JP2003346796A - Compound carbon material and lithium ion secondary battery - Google Patents

Compound carbon material and lithium ion secondary battery

Info

Publication number
JP2003346796A
JP2003346796A JP2002148500A JP2002148500A JP2003346796A JP 2003346796 A JP2003346796 A JP 2003346796A JP 2002148500 A JP2002148500 A JP 2002148500A JP 2002148500 A JP2002148500 A JP 2002148500A JP 2003346796 A JP2003346796 A JP 2003346796A
Authority
JP
Japan
Prior art keywords
carbon material
amorphous carbon
graphite
compound
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002148500A
Other languages
Japanese (ja)
Inventor
Shigeo Suzuki
重雄 鈴木
Juichi Arai
寿一 新井
Shuichi Wada
秀一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2002148500A priority Critical patent/JP2003346796A/en
Publication of JP2003346796A publication Critical patent/JP2003346796A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw material for an amorphous carbon material which is improved in formation efficiency of the amorphous carbon material and can be manufactured efficiently and simply in the compound carbon material in which the surface of a graphite material is coated by an amorphous carbon material and its manufacturing method, and a lithium ion secondary battery which uses this compound carbon material as a negative electrode material and has little gas generation. <P>SOLUTION: This is a compound carbon material in which the surface of a graphite material is coated by an amorphous carbon material. The amorphous carbon is made by making a naphthalene compound containing two or more of oxygen (O) or hydroxyl group (OH), at least one selected from anthracene compounds, and further, a material containing as necessary tar or pitch into carbide and is manufactured by a first heating process in which heating is carried out at 500°C as the upper limit and a second heating process in which heating is carried out in the inert gas atmosphere at 1000-1500°C as the upper limit. And a lithium ion secondary battery that uses this compound carbon material as a negative electrode is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合化炭素材料に
係わり、特に、黒鉛材料の表面を非晶質炭素材料で被覆
した複合化炭素材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite carbon material, and more particularly, to a composite carbon material in which the surface of a graphite material is coated with an amorphous carbon material.

【0002】[0002]

【従来の技術】リチウムイオン二次電池の負極材料とし
て用いられる炭素材料は、非晶質炭素材料と黒鉛材料に
大別できる。
2. Description of the Related Art Carbon materials used as negative electrode materials for lithium ion secondary batteries can be broadly classified into amorphous carbon materials and graphite materials.

【0003】非晶質炭素材料を適用した場合は、電解液
との反応が少なく、分解ガスの発生が少ない反面、結晶
構造上ミクロポアと称される空隙にリチウムイオンが捕
捉されて失活し、充放電の繰り返し特性の低下が大きい
という欠点を有する。
[0003] When an amorphous carbon material is applied, the reaction with the electrolytic solution is small and the generation of decomposition gas is small. On the other hand, lithium ions are trapped in voids called micropores in the crystal structure and deactivated. There is a disadvantage that the repetition characteristics of charge and discharge are greatly reduced.

【0004】一方、黒鉛材料を適用した場合は、ミクロ
ポアが無いために非晶質炭素に比べて良好な繰り返し特
性が得られるものの、電解液と反応して電解液を分解
し、ガスを発生し易いという欠点を有する。
On the other hand, when a graphite material is used, although good repetition characteristics can be obtained as compared with amorphous carbon because there is no micropore, it reacts with the electrolytic solution to decompose the electrolytic solution to generate gas. It has the disadvantage of being easy.

【0005】近年、これらの問題を解決するため、特開
平4−370662号公報に開示される非晶質炭素材料
と結晶性が高い黒鉛材料との多層構造を有する複合化炭
素材料が注目されている。また、特開平10−3027
75号公報には、黒鉛材料の表面をシランカップリング
剤処理して、非晶質炭素材料との結合力を強める方法
が、特開2000−3708号公報には、角取りした炭
素材料の表面を、この炭素材料より結晶度が低い炭素材
料で被覆する方法が記載されている。
In recent years, in order to solve these problems, attention has been paid to a composite carbon material having a multilayer structure of an amorphous carbon material and a graphite material having high crystallinity disclosed in Japanese Patent Application Laid-Open No. 4-370662. I have. Also, Japanese Patent Application Laid-Open No. 10-3027
Japanese Patent Application Publication No. 75-3750 discloses a method of treating a surface of a graphite material with a silane coupling agent to increase the bonding force with an amorphous carbon material. Is coated with a carbon material having a lower crystallinity than the carbon material.

【0006】また、非晶質炭素材料の原料(焼成前の有
機物)に関するものとして、特開平6−84516号公
報に開示されるコールタールピッチ、特開平10−1498
30号公報に開示される縮合多環式化合物の一種と含窒
素,含硫黄又は含酸素化合物との反応により得られる反
応物、特開2001−229917号公報に開示される
熱可塑性樹脂、特開2000−264614号公報に開
示される脂肪族炭化水素,芳香族炭化水素及び脂環式炭
化水素がある。
[0006] Also, as to the raw materials (organic substances before firing) of the amorphous carbon material, there are disclosed a coal tar pitch disclosed in JP-A-6-84516, and JP-A-10-1498.
JP-A-2001-229917 discloses a reaction product obtained by reacting one kind of condensed polycyclic compound disclosed in JP-A No. 30 with a nitrogen-containing, sulfur-containing or oxygen-containing compound, and a thermoplastic resin disclosed in JP-A-2001-229917. There are aliphatic hydrocarbons, aromatic hydrocarbons and alicyclic hydrocarbons disclosed in JP-A-2000-264614.

【0007】これら有機物は、酸化性ガスや不活性ガス
雰囲気中で加熱処理することで、非晶質炭素材料が生成
される。また、特開平4−368778号公報には、気
相での非晶質炭素材料の作製方法として、炭化水素ガス
を用いた化学的蒸着法(CVD)が開示されている。
[0007] By heating these organic substances in an atmosphere of an oxidizing gas or an inert gas, an amorphous carbon material is produced. Japanese Patent Application Laid-Open No. 4-368778 discloses a chemical vapor deposition method (CVD) using a hydrocarbon gas as a method for producing an amorphous carbon material in a gas phase.

