JP5715572B2 - Secondary battery negative electrode and secondary battery using the same - Google Patents

Secondary battery negative electrode and secondary battery using the same Download PDF

Info

Publication number
JP5715572B2
JP5715572B2 JP2011544253A JP2011544253A JP5715572B2 JP 5715572 B2 JP5715572 B2 JP 5715572B2 JP 2011544253 A JP2011544253 A JP 2011544253A JP 2011544253 A JP2011544253 A JP 2011544253A JP 5715572 B2 JP5715572 B2 JP 5715572B2
Authority
JP
Japan
Prior art keywords
negative electrode
coke
secondary battery
active material
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011544253A
Other languages
Japanese (ja)
Other versions
JPWO2011068097A1 (en
Inventor
利昌 田中
利昌 田中
和徳 小関
和徳 小関
真二 及川
真二 及川
池田 大佐
大佐 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011544253A priority Critical patent/JP5715572B2/en
Publication of JPWO2011068097A1 publication Critical patent/JPWO2011068097A1/en
Application granted granted Critical
Publication of JP5715572B2 publication Critical patent/JP5715572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、二次電池用の負極、及びそれを用いた二次電池に関する。   The present invention relates to a negative electrode for a secondary battery and a secondary battery using the same.

二次電池のひとつであるリチウム二次電池は、他の二次電池と比較して高いエネルギー密度を有することから、小型化・軽量化が可能であるため、携帯電話、パソコン、携帯情報端末(PDA:Personal Digital Assistant)およびハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。   Lithium secondary batteries, which are one of the secondary batteries, have a higher energy density than other secondary batteries, so they can be made smaller and lighter, so mobile phones, personal computers, personal digital assistants ( It is widely used as a power source for mobile electronic devices such as PDAs (Personal Digital Assistants) and handy video cameras, and the demand is expected to increase in the future.

また、エネルギー問題や環境問題に対応するために、電気自動車やニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)のほか、電力貯蔵用蓄電池への需要が高まっており、リチウム二次電池の更なる高性能化(特にサイクル特性及び出力特性)が要求されている。   In addition, in response to energy and environmental problems, there are demands for electric vehicles, hybrid electric vehicles (HEVs) that combine nickel-hydrogen battery-driven motors and gasoline engines, and storage batteries for power storage. There is a growing demand for further enhancement of performance (particularly cycle characteristics and output characteristics) of lithium secondary batteries.

リチウム二次電池は、負極材(負極活物質)として、安全性および寿命の面で優れる炭素材料が一般に用いられる。炭素材料のなかでも黒鉛材料は、少なくとも2000℃程度以上、通常は2600〜3000℃程度の高温で得られる高エネルギー密度を持つ優れた材料であるが、高入出力特性やサイクル特性に課題を有している。このため、例えば電力貯蔵用や電気自動車等の高入出力用途には、黒鉛材料よりも低い温度で焼成され、黒鉛化度の低い低結晶炭素材料の利用が主に研究されている。   In a lithium secondary battery, a carbon material that is excellent in terms of safety and life is generally used as a negative electrode material (negative electrode active material). Among carbon materials, graphite material is an excellent material having a high energy density obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C., but has problems in high input / output characteristics and cycle characteristics. doing. For this reason, for example, for high input / output applications such as power storage and electric vehicles, the use of a low-crystalline carbon material that is fired at a temperature lower than that of the graphite material and has a low degree of graphitization is mainly studied.

近年においては、ハイブリッド電気自動車のさらなる高性能化の観点から、リチウム二次電池に対してもさらなる高性能化が求められており、その性能の向上が急務となっている。特にリチウム二次電池の特性としては、負極電極側の電位を十分に低減して実電池電圧を向上させ、十分に高い出力特性を呈することが要求される。   In recent years, from the viewpoint of further improving the performance of hybrid electric vehicles, further improvement in performance has been demanded for lithium secondary batteries, and there is an urgent need to improve the performance. In particular, the characteristics of the lithium secondary battery are required to sufficiently reduce the potential on the negative electrode side to improve the actual battery voltage and to exhibit sufficiently high output characteristics.

また、ハイブリッド電気自動車のエネルギー源である電流を十分に供給できるように、リチウム二次電池の放電容量が重要な特性として上げられる。加えて、充電電流量に比較して放電電流量が十分に高くなるように、放電容量に対する充電容量の割合、すなわち初期効率が高いことも要求される。   In addition, the discharge capacity of the lithium secondary battery can be raised as an important characteristic so that a current that is an energy source of the hybrid electric vehicle can be sufficiently supplied. In addition, the ratio of the charge capacity to the discharge capacity, that is, the initial efficiency is required to be high so that the discharge current amount is sufficiently higher than the charge current amount.

さらに、短時間での充電を可能とすべく、リチウム二次電池は高電流密度まで高い充電容量を維持することが好ましく、容量維持率が高いことも要求されている。   Furthermore, in order to enable charging in a short time, the lithium secondary battery preferably maintains a high charge capacity up to a high current density, and is also required to have a high capacity maintenance rate.

すなわち、この様な出力特性、放電容量、初期効率、容量維持率等の特性をバランス良く高めることが要求される。   That is, it is required to improve such characteristics as output characteristics, discharge capacity, initial efficiency, capacity maintenance ratio and the like in a balanced manner.

この様なリチウム二次電池を目的として、負極材としてコークスや黒鉛等の炭素材料が多く検討されているが、上述した放電容量を増大させることはできるものの、初期効率は十分でない。また、実電池電圧が不十分であって、近年の高出力特性や容量維持率の要件を満足することができない。   For the purpose of such a lithium secondary battery, many carbon materials such as coke and graphite have been studied as a negative electrode material. However, although the discharge capacity described above can be increased, the initial efficiency is not sufficient. Further, the actual battery voltage is insufficient, and the recent requirements for high output characteristics and capacity maintenance ratio cannot be satisfied.

例えば、特許文献1には、インターカレーション又はドーピングを利用した負極材として、有機化合物の熱分解又は焼成炭化により得られる特定の比表面積及びX線回折結晶厚み等を規定した炭素質材料が開示されているが、HEV用などの車載用途においては未だ不十分であった。   For example, Patent Document 1 discloses a carbonaceous material that defines a specific specific surface area, an X-ray diffraction crystal thickness, and the like obtained by pyrolysis or calcining carbonization of an organic compound as a negative electrode material using intercalation or doping. However, it is still insufficient for in-vehicle applications such as HEV.

