JP2018133340A - Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2018133340A
JP2018133340A JP2018055963A JP2018055963A JP2018133340A JP 2018133340 A JP2018133340 A JP 2018133340A JP 2018055963 A JP2018055963 A JP 2018055963A JP 2018055963 A JP2018055963 A JP 2018055963A JP 2018133340 A JP2018133340 A JP 2018133340A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite particles
ion secondary
lithium ion
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055963A
Other languages
Japanese (ja)
Other versions
JP6507395B2 (en
Inventor
間所 靖
Yasushi Madokoro
靖 間所
江口 邦彦
Kunihiko Eguchi
邦彦 江口
長山 勝博
Katsuhiro Nagayama
勝博 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Publication of JP2018133340A publication Critical patent/JP2018133340A/en
Application granted granted Critical
Publication of JP6507395B2 publication Critical patent/JP6507395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery which has excellent battery characteristics and can obtain excellent electrode peel strength.SOLUTION: In a carbonaceously coated graphite particle obtained by coating spherical or ellipsoidal shaped graphite particles of 70 to 85% by mass with carbonaceous matter of 15 to 30% by mass, the sum of the pore volumes of 2 nm or less as measured by a BET adsorption method of nitrogen gas is 1.0×10-2.0×10cm/g, and a BET specific surface area by adsorption of nitrogen gas is 1.00 to 0.50 m/g.SELECTED DRAWING: None

Description

本発明は、炭素質被覆黒鉛粒子、これを含有するリチウムイオン二次電池用負極、ならびにその負極を用いた高容量、高充放電効率でレート特性およびサイクル特性に優れるリチウムイオン二次電池に関する。   The present invention relates to carbonaceous coated graphite particles, a negative electrode for a lithium ion secondary battery containing the same, and a lithium ion secondary battery having high capacity, high charge / discharge efficiency, and excellent rate characteristics and cycle characteristics using the negative electrode.

リチウムイオン二次電池は携帯電子機器に広く搭載されており、今後はハイブリッド自動車や電気自動車への利用も期待される。このような状況の中で、リチウムイオン二次電池にはいっそうの高容量、高速充放電特性、サイクル特性が要求されている。
リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素としており、リチウムイオンが放電過程および充電過程で負極と正極との間を移動することで二次電池として作用する。現在、上記負極材料には黒鉛が広く用いられている。黒鉛は天然黒鉛と人造黒鉛に大別される。天然黒鉛は結晶性が高く容量が高いという利点を有するが、鱗片形状ゆえ電極内で粒子が一方向に配向してしまい、高速充放電特性やサイクル特性に劣るという欠点があった。
これを補うために、鱗片形状の黒鉛を球状に加工し、さらに表面被覆処理を施した材料が多く提案されている。
特許文献1では、天然黒鉛をバインダーを用いて略球状に造粒成形して得た黒鉛粒子にバインダーピッチを添加し、加熱混合した後、非酸化性雰囲気下で800〜1400℃で焼成することを特徴とするリチウムイオン二次電池用負極材の製造方法が開示されている。しかしながら、炭素被覆量を増やすと粒子同士が融着し、解砕工程が必要となる。解砕すると解砕面が生じ解砕面は電解液との反応活性が高く、その結果として充放電効率やサイクル特性の低下を招くという問題があった。また電極作製時のバインダーとしてポリフッ化ビニリデンを用いた場合に、電極の剥離強度が著しく低下するという問題あった。
特許文献2では、黒鉛造粒物への炭素被覆に関して、不活性雰囲気において二段階で焼成する方法が開示されている。本願発明者が検討したところ、焼成条件によっては粒子の融着を生じず解砕工程が不要であり、前述したような解砕にともなう充放電効率やサイクル特性の低下はなかった。しかしながら電極の剥離強度は改善せず、依然低いままであった。
Lithium ion secondary batteries are widely used in portable electronic devices and are expected to be used in hybrid and electric vehicles. Under such circumstances, the lithium ion secondary battery is required to have higher capacity, high-speed charge / discharge characteristics, and cycle characteristics.
The lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components, and acts as a secondary battery by moving lithium ions between the negative electrode and the positive electrode during a discharging process and a charging process. Currently, graphite is widely used as the negative electrode material. Graphite is roughly classified into natural graphite and artificial graphite. Natural graphite has the advantage of high crystallinity and high capacity, but due to the scale shape, the particles are oriented in one direction within the electrode, resulting in inferior high-speed charge / discharge characteristics and cycle characteristics.
In order to compensate for this, many materials have been proposed in which scaly graphite is processed into a spherical shape and surface-treated.
In Patent Document 1, a binder pitch is added to graphite particles obtained by granulating and forming natural graphite into a substantially spherical shape using a binder, heated and mixed, and then fired at 800 to 1400 ° C. in a non-oxidizing atmosphere. A method for producing a negative electrode material for a lithium ion secondary battery is disclosed. However, when the carbon coating amount is increased, the particles are fused with each other, and a crushing step is required. When crushed, the crushed surface is generated, and the crushed surface has a high reaction activity with the electrolytic solution. As a result, there is a problem that the charge / discharge efficiency and cycle characteristics are lowered. Further, when polyvinylidene fluoride is used as a binder at the time of producing an electrode, there has been a problem that the peel strength of the electrode is remarkably lowered.
Patent Document 2 discloses a method of firing in two stages in an inert atmosphere with respect to carbon coating on a graphite granulated product. As a result of investigation by the inventors of the present application, there is no need for a crushing step due to particle fusion depending on firing conditions, and there was no reduction in charge / discharge efficiency and cycle characteristics associated with crushing as described above. However, the peel strength of the electrode did not improve and remained low.

特許第3716818号公報Japanese Patent No. 3716818 特開2004−63321号公報JP 2004-63321 A

本発明は、上記のような状況を鑑みてなされたものである。すなわち、リチウムイオン二次電池用負極材料に用いた場合に、優れた電池特性、および優れた電極剥離強度を得ることが可能な負極材料を提供することを目的とする。また、その負極材料の製造方法と、その負極材料を含有する負極、およびその負極を用いたリチウムイオン二次電池を提供することが目的である。ここで、優れた電池特性とは、高い放電容量、高い初回充放電効率、および優れた高速充放電特性とサイクル特性から選択される少なくとも1つである。   The present invention has been made in view of the above situation. That is, it aims at providing the negative electrode material which can obtain the outstanding battery characteristic and the outstanding electrode peeling strength, when it uses for the negative electrode material for lithium ion secondary batteries. Another object is to provide a method for producing the negative electrode material, a negative electrode containing the negative electrode material, and a lithium ion secondary battery using the negative electrode. Here, the excellent battery characteristics are at least one selected from high discharge capacity, high initial charge / discharge efficiency, and excellent high-speed charge / discharge characteristics and cycle characteristics.