【0008】[0008]

【発明が解決しようとする課題】複合化炭素材料は、リ
チウムイオン二次電池の電池性能を低下させることなく
分解ガス発生を抑制できる特長を有する。しかしなが
ら、黒鉛材料の表面に非晶質炭素を形成させるために
は、非晶質炭素材料の原料となる有機物を種々の条件下
で加熱処理を行う必要があり、加熱処理の条件を複雑に
制御しているにも関わらず、非晶質炭素材料を効率良く
形成させることは、非常に困難であるという問題があっ
た。
The composite carbon material has a feature that the generation of decomposition gas can be suppressed without lowering the battery performance of the lithium ion secondary battery. However, in order to form amorphous carbon on the surface of a graphite material, it is necessary to heat-treat an organic material, which is a raw material of the amorphous carbon material, under various conditions. Nevertheless, there is a problem that it is very difficult to efficiently form an amorphous carbon material.

【0009】特に、近年の景気低迷で価格競争が一段と
厳しくなり、リチウムイオン二次電池の負極材料に用い
られる複合化炭素材料にも、電池性能の向上に寄与する
ことは勿論のこと、低コスト化に繋がる簡便な製造方法
の出現が望まれていた。
[0009] In particular, price competition has become more severe due to the recent economic downturn, and the composite carbon material used for the negative electrode material of the lithium ion secondary battery not only contributes to the improvement of battery performance but also of low cost. There has been a demand for a simple manufacturing method that leads to the development of a device.

【0010】本発明の目的は、非晶質炭素材料の形成効
率を改善し、高効率でしかも簡単に製造できる非晶質炭
素材料の原料,製造方法又は複合化炭素材料を負極材料
とするガス発生が少ないリチウムイオン二次電池を提供
することである。
An object of the present invention is to improve the formation efficiency of an amorphous carbon material, and to provide a raw material, a production method of an amorphous carbon material, and a gas using a composite carbon material as a negative electrode material which can be produced with high efficiency and easily. An object of the present invention is to provide a lithium-ion secondary battery that generates less energy.

【0011】[0011]

【課題を解決するための手段】本発明者は、複合化炭素
材料において黒鉛材料の表面に効率良く非晶質炭素材料
を形成するために、非晶質炭素材料の元になる原料及び
加熱条件等を鋭意検討し、本発明に到達した。
Means for Solving the Problems In order to efficiently form an amorphous carbon material on the surface of a graphite material in a composite carbon material, the present inventor has set forth a starting material for the amorphous carbon material and heating conditions. After diligently studying the above, the present invention has been achieved.

【0012】すなわち、本発明は、黒鉛材料の表面を非
晶質炭素材料で被覆した複合化炭素材料に関するもので
あって、非晶質炭素材料は酸素(O)あるいは水酸基(O
H)を2個以上含むナフタレン化合物又はアントラセン
化合物から選ばれた少なくとも一つを原料とすることを
特徴とする。
That is, the present invention relates to a composite carbon material in which the surface of a graphite material is coated with an amorphous carbon material, wherein the amorphous carbon material is composed of oxygen (O) or hydroxyl (O).
H) wherein at least one selected from a naphthalene compound or an anthracene compound containing two or more H) is used as a raw material.

【0013】ここで、黒鉛材料とは一般に黒鉛と称さ
れ、天然及び人造を問わず、これらの球状,板状及び繊
維状等の形状が使用できる。
Here, the graphite material is generally called graphite, and any of these shapes, such as spheres, plates and fibers, can be used irrespective of natural or artificial properties.

【0014】さらに、酸素(O)を少なくとも2個以上
含むナフタレン化合物,アントラセン化合物としては、
ナフトキノン化合物,アントラキノン化合物及びこれら
化合物の一部を水酸基(OH),カルボキシル基(CO
OH)及びアミノ基(NH2)等で置換した化合物が挙げ
られる。
Further, as naphthalene compounds and anthracene compounds containing at least two oxygen (O),
Naphthoquinone compounds, anthraquinone compounds and some of these compounds are converted to hydroxyl (OH), carboxyl (CO
OH) and a compound substituted with an amino group (NH 2 ).

【0015】一方、水酸基(OH)を少なくとも2個以
上含むナフタレン化合物,アントラセン化合物として
は、ナフタレンジオール,ナフタレントリオール,アン
トラセントリオール,アントラセンテトロール及びこれ
ら化合物の一部をカルボキシル基(COOH)やアミノ
基(NH2 )等で置換した化合物が挙げられる。
On the other hand, naphthalene compounds and anthracene compounds containing at least two or more hydroxyl groups (OH) include naphthalene diol, naphthalene triol, anthracentriol, anthracene tetrol, and a part of these compounds having a carboxyl group (COOH) or an amino group. (NH 2 ) and the like.

【0016】さらに、非晶質炭素材料の原料に廉価な石
油重質油や石炭重質油の成分であるタールあるいはピッ
チ類を含ませることで、低コストで非晶質炭素材料を得
ることができる。
Further, by adding tar or pitch as a component of inexpensive heavy oil or heavy coal to the raw material of the amorphous carbon material, the amorphous carbon material can be obtained at low cost. it can.

【0017】黒鉛材料の表面にナフタレン化合物あるい
はアントラセン化合物を原料とする非晶質炭素材料を被
覆するには、黒鉛材料と非晶質炭素材料の原料とを所定
量混合した後、加熱処理すれば良い。
In order to coat the surface of a graphite material with an amorphous carbon material using a naphthalene compound or an anthracene compound as a raw material, a predetermined amount of the graphite material and the raw material of the amorphous carbon material are mixed and then heat-treated. good.

【0018】効率良く非晶質炭素材料を得るには、第1
段階として、非晶質炭素材料の原料であるナフタレン化
合物あるいはアントラセン化合物の融点と沸点との間の
一定温度で1時間以上保持した後、500℃を上限とす
る加熱を行う第1加熱工程を有する。そして、第2段階
として、不活性ガス雰囲気中で1000〜1500℃を
上限とする加熱を行う第2加熱工程を有する。
In order to obtain an amorphous carbon material efficiently, the first
The step includes a first heating step of holding at a constant temperature between a melting point and a boiling point of a naphthalene compound or an anthracene compound, which is a raw material of an amorphous carbon material, for at least one hour, and then performing heating up to 500 ° C. as an upper limit. . Then, as a second step, there is a second heating step of heating in an inert gas atmosphere with an upper limit of 1000 to 1500 ° C.