また、特許文献2には、負極材としてか焼されたコークスを原料として不活性雰囲気下、熱処理をすることにより不純物を除去することで、リサイクル特性に優れた比較的高い放電容量を有する炭素材料が開示されているが、HEV用などの車載用途において出力特性等の面で十分でなかった。   Patent Document 2 discloses a carbon material having a relatively high discharge capacity with excellent recycling characteristics by removing impurities by heat treatment in an inert atmosphere using coke calcined as a negative electrode material. However, it has not been sufficient in terms of output characteristics and the like in in-vehicle applications such as for HEV.

特許文献3には、黒鉛類似構造を有する炭素質などに特定の被覆層を設けて熱処理して得られる炭素質材料を負極材として用いることが開示され、特許文献4には、負極材として低温で熱処理されたコークスを原料として不活性雰囲気下、熱処理をすることにより、より高度に不純物を除去することで、比較的高い放電容量を有する炭素材料が開示されているが、いずれもやはりHEV用などの車載用途において十分な電池特性を有するものではなかった。   Patent Document 3 discloses that a carbonaceous material obtained by providing a specific coating layer on a carbonaceous material having a graphite-like structure and heat-treating it as a negative electrode material, and Patent Document 4 discloses a low-temperature material as a negative electrode material. Carbon materials having a relatively high discharge capacity have been disclosed by removing impurities to a higher degree by heat-treating in an inert atmosphere using coke heat-treated as a raw material. It did not have sufficient battery characteristics for in-vehicle applications.

また、特許文献5には、石油又は石炭の生コークスを500〜850℃にて熱処理した熱処理コークスを負極材とすることで、充・放電容量の大きなリチウム二次電池を供給しうることが開示されているが、HEV用などの車載用途において出力特性の面で十分でなかった。   Patent Document 5 discloses that a lithium secondary battery having a large charge / discharge capacity can be supplied by using heat-treated coke obtained by heat-treating raw coke of petroleum or coal at 500 to 850 ° C. as a negative electrode material. However, it was not sufficient in terms of output characteristics in in-vehicle applications such as for HEV.

以上のようなコークス等を原料とした低結晶炭素材料のリチウム二次電池用負極材の研究は殆んどが小型携帯機器用電源としての二次電池用負極材の特性改善に向けられていて、HEV用二次電池に代表される大電流入出力リチウム二次電池用に適した充分な特性を有する負極材が開発されていなかったのが実情である。   Most of the researches on negative electrode materials for lithium secondary batteries using low-crystal carbon materials made from coke as described above are aimed at improving the characteristics of the negative electrode materials for secondary batteries as power sources for small portable devices. In fact, a negative electrode material having sufficient characteristics suitable for a high current input / output lithium secondary battery represented by a secondary battery for HEV has not been developed.

他方、有機材料又は炭素質材料に、各種化合物を添加して電池特性を向上させることも検討されている。   On the other hand, adding various compounds to an organic material or a carbonaceous material to improve battery characteristics has also been studied.

例えば、特許文献6には、有機材料又は炭素質材料にリン化合物を添加して炭素化することにより得られる負極材が開示され、特許文献7には、ホウ素及びケイ素を含有する炭素材料を黒鉛化して得られる負極材が開示されているが、いずれも、上記と同様に、HEV用などの車載用途において出力特性等の面で実用化には未だ十分ではない。   For example, Patent Document 6 discloses a negative electrode material obtained by carbonizing an organic material or a carbonaceous material by adding a phosphorus compound, and Patent Document 7 discloses a carbon material containing boron and silicon as graphite. Although the negative electrode material obtained by making it into a device is disclosed, as in the above, it is still not sufficient for practical use in terms of output characteristics or the like in an in-vehicle application such as for HEV.

一方で、活物質等を結着する機能を持つ樹脂バインダー(結着剤)は、活物質同士を接着すると共に、負極を形成する集電体と活物質とを接着させる役割を担うものであり、これまでPVDF(ポリフッ化ビニリデン)が主に使用されてきた。ところが、このPVDFでは、活物質同士及び集電体との接着性の点で劣ることからか、サイクル寿命が短くなるという問題があった。また、短絡等により電池温度が異常に上昇すると、PVDFが分解してHF(フッ化水素)が発生し、このHFがLiと激しく反応(発熱反応)するため、電池が破損、破裂する恐れがあり、信頼性の点でも問題があった。   On the other hand, a resin binder (binder) having a function of binding active materials and the like plays a role of bonding active materials to each other and bonding a current collector that forms a negative electrode to the active material. Until now, PVDF (polyvinylidene fluoride) has been mainly used. However, the PVDF has a problem that the cycle life is shortened because it is inferior in terms of adhesion between the active materials and the current collector. In addition, if the battery temperature rises abnormally due to a short circuit or the like, PVDF decomposes and HF (hydrogen fluoride) is generated, and this HF reacts violently with Li (exothermic reaction), so that the battery may be damaged or explode. There was also a problem in terms of reliability.

このような問題を解決するために、特許文献8において、ポリイミド樹脂をバインダーとして使用しているが、この特許文献8では、大電流を入出力するリチウム二次電池に適した充分な入出力特性を有するかどうかは言及されていない。   In order to solve such a problem, in Patent Document 8, polyimide resin is used as a binder. However, in Patent Document 8, sufficient input / output characteristics suitable for a lithium secondary battery that inputs and outputs a large current are used. There is no mention of whether or not.

特開昭62−90863号公報JP 62-90863 A 特開平1−221859号公報Japanese Patent Laid-Open No. 1-221859 特開平6−5287号公報JP-A-6-5287 特開平8−102324号公報JP-A-8-102324 特開平9−320602号公報JP-A-9-320602 特開平3−137010号公報JP-A-3-137010 特開平11−40158号公報Japanese Patent Laid-Open No. 11-40158 特許第3311402号公報Japanese Patent No. 3311402

本発明は、新規な負極活物質をポリイミド樹脂で結着させることで、サイクル寿命をはじめ、二次電池の入出力特性を十分に向上させることができるとともに、放電容量、初期効率、容量維持率、及び信頼性(安全性)を含むHEV用などの車載用途に要求される実用特性を備えた二次電池用の負極を得ることを目的とする。   The present invention can sufficiently improve the input / output characteristics of the secondary battery, including the cycle life, by binding a novel negative electrode active material with a polyimide resin, as well as the discharge capacity, initial efficiency, capacity maintenance rate. And an anode for a secondary battery having practical characteristics required for in-vehicle use such as for HEV including reliability (safety).