[1] 球状または楕円体形状の黒鉛粒子:70〜85質量%を炭素質:15〜30質量%で被覆した炭素質被覆黒鉛粒子であって、
上記炭素質被覆黒鉛粒子の、窒素ガスのBET吸着法で測定した2nm以下の細孔容積の総和が1.0×10−2〜2.0×10−2cm3/gであり、
窒素ガス吸着によるBET比表面積が1.00〜0.50m/gである、炭素質被覆黒鉛粒子。
[2] 上記炭素質被覆黒鉛粒子がリチウムイオン二次電池負極用黒鉛材料である、上記[1]に記載の炭素質被覆黒鉛粒子。
[3] 上記[1]に記載の炭素質被覆黒鉛粒子を含有するリチウムイオン二次電池用負極。
[4] 上記[3]に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。
[1] Spherical or ellipsoidal graphite particles: carbon-coated graphite particles obtained by coating 70 to 85% by mass with carbonaceous: 15 to 30% by mass,
The total of pore volume of 2 nm or less measured by the nitrogen gas BET adsorption method of the carbonaceous coated graphite particles is 1.0 × 10 −2 to 2.0 × 10 −2 cm 3 / g,
Carbonaceous coated graphite particles having a BET specific surface area of 1.00 to 0.50 m 2 / g by nitrogen gas adsorption.
[2] The carbonaceous coated graphite particle according to [1], wherein the carbonaceous coated graphite particle is a graphite material for a negative electrode of a lithium ion secondary battery.
[3] A negative electrode for a lithium ion secondary battery containing the carbonaceous coated graphite particles according to [1].
[4] A lithium ion secondary battery having the negative electrode for a lithium ion secondary battery according to [3].

本発明の炭素質被覆黒鉛粒子は、リチウムイオン二次電池用負極材料として良好な放電容量、初回充放電効率、高速充放電特性およびサイクル特性から選択される少なくとも1つ、ならびに優れた電極剥離強度を有する負極材料である。そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。   The carbon-coated graphite particles of the present invention have at least one selected from a good discharge capacity, initial charge / discharge efficiency, high-speed charge / discharge characteristics and cycle characteristics as a negative electrode material for a lithium ion secondary battery, and excellent electrode peel strength. It is a negative electrode material which has. Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density of the battery, and is useful for downsizing and higher performance of equipment to be mounted.

本発明の負極の電池特性を評価するための評価電池の断面図である。It is sectional drawing of the evaluation battery for evaluating the battery characteristic of the negative electrode of this invention. 実施例1と比較例1の炭素質被覆黒鉛粒子および球状に加工された黒鉛粒子の細孔径(dp)に対する累積細孔容積(Sigma Vp)を示すグラフである。6 is a graph showing cumulative pore volume (Sigma Vp) versus pore diameter (dp) of carbonaceous coated graphite particles of Example 1 and Comparative Example 1 and spherically processed graphite particles. 負極材料の電極剥離強度を測定する測定系を説明する図である。It is a figure explaining the measurement system which measures the electrode peeling strength of negative electrode material.

以下、本発明をより具体的に説明する。
1.炭素質被覆黒鉛粒子の原料
〔芯材〕
本発明の炭素質被覆黒鉛粒子の芯材は、好ましくは、球状または楕円体状の平均粒径1〜50μm 、平均粒径5〜30μmの範囲である黒鉛粒子である。平均比表面積は10m/g以下であることがより好ましく、8m/g以下であることが特に好ましい。黒鉛粒子は、天然黒鉛粒子でも人造黒鉛粒子でも構わないが、結晶性が高いなどの理由で天然黒鉛粒子の方が好ましい。
市販品の球状または楕円体状に加工された天然黒鉛粒子を用いることもできる。球状または楕円体状以外の形状の天然黒鉛、例えば鱗片状の黒鉛粒子の場合は、天然の鱗片状黒鉛を、機械的外力で造粒球状化して球状黒鉛粒子とする。球状または楕円体状に加工する方法は、例えば、接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、両者の併用などが挙げられる。しかし、造粒助剤を用いずに機械的外力を加えて球状に造粒する方法が最も好ましい。機械的外力とは、機械的に粉砕および造粒することであり、鱗片状黒鉛を造粒して球状化することができる。鱗片状黒鉛の粉砕装置としては、例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、カウンタジェットミル(ホソカワミクロン(株)製)カレントジェット(日清エンジニアリング(株)製)などの粉砕装置が使用可能である。
Hereinafter, the present invention will be described more specifically.
1. Raw material for carbon-coated graphite particles [core material]
The core material of the carbonaceous coated graphite particles of the present invention is preferably graphite particles having a spherical or ellipsoidal average particle diameter of 1 to 50 μm and an average particle diameter of 5 to 30 μm. The average specific surface area is more preferably 10 m 2 / g or less, and particularly preferably 8 m 2 / g or less. The graphite particles may be natural graphite particles or artificial graphite particles, but natural graphite particles are preferred for reasons such as high crystallinity.
Commercially available natural graphite particles processed into a spherical or ellipsoidal shape can also be used. In the case of natural graphite having a shape other than spherical or ellipsoidal shape, for example, flaky graphite particles, natural flaky graphite is granulated by mechanical external force to obtain spherical graphite particles. The method of processing into a spherical or ellipsoidal shape is, for example, a method of mixing a plurality of scaly graphites in the presence of a granulating aid such as an adhesive or a resin, without using an adhesive for a plurality of scaly graphites. The method of applying mechanical external force, the combined use of both, etc. are mentioned. However, the most preferable method is to apply a mechanical external force to granulate into a spherical shape without using a granulating aid. The mechanical external force is mechanically pulverizing and granulating, and scaly graphite can be granulated and spheroidized. Examples of the pulverized graphite crushing device include a kneader such as a pressure kneader and two rolls, a rotating ball mill, a counter jet mill (manufactured by Hosokawa Micron Corporation), a current jet (manufactured by Nisshin Engineering Co., Ltd.), and the like. The device is ready for use.

上記粉砕品は、その表面が鋭角な部分を有しているが、粉砕品を造粒球状化して使用しても良い。粉砕品の造粒球状化装置としては、例えば、GRANUREX(フロイント産業(株)製)、ニューグラマシン((株)セイシン企業)、アグロマスター(ホソカワミクロン(株)製)などの造粒機、ハイブリダイゼーション((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株)製)などのせん断圧縮加工装置が使用可能である。   The pulverized product has an acute-angled surface, but the pulverized product may be granulated and used. Examples of granulated spheroidizers for pulverized products include granulators such as GRANUREX (manufactured by Freund Sangyo Co., Ltd.), Newgra Machine (manufactured by Seisin Co., Ltd.), Agromaster (manufactured by Hosokawa Micron Co., Ltd.), and hybridization. Shear compression processing apparatuses such as (manufactured by Nara Machinery Co., Ltd.), mechanomicros (manufactured by Nara Machinery Co., Ltd.), and mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.) can be used.

炭素質被覆黒鉛粒子の芯材として用いる黒鉛粒子のX線回折の測定値であるLcが40nm以上、Laが40nm以上が好ましい。ここで、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laはa軸方向の結晶子の大きさLa(110)である。d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm−1バンドの半値幅が10〜60であるのが好ましい。 Lc, which is a measured value of X-ray diffraction of graphite particles used as a core material of carbonaceous coated graphite particles, is preferably 40 nm or more, and La is preferably 40 nm or more. Here, Lc is the crystallite size Lc (002) in the c-axis direction of the graphite structure, and La is the crystallite size La (110) in the a-axis direction. The ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser with d 002 of 0.337 nm or less It is preferable that the half-value width of 0.06 to 0.30 and 1580 cm −1 band is 10 to 60.