【0019】ここで、第1加熱工程は、非晶質炭素材料
の炭素前駆体の生成を目的に行われるものであり、活性
ガス雰囲気及び不活性ガス雰囲気の何れの場合も適用可
能であるが、炭素前駆体の生成効率の観点からは乾燥空
気雰囲気が好ましい。
Here, the first heating step is performed for the purpose of generating a carbon precursor of an amorphous carbon material, and can be applied to both an active gas atmosphere and an inert gas atmosphere. From the viewpoint of the production efficiency of the carbon precursor, a dry air atmosphere is preferable.

【0020】一方、第2加熱工程は、活性ガス雰囲気中
では非晶質炭素材料の収率が低下するため、ヘリウムガ
ス雰囲気あるいは窒素ガス雰囲気が好ましく、1500
℃を越えるのに従い非晶質炭素材料の結晶化が進行す
る。
On the other hand, in the second heating step, a helium gas atmosphere or a nitrogen gas atmosphere is preferable because the yield of the amorphous carbon material is reduced in an active gas atmosphere.
As the temperature exceeds ℃, crystallization of the amorphous carbon material proceeds.

【0021】このようにして作製した複合化炭素材料
は、正極,負極及び電解液を基本構成とするリチウムイ
オン二次電池における負極に適用することによって、電
解液の分解ガスが発生し難いリチウムイオン二次電池を
提供することが出来る。
The composite carbon material produced in this manner is applied to a positive electrode, a negative electrode and a negative electrode of a lithium ion secondary battery having a basic structure of an electrolytic solution. A secondary battery can be provided.

【0022】ここで、複合化炭素材料は、励起光として
アルゴンレーザ(波長514.5nm)を用いたレーザラマ
ンにおいて1550〜1590cm-1の範囲にピークを示
すP1、及び同様のレーザラマンにおいて1330〜1
380cm-1の範囲にピークを示すP2を有し、P1とP
2との強度比(P2/P1)R値が、0.2〜0.5の範
囲であることが好ましい。
Here, the composite carbon material is P1 showing a peak in the range of 1550 to 1590 cm -1 in laser Raman using an argon laser (wavelength 514.5 nm) as excitation light, and 1330 to 1 in similar laser Raman.
It has P2 showing a peak in the range of 380 cm -1 , and P1 and P
It is preferable that the intensity ratio (P2 / P1) R value with respect to R2 be in the range of 0.2 to 0.5.

【0023】レーザラマンの1550〜1590cm-1
範囲におけるスペクトルピークP1は、黒鉛材料の結晶
度に基づくもので、結晶度合いによってピーク位置が多
少変化する。
The laser Raman spectrum peak P1 in the range of 1550 to 1590 cm -1 is based on the crystallinity of the graphite material, and the peak position slightly varies depending on the crystallinity.

【0024】また、1330〜1380cm-1の範囲にお
けるスペクトルピークP2は、非晶質炭素における炭素
面の不規則な積層に基づくものである。
The spectrum peak P2 in the range of 1330 to 1380 cm -1 is based on the irregular stacking of the carbon surface in amorphous carbon.

【0025】レーザラマンでは、複合化炭素材料の表面
における物性が反映されるため、R値が大きいことは、
表面の非晶質炭素量が多いことを意味する。R値が0.
2 未満では電解液との反応による分解ガスの発生を抑
制する効果が弱く、0.5 を越えると電池性能が低下す
る。
In laser Raman, since the physical properties of the surface of the composite carbon material are reflected, a large R value means that
It means that the amount of amorphous carbon on the surface is large. R value is 0.
If it is less than 2, the effect of suppressing the generation of decomposed gas due to the reaction with the electrolytic solution is weak, and if it exceeds 0.5, the battery performance deteriorates.

【0026】負極の製法は既知の方法、すなわち複合化
炭素材料をバインダ樹脂溶液中に分散させた塗料を作製
し、この塗料を集電体上に塗布して乾燥する方法が用い
られる。
A method for producing the negative electrode is a known method, that is, a method in which a coating material in which a composite carbon material is dispersed in a binder resin solution is prepared, and the coating material is applied on a current collector and dried.

【0027】[0027]

【発明の実施の形態】本発明者等は、表面に被覆する非
晶質炭素材料の原料として、ナフタレン,アントラセン
等の芳香族炭化水素をはじめ、脂肪族炭化水素,脂環式
炭化水素及びこれらの置換体等を原料とし、600〜2
000℃で焼成する方法に基づいて、本発明を到達する
に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have reported that as a raw material of an amorphous carbon material coated on the surface, aromatic hydrocarbons such as naphthalene and anthracene, aliphatic hydrocarbons, alicyclic hydrocarbons, From 600 to 2
The present invention has been achieved based on a method of firing at 000 ° C.

【0028】そして、これらの事実を基に、高効率で非
晶質炭素が得られる化合物及び加熱条件を詳細に検討
し、本発明に到達した。
Based on these facts, the inventors studied in detail a compound capable of obtaining amorphous carbon with high efficiency and heating conditions, and reached the present invention.

【0029】例えば、ナフタレンやアントラセンを黒鉛
と混合(重量比1:1)して、第1加熱工程として、空
気雰囲気中において400℃まで加熱すると、ナフタレ
ンやアントラセンは完全に焼失し、残渣物は黒鉛のみで
ある。
For example, when naphthalene and anthracene are mixed with graphite (weight ratio 1: 1) and heated to 400 ° C. in an air atmosphere as a first heating step, naphthalene and anthracene are completely burned off, and the residue is removed. Only graphite.

【0030】また、空気雰囲気を不活性ガスとしてヘリ
ウムガス雰囲気にした場合も同様に、残渣物は黒鉛のみ
しか得られない。
Similarly, when the air atmosphere is an inert gas and a helium gas atmosphere is used, only graphite is obtained as a residue.

【0031】しかし、これらナフタレンやアントラセン
に、置換基として酸素(O)あるいは水酸基(OH)を
少なくとも2個以上含有した化合物は、第1加熱工程に
おけるガス雰囲気に関わらず500℃まで加熱しても炭
化物が得られる特長があることを見い出した。
However, compounds containing at least two oxygen (O) or hydroxyl groups (OH) as substituents in these naphthalenes and anthracenes can be obtained by heating up to 500 ° C. regardless of the gas atmosphere in the first heating step. It has been found that there is a feature that carbide can be obtained.