本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、石炭系及び/又は石油系(以下、石炭系等という)生コークスと、前記石炭系等か焼コークスとが所定の割合で配合されると共に、i)リン化合物又はii)リン化合物及びホウ素化合物を含んだコークス材料を焼成して負極活物質を形成し、これをポリイミド樹脂で一体化してなる活物質層を備えた二次電池用の負極とすることで、リチウム二次電池の負電極の電位を十分に低減して実電池電圧を向上させることができ、サイクル寿命をはじめ、入出力特性、放電容量、初期効率及び容量維持率などの車載用途に要求される実用特性を発現できることを見出し、本発明を完成した。   The inventors of the present invention have intensively studied to achieve the above object. As a result, coal-based and / or petroleum-based (hereinafter referred to as coal-based) raw coke and the coal-based calcined coke are blended at a predetermined ratio, and i) phosphorus compound or ii) phosphorus compound and A negative electrode for a secondary battery having an active material layer formed by baking a coke material containing a boron compound to form a negative electrode active material, which is integrated with a polyimide resin. The potential of the electrode can be reduced sufficiently to improve the actual battery voltage, and the practical characteristics required for in-vehicle applications such as cycle life, input / output characteristics, discharge capacity, initial efficiency and capacity maintenance ratio can be expressed. The present invention has been completed.

すなわち、本発明は、負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記負極活物質が、石炭系又は石油系のいずれか1以上の生コークスと、石炭系又は石油系のいずれか1以上のか焼コークスとが質量比で90:10〜10:90に配合されると共に、前記生コークスとか焼コークスの合計量100質量部に対して、リン化合物を0.1〜6.0質量部の割合で添加されたコークス材料を最高到達温度で800℃〜1400℃の範囲の焼成温度で焼成してなり、前記バインダーが、ポリイミド樹脂であることを特徴とする二次電池用負極である。 That is, the present invention is a negative electrode for a secondary battery including an active material layer in which a negative electrode active material is integrated with a binder, wherein the negative electrode active material is at least one of coal-based or petroleum-based raw coke. And any one or more of calcined coke and coal-based or petroleum-based calcined coke at a mass ratio of 90:10 to 10:90, and phosphorous coke and calcined coke in total amount of 100 parts by mass with respect to 100 parts by mass. The coke material to which the compound is added in a proportion of 0.1 to 6.0 parts by mass is fired at a firing temperature in the range of 800 ° C. to 1400 ° C. at the highest temperature, and the binder is a polyimide resin. It is the negative electrode for secondary batteries characterized.

また、本発明は、負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記負極活物質が、石炭系又は石油系のいずれか1以上の生コークスと、石炭系又は石油系のいずれか1以上のか焼コークスとが質量比で90:10〜10:90に配合されると共に、前記生コークスとか焼コークスの合計量100質量部に対して、リン化合物及びホウ素化合物が、リン及びホウ素換算で各々0.1〜6.0質量部の割合で添加されたコークス材料を最高到達温度で800℃〜1400℃の範囲の焼成温度で焼成してなり、前記バインダーが、ポリイミド樹脂であることを特徴とする二次電池用負極でもある。 The present invention also provides a negative electrode for a secondary battery comprising an active material layer in which a negative electrode active material is integrated with a binder, wherein the negative electrode active material is at least one of coal-based and petroleum-based raw coke. And any one or more of calcined coke and coal-based or petroleum-based calcined coke at a mass ratio of 90:10 to 10:90, and phosphorous coke and calcined coke in total amount of 100 parts by mass with respect to 100 parts by mass. A coke material in which a compound and a boron compound are added at a ratio of 0.1 to 6.0 parts by mass in terms of phosphorus and boron, respectively , is fired at a firing temperature in the range of 800 ° C. to 1400 ° C. at the highest achieved temperature , The binder is also a negative electrode for a secondary battery, which is a polyimide resin.

また、本発明は、上記負極を用いて得た二次電池である。   Moreover, this invention is a secondary battery obtained using the said negative electrode.

なお、本発明において、石炭系又は石油系のいずれか1以上の生コークスを“石炭系等生コークス”とまとめて呼ぶことがあるが、これは石油系及び/又は石炭系重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃〜800℃程度の温度で24時間程度、熱分解・重縮合反応を実施して得たものを意味する。また、同様に石炭系又は石油系のいずれか1以上のか焼コークスを“石炭系等か焼コークス”とまとめて呼ぶことがあるが、これは石炭系等生コークスに対してか焼処理を施したものを意味し、最高到達温度が800℃〜1500℃程度でか焼した石油系及び/又は石炭系のコークスを意味する。   In the present invention, any one or more raw cokes of coal-based or petroleum-based may be collectively referred to as “coal-based raw coke”. For example, petroleum-based and / or coal-based heavy oil is referred to as, for example, It means a product obtained by carrying out a thermal decomposition / polycondensation reaction for about 24 hours at a temperature of about 400 ° C. to 800 ° C. using a coking facility such as a delayed coker. Similarly, any one or more calcined cokes of coal-based or petroleum-based may be collectively referred to as “coal-based calcined coke”. This means petroleum-based and / or coal-based coke that has been calcined at a maximum temperature of about 800 ° C to 1500 ° C.

本発明によれば、サイクル寿命をはじめ、二次電池の入出力特性を十分に向上させることが出来るとともに、放電容量、初期効率、容量維持率、及び信頼性(安全性)を含むHEV用などの車載用途に要求される実用特性を備えた、性能バランスに優れた二次電池用の負極を提供することが出来る。   According to the present invention, the cycle life and the input / output characteristics of the secondary battery can be sufficiently improved, and for HEV including discharge capacity, initial efficiency, capacity maintenance rate, and reliability (safety), etc. It is possible to provide a negative electrode for a secondary battery having practical performance required for in-vehicle use and excellent in performance balance.

以下、本発明を、二次電池用負極の実施の形態に基づいて、より詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments of a negative electrode for a secondary battery.