〔炭素質前駆体〕
本発明の球状または楕円体状の黒鉛粒子である芯材には炭素質前駆体を原料として後述する製造方法によって炭素質が被覆される。用いられる炭素質前駆体としては、黒鉛に比べて結晶性が低く、黒鉛化するために必要とされる高温処理をしても黒鉛結晶とはなりえない炭素材であるタールピッチ類および/または樹脂類が例示される。具体的には、重質油、特にはタールピッチ類としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。樹脂類としては、ポリビニルアルコール、ポリアクリル酸などの熱可塑性樹脂、フェノール樹脂、フラン樹脂などの熱硬化性樹脂が例示される。好ましくは樹脂類を含まず、タールピッチ類のみとするとコスト的に有利である。炭素前駆体は上記に例示したいかなるものを用いてもよいが、コールタールピッチが80質量%以上であるのが特に好ましい。
[Carbonaceous precursor]
The core material which is the spherical or ellipsoidal graphite particles of the present invention is coated with carbonaceous matter by a production method described later using a carbonaceous precursor as a raw material. As the carbonaceous precursor used, tar pitches and / or carbon materials that are low in crystallinity compared to graphite and are carbon materials that cannot be converted into graphite crystals even when subjected to high temperature treatment required for graphitization. Resins are exemplified. Specifically, as heavy oils, particularly tar pitches, coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, Examples include heavy oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol and polyacrylic acid, and thermosetting resins such as phenol resins and furan resins. It is advantageous in terms of cost if only tar pitches are used without containing resins. Any of the carbon precursors exemplified above may be used, but the coal tar pitch is particularly preferably 80% by mass or more.

2.炭素質被覆黒鉛粒子の製造方法
〔混合工程〕
本発明の炭素質被覆黒鉛粒子の製造方法は、まず上述した芯材の黒鉛粒子と炭素質前駆体とを混合する。混合工程は均質に混合できれば特に限定されず公知の混合方法を用いることができる。好ましくは固体の黒鉛粒子と固体または半固体(粘調液状を含む)の炭素質前駆体とを混合する。重質油は、常温で固体である。タール軽油、タール中油等の液体の炭素質前駆体を溶媒として混合した場合には200℃以下程度の温度で予め溶媒を揮発させて次の第1の焼成工程を行うのが好ましい。混合比率は最終製品の比率で黒鉛粒子が70〜99質量%、炭素質1〜30質量%の範囲となるように原料を混合する。好ましくは炭素質10〜25質量%である。混合は後述する第1の加熱工程のための昇温工程とともに行っても良い。加熱混合の方法は特に限定されないが、ヒーターや熱媒などの加熱機構を有する二軸式のニーダーなどが例示される。
2. Method for producing carbon-coated graphite particles [Mixing step]
In the method for producing carbonaceous coated graphite particles of the present invention, first, the graphite particles of the core material and the carbonaceous precursor are mixed. A mixing process will not be specifically limited if it can mix uniformly, A well-known mixing method can be used. Preferably, solid graphite particles and a solid or semi-solid (including viscous liquid) carbonaceous precursor are mixed. Heavy oil is solid at room temperature. When a liquid carbonaceous precursor such as tar light oil or tar medium oil is mixed as a solvent, it is preferable to volatilize the solvent in advance at a temperature of about 200 ° C. or lower to perform the next first firing step. The mixing ratio is such that the raw materials are mixed so that the graphite particles are in the range of 70 to 99 mass% and carbonaceous 1 to 30 mass% in terms of the final product. Preferably it is carbonaceous 10-25 mass%. You may perform mixing with the temperature rising process for the 1st heating process mentioned later. The heating and mixing method is not particularly limited, and examples thereof include a biaxial kneader having a heating mechanism such as a heater and a heat medium.

〔第1の焼成工程〕
得られた混合物または混合しながら、第1の焼成工程で、酸化性雰囲気中で300℃以上から700℃未満の範囲で焼成する。この温度範囲であると炭素質前駆体が均一に芯材に被覆できる。焼成処理の方法は特に限定されないが、攪拌しながら焼成するのが好ましく、ロータリーキルンを使用すると均質な焼成ができるので好ましい。酸化性雰囲気は5〜50体積%の酸素を含む不活性ガス雰囲気が好ましい。酸素の含有量が0.5体積%以下では実質的に酸化性雰囲気にはならないので、酸化性雰囲気は酸素の含有量0.5体積%超とする。この範囲の酸素を含む雰囲気を用いれば酸化反応の程度が適切に行えるからである。酸化反応により炭素質前駆体同士に結合が生成すると考えられる。不活性ガスとしては、アルゴン、ヘリウム、窒素等が例示できる。空気中での300℃以上から700℃未満の範囲での焼成が好ましい。この温度範囲であると、炭素質前駆体が均一に芯材に被覆できるので好ましい。本発明の製造方法は、第1の焼成工程を低温、酸化性雰囲気で行うことにより炭素質前駆体が黒鉛粒子の芯材に結着して最終製品の炭素材に小さな細孔が増加し、負極材料に用いるとアンカー効果などにより負極材料同士の接着強度が高くなるという効果があると考えられる。第1の焼成工程は、複数段階で熱処理を行っても良い。焼成温度は、300〜500℃の範囲が好ましく、300〜450℃の範囲がさらに好ましい。第1の焼成温度を好ましい温度範囲とすると、炭素質が芯材に均一に被覆出来るので最終製品の炭素質被覆黒鉛粒子を容易に製造できる。第1の焼成時間は5分〜50時間が好ましい。
[First firing step]
In the first baking step, baking is performed in an oxidizing atmosphere in the range of 300 ° C. or higher and lower than 700 ° C. while mixing the obtained mixture. Within this temperature range, the carbonaceous precursor can be uniformly coated on the core material. The method for the baking treatment is not particularly limited, but baking is preferably performed while stirring, and a rotary kiln is preferable because homogeneous baking can be performed. The oxidizing atmosphere is preferably an inert gas atmosphere containing 5 to 50% by volume of oxygen. If the oxygen content is 0.5% by volume or less, an oxidizing atmosphere is not substantially formed. Therefore, the oxidizing atmosphere is set to an oxygen content exceeding 0.5% by volume. This is because the degree of the oxidation reaction can be appropriately performed by using an atmosphere containing oxygen in this range. It is considered that a bond is generated between carbonaceous precursors by an oxidation reaction. Examples of the inert gas include argon, helium, nitrogen, and the like. Firing in the range of 300 ° C. or higher and lower than 700 ° C. in air is preferable. This temperature range is preferred because the carbonaceous precursor can be uniformly coated on the core material. In the production method of the present invention, by performing the first firing step at a low temperature and in an oxidizing atmosphere, the carbonaceous precursor is bound to the core material of the graphite particles and small pores are increased in the carbon material of the final product, When used as a negative electrode material, it is considered that there is an effect that the adhesion strength between the negative electrode materials is increased due to an anchor effect or the like. In the first baking step, heat treatment may be performed in a plurality of stages. The firing temperature is preferably in the range of 300 to 500 ° C, and more preferably in the range of 300 to 450 ° C. When the first firing temperature is within a preferable temperature range, the carbonaceous material can be uniformly coated on the core material, so that the final carbonaceous coated graphite particles can be easily produced. The first baking time is preferably 5 minutes to 50 hours.