【0032】本発明における非晶質炭素材料の原料であ
る酸素(O)あるいは水酸基(OH)を少なくとも2個以
上含むナフタレン化合物やアントラセン化合物が、高効
率で非晶質炭素が得られる理由は明確でないが、これら
化合物自体が第1加熱工程において高効率で炭化物が得
られること、また、黒鉛と混合して融点と沸点との間の
温度に1時間以上保持することで、液状化となって黒鉛
との接触面積が増えて黒鉛との化学的結合力が助長され
ること、更には沸点以下のため化合物自体の蒸発が抑圧
されるために高効率で炭素化が達成できること等が推察
される。
The reason why the naphthalene compound or anthracene compound containing at least two oxygen (O) or hydroxyl groups (OH) as the raw material of the amorphous carbon material in the present invention can obtain amorphous carbon with high efficiency is clear. However, these compounds themselves are capable of obtaining carbides with high efficiency in the first heating step, and are liquefied by being mixed with graphite and maintained at a temperature between the melting point and the boiling point for 1 hour or more. It is presumed that the contact area with graphite is increased to promote the chemical bonding force with graphite, and that the carbonization can be achieved with high efficiency because the evaporation of the compound itself is suppressed due to its boiling point or lower. .

【0033】化学的結合力が助長されたことにより、こ
れらナフタレン化合物やアントラセン化合物は黒鉛材料
間に挟み込まれたサンドウィッチ構造になり、黒鉛材料
との付着力が強化されて、加熱工程時に焼失し難くなっ
たと推察する。
By promoting the chemical bonding force, these naphthalene compounds and anthracene compounds have a sandwich structure sandwiched between graphite materials, the adhesion to the graphite materials is strengthened, and they are not easily burned out during the heating step. I guess.

【0034】このようにして作製した複合化炭素材料を
リチウムイオン二次電池の負極に適用することにより、
黒鉛材料表面に形成された非晶質炭素材料が電解液の分
解を抑制し、ガス発生が少ないリチウムイオン二次電池
を提供できる。
By applying the composite carbon material thus produced to a negative electrode of a lithium ion secondary battery,
The amorphous carbon material formed on the surface of the graphite material suppresses decomposition of the electrolytic solution, and can provide a lithium ion secondary battery that generates less gas.

【0035】本発明は、非晶質炭素材料用原料,製造方
法及びこの複合化炭素材料を用いたリチウムイオン二次
電池に関するものであるが、こうした原料又は製造方法
を用いることにより、リチウムイオン二次電池用負極材
料及び非晶質炭素材料の作製工程のコストを低減するこ
とができる。
The present invention relates to a raw material for an amorphous carbon material, a production method, and a lithium ion secondary battery using the composite carbon material. It is possible to reduce the cost of the steps of manufacturing the negative electrode material for a secondary battery and the amorphous carbon material.

【0036】実用化して行く上でも、一般に有機物を空
気中で加熱すると、分解ガスを経て焼失するが、加熱条
件によって一部を炭素化物として回収することができ
る。
For practical use, generally, when an organic substance is heated in the air, the organic substance is destroyed by burning through a decomposition gas, but a part can be recovered as a carbonized substance depending on the heating conditions.

【0037】以下、実施例を用いて本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0038】(実施例1)黒鉛粉末5重量部と2−ヒド
ロキシーp−ナフトキノン5重量部とをコーヒーミル機
で混合後、この混合物をるつぼ容器に入れてヘリウムガ
ス雰囲気の電気炉で室温から1000℃の加熱処理(昇
温:2℃/分)を行った。
Example 1 5 parts by weight of graphite powder and 5 parts by weight of 2-hydroxy-p-naphthoquinone were mixed in a coffee mill, and the mixture was placed in a crucible container and heated from room temperature to 1000 in an electric furnace in a helium gas atmosphere. A heat treatment (temperature rise: 2 ° C./min) was performed.

【0039】(比較例1)また、比較例として、2−ヒ
ドロキシーp−ナフトキノンをナフタレンに替えた以外
は全く同様にして加熱処理を行った。
(Comparative Example 1) As a comparative example, a heat treatment was carried out in exactly the same manner except that 2-hydroxy-p-naphthoquinone was changed to naphthalene.

【0040】加熱処理後の重量から各々の化合物を用い
た時の非晶質炭素材料の含有率を求めた結果、2−ヒド
ロキシーp−ナフトキノンの場合が1wt%、ナフタレ
ンの場合が0wt%であった。
The content of the amorphous carbon material when each compound was used was determined from the weight after the heat treatment. As a result, the content of 2-hydroxy-p-naphthoquinone was 1 wt%, and that of naphthalene was 0 wt%. Was.

【0041】さらに、加熱処理後の試料について、レー
ザラマン装置で観察した結果、1550〜1590cm-1の範
囲に有するピークP1、1330〜1380cm-1の範囲
に有するピークP2とから求めたR値(P2/P1)
は、2−ヒドロキシーp−ナフトキノンの場合が0.1
8、ナフタレンの場合が黒鉛単体の場合と同様な0.1
5であった。
[0041] Further, the sample after the heat treatment, the result was observed with a laser Raman device, R value obtained from the peak P2 and having a range of peak P1,1330~1380cm -1 with a range of 1550~1590cm -1 (P2 / P1)
Is 0.1 in the case of 2-hydroxy-p-naphthoquinone.
8. The case of naphthalene is 0.1 which is the same as the case of graphite alone.
It was 5.

【0042】2−ヒドロキシーp−ナフトキノンの場合
は、R値が増大し、黒鉛の表面に非晶質炭素材料が形成
されていることを確認した。
In the case of 2-hydroxy-p-naphthoquinone, the R value was increased, and it was confirmed that an amorphous carbon material was formed on the surface of graphite.

【0043】しかし、ナフタレンの場合は、非晶質炭素
材料の含有率及びR値の結果から、本製造方法におい
て、黒鉛材料の表面に非晶質炭素材料が被覆されていな
いと判断した。
However, in the case of naphthalene, it was determined from the results of the content of the amorphous carbon material and the R value that the surface of the graphite material was not coated with the amorphous carbon material in the present production method.