先ず、本発明における負極活物質については、最初に、石炭系等重質油を例えばディレードコーカー等のそれぞれ適宜のコークス化設備を用い、最高到達温度が400℃〜800℃程度の温度で24時間程度、熱分解・重縮合反応を進めることによって石炭系等生コークスを得る。その後、得られた石炭系等生コークスの塊を所定の大きさに粉砕する。粉砕には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー等を挙げることができるが、特にこれに限定されるものではない。   First, for the negative electrode active material in the present invention, first, a coal-based heavy oil, for example, a suitable coking facility such as a delayed coker is used, and the maximum temperature reached at a temperature of about 400 ° C. to 800 ° C. for 24 hours. Coking coke is obtained by advancing the thermal decomposition and polycondensation reaction to some extent. Thereafter, the obtained coal-based raw coke mass is pulverized to a predetermined size. An industrially used pulverizer can be used for the pulverization. Specific examples include an atomizer, a Raymond mill, an impeller mill, a ball mill, a cutter mill, a jet mill, and a hybridizer, but are not particularly limited thereto.

ここで使用される石炭系等重質油は、石油系重質油であっても石炭系重質油であっても構わないが、石炭系重質油の方が芳香族性に富んでおり、S、V、Fe等の不純物が少なく、揮発分も少ないため、石炭系重質油を使用する方が好ましい。   The heavy coal oil used here may be either a heavy petroleum oil or a heavy coal oil, but the heavy heavy oil is richer in aromaticity. , S, V, Fe, etc. are less impurities and less volatile matter, so it is preferable to use heavy coal oil.

また、上記のようにして得た石炭系等生コークスを最高到達温度800℃〜1500℃でか焼して石炭系等か焼コークスを製造する。好ましくは1000℃〜1500℃、より好ましくは1200℃〜1500℃の範囲である。石炭系等生コークスの焼成には、大量熱処理が可能なリードハンマー炉、シャトル炉、トンネル炉、ロータリーキルン、ローラーハースキルンあるいはマイクロウェーブ等の設備を用いることができるが、特にこれに限定されるものではない。また、これらの焼成設備は、連続式およびバッチ式のどちらでもよい。次いで、得られた石炭系等か焼コークスの塊を、上記同様に、工業的に用いられるアトマイザー等の粉砕機を用いて所定の大きさに粉砕する。   Also, the coal-based raw coke obtained as described above is calcined at a maximum temperature of 800 ° C. to 1500 ° C. to produce coal-based calcined coke. Preferably it is 1000 to 1500 degreeC, More preferably, it is the range of 1200 to 1500 degreeC. For burning raw coke such as coal-based, equipment such as lead hammer furnace, shuttle furnace, tunnel furnace, rotary kiln, roller hearth kiln or microwave capable of mass heat treatment can be used, but it is particularly limited to this. is not. Further, these firing facilities may be either a continuous type or a batch type. Next, the obtained coal-based calcined coke lump is pulverized to a predetermined size using a pulverizer such as an industrially used atomizer in the same manner as described above.

なお、粉砕後の石炭系等生コークス粉、及び石炭系等か焼コークス粉の大きさは特に限定されるものではないが、メジアン径として求められる平均粒子径が5〜50μmであるのが好ましく、より好ましくは5〜15μmであり、このとき、BET比表面積が5m/g以下であるのが好ましく、より好ましくは1m/g以下であるのが良い。平均粒子径が5μmを下回ると比表面積が過度に増加するおそれがあり、一方、平均粒子径が50μmを上回ると充放電特性が低下するおそれがある。BET比表面積は、5m/gを上回ると、二次電池に用いたときのエネルギー効率が低下するおそれがある。BET比表面積は微細細孔を形成する観点からは1m/g以上程度であることが望ましい。In addition, the size of the coal-based raw coke powder after pulverization and the calcined coke powder such as coal-based calcined coke powder is not particularly limited, but the average particle size required as the median diameter is preferably 5 to 50 μm. More preferably, the thickness is 5 to 15 μm. At this time, the BET specific surface area is preferably 5 m 2 / g or less, more preferably 1 m 2 / g or less. If the average particle size is less than 5 μm, the specific surface area may be excessively increased. On the other hand, if the average particle size is more than 50 μm, the charge / discharge characteristics may be deteriorated. If the BET specific surface area exceeds 5 m 2 / g, the energy efficiency when used in a secondary battery may be reduced. The BET specific surface area is desirably about 1 m 2 / g or more from the viewpoint of forming fine pores.

次いで、上述のようにして得た石炭系等生コークス粉及び石炭系等か焼コークス粉をそれぞれ所定量の割合で配合する。石炭系等生コークス粉及び石炭系等か焼コークス粉の配合量は、質量比で90:10〜10:90、好ましくは70:30〜30:70である。石炭系等か焼コークスの割合を増大させると出力特性が向上し、石炭系等生コークスの割合を増大させると放電容量や初期特性が向上する。どの特性が高く要求されるかによって異なるが、例えば、出力特性の面からは、石炭系等か焼コークスの含有量を50%以上含有させることが良い。   Next, the coal-based raw coke powder and the coal-based calcined coke powder obtained as described above are blended at a predetermined ratio. The blending amount of the coal-based raw coke powder and the coal-based calcined coke powder is 90:10 to 10:90, preferably 70:30 to 30:70, in mass ratio. Increasing the proportion of calcined coke such as coal will improve the output characteristics, and increasing the proportion of raw coke such as coal will improve the discharge capacity and initial characteristics. For example, from the aspect of output characteristics, it is preferable that the content of coal-based calcined coke is 50% or more.

石炭系等生コークス粉及び石炭系等か焼コークス粉の割合が上記範囲外になると、得られた負極活物質からなる負電極の電位を十分に低減することができず、実電池電圧を向上させることができなくなり、十分に高い出力特性が得られない場合がある。また、充放電末期における二次電池の抵抗値が増大してしまい、安定した充放電特性を呈することができなくなってしまう場合がある。   If the ratio of raw coke powder such as coal-based and calcined coke powder such as coal-based is out of the above range, the potential of the negative electrode made of the obtained negative electrode active material cannot be sufficiently reduced, and the actual battery voltage is improved. In some cases, sufficiently high output characteristics cannot be obtained. In addition, the resistance value of the secondary battery at the end of charge / discharge may increase, and stable charge / discharge characteristics may not be exhibited.