〔第2の焼成工程〕
次に第2の焼成工程として、非酸化性雰囲気中で700〜2000℃で焼成する。焼成処理の方法は特に限定されないが、攪拌しながら焼成するのが好ましく、ロータリーキルンを使用することが,均質な焼成ができるので好ましい。非酸化雰囲気は、アルゴン、ヘリウム、窒素等が例示できる。窒素気流中での700〜2000℃での焼成が好ましい。第2の焼成工程は、複数段階で熱処理を行っても良い。焼成温度は、900〜1300℃の範囲が好ましく、900〜1200℃の範囲がさらに好ましい。
第2の焼成時間は5分〜30時間が好ましい。
また昇温時および焼成時の温度プロファイルとしては、直線的な昇温、一定間隔で温度をホールドする段階的な昇温などの様々な形態をとることが可能である。
本発明の炭素質被覆黒鉛粒子の製造方法は、焼成後に粉砕工程を含まないのが好ましい。
また焼成処理の前に、異種の黒鉛材料同士を、付着、埋設、複合して用いても良い。炭素質または黒鉛質の繊維、非晶質ハードカーボンなどの炭素質前駆体材料、有機材料、無機材料を芯材の黒鉛粒子に付着、埋設、複合してから用いてもよい。
[Second firing step]
Next, as a second baking step, baking is performed at 700 to 2000 ° C. in a non-oxidizing atmosphere. Although the method for the firing treatment is not particularly limited, firing is preferably performed while stirring, and the use of a rotary kiln is preferred because uniform firing is possible. Examples of the non-oxidizing atmosphere include argon, helium, and nitrogen. Firing at 700 to 2000 ° C. in a nitrogen stream is preferred. In the second baking step, heat treatment may be performed in a plurality of stages. The firing temperature is preferably in the range of 900 to 1300 ° C, and more preferably in the range of 900 to 1200 ° C.
The second baking time is preferably 5 minutes to 30 hours.
Further, the temperature profile at the time of temperature rise and firing can take various forms such as a linear temperature rise and a stepwise temperature rise in which the temperature is held at a constant interval.
The method for producing carbonaceous coated graphite particles of the present invention preferably does not include a pulverization step after firing.
Further, different types of graphite materials may be attached, embedded, or combined before firing. Carbonaceous or graphite fibers, carbonaceous precursor materials such as amorphous hard carbon, organic materials, and inorganic materials may be attached to, embedded in, or combined with the graphite particles of the core material.

3.炭素質被覆黒鉛粒子
本発明の炭素質被覆黒鉛粒子中の炭素質の割合は、1〜30質量%である。炭素質の割合が1質量%未満の場合は、活性な黒鉛エッヂ面を完全に被覆することが難しくなり、初期充放電効率が低下することがある。一方、30質量%を越える場合には、相対的に放電容量の低い炭素材の割合が多すぎて、炭素質被覆黒鉛粒子の放電容量が低下する。また、炭素質を形成するための原料(熱硬化性樹脂類やタールピッチ類)の割合が多く、被覆工程やその後の熱処理工程において、粒子が融着しやすく、最終的に得られる炭素質被覆黒鉛粒子の炭素質層の一部に割れや剥離を生じ、初期充放電効率の低下を生じることがある。炭素質被覆黒鉛粒子中の炭素質の割合は、特に3〜20質量%、さらには10〜20質量%であることが好ましい。なお、炭素質の含有量は炭素質被覆黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲以外の粒子を一部含んでいてもよい。
3. Carbonaceous coated graphite particles The carbonaceous proportion in the carbonaceous coated graphite particles of the present invention is 1 to 30% by mass. When the carbonaceous content is less than 1% by mass, it becomes difficult to completely cover the active graphite edge surface, and the initial charge / discharge efficiency may be lowered. On the other hand, when it exceeds 30% by mass, the proportion of the carbon material having a relatively low discharge capacity is too large, and the discharge capacity of the carbonaceous coated graphite particles is lowered. In addition, the ratio of raw materials (thermosetting resins and tar pitches) for forming carbonaceous matter is large, and the carbonaceous coating is finally obtained in the coating step and the subsequent heat treatment step. Cracking and peeling may occur in a part of the carbonaceous layer of the graphite particles, and the initial charge / discharge efficiency may be reduced. The carbonaceous ratio in the carbonaceous coated graphite particles is particularly preferably 3 to 20% by mass, more preferably 10 to 20% by mass. In addition, carbon content should just exist in the said range as an average of the whole carbonaceous covering graphite particle. It is not necessary that all the individual particles are within the above range, and some particles outside the above range may be included.

最終製品である炭素質被覆黒鉛粒子の平均粒子径は1〜50μmの範囲であることが好ましく、5〜30μmの範囲であることがさらに好ましい。BET法により測定した比表面積は3.0m/g以下であることが好ましく、1.5m/g以下であることがより好ましく、さらに好ましくは1.00〜0.50m/gである。
本発明の炭素質被覆黒鉛粒子は、BET法によるガス吸着法で測定した2nm以下の細孔容積の総和が1.0×10−2〜2.0×10−2cm/gであるのが好ましい。また、20〜40nmの細孔容積の総和が0.0015cm/g以下であることがさらに好ましい。
実施例1および比較例1で得られた炭素質被覆黒鉛粒子と実施例1で用いた球状に加工した天然黒鉛粒子との細孔分布を図2に示す。実施例1の炭素質被覆黒鉛粒子の細孔分布は、図2から分かるように、細孔容積の累積体積で、細孔径2nm付近まで増加しこれを超える径の細孔の容積は細孔径によらずほぼ一定である。従って、本発明の炭素質被覆黒鉛粒子とその芯材である球状に加工した天然黒鉛粒子の細孔容積とを比較すると全体の細孔容積の総和が高くなり、細孔全体のなかでも2nm以下の細孔容積の総和の比率が特徴的に高くなっていることがわかる。球状に加工した天然黒鉛の2nm以下の細孔容積の総和は0.004cm/g程度である。本発明の炭素質被覆黒鉛粒子は、2nm以下の細孔容積の総和が1.0×10−2〜2.0×10−2cm/gである。本発明の炭素質被覆黒鉛粒子は負極材料に用いると、その理由はまだ明らかではないが、粒子表面のアンカー効果などにより負極材料同士及び金属板である集電体との接着強度が高くなると考えられ、その結果電極剥離強度が高い負極が得られる。
The average particle diameter of the carbon-coated graphite particles as the final product is preferably in the range of 1 to 50 μm, and more preferably in the range of 5 to 30 μm. The specific surface area measured by the BET method is preferably 3.0 m 2 / g or less, more preferably 1.5 m 2 / g or less, and still more preferably 1.00 to 0.50 m 2 / g. .
The carbon-coated graphite particles of the present invention have a total pore volume of 2 nm or less measured by a gas adsorption method by the BET method of 1.0 × 10 −2 to 2.0 × 10 −2 cm 3 / g. Is preferred. Further, it is more preferable that the total pore volume of 20 to 40 nm is 0.0015 cm 3 / g or less.
The pore distribution between the carbonaceous coated graphite particles obtained in Example 1 and Comparative Example 1 and the spherical natural graphite particles used in Example 1 is shown in FIG. As can be seen from FIG. 2, the pore distribution of the carbon-coated graphite particles of Example 1 is the cumulative volume of the pore volume, increasing to a pore diameter of around 2 nm, and the volume of the pores having a diameter exceeding this is the pore diameter. Regardless, it is almost constant. Therefore, when the carbon-coated graphite particles of the present invention and the pore volume of the natural graphite particles processed into a spherical shape as the core material are compared, the total pore volume becomes high, and the total pore volume is 2 nm or less. It can be seen that the ratio of the sum of the pore volumes of each is characteristically high. The total pore volume of 2 nm or less of natural graphite processed into a spherical shape is about 0.004 cm 3 / g. The carbon-coated graphite particles of the present invention have a total pore volume of 2 nm or less of 1.0 × 10 −2 to 2.0 × 10 −2 cm 3 / g. When the carbon-coated graphite particles of the present invention are used as a negative electrode material, the reason is not yet clear, but it is considered that the adhesion strength between the negative electrode materials and the current collector, which is a metal plate, increases due to the anchor effect of the particle surface. As a result, a negative electrode having high electrode peel strength is obtained.

また、上記炭素質被覆黒鉛粒子が、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が黒鉛のR値より大きく、0.05〜0.80であることが好ましい。より好ましくは0.45〜0.75である。 Further, the carbon-coated graphite particles had a ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. ) Is larger than the R value of graphite and is preferably 0.05 to 0.80. More preferably, it is 0.45-0.75.