【0044】本実施例によれば、特定のナフトキノン化
合物を非晶質炭素材料の原料にすることで、ヘリウムガ
ス雰囲気中において高温処理するだけの簡単な方法で、
黒鉛材料の表面に非晶質炭素材料を被覆することができ
る。
According to this embodiment, by using a specific naphthoquinone compound as a raw material of an amorphous carbon material, a simple method of performing high-temperature treatment in a helium gas atmosphere can be used.
The surface of the graphite material can be coated with an amorphous carbon material.

【0045】(実施例2)黒鉛粉末5重量部と2−ヒド
ロキシ−p−ナフトキノン3重量部とをコーヒーミル機
で混合後、この混合物とコールタールピッチ2重量部と
を160℃で30分間混合して、るつぼ容器に入れ、実
施例1と同様な加熱処理を行い、複合化炭素材料を作製
した。複合化炭素材料の非晶質炭素材料の含有率は0.
8wt%、R値が0.17であった。
Example 2 After 5 parts by weight of graphite powder and 3 parts by weight of 2-hydroxy-p-naphthoquinone were mixed in a coffee mill, this mixture and 2 parts by weight of coal tar pitch were mixed at 160 ° C. for 30 minutes. Then, the mixture was placed in a crucible container and subjected to the same heat treatment as in Example 1 to produce a composite carbon material. The content of the amorphous carbon material in the composite carbon material is 0.5.
8 wt%, R value was 0.17.

【0046】本実施例によれば、廉価なコールタールピ
ッチを併用することにより、低コストで非晶質炭素材料
が被覆できる効果がある。
According to this embodiment, there is an effect that the amorphous carbon material can be coated at low cost by using inexpensive coal tar pitch.

【0047】(実施例3〜6)実施例1で用いた2−ヒ
ドロキシーp−ナフトキノンを1,4,9,10−アン
トラセンテトロール(融点:約150℃,沸点:約25
0℃)に替え、黒鉛との混合比(重量比)を4/6に変
更した以外は実施例1と同様にして、黒鉛と1,4,
9,10−アントラセンテトロールの混合物(重量比4
/6)を4個作製した。
Examples 3 to 6 The 2-hydroxy-p-naphthoquinone used in Example 1 was replaced with 1,4,9,10-anthracecentetrol (melting point: about 150 ° C., boiling point: about 25
0 ° C.) and the mixing ratio (weight ratio) with graphite was changed to 4/6 in the same manner as in Example 1 except that graphite and 1,4,4 were used.
Mixture of 9,10-anthracentetrol (weight ratio 4
/ 6) were produced.

【0048】次に、これら混合物を、第1加熱工程とし
て、乾燥空気雰囲気の電気炉で、室温から160℃まで
昇温(2℃/分)した後、160℃の保持を各々0時
間,1時間,3時間及び6時間行い、その後400℃ま
での加熱処理を行った。
Next, as a first heating step, the mixture was heated from room temperature to 160 ° C. (2 ° C./min) in an electric furnace in a dry air atmosphere, and maintained at 160 ° C. for 0 hour and 1 hour, respectively. The heat treatment was performed for 3 hours, 3 hours, and 6 hours, and thereafter, heat treatment was performed up to 400 ° C.

【0049】さらに、第2加熱工程として、ヘリウムガ
ス雰囲気の電気炉で室温から1000℃の加熱処理(昇温:
2℃/分)を行い、複合化炭素材料を作製した。
Further, as a second heating step, a heating treatment from room temperature to 1000 ° C. in an electric furnace in a helium gas atmosphere (heating:
2 ° C./min) to produce a composite carbon material.

【0050】これら複合化炭素材料の非晶質炭素材料の
含有率及びR値を求めた結果を表1に示す。
Table 1 shows the results of determining the content and R value of the amorphous carbon material in these composite carbon materials.

【0051】[0051]

【表1】 [Table 1]

【0052】本実施例によれば、第1加熱工程において
非晶質炭素材料の原料である1,4,9,10−アント
ラセンテトロールの融点と沸点との間の温度(160
℃)を1時間以上保持することにより、黒鉛材料の表面
に非晶質炭素材料が形成する効率を高めることができ
る。
According to this embodiment, in the first heating step, the temperature (160) between the melting point and the boiling point of 1,4,9,10-anthracecentetrol, which is the raw material of the amorphous carbon material, is used.
C.) for at least one hour can increase the efficiency with which the amorphous carbon material is formed on the surface of the graphite material.

【0053】(比較例2)実施例4において、1,4,
9,10−アントラセンテトロールをアントラセン(融
点:約217℃,沸点:約315℃)に替え、第1加熱
工程の1時間保持温度を230℃に変更した以外は、実
施例4と同様にして、第2加熱工程まで実施した。
(Comparative Example 2) In Example 4, 1, 4,
The same procedure as in Example 4 was carried out except that 9,10-anthracene tetrol was changed to anthracene (melting point: about 217 ° C, boiling point: about 315 ° C), and the one-hour holding temperature in the first heating step was changed to 230 ° C. And the second heating step.

【0054】第2加熱工程終了後の試料重量及びレーザ
ラマンを測定したところ、非晶質炭素材料の含有率は0
wt%、R値が0.15 であり、黒鉛の表面に非晶質炭
素材料が形成されていなかった。
When the weight of the sample and the laser Raman after completion of the second heating step were measured, the content of the amorphous carbon material was 0%.
wt%, R value was 0.15, and no amorphous carbon material was formed on the surface of graphite.

【0055】(実施例7)黒鉛材料2重量部、1,4,
9,10−アントラセンテトロール1.5重量部をコー
ヒーミル機で混合後、この混合物にコールタールピッチ
1.5 重量部を加えて160℃で1時間混合後、実施例
4と同様な加熱工程で複合化炭素材料を作製した。複合
化炭素材料の非晶質炭素材料の含有率は3wt%、R値
が0.28であった。
Example 7 2 parts by weight of graphite material, 1,4,4
After mixing 1.5 parts by weight of 9,10-anthracecentol in a coffee mill, adding 1.5 parts by weight of coal tar pitch to the mixture and mixing at 160 ° C. for 1 hour, the same heating step as in Example 4 was performed. A composite carbon material was produced. The content of the amorphous carbon material in the composite carbon material was 3 wt%, and the R value was 0.28.