上述したコークス粉には、リン化合物を必須として、i)リン化合物又はii)リン化合物及びホウ素化合物(以下、i)又はii)を“リン化合物等”ともいう。)を添加してコークス材料とする。添加は、上述した石炭系等生コークス粉及び石炭系等か焼コークス粉と、以下に示すような量のi)リン化合物又はii)リン化合物及びホウ素化合物とを配合して所定の型に入れることによって行う(第1の添加法)。   In the above-mentioned coke powder, a phosphorus compound is essential, and i) a phosphorus compound or ii) a phosphorus compound and a boron compound (hereinafter, i) or ii) is also referred to as “phosphorus compound or the like”. ) To make a coke material. Addition is performed by blending the above-described coal-based raw coke powder and coal-based calcined coke powder with the following amounts of i) phosphorus compound or ii) phosphorus compound and boron compound and putting them in a predetermined mold. (First addition method).

リン化合物等の添加は、石炭系等生コークス粉及び石炭系等か焼コークス粉を得た後に行なう代わりに、石炭系等生コークスの塊及び石炭系等か焼コークスの塊を得た時点で行なうこともできる(第2の添加法)。この場合は、石炭系等生コークスの塊及び石炭系等か焼コークスの塊を粉砕機に入れると共に、同時に上述したリン化合物等を前記粉砕機に入れて前記塊の粉砕を行なうことによって、前記リン化合物等が添加してなる石炭系等生コークス粉及び石炭系等か焼コークス粉を得ることができる。   Addition of phosphorus compounds etc., after obtaining coal-based raw coke powder and coal-based calcined coke powder, at the time of obtaining coal-based raw coke mass and coal-based calcined coke mass It can also be carried out (second addition method). In this case, the coal-based raw coke lump and the coal-based calcined coke lump are put into a pulverizer, and at the same time, the above-mentioned phosphorus compound or the like is put into the pulverizer to pulverize the lump. Coal-based raw coke powder and coal-based calcined coke powder to which a phosphorus compound or the like is added can be obtained.

したがって、石炭系等生コークスの塊及び石炭系等か焼コークスの塊の粉砕と同時にリン化合物等を添加させることができるので、焼成の際に別途リン化合物等を添加させる操作を省略することができ、負極活物質の製造工程の全体を簡略化することができる。   Therefore, since the phosphorus compound can be added simultaneously with the pulverization of the coal-based raw coke lump and the coal-based calcined coke lump, the operation of adding the phosphorus compound or the like separately during the firing may be omitted. In addition, the entire manufacturing process of the negative electrode active material can be simplified.

但し、上記第1の添加法及び第2の添加法のいずれも、添加の具体的な手法が異なることによって、負極活物質の製造工程が異なるのみであって、負極活物質自体の出力特性や放電容量及び初期効率及び容量維持率にはほとんど変化がない。   However, both the first addition method and the second addition method differ only in the production process of the negative electrode active material due to the difference in the specific method of addition, and the output characteristics of the negative electrode active material itself and There is almost no change in discharge capacity, initial efficiency, and capacity maintenance rate.

上記リン化合物の添加量は、石炭系等生コークスと石炭系等か焼コークスの合計量100質量部に対してリン換算で0.1〜6.0質量部、好ましくは0.5〜5.0質量部である。添加量が下限未満ではリン化合物を添加する効果が十分得られないおそれがあり、一方、添加量が上限質量部を超えるとコークスの表面の低結晶化が進み、出力特性が低下するおそれがあるためである。   The addition amount of the phosphorus compound is 0.1 to 6.0 parts by mass, preferably 0.5 to 5.5 in terms of phosphorus with respect to 100 parts by mass of the total amount of raw coke such as coal-based raw coke and coal-based calcined coke. 0 parts by mass. If the addition amount is less than the lower limit, the effect of adding the phosphorus compound may not be sufficiently obtained. On the other hand, if the addition amount exceeds the upper limit part by mass, the crystallization of the coke surface may progress and the output characteristics may deteriorate. Because.

また、上記ホウ素化合物の添加量は、石炭系等生コークスと石炭系等か焼コークスの合計量100質量部に対してホウ素換算で0.1〜6.0質量部、好ましくは0.5〜5.0質量部である。添加量が下限未満ではホウ素化合物を添加する効果が十分得られないおそれがあり、一方、添加量が上限を超えるとコークスの炭化が過剰に促進されるためと、未反応のホウ素が残存するおそれがあるためである。なお、本発明では上述の通り、ホウ素化合物はリン化合物と併用して用いられるもので、リン化合物だけを添加することでも本発明の目的を達成し、効果を奏することも可能である。   Moreover, the addition amount of the said boron compound is 0.1-6.0 mass parts in conversion of boron with respect to 100 mass parts of total amounts of raw coke, such as a coal system, and calcined coke, etc., Preferably 0.5- 5.0 parts by mass. If the addition amount is less than the lower limit, the effect of adding the boron compound may not be sufficiently obtained. On the other hand, if the addition amount exceeds the upper limit, carbonization of coke is excessively promoted, and unreacted boron may remain. Because there is. In the present invention, as described above, the boron compound is used in combination with the phosphorus compound, and the addition of only the phosphorus compound can achieve the object of the present invention and achieve the effect.

上述したリン化合物としては、容易に水溶液を調製でき、かつ高い安全性を有する等の観点からリン酸類が好ましい。リン酸類としては、リン酸(オルトリン酸)を用いることがより好ましいが、これに限らず直鎖状ポリリン酸や環状ポリリン酸、あるいは各種リン酸エステル化合物等から適宜選択して用いることができる。これらのリン酸類は、いずれか1つを単独で使用してよく、また、2以上を配合して使用してもよい。   As the phosphorus compound described above, phosphoric acids are preferable from the viewpoints of easily preparing an aqueous solution and having high safety. Phosphoric acid (orthophosphoric acid) is more preferably used as the phosphoric acid, but is not limited thereto, and can be appropriately selected from linear polyphosphoric acid, cyclic polyphosphoric acid, various phosphoric ester compounds, and the like. Any one of these phosphoric acids may be used alone, or two or more thereof may be used in combination.

また、上述したホウ素化合物としては炭化ホウ素(BC)を用いることが好ましい。これは、炭化ホウ素が焼成中に分解したとしても、その結果得られる成分は、本発明の目的を達成するためのホウ素、及び負極活物質の母材であるコークスの構成元素である炭素のみであって、その他の成分を含まないことから、かかる成分による負極活物質への悪影響を抑制することができるからである。Moreover, it is preferable to use boron carbide (B 4 C) as the boron compound described above. This is because even if boron carbide decomposes during firing, the resulting components are only boron for achieving the object of the present invention, and carbon which is a constituent element of coke which is a base material of the negative electrode active material. And since other components are not included, it is because the bad influence to the negative electrode active material by this component can be suppressed.