〔負極〕
本発明はまた、上記の負極材料を含有するリチウムイオン二次電池用負極であり、また該負極を用いるリチウムイオン二次電池である。
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の負極材料に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
より具体的には、まず、本発明の負極材料を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の負極材料と、結合剤を、水、イソピロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。
また、本発明の負極は、本発明の負極材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。
なお、本発明の負極は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを混合しても、内包しても、被覆しても、または積層してもよい。
[Negative electrode]
The present invention is also a negative electrode for a lithium ion secondary battery containing the above negative electrode material, and a lithium ion secondary battery using the negative electrode.
The negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal negative electrode molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the negative electrode material of the present invention. As the binder, those showing chemical and electrochemical stability with respect to the electrolyte are preferable. For example, fluorine-based resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, and resin powders such as polyethylene and polyvinyl alcohol Carboxymethyl cellulose and the like are used. These can also be used together. A binder is normally used in the ratio of about 1-20 mass% in the whole quantity of a negative electrode mixture.
More specifically, first, the negative electrode material of the present invention is adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, a slurry obtained by mixing the negative electrode material of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, and the like is mixed with a known stirrer, mixer, kneader, kneader. A paste is prepared by stirring and mixing using the above. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 100 μm.
The negative electrode of the present invention can also be produced by dry-mixing the negative electrode material of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.
It should be noted that the negative electrode of the present invention can be included even if different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, and the like are mixed within a range that does not impair the object of the present invention. Alternatively, it may be coated or laminated.

〔正極〕
本発明のリチウム二次電池に用いる正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MMo8−Y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物は、V、V13、V、Vで示されるものである。
リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM 1−X (式中M、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM 1−Y (式中M、Mは少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
[Positive electrode]
The positive electrode used in the lithium secondary battery of the present invention is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / release a sufficient amount of lithium, and lithium such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides, and lithium compounds thereof. containing compound, the general formula M X Mo 6 S 8-Y (M in the formula is a transition metal element of at least one, X is 0 ≦ X ≦ 4, Y is a number in the range from 0 ≦ Y ≦ 1) Chevrel phase compounds, activated carbon, activated carbon fibers and the like. Vanadium oxide is one represented by V 2 O 5, V 6 O 13, V 2 O 4, V 3 O 8.
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in a range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.
The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.

〔正極の製造〕
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
[Production of positive electrode]
The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.
The shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.
Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

〔非水電解質〕
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl、LiSiFなどのリチウム塩を用いることができる。酸化安定性の点からは、特に、LiPF、LiBFが好ましい。
電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜3.0mol/lがより好ましい。
非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
非水電解質液を調製するための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1、1−または1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2) 2, LiN ( HCF 2 CF 2 CH 2 OSO 2) 2, LiN ((CF 3) 2 CHOSO 2) 2, LiB [{C 6 H 3 (CF 3) 2}] 4, LiAlCl 4, Lithium salts such as LiSiF 6 can be used. From the viewpoint of oxidation stability, LiPF 6 and LiBF 4 are particularly preferable.
The electrolyte salt concentration in the electrolytic solution is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 3.0 mol / l.
The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery. .
As a solvent for preparing the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, Benzoyl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, aprotic organic solvents such as dimethyl sulfite may be used.

非水電解質を高分子固体電解質または高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いることが好ましい。前記マトリクスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物などを用いることが特に好ましい。
前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、該可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜2.0mol/lがより好ましい。
高分子固体電解質の作製方法は特に限定されないが、例えば、マトリクスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶剤を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法などを挙げることができる。
ここで、前記固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、成膜しにくくなる。
When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, it is preferable to use a polymer gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer constituting the matrix include ether-based polymer compounds such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. It is particularly preferable to use a fluorine-based polymer compound such as a copolymer.
The polymer solid electrolyte or polymer gel electrolyte is mixed with a plasticizer, and as the plasticizer, the electrolyte salt and the non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte solution that is a plasticizer is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 2.0 mol / l.
The method for producing the polymer solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt, and a nonaqueous solvent (plasticizer) and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt, and a non-aqueous solvent (plasticizer) are dissolved in, and an organic solvent for mixing is evaporated, a polymerizable monomer, a lithium salt, and a non-aqueous solvent (plasticizer) are mixed, and the mixture is mixed Examples thereof include a method of polymerizing a polymerizable monomer by irradiating an ultraviolet ray, an electron beam, a molecular beam or the like to obtain a polymer.
Here, the ratio of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.

〔セパレータ〕
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好適である。
[Separator]
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used. As a material for the separator, a microporous membrane made of synthetic resin is suitable. Among them, a polyolefin microporous membrane is suitable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are suitable.

〔リチウムイオン二次電池の製造〕
本発明のリチウムイオン二次電池は、上述した構成の負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
また、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
リチウムイオン二次電池が高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
[Manufacture of lithium ion secondary batteries]
The lithium ion secondary battery of the present invention is configured by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte having the above-described configuration in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material. The Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
In addition, the structure of the lithium ion secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and are cylindrical, depending on the application, mounted equipment, required charge / discharge capacity, and the like. , Square shape, coin shape, button shape, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
In the case where the lithium ion secondary battery is a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure in which the lithium ion secondary battery is enclosed in a laminate film may be used.

本明細書における各物性は以下の方法により測定する。
1)比表面積(m/g):窒素ガス吸着によるBET比表面積を求めた。
2)細孔径、細孔容積:細孔径とその量とは窒素ガスのBET吸着法によって測定する。高精度ガス/蒸気吸着量測定装置(ベルソープ社製)を用いて横軸に細孔径、縦軸に細孔容積(累積体積)をプロットして求めた。
3)平均粒子径(μm):レーザー回折式粒度分布計により測定した粒度分布の累積度数が、体積百分率で50%となる粒子径とした。
4)平均アスペクト比:被測定粒子の300倍の走査型電子顕微鏡をイメージアナライザー(東洋紡績(株)製)を用いて画像処理し、任意の50個の黒鉛粒子のアスペクト比(長軸方向の長さとそれに直交する短軸方向の長さの比)の平均値とした。
5)R値:Horiba Scientific製LabRAM ARAMISにより波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて1570〜1630cm−1の領域に存在するピークの波長をIGとし、1350〜1370cm−1の領域に存在するピークの強度をIDとするときのID/IG比とした。
Each physical property in this specification is measured by the following method.
1) Specific surface area (m 2 / g): The BET specific surface area by nitrogen gas adsorption was determined.
2) Pore diameter and pore volume: The pore diameter and the amount thereof are measured by the BET adsorption method of nitrogen gas. Using a high-accuracy gas / vapor adsorption measuring device (manufactured by Bellthorpe), the pore diameter was plotted on the horizontal axis and the pore volume (cumulative volume) was plotted on the vertical axis.
3) Average particle diameter (μm): The particle diameter at which the cumulative frequency of the particle size distribution measured with a laser diffraction particle size distribution meter is 50% in terms of volume percentage.
4) Average aspect ratio: An image analyzer (manufactured by Toyobo Co., Ltd.) was used to perform image processing on a scanning electron microscope 300 times the particle to be measured, and the aspect ratio (major axis direction) of any 50 graphite particles The average value of the ratio of the length to the length in the minor axis direction perpendicular to the length).
5) R value: In a Raman spectrum using an Argon laser beam with a wavelength of 514.5 nm by LabRAM ARAMIS manufactured by Horiba Scientific, the peak wavelength existing in the region of 1570 to 1630 cm −1 is defined as IG, and in the region of 1350 to 1370 cm −1 . The ID / IG ratio when the intensity of the existing peak was taken as ID was used.