【0056】本実施例によれば、廉価なコールタールピ
ッチを併用することにより、低コストで非晶質炭素材料
が効率よく被覆できる効果がある。
According to the present embodiment, the use of inexpensive coal tar pitch has the effect that the amorphous carbon material can be efficiently coated at low cost.

【0057】(実施例8)実施例1と同様な方法で作製
した複合化炭素材料18重量部と10wt%ポリフッ化
ビニリデン/N−メチルピロリドン溶液20重量部とを
混合して塗液とし、厚さ20μmの銅箔上にアプリケー
タを用いて塗工し、80℃で1時間乾燥してリチウム二
次電池用負極を作製した。
Example 8 A coating liquid was prepared by mixing 18 parts by weight of a composite carbon material prepared in the same manner as in Example 1 and 20 parts by weight of a 10 wt% polyvinylidene fluoride / N-methylpyrrolidone solution. A 20 μm thick copper foil was applied using an applicator and dried at 80 ° C. for 1 hour to prepare a negative electrode for a lithium secondary battery.

【0058】次に、ガラスセルに1モル/リットル濃度
LiPF6 (溶媒:エチレンカーボネート/エチルメチ
ルカーボネート=1/2(体積比))を入れ、先に作製
した負極とリチウム金属を正極とする電極を設置して、
0.5mA/cm2の定電流で0Vまで充電し、同じく0.
5mA/cm2の定電流で1.5Vまで放電した。
Next, LiPF 6 (solvent: ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio)) at a concentration of 1 mol / liter was placed in the glass cell, and the previously prepared negative electrode and an electrode having lithium metal as the positive electrode were prepared. Install
The battery was charged to 0 V with a constant current of 0.5 mA / cm 2 , and
The battery was discharged to 1.5 V at a constant current of 5 mA / cm 2 .

【0059】この時の充電容量349mAh/g,放電
容量321mAh/g,効率92%である。
At this time, the charge capacity is 349 mAh / g, the discharge capacity is 321 mAh / g, and the efficiency is 92%.

【0060】さらに、電解液との分解ガス発生状態を測
定するため、ガス採集パイプ付きSUS製コインセルに
上記電解液を染み込ませた15φの負極及び同じく15
φのリチウムを正極として、0.5mA/cm2の定電流で
0Vまで充電を行い、この間発生する分解ガスをガス採
集パイプ経由で質量分析装置に導き定量分析を行った。
Further, in order to measure the state of decomposition gas generation with the electrolytic solution, a 15φ negative electrode in which the above electrolytic solution was impregnated into a SUS coin cell with a gas collection pipe, and a 15
Using lithium of the positive electrode as a positive electrode, the battery was charged to 0 V at a constant current of 0.5 mA / cm 2 , and the decomposition gas generated during this time was led to a mass spectrometer via a gas collection pipe for quantitative analysis.

【0061】分解ガス発生状態は、最も発生量が多い水
素ガスを評価したところ、ガス発生量を表す指標である
検出電流の最大値は6.2×10-11Aと低く、後述する
黒鉛材料の表面に非晶質炭素材料が被覆されていない場
合((比較例3))に比較し、充放電特性を殆ど変える
ことなく、分解ガスの発生を低減できた。
When the decomposition gas generation state was evaluated for the hydrogen gas which generated the largest amount, the maximum value of the detection current, which is an index indicating the gas generation amount, was as low as 6.2 × 10 -11 A. As compared with the case where the surface was not coated with the amorphous carbon material ((Comparative Example 3)), generation of the decomposition gas could be reduced without substantially changing the charge / discharge characteristics.

【0062】本実施例によれば、特定のナフトキノン化
合物を非晶質炭素材料の原料にした複合化炭素材料をリ
チウムイオン二次電池用負極に適用することにより、充
放電特性を低下させることなく、分解ガスの発生を低減
できる効果がある。
According to this embodiment, by applying a composite carbon material using a specific naphthoquinone compound as a raw material of an amorphous carbon material to a negative electrode for a lithium ion secondary battery, the charge / discharge characteristics are not reduced. This has the effect of reducing the generation of decomposition gas.

【0063】(比較例3)実施例8の複合化炭素材料を
比較例1の黒鉛材料に替えた以外は実施例8と同様にし
て、充放電特性及び分解ガス発生状態を測定した。
Comparative Example 3 The charge / discharge characteristics and decomposition gas generation state were measured in the same manner as in Example 8 except that the composite carbon material of Example 8 was replaced with the graphite material of Comparative Example 1.

【0064】その結果、充放電特性は充電容量347m
Ah/g,放電容量315mAh/g,効率91%,水
素ガス検出電流の最大値が1×10-10A であり、複合
化炭素材料を負極にした場合と比較し、分解ガスの発生
量が多い結果であった。
As a result, the charging / discharging characteristics showed a charging capacity of 347 m.
Ah / g, discharge capacity 315 mAh / g, efficiency 91%, the maximum value of the hydrogen gas detection current is 1 × 10 −10 A, and the generation amount of the decomposition gas is smaller than when the composite carbon material is used as the negative electrode. There were many results.

【0065】(実施例9〜12)実施例3〜6で作製し
た複合化炭素材料を負極材料として、実施例8と同様に
して充放電特性及び分解ガス発生状態を調べた。結果を
表2に示す。
(Examples 9 to 12) Using the composite carbon material prepared in Examples 3 to 6 as a negative electrode material, the charge / discharge characteristics and decomposition gas generation state were examined in the same manner as in Example 8. Table 2 shows the results.

【0066】[0066]

【表2】 [Table 2]

【0067】複合化炭素材料のR値が大きくなるのに従
い、放電容量が僅かに低下し、これに伴い効率が低下す
る傾向がある。
As the R value of the composite carbon material increases, the discharge capacity slightly decreases, and the efficiency tends to decrease accordingly.

【0068】一方、H2 ガスの発生量はR値が大きくな
ると低減する傾向を示す。充放電特性とH2 ガス発生量
との関係から、R値は0.2〜0.5の範囲が好ましい。
On the other hand, the amount of generated H 2 gas tends to decrease as the R value increases. The R value is preferably in the range of 0.2 to 0.5 from the relationship between the charge / discharge characteristics and the amount of generated H 2 gas.