こうしたコークス材料について、焼成を行う。この焼成温度は、最高到達温度で800℃以上1400℃以下とすることが良い。好ましくは900℃〜1400℃の範囲である。焼成温度が上限を超えると、コークス材料の結晶成長が過剰に促進され電池特性バランスに悪影響を及ぼし、量産性の観点からも好ましくない。一方、焼成温度が下限よりも低いと、十分な結晶成長ができないのみならず、コークスの炭化過程でリン化合物及びホウ素化合物の添加効果が十分でなく、電池特性バランスにやはり悪影響を及ぼす傾向となる。   Such coke material is fired. The firing temperature is preferably 800 ° C. or higher and 1400 ° C. or lower at the maximum temperature. Preferably it is the range of 900 to 1400 degreeC. When the firing temperature exceeds the upper limit, the crystal growth of the coke material is excessively promoted and adversely affects the battery characteristic balance, which is not preferable from the viewpoint of mass productivity. On the other hand, if the firing temperature is lower than the lower limit, not only sufficient crystal growth cannot be achieved, but also the addition effect of phosphorus compound and boron compound is not sufficient in the carbonization process of coke, and it also tends to adversely affect the battery property balance. .

また、最高到達温度での保持時間は特に限定しないが30分以上が好ましい。また、焼成雰囲気は、特に限定されないが、アルゴンあるいは窒素等の不活性ガス雰囲気でも良く、ロータリーキルンの様な非密閉状態での非酸化雰囲気でも良いし、リードハンマー炉の様な密閉状態での非酸化雰囲気でも良い。   The holding time at the highest temperature is not particularly limited but is preferably 30 minutes or longer. The firing atmosphere is not particularly limited, but may be an inert gas atmosphere such as argon or nitrogen, a non-oxidizing atmosphere in a non-sealed state such as a rotary kiln, or a non-oxidizing atmosphere in a sealed state such as a lead hammer furnace. An oxidizing atmosphere may be used.

このようにして得られた負極活物質には、活物質100質量部に対して、上記添加成分に由来するリン元素、ホウ素元素がそれぞれ0.05〜5質量部の割合で含有されていることが有利である。
負極活物質中のリン含有量は、ICP発光分光分析によって測定することができる。具体的には、負極活物質をJIS M8814(灰分試験法)により灰化した後、得られた灰(無機成分)を前述の分析方法により定量する。ICP発光分光分析法は、アルゴンガスに高周波を照射し生成したプラズマ炎によって試料を励起し、基底状態に戻る際の発光スペクトルから元素の同定や定量を行う方法である。
The negative electrode active material obtained in this way contains 0.05 to 5 parts by mass of the phosphorus element and boron element derived from the above additive components with respect to 100 parts by mass of the active material. Is advantageous.
The phosphorus content in the negative electrode active material can be measured by ICP emission spectral analysis. Specifically, the negative electrode active material is incinerated by JIS M8814 (ash content test method), and then the obtained ash (inorganic component) is quantified by the above-described analysis method. The ICP emission spectroscopic analysis method is a method in which a sample is excited by a plasma flame generated by irradiating a high frequency to argon gas, and an element is identified and quantified from an emission spectrum when returning to a ground state.

また、本発明では、バインダーとしてポリイミド樹脂を用いる。ポリイミド樹脂は、これまでバインダーとして主に使用されてきたPVDFと同様、負極活物質同士の結着力に優れるほか、PVDFと比べて負極を形成する集電体に対する接着性に優れる。加えて、ポリイミド樹脂は、フッ素樹脂の一種であるPVDFと異なり、構造内にフッ素を含有せず、また、熱的に安定で耐熱性が高いため、電池温度が異常に上昇したときでも電池が破損、破裂する危険性が低い。   In the present invention, a polyimide resin is used as the binder. The polyimide resin is excellent in the binding force between the negative electrode active materials as well as PVDF which has been mainly used as a binder so far, and is excellent in adhesiveness to the current collector forming the negative electrode as compared with PVDF. In addition, unlike PVDF, which is a type of fluororesin, polyimide resin does not contain fluorine in the structure, and because it is thermally stable and has high heat resistance, the battery can be used even when the battery temperature rises abnormally. Low risk of breakage or rupture.

ポリイミド樹脂は、下記一般式(1)で表される繰返し単位を有し、一般に、原料のジアミンと酸無水物とを溶媒の存在下で重合し、ポリイミド前駆体樹脂とした後、熱処理によりイミド化することによって製造することができる。なお、負極材バインダーとする場合、一般には、ポリイミド前駆体樹脂の状態で活物質、溶媒、その他必要な添加剤と分散混合され活物質層を形成するための組成物とされる。この際に用いる重合溶媒として、例えばジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種若しくは2種以上を併用して使用することもできるが、これらに制限されるものではない。

Figure 0005715572
[式中、Ar1は、少なくとも2価の芳香族ジアミン残基を示し、Arは、4価の酸二無水物残基を示す。]The polyimide resin has a repeating unit represented by the following general formula (1). In general, a raw material diamine and an acid anhydride are polymerized in the presence of a solvent to obtain a polyimide precursor resin, and then heat treatment to obtain an imide. Can be manufactured. In addition, when setting it as a negative electrode material binder, generally it is set as the composition for disperse-mixing with an active material, a solvent, and other required additives in the state of a polyimide precursor resin, and forming an active material layer. Examples of the polymerization solvent used at this time include dimethylacetamide, dimethylformamide, N-methylpyrrolidone, 2-butanone, diglyme, xylene, and the like, and one or more of these may be used in combination. However, it is not limited to these.
Figure 0005715572
[In the formula, Ar 1 represents at least a divalent aromatic diamine residue, and Ar 2 represents a tetravalent acid dianhydride residue. ]

ポリイミド樹脂の原料となるジアミン成分については、HN−Ar−NHによって表される化合物が挙げられ、Arとしては、次の芳香族ジアミン残基を例示することができる。

Figure 0005715572
The diamine component as a polyimide resin raw material, a compound represented by H 2 N-Ar 1 -NH 2. Examples of the Ar 1, there can be mentioned the following aromatic diamine residues.
Figure 0005715572

また、酸無水物としては、O(OC)Ar(CO)Oによって表される化合物が挙げられ、Arとしては、次に表わされる芳香族酸二無水物残基を例示することができる。

Figure 0005715572
Examples of the acid anhydride include compounds represented by O (OC) 2 Ar 2 (CO) 2 O, and examples of Ar 2 include the following aromatic acid dianhydride residues. Can do.