6)電極剥離強度試験:負極合剤ペーストを作製し、プレスをしていない状態で活物質側の一部を両面テープ12でアルミ板10に貼り付け試験片を作製した。試験片は図3に示すように引張試験機(島津製作所製オートグラフ)を用いて負極材15の一部をつかみ180°方向(矢印方向17)に引張試験を行い、平均引張試験応力を剥離強度とした。
7)炭素質の割合(%):炭素質前駆体の原料(複数種の場合を含む)単体に炭素質被覆黒鉛粒子と同一の熱履歴を付与して、炭素質単体の炭化物を調製し、原料の残炭率を求めた。得られた残炭率から換算して炭素質被覆黒鉛粒子に占める炭素質の割合を算出した。
6) Electrode peel strength test: A negative electrode mixture paste was prepared, and a part on the active material side was attached to the aluminum plate 10 with a double-sided tape 12 in a state where the paste was not pressed to prepare a test piece. As shown in FIG. 3, the test piece is gripped by a part of the negative electrode material 15 using a tensile tester (manufactured by Shimadzu Corp.) and subjected to a tensile test in the 180 ° direction (arrow direction 17) to peel off the average tensile test stress Strength.
7) Carbonaceous ratio (%): The carbonaceous precursor raw material (including a plurality of types) is given the same thermal history as the carbonaceous coated graphite particles to prepare a carbonaceous carbide. The residual coal rate of the raw material was obtained. The ratio of carbonaceous matter in the carbonaceous coated graphite particles was calculated in terms of the residual carbon ratio obtained.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図1に示すように、少なくとも表面の一部に本発明の負極材料2が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. Further, in the following examples and comparative examples, as shown in FIG. 1, from a current collector (negative electrode) 7b having a negative electrode material 2 of the present invention attached to at least a part of the surface and a counter electrode (positive electrode) 4 made of lithium foil. A button-type secondary battery for single electrode evaluation was prepared and evaluated. An actual battery can be produced according to a known method based on the concept of the present invention.

(実施例1)
[負極材料の作製]
平均粒子径20μmの球状に加工された平均アスペクト比1.4の天然黒鉛粒子100質量部に対して、コールタールピッチ(残炭率50%)のタール中油溶液を、固形分比率が35質量部となるように添加し、二軸ニーダーで150℃に加熱して60分混合した。得られた混合物を、ロータリーキルン(表でRKと略称する)を用い、空気5L/min流通下350℃で3時間の第1の焼成工程の熱処理を行った。次いでこの熱処理物を、管状炉(表で管状と略称する)を用い窒素2L/min流通下1000℃で3時間の第2の焼成工程の熱処理を行うことで最終製品を得た。
[負極合剤ペーストの作製]
前記負極材料95質量%と、ポリフッ化ビニリデン5質量%をN−メチルピロリドン中に入れ、ホモミキサーを用いて2000rpmで30分間攪拌混合し、有機溶剤系負極合剤を調製した。
Example 1
[Production of negative electrode material]
For 100 parts by mass of natural graphite particles having an average aspect ratio of 1.4 processed into a sphere having an average particle size of 20 μm, a tar-in-oil solution with a coal tar pitch (residual carbon ratio of 50%) has a solid content ratio of 35 parts by mass. And heated to 150 ° C. with a biaxial kneader and mixed for 60 minutes. The obtained mixture was subjected to heat treatment in the first firing step for 3 hours at 350 ° C. under a flow of 5 L / min using a rotary kiln (abbreviated as RK in the table). Next, this heat-treated product was heat-treated in the second firing step for 3 hours at 1000 ° C. under a flow of nitrogen 2 L / min using a tubular furnace (abbreviated as tubular in the table) to obtain a final product.
[Preparation of negative electrode mixture paste]
The negative electrode material (95% by mass) and polyvinylidene fluoride (5% by mass) were placed in N-methylpyrrolidone and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture.

[作用電極(負極)の作製]
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で溶剤を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に密着した負極合剤とからなる作用電極(負極)を作製した。
[対極(正極)の作製]
リチウム金属箔をニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、この集電体に密着したリチウム金属箔(厚み0.5mm)からなる対極(正極)を作製した。
[電解液、セパレータ]
エチレンカーボネート50wt%−プロピレンカーボネート50wt%の混合溶剤に、LiPFを1mol/kgとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸したセパレータを作製した。
[Production of working electrode (negative electrode)]
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, the solvent was volatilized in a vacuum at 90 ° C., dried, and the negative electrode mixture layer was pressed by a hand press. The copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm to prepare a working electrode (negative electrode) composed of a current collector and a negative electrode mixture adhered to the current collector.
[Production of counter electrode (positive electrode)]
A lithium metal foil is pressed against a nickel net and punched into a circular shape with a diameter of 15.5 mm. A current collector made of nickel net and a counter electrode made of a lithium metal foil (thickness 0.5 mm) in close contact with the current collector ( Positive electrode) was prepared.
[Electrolyte, separator]
LiPF 6 was dissolved at a concentration of 1 mol / kg in a mixed solvent of ethylene carbonate 50 wt% and propylene carbonate 50 wt% to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolytic solution.

[評価電池の作製]
評価電池として図1に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極材料2が付着した銅箔からなる集電体7bが積層された電池系である。
前記評価電池は電解液を含浸させたセパレータ5を集電体7bと、集電体7aに密着した対極4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。充放電特性は以下の方法により測定した。結果を表1および表2に示した。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
The exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions. A copper foil in which a current collector 7a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolyte, and a negative electrode material 2 are attached in that order from the inner surface of the outer can 3 This is a battery system in which current collectors 7b made of
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was laminated between the current collector 7b and the counter electrode 4 in close contact with the current collector 7a, and then the current collector 7b was placed in the outer cup 1 4 is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and further, an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3, and both peripheral portions are caulked and sealed. And produced. The charge / discharge characteristics were measured by the following method. The results are shown in Tables 1 and 2.

[充放電試験]
回路電圧が1mVに達するまで0.9mAの定電流充電を行った後、回路電圧が1mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるその間の通電量から充電容量(単位:mAh/g)を求めた。その後、10分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。次いで充電電流を1C、放電電流を2Cとして、第1サイクルと同様に充放電を行った。1C、2Cの電流値は、第1サイクルの放電容量と負極の活物質質量から計算した。
[Charge / discharge test]
After constant current charging of 0.9 mA until the circuit voltage reaches 1 mV, switching to constant voltage charging is performed when the circuit voltage reaches 1 mV, and further, the charging capacity (unit: : MAh / g). Then, it rested for 10 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of electricity supplied during this period. This was the first cycle. Next, charging and discharging were performed in the same manner as in the first cycle, with the charging current being 1C and the discharging current being 2C. The current values of 1C and 2C were calculated from the discharge capacity of the first cycle and the active material mass of the negative electrode.

初回充放電効率は次式(1)から計算した。
初回充放電効率(%)=100×((第1サイクルの充電容量―第1サイクルの放電容量)/第1サイクルの放電容量)・・・(1)
また、1C充電率は次式(2)から計算した。
1C充電率(%)=100×(1C電流値におけるCC(constant current)部分の充電容量/第1サイクルの放電容量)・・・(2)
また、2C放電率は次式(3)から計算した。
2C放電率(%)=100×(2C電流値における放電容量/第1サイクルの放電容量)・・・(3)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料からリチウムイオンが脱離する過程を放電とした。
The initial charge / discharge efficiency was calculated from the following equation (1).
Initial charge / discharge efficiency (%) = 100 × ((charge capacity of first cycle−discharge capacity of first cycle) / discharge capacity of first cycle) (1)
Moreover, 1C charge rate was computed from following Formula (2).
1C charge rate (%) = 100 × (charge capacity of CC (constant current) portion at 1C current value / discharge capacity of first cycle) (2)
The 2C discharge rate was calculated from the following equation (3).
2C discharge rate (%) = 100 × (discharge capacity at 2C current value / discharge capacity of first cycle) (3)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching lithium ions from the negative electrode material was discharge.

