6285350B2 (en) 2014-12-24 2014-12-24 Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6285350B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670459B (en) * 2019-12-09 2022-11-08 宁波杉杉新材料科技有限公司 Graphite negative electrode material and preparation and application thereof
CN112479200A (en) * 2020-12-24 2021-03-12 河南开炭新材料设计研究院有限公司 Method for producing cathode material by using waste heat with co-firing
CN114300685B (en) * 2021-12-31 2024-03-12 中创新航科技股份有限公司 Negative electrode material, method of preparing the same, and electrochemical device including the same
CN115490228B (en) * 2022-09-21 2024-02-09 湖南宸宇富基新能源科技有限公司 Coke micro powder-based graphite material, preparation method thereof and application thereof in lithium secondary battery
CN115536000B (en) * 2022-10-14 2024-03-15 中国科学院合肥物质科学研究院 Preparation method of hard carbon material with graphite coating layer on surface and application of hard carbon material in sodium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016122516A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6412520B2 (en) Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6585238B2 (en) Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6858691B2 (en) Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP6618848B2 (en) Lithium ion secondary battery
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP5865273B2 (en) Method for producing graphite material
JP7123831B2 (en) Method for producing carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180201

R150 Certificate of patent or registration of utility model

Ref document number: 6285350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250