Figure 0005715572

また、本発明では、以下の理由から、ポリイミド樹脂を構成する繰り返し単位構造中にエーテル結合が含まれるようにジアミン成分を選定するのが好ましい。繰り返し単位構造中にエーテル結合が含まれたポリイミド樹脂によれば、同一の負極活物質を用いた負極において、PVDFを用いた場合と比較して、サイクル特性(寿命)が著しく向上する。このような観点から、バインダーとして、上記一般式(1)のうち、Ar1が、ジアミノジフェニルエーテルに代表されるエーテル結合を有するもの、好ましくは少なくとも2個のエーテル結合を有した2価の芳香族ジアミン残基であり、Arが、下記式(2)又は式(3)で表される4価の酸二無水物残基であるポリイミド樹脂を用いるようにするのが良い。

Figure 0005715572
[式(3)において、Yは、直結合又は−CO−のいずれかを示す。]In the present invention, the diamine component is preferably selected so that an ether bond is included in the repeating unit structure constituting the polyimide resin for the following reasons. According to the polyimide resin in which an ether bond is included in the repeating unit structure, the cycle characteristics (life) are remarkably improved in the negative electrode using the same negative electrode active material as compared with the case where PVDF is used. From such a viewpoint, as the binder, Ar 1 in the above general formula (1) has an ether bond typified by diaminodiphenyl ether, preferably a divalent aromatic having at least two ether bonds. It is preferable to use a polyimide resin which is a diamine residue and Ar 2 is a tetravalent acid dianhydride residue represented by the following formula (2) or formula (3).
Figure 0005715572
[In Formula (3), Y shows either a direct bond or -CO-. ]

この一般式(1)における、少なくとも2個のエーテル結合を有した2価の芳香族ジアミン残基Rとして、好適には以下のものを挙げることができる。

Figure 0005715572
〔式(4)においてXは、芳香環を1以上有する2価の有機基を表し、好ましくは、下記(5)に示した構造のものが挙げられる。〕
Figure 0005715572
Preferred examples of the divalent aromatic diamine residue R 1 having at least two ether bonds in the general formula (1) include the following.
Figure 0005715572
[In formula (4), X represents a divalent organic group having one or more aromatic rings, and preferably has a structure shown in the following (5). ]
Figure 0005715572

一般式(1)の構造単位を構成する好ましいジアミン成分として、具体的には2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-ビス(4-アミノフェノキシ)ビフェニル(BAPB)等が挙げられる。また、一般式(1)の繰返し単位を構成する好ましい酸二無水物として、具体的には無水ピロメリット酸(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等が挙げられる。なお、ポリイミド樹脂原料となるジアミン及び酸無水物は、それぞれ2種以上のジアミン及び酸無水物を併用してもよく、また、上記以外の他のジアミン及び酸無水物を使用してもよい。
本発明におけるポリイミド樹脂は、一般式(1)で表される構造単位を50モル%以上含有することが好ましいが、それ以外の構造単位を構成するジアミンや酸無水物は、上記例示した成分を用いてもよく、それ以外の他のジアミンや酸無水物成分を用いてもよい。
As a preferred diamine component constituting the structural unit of the general formula (1), specifically, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3-bis (4- Aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) and the like. Further, preferred acid dianhydrides constituting the repeating unit of the general formula (1) are specifically pyromellitic anhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride ( BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and the like. In addition, the diamine and acid anhydride which are polyimide resin raw materials may use together 2 or more types of diamines and acid anhydrides, respectively, and may use other diamines and acid anhydrides other than the above.
The polyimide resin in the present invention preferably contains 50 mol% or more of the structural unit represented by the general formula (1), but the diamine and acid anhydride constituting the other structural units include the components exemplified above. Other diamines and acid anhydride components may be used.

そして、本発明では、上記負極活物質とポリイミド樹脂又はポリイミド前駆体樹脂とを、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)あるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作製し、集電体上に塗布、乾燥することにより、活物質層を備えた負極を得る。   In the present invention, the negative electrode active material and the polyimide resin or polyimide precursor resin are mixed with a solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF), water, alcohol, or the like. A slurry is prepared by mixing, and a negative electrode provided with an active material layer is obtained by coating and drying on a current collector.

ここで、集電体として使用される導電性基材の材質は、特に限定されるものではないが、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属箔を用いることができる。また、このような導電性基材の形態は、連続シート、穴あきシート、ネット状(網状)シートなど、いろいろな形態とすることができるが、特に連続シートとすることが好ましい。さらに、導電性基材の厚さは2〜30μmとすることが好ましい。   Here, although the material of the electroconductive base material used as a collector is not specifically limited, metal foil, such as aluminum, copper, nickel, titanium, and stainless steel, can be used. Moreover, although the form of such an electroconductive base material can be made into various forms, such as a continuous sheet, a perforated sheet, and a net-like (net-like) sheet, it is particularly preferable to use a continuous sheet. Furthermore, the thickness of the conductive substrate is preferably 2 to 30 μm.

ポリイミド樹脂又はポリイミド前駆体樹脂をNMP等の有機溶媒に溶かした溶液に、負極活物質及び必要に応じて導電助剤を混合してスラリーとした後、エクストルージョン塗布、カーテン塗布、ロール塗布、グラビア塗布等の公知の手段により集電体に均一な厚みで塗工し、乾燥して有機溶媒を除去した後、加熱イミド化させることにより活物質層を形成する。この際、結着性と放電容量とのバランスの観点から、負極活物質に対するポリイミド樹脂又はポリイミド前駆体樹脂の含有割合が、0.1〜10質量%の範囲となるようにするのが良い。また、活物質層の厚みについては、公知の二次電池用の負極を形成する場合と同程度であればよく、特に制限はないが、一般には10〜500μm程度である。   A solution in which a polyimide resin or a polyimide precursor resin is dissolved in an organic solvent such as NMP is mixed with a negative electrode active material and, if necessary, a conductive additive to form a slurry, followed by extrusion coating, curtain coating, roll coating, gravure The active material layer is formed by coating the current collector with a uniform thickness by a known means such as coating, drying and removing the organic solvent, followed by heating imidization. At this time, from the viewpoint of the balance between the binding property and the discharge capacity, the content ratio of the polyimide resin or the polyimide precursor resin with respect to the negative electrode active material is preferably in the range of 0.1 to 10% by mass. Further, the thickness of the active material layer may be about the same as that for forming a known negative electrode for a secondary battery, and is not particularly limited, but is generally about 10 to 500 μm.