また、サイクル特性は以下のように測定した。回路電圧が1mVに達するまで0.5C電流値で定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、10分間休止した。次に0.5Cの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。この充放電を50回繰り返し、得られた放電容量から、次式(4)を用いてサイクル特性を計算した。
サイクル特性=(第50サイクルにおける放電容量/第1サイクルにおける放電容量)×100・・・(4)
The cycle characteristics were measured as follows. After constant current charging at a current value of 0.5 C until the circuit voltage reached 1 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 10 minutes. Next, constant current discharge was performed at a current value of 0.5 C until the circuit voltage reached 1.5V. This charge / discharge was repeated 50 times, and the cycle characteristics were calculated from the obtained discharge capacity using the following equation (4).
Cycle characteristics = (discharge capacity in the 50th cycle / discharge capacity in the first cycle) × 100 (4)

(実施例2、3、5〜7、例4)
炭素質前駆体含有量、第1の焼成工程温度、雰囲気、第2の焼成工程温度を表に示すように変化させた以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。
(Examples 2, 3, 5-7, Example 4)
Carbonaceous coated graphite particles were produced in the same manner as in Example 1 except that the carbonaceous precursor content, the first firing step temperature, the atmosphere, and the second firing step temperature were changed as shown in the table. ,evaluated.

(比較例1)
実施例1において、焼成処理を窒素5L/min流通下1000℃で一回だけ行う以外は、実施例1と同様に負極材料の作製、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を表1および表2に示した。焼成処理を一段階しか実施していない比較例1は実施例1に比べて初回充放電効率、サイクル特性、または電極剥離強度に劣る結果であった。
(Comparative Example 1)
In Example 1, except that the firing process is performed only once at 1000 ° C. under a flow of nitrogen of 5 L / min, as in Example 1, preparation of the negative electrode material, preparation of the negative electrode mixture, preparation of the negative electrode, lithium ion secondary battery And the characteristics were evaluated. The evaluation results are shown in Tables 1 and 2. Comparative Example 1 in which the firing treatment was performed only in one stage was a result inferior to Example 1 in initial charge / discharge efficiency, cycle characteristics, or electrode peel strength.

(比較例2)
実施例1において、一段階目の焼成処理を窒素5L/min流通下、500℃で行った以外は、実施例1と同様に負極材料の作製、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を表1および表2に示した。一段階目の焼成処理を非酸化性雰囲気で実施した比較例2では実施例1に比べて初回充放電効率、サイクル特性、または電極剥離強度に劣る結果であった。
(比較例3)
実施例1において、第2の焼成工程を行った後、そのまま温度を3000℃まで昇温し、5時間加熱して、サンプルを製造した以外は、実施例1と同様にして、炭素質被覆黒鉛粒子を製造し、評価した。結果を表1および表2に示した(特開平10−294111号の実施例に相当するものを比較例とする例)。
(比較例4)
撹拌機内にタール中油溶媒中のコールタールピッチに対して、実施例1で用いた黒鉛粒子を投入し、150℃で1時間浸漬、攪拌後、徐々に昇温、減圧し、3時間後に200℃に達するまで攪拌を続け、タール中油溶媒を除去した。得られたコールタールピッチ前駆体被覆黒鉛粒子を焼成炉において、0.5体積%未満の酸素を含む若干の酸化性雰囲気の不活性ガス流通下に470℃で20時間焼成して、前記投入された黒鉛粒子100質量部に対して126質量部の割合の質量の焼成品を得た。この比較例は、特開2004−63321号公報に記載の実施例1の再現実験で、ただし第1の焼成処理を若干の酸化性雰囲気で焼成した。実施例1と同様に負極材料の作製、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を表1および表2に示した。若干の酸化性雰囲気を用いても得られる2nm以下の細孔容積は比較例2の場合と同様に小さく電解剥離強度が小さかった(特開2004−63321号の実施例で若干の酸化性雰囲気を用いた場合に相当するものを比較例とする)。
(Comparative Example 2)
In Example 1, except that the first-stage baking treatment was performed at 500 ° C. under a flow of nitrogen of 5 L / min, the production of the negative electrode material, the preparation of the negative electrode mixture, the production of the negative electrode, lithium ions were performed in the same manner as in Example 1. A secondary battery was fabricated and evaluated. The evaluation results are shown in Tables 1 and 2. In Comparative Example 2 in which the first stage baking treatment was performed in a non-oxidizing atmosphere, the initial charge / discharge efficiency, the cycle characteristics, or the electrode peel strength were inferior to those in Example 1.
(Comparative Example 3)
In Example 1, after performing the second firing step, the temperature was raised to 3000 ° C. and heated for 5 hours in the same manner as in Example 1 except that a sample was produced. Particles were produced and evaluated. The results are shown in Tables 1 and 2 (examples using comparative examples corresponding to the examples of JP-A-10-294111).
(Comparative Example 4)
Into the stirrer, the graphite particles used in Example 1 were charged with respect to the coal tar pitch in the tar-in-oil solvent, immersed at 150 ° C. for 1 hour, stirred, gradually warmed and depressurized, and after 3 hours, 200 ° C. Stirring was continued until the oil in tar was removed. The obtained coal tar pitch precursor-coated graphite particles were calcined in a firing furnace at 470 ° C. for 20 hours under an inert gas flow containing less than 0.5% by volume of oxygen and charged. A fired product having a mass of 126 parts by mass with respect to 100 parts by mass of graphite particles was obtained. This comparative example was a reproduction experiment of Example 1 described in Japanese Patent Application Laid-Open No. 2004-63321, except that the first baking treatment was performed in a slightly oxidizing atmosphere. In the same manner as in Example 1, production of a negative electrode material, preparation of a negative electrode mixture, production of a negative electrode, production of a lithium ion secondary battery, and characteristic evaluation were performed. The evaluation results are shown in Tables 1 and 2. The pore volume of 2 nm or less obtained by using a slightly oxidizing atmosphere was small as in Comparative Example 2, and the electrolytic peel strength was small (in the example of JP-A-2004-63321, a slightly oxidizing atmosphere was reduced). The case corresponding to the case of use is a comparative example).

(比較例5)
実施例1において、球状に加工された黒鉛粒子に換えて、りん片状の天然黒鉛粒子を用いた以外は実施例1と同様に負極材料の作製、負極合剤の調製、負極の作製、リチウムイオン二次電池の作製および特性評価を行った。評価結果を表1および表2に示した。比較例5では実施例1に比べて初回充放電効率、1C充電率、2C放電率、サイクル特性、電極剥離強度に劣る結果であった。
(Comparative Example 5)
In Example 1, a negative electrode material was prepared, a negative electrode mixture was prepared, a negative electrode was prepared, lithium was prepared in the same manner as in Example 1 except that scaly natural graphite particles were used instead of the spherically processed graphite particles. An ion secondary battery was produced and evaluated. The evaluation results are shown in Tables 1 and 2. In Comparative Example 5, the initial charge / discharge efficiency, 1C charge rate, 2C discharge rate, cycle characteristics, and electrode peel strength were inferior to those of Example 1.