【0069】本実施例によれば、R値を0.2〜0.5の
範囲にすることにより、黒鉛材料の充放電特性を特に低
下させることなく、リチウムイオン二次電池の分解ガス
の発生を低減できる効果がある。
According to the present embodiment, by setting the R value in the range of 0.2 to 0.5, the generation of the decomposition gas of the lithium ion secondary battery can be performed without deteriorating the charge / discharge characteristics of the graphite material. This has the effect of reducing

【0070】(実施例13)実施例7で作製した複合化
炭素材料を負極材料として、実施例8と同様にして充放
電特性及び分解ガス発生状態を調べた。その結果、充電
容量350mAh/g,放電容量311mAh/g,効
率89%,H2 ガス最大電流値5.0×10-11Aを得
た。
Example 13 Using the composite carbon material prepared in Example 7 as a negative electrode material, the charge / discharge characteristics and decomposition gas generation state were examined in the same manner as in Example 8. As a result, a charge capacity of 350 mAh / g, a discharge capacity of 311 mAh / g, an efficiency of 89%, and a maximum current value of H 2 gas of 5.0 × 10 −11 A were obtained.

【0071】本実施例によれば、廉価なコールタールピ
ッチを併用した複合化炭素材料を負極材料に適用するこ
とにより、充放電特性を特に低下させることなく、分解
ガスの発生を低減でき、低コストなリチウムイオン二次
電池を得られる効果がある。
According to the present embodiment, by applying the inexpensive combined carbon material combined with coal tar pitch to the negative electrode material, generation of decomposition gas can be reduced without particularly deteriorating the charge / discharge characteristics. There is an effect that a costly lithium ion secondary battery can be obtained.

【0072】以上のように、黒鉛材料の表面を非晶質炭
素材料で被覆した複合化炭素材料において、特定のナフ
タレン化合物及びアントラセン化合物を非晶質炭素材料
の原料とし、該原料の融点と沸点間の温度で1時間以上
保持した後に500℃を上限とする加熱を行う第1加熱
工程、さらに不活性ガス雰囲気中で1000〜1500℃を
上限とする加熱を行う第2加熱工程とから製造すること
により、黒鉛材料の表面に非晶質炭素材料が形成する効
率を高めることができると共に、充放電特性を低下させ
ることなく、分解ガスの発生を低減できる効果がある。
As described above, in the composite carbon material in which the surface of the graphite material is coated with the amorphous carbon material, the specific naphthalene compound and the anthracene compound are used as the raw materials of the amorphous carbon material, and the melting point and boiling point of the raw materials are used. It is manufactured from a first heating step of heating at 500 ° C. as an upper limit after holding at a temperature between 1 hour or more, and a second heating step of heating at 1000 to 1500 ° C. in an inert gas atmosphere. Thus, the efficiency of forming the amorphous carbon material on the surface of the graphite material can be increased, and the generation of decomposition gas can be reduced without lowering the charge / discharge characteristics.

【0073】[0073]

【発明の効果】本発明により、非晶質炭素材料の形成効
率を改善し、高効率でしかも簡単に製造できる非晶質炭
素材料の原料,製造方法又は複合化炭素材料を負極材料
とするガス発生が少ないリチウムイオン二次電池を提供
することができる。
According to the present invention, the raw material of the amorphous carbon material, the production method, or the gas using the composite carbon material as the negative electrode material can be formed with high efficiency and improved efficiency by improving the formation efficiency of the amorphous carbon material. A lithium ion secondary battery with less generation can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 寿一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 和田 秀一 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 4G146 AA19 AC16A AC16B AC23A AC23B AD02 AD15 AD25 BA02 BA11 BA22 BA24 BC02 BC23 BC32A BC32B BC33A BC33B BC34A BC34B BC37A BC37B 5H029 AJ02 AJ14 AK11 AL06 AL07 AL18 AM05 AM07 CJ02 CJ08 CJ21 DJ16 EJ04 EJ11 HJ13 HJ14 5H050 AA02 AA15 AA19 BA17 CA17 CB07 CB08 EA02 EA11 EA22 EA24 FA17 FA18 FA20 GA02 GA10 GA22 GA27 HA00 HA13 HA14 HA20    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Juichi Arai             Hitachi, Ibaraki Pref.             Hitachi, Ltd., Hitachi Laboratory (72) Inventor Shuichi Wada             1-88 Usutora, Ibaraki-shi, Osaka             Kusel Corporation F-term (reference) 4G146 AA19 AC16A AC16B AC23A                       AC23B AD02 AD15 AD25                       BA02 BA11 BA22 BA24 BC02                       BC23 BC32A BC32B BC33A                       BC33B BC34A BC34B BC37A                       BC37B                 5H029 AJ02 AJ14 AK11 AL06 AL07                       AL18 AM05 AM07 CJ02 CJ08                       CJ21 DJ16 EJ04 EJ11 HJ13                       HJ14                 5H050 AA02 AA15 AA19 BA17 CA17                       CB07 CB08 EA02 EA11 EA22                       EA24 FA17 FA18 FA20 GA02                       GA10 GA22 GA27 HA00 HA13                       HA14 HA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】黒鉛材料の表面を非晶質炭素材料で被覆し
た複合化炭素材料において、 前記非晶質炭素材料は、酸素(O)あるいは水酸基(O
H)を2個以上含有したナフタレン化合物又はアントラ
セン化合物から選ばれた少なくとも一つを原料にした炭
素化物であることを特徴とする複合化炭素材料。
1. A composite carbon material in which the surface of a graphite material is coated with an amorphous carbon material, wherein the amorphous carbon material is oxygen (O) or a hydroxyl group (O
A composite carbon material characterized by being a carbonized material obtained from at least one selected from naphthalene compounds and anthracene compounds containing two or more H).
【請求項2】前記非晶質炭素材料の原料は、タールある
いはピッチを含むことを特徴とする請求項1に記載の複
合化炭素材料。
2. The composite carbon material according to claim 1, wherein the raw material of the amorphous carbon material contains tar or pitch.
【請求項3】黒鉛材料の表面を、酸素(O)あるいは水
酸基(OH)を2個以上含むナフタレン化合物又はアン
トラセン化合物から選ばれた少なくとも一つを原料にし
た非晶質炭素材料で被覆した複合化炭素材料の製造方法
において、 前記黒鉛材料と前記非晶質炭素材料の原料との混合物
を、前記ナフタレン化合物又はアントラセン化合物の融
点と沸点との間の温度範囲に1時間以上保持した後、5
00℃を上限とする加熱を行う第1加熱工程と、その後
不活性ガス雰囲気中で1000〜1500℃を上限とす
る加熱を行う第2加熱工程とを有する複合化炭素材料の
製造方法。
3. A composite in which the surface of a graphite material is coated with an amorphous carbon material made from at least one selected from naphthalene compounds and anthracene compounds containing two or more oxygen (O) or hydroxyl groups (OH). In the method for producing a carbonized material, after maintaining the mixture of the graphite material and the raw material of the amorphous carbon material in a temperature range between the melting point and the boiling point of the naphthalene compound or the anthracene compound for 1 hour or more,
A method for producing a composite carbon material, comprising: a first heating step of heating at an upper limit of 00 ° C., and a second heating step of heating at an upper limit of 1000 to 1500 ° C. in an inert gas atmosphere.
【請求項4】前記非晶質炭素材料の原料は、タールある
いはピッチを含むことを特徴とする請求項3に記載の複
合化炭素材料の製造方法。
4. The method according to claim 3, wherein the raw material of the amorphous carbon material contains tar or pitch.
【請求項5】正極,負極及び電解液を有するリチウムイ
オン二次電池おいて、 前記負極は、黒鉛材料の表面を酸素(O)あるいは水酸
基(OH)を2個以上含むナフタレン化合物又はアント
ラセン化合物から選ばれた少なくとも一つを原料にした
非晶質炭素材料で被覆した複合化炭素材料を含むことを
特徴とするリチウムイオン二次電池。
5. A lithium ion secondary battery having a positive electrode, a negative electrode and an electrolytic solution, wherein the negative electrode comprises a graphite material having a surface formed of a naphthalene compound or an anthracene compound containing two or more oxygen (O) or hydroxyl groups (OH). A lithium ion secondary battery comprising a composite carbon material coated with an amorphous carbon material using at least one selected material as a raw material.
【請求項6】前記複合化炭素材料は、1550〜159
0cm-1の範囲及び1330〜1380cm-1の範囲にそれぞれ
レーザラマンにおけるピーク(P1及びP2)を示し、
これらピークの強度比(P2/P1)R値が、0.2〜
0.5の範囲であることを特徴とする請求項1に記載の
複合化炭素材料。
6. The composite carbon material is 1550 to 159.
Each scope and 1330~1380Cm -1 of 0 cm -1 showed a peak (P1 and P2) in laser Raman,
The intensity ratio (P2 / P1) R value of these peaks is 0.2 to 0.2.
2. The composite carbon material according to claim 1, wherein the range is 0.5.
JP2002148500A 2002-05-23 2002-05-23 Compound carbon material and lithium ion secondary battery Withdrawn JP2003346796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148500A JP2003346796A (en) 2002-05-23 2002-05-23 Compound carbon material and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148500A JP2003346796A (en) 2002-05-23 2002-05-23 Compound carbon material and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2003346796A true JP2003346796A (en) 2003-12-05

Family

ID=29767021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148500A Withdrawn JP2003346796A (en) 2002-05-23 2002-05-23 Compound carbon material and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2003346796A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
KR101065249B1 (en) 2010-03-15 2011-09-19 (주)포스코켐텍 Preparing method of anode active material for lithium secondary battery and lithium secondary battery comprising anode active material formed therefrom
JP2013254728A (en) * 2012-05-10 2013-12-19 Jfe Chemical Corp Method for producing negative electrode material for lithium ion secondary battery
JP2014167906A (en) * 2013-01-29 2014-09-11 Jfe Chemical Corp Carbonaceous material-coated graphite particle, manufacturing method thereof, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2015043316A (en) * 2013-07-24 2015-03-05 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode, negative electrode arranged by use thereof, and nonaqueous secondary battery
JP2015110507A (en) * 2013-11-07 2015-06-18 Jfeケミカル株式会社 Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
KR101065249B1 (en) 2010-03-15 2011-09-19 (주)포스코켐텍 Preparing method of anode active material for lithium secondary battery and lithium secondary battery comprising anode active material formed therefrom
JP2013254728A (en) * 2012-05-10 2013-12-19 Jfe Chemical Corp Method for producing negative electrode material for lithium ion secondary battery
JP2014167906A (en) * 2013-01-29 2014-09-11 Jfe Chemical Corp Carbonaceous material-coated graphite particle, manufacturing method thereof, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017117799A (en) * 2013-01-29 2017-06-29 Jfeケミカル株式会社 Carbonaceous coated graphite particle, manufacturing method thereof, lithium ion negative electrode for secondary battery and lithium ion secondary battery
JP2018133340A (en) * 2013-01-29 2018-08-23 Jfeケミカル株式会社 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015043316A (en) * 2013-07-24 2015-03-05 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode, negative electrode arranged by use thereof, and nonaqueous secondary battery
JP2015110507A (en) * 2013-11-07 2015-06-18 Jfeケミカル株式会社 Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR101586816B1 (en) Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
JP4684727B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3444786B2 (en) Lithium secondary battery
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4171904B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same
JP5379026B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor
JP2007213825A (en) Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
WO2005098999A1 (en) Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
JP2009212074A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
TW201705595A (en) Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
KR101993625B1 (en) Carbon material, production method thereof and use thereof
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
JP2003346801A (en) Negative electrode material, method for manufacturing the same, and battery element
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5715572B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2009224322A (en) Lithium secondary battery negative electrode active material, and manufacturing method of lithium secondary battery negative electrode active material
JP4697770B2 (en) Carbon material and non-aqueous electrolyte secondary battery using the same
JP2003346796A (en) Compound carbon material and lithium ion secondary battery
JP3399015B2 (en) Negative electrode material and manufacturing method thereof
JP2003346803A (en) Negative electrode material, method for manufacturing the same, and battery element
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP2019036505A (en) Negative electrode for lithium sulfur battery and lithium sulfur battery
JP4684581B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2003346802A (en) Negative electrode material, method for manufacturing the same, and battery element
JPH10308220A (en) Manufacture of carbon material for negative electrode of non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802