[実施例、比較例の評価]
第1焼成工程が非酸化性雰囲気である比較例1,2,4は、電極剥離強度に劣る結果であった。第1,第2焼成工程よりさらに追加の高温焼成がされた比較例3は電極剥離強度が劣る。黒鉛の形状がりん片状である比較例5は、サイクル特性、電極剥離強度のいずれにも劣る。実施例1〜3、5〜7の本発明の炭素質被覆黒鉛粒子はサイクル特性および電極剥離強度に優れている。炭素質含有量が7質量%超であるとよりサイクル特性に優れている。
[Evaluation of Examples and Comparative Examples]
In Comparative Examples 1, 2, and 4 in which the first firing step was a non-oxidizing atmosphere, the electrode peel strength was inferior. In Comparative Example 3 in which additional high-temperature firing was performed in the first and second firing steps, the electrode peel strength was inferior. Comparative Example 5 in which the graphite has a flake shape is inferior in both cycle characteristics and electrode peel strength. The carbonaceous coated graphite particles of Examples 1 to 3 and 5 to 7 of the present invention are excellent in cycle characteristics and electrode peel strength. When the carbonaceous content is more than 7% by mass, the cycle characteristics are more excellent.

本発明の炭素質被覆黒鉛粒子からなる負極材料は、その特性を活かして、小型から大型までの高性能リチウムイオン二次電池の負極に使用することができる。   The negative electrode material comprising the carbonaceous coated graphite particles of the present invention can be used for the negative electrode of high performance lithium ion secondary batteries ranging from small to large, taking advantage of the characteristics.

1 外装カップ
3 外装缶
4 対極
5 電解質溶液含浸セパレータ
6 絶縁ガスケット
7a 集電体
10 アルミ板
12 両面テープ
15 負極材
17 矢印方向
DESCRIPTION OF SYMBOLS 1 Exterior cup 3 Exterior can 4 Counter electrode 5 Electrolyte solution impregnation separator 6 Insulation gasket 7a Current collector 10 Aluminum plate 12 Double-sided tape 15 Negative electrode material 17 Arrow direction

Claims (4)

球状または楕円体形状の黒鉛粒子:70〜85質量%を炭素質:15〜30質量%で被覆した炭素質被覆黒鉛粒子であって、
前記炭素質被覆黒鉛粒子の、窒素ガスのBET吸着法で測定した2nm以下の細孔容積の総和が1.0×10−2〜2.0×10−2cm/gであり、
窒素ガス吸着によるBET比表面積が1.00〜0.50m/gである、炭素質被覆黒鉛粒子。
Spherical or ellipsoidal graphite particles: carbon-coated graphite particles obtained by coating 70 to 85% by mass with carbonaceous: 15 to 30% by mass,
The total of pore volume of 2 nm or less measured by the BET adsorption method of nitrogen gas of the carbonaceous coated graphite particles is 1.0 × 10 −2 to 2.0 × 10 −2 cm 3 / g,
Carbonaceous coated graphite particles having a BET specific surface area of 1.00 to 0.50 m 2 / g by nitrogen gas adsorption.
前記炭素質被覆黒鉛粒子がリチウムイオン二次電池負極用黒鉛材料である、請求項1に記載の炭素質被覆黒鉛粒子。   The carbonaceous coated graphite particles according to claim 1, wherein the carbonaceous coated graphite particles are a graphite material for a negative electrode of a lithium ion secondary battery. 請求項1に記載の炭素質被覆黒鉛粒子を含有するリチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries containing the carbonaceous covering graphite particle of Claim 1. 請求項3に記載のリチウムイオン二次電池用負極を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a negative electrode for lithium ion secondary batteries of Claim 3.
JP2018055963A 2013-01-29 2018-03-23 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery Active JP6507395B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014246 2013-01-29
JP2013014246 2013-01-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017027706A Division JP6316466B2 (en) 2013-01-29 2017-02-17 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018133340A true JP2018133340A (en) 2018-08-23
JP6507395B2 JP6507395B2 (en) 2019-05-08

Family

ID=51617497

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014009541A Active JP6097706B2 (en) 2013-01-29 2014-01-22 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017027706A Active JP6316466B2 (en) 2013-01-29 2017-02-17 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018055963A Active JP6507395B2 (en) 2013-01-29 2018-03-23 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014009541A Active JP6097706B2 (en) 2013-01-29 2014-01-22 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2017027706A Active JP6316466B2 (en) 2013-01-29 2017-02-17 Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (3) JP6097706B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196529A (en) * 2018-11-22 2021-07-30 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2021166812A1 (en) * 2020-02-21 2021-08-26

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322525B2 (en) * 2013-11-07 2018-05-09 Jfeケミカル株式会社 Method for producing carbon-coated graphite particles
JP6858691B2 (en) * 2016-11-28 2021-04-14 Jfeケミカル株式会社 Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
JP7123831B2 (en) * 2018-03-13 2022-08-23 Jfeケミカル株式会社 Method for producing carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
CN112055904B (en) * 2018-04-27 2024-05-10 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
EP3859840A4 (en) * 2018-09-28 2021-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2021102848A1 (en) * 2019-11-28 2021-06-03 宁德新能源科技有限公司 Negative electrode material, and an electrochemical device and an electronic device comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310405A (en) * 1995-11-14 1999-11-09 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2003346796A (en) * 2002-05-23 2003-12-05 Hitachi Ltd Compound carbon material and lithium ion secondary battery
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US20180248187A1 (en) * 2015-09-09 2018-08-30 Nec Corporation Fast chargeable carbon anode material with inner channels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310405A (en) * 1995-11-14 1999-11-09 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2003346796A (en) * 2002-05-23 2003-12-05 Hitachi Ltd Compound carbon material and lithium ion secondary battery
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010251314A (en) * 2009-03-27 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US20180248187A1 (en) * 2015-09-09 2018-08-30 Nec Corporation Fast chargeable carbon anode material with inner channels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196529A (en) * 2018-11-22 2021-07-30 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020105196A1 (en) * 2018-11-22 2021-10-07 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US12062792B2 (en) 2018-11-22 2024-08-13 Resonac Corporation Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JPWO2021166812A1 (en) * 2020-02-21 2021-08-26
WO2021166812A1 (en) * 2020-02-21 2021-08-26 Jfeケミカル株式会社 Spheroidized graphite, coated spheroidized graphite, negative electrode for lithium-ion secondary battery, and lithium secondary battery
KR20210153693A (en) * 2020-02-21 2021-12-17 제이에프이 케미칼 가부시키가이샤 Spheroidal graphite, coated spheroidized graphite, negative electrode for lithium ion secondary battery and lithium secondary battery
JP7144625B2 (en) 2020-02-21 2022-09-29 Jfeケミカル株式会社 Spheroidized graphite, coated spheroidized graphite, negative electrode for lithium ion secondary battery and lithium secondary battery
KR102642860B1 (en) 2020-02-21 2024-02-29 제이에프이 케미칼 가부시키가이샤 Nodular graphite, coated nodular graphite, negative electrode for lithium ion secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2017117799A (en) 2017-06-29
JP6507395B2 (en) 2019-05-08
JP6316466B2 (en) 2018-04-25
JP2014167906A (en) 2014-09-11
JP6097706B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6412520B2 (en) Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5993337B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP6585238B2 (en) Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6858691B2 (en) Method for manufacturing carbonaceous-coated graphite particles for negative electrode materials of lithium-ion secondary batteries
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6618848B2 (en) Lithium ion secondary battery
WO2016194355A1 (en) Carbonaceous coated graphite particles for negative-electrode material of lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP7123831B2 (en) Method for producing carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, carbonaceous-coated graphite particles for lithium-ion secondary battery negative electrode material, lithium-ion secondary battery negative electrode, and lithium-ion secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6507395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150