こうして得た負極は、リチウム二次電池をはじめとした二次電池の電極として好適に用いることができる。本発明の負極を用いてリチウム二次電池を構成する場合、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)M(2)2−y(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)M(2)M(3)(式中x、y及びzはx+y+z=1の関係を満たす範囲の数値であり、式中M(1)、M(2)及びM(3)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)PO(式中xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、遷移金属カルコゲン化物(Ti、S、NbSe等)、バナジウム酸化物(V、V13、V、V等)およびリチウム化合物、一般式MMoCh6−y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を用いることができる。The negative electrode thus obtained can be suitably used as an electrode for a secondary battery such as a lithium secondary battery. When a lithium secondary battery is configured using the negative electrode of the present invention, the opposite positive electrode includes a lithium-containing transition metal oxide LiM (1) x O 2 (wherein x is a numerical value in the range of 0 ≦ x ≦ 1). In which M (1) represents a transition metal and consists of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In), or LiM (1) y M (2) 2-y O 4 (wherein y is a numerical value in the range of 0 ≦ y ≦ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn , Ti, Cr, V, Fe, Zn, Al, Sn, In), LiM (1) x M (2) y M (3) z O 2 (where x, y and z are x + y + z = 1 in the range satisfying the relationship, where M (1), M (2) and M (3) represent transition metals, Co, Ni, Mn, Ti, Cr, V, Fe, Zn , Al, S Composed of at least one of In), LiM (1) x PO 4 ( wherein x is a number in the range of 0 ≦ x ≦ 1, wherein M (1) represents a transition metal, Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In), transition metal chalcogenide (Ti, S 2 , NbSe, etc.), vanadium oxide (V 2 O 5 , V 6) O 13 , V 2 O 4 , V 3 O 6 etc.) and lithium compounds, general formula M x Mo 6 Ch 6-y (wherein x is in the range 0 ≦ x ≦ 4, y is in the range 0 ≦ y ≦ 1) And a positive active material such as activated carbon, activated carbon fiber, or the like can be used. In the formula, M represents a metal including a transition metal, and Ch represents a chalcogen metal.

また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO、LiBF、LiPF、LiAsF、LiB(C)、LiCl、LiBr、LiSO、Li(CFSO)N、Li(CFSO)C、Li(CFCHOSO)N、Li(CFCFCHOSO)N、Li(HCFCFCHOSO)N、Li((CF)CHOSO)N、LiB[C(CF)]等の1種または2種以上の混合物を挙げることができる。Further, Examples of the electrolyte filling the space between the positive electrode and the negative electrode, and any known ones can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl LiBr, Li 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4, etc. Mention may be made of mixtures of more than one species.

また、非水系電解質としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−ジメトキシエタン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。   Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene Benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, a single solvent or a mixture of two or more solvents such as dimethyl sulfite may be used.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples in any way, and can be implemented with appropriate modifications without departing from the scope of the present invention. .

(実施例1)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
Example 1
Using refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained. The size was adjusted to obtain a raw coke powder having an average particle size of 9.9 μm.

上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。   The bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke. The powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 μm.

上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10−ジヒドロ−9−オキサ−10−オスファフェナントレン−10−オキサイド )17.9質量部(リン換算:2.5質量部)、及び炭化ホウ素3.2質量部(ホウ素換算:2.5質量部)を添加してコークス材料とした。   Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder). Name HCA, chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide) 17.9 parts by mass (phosphorus equivalent: 2.5 parts by mass), and 3.2 parts by mass of boron carbide (Boron conversion: 2.5 parts by mass) was added to obtain a coke material.

次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Aを得た。
また、上記活物質AをICP発光分光分析を行った結果、活物質A中のリン及びホウ素含有量は、それぞれ12000ppm、14000ppmであった。
Next, the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material A was obtained.
Further, as a result of ICP emission spectroscopic analysis of the active material A, the phosphorus and boron contents in the active material A were 12000 ppm and 14000 ppm, respectively.

一方、バインダーの重合は、酸二無水物として無水ピロメリット酸(PMDA)と、ジアミンとして2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)とをほぼ同モル使用して、ジメチルアセトアミド(DMAC)中において常温で4時間反応させることにより、重量平均分子量が144,000のポリイミド樹脂1の前駆体を得た。   On the other hand, for the polymerization of binder, pyromellitic anhydride (PMDA) is used as acid dianhydride and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is used in approximately the same mole as diamine. Then, a precursor of polyimide resin 1 having a weight average molecular weight of 144,000 was obtained by reacting in dimethylacetamide (DMAC) at room temperature for 4 hours.

次に、上記で得られた負極活物質Aとポリイミド樹脂1の前駆体を用いて以下の要領で負極を作製し、二次電池としての性能を評価した。   Next, the negative electrode was prepared in the following manner using the negative electrode active material A and the polyimide resin 1 precursor obtained above, and the performance as a secondary battery was evaluated.

下記表1に示すように、負極活物質Aとポリイミド樹脂1の前駆体をそれぞれ95質量%及び5質量%の比率とし、ジメチルアセトアミド(DMAC)を溶媒として用いて混練してスラリーを作製し、これを厚さ10μmの銅箔に厚みが均一となるように塗布し、その後窒素雰囲気中350℃で30分間熱処理することにより、銅箔上に活物質層を形成した。活物質層を備えた銅箔を乾燥し、所定の電極密度になるようにプレスして、トータル厚みとして60μmの電極シートを作製し、このシートから直径15mmΦの円形に切り出すことにより負極電極を得た。   As shown in Table 1 below, the negative electrode active material A and the polyimide resin 1 precursor were in a ratio of 95% by mass and 5% by mass, respectively, and dimethylacetamide (DMAC) was used as a solvent to prepare a slurry, This was applied to a copper foil having a thickness of 10 μm so as to have a uniform thickness, and then heat-treated at 350 ° C. for 30 minutes in a nitrogen atmosphere, thereby forming an active material layer on the copper foil. The copper foil provided with the active material layer is dried and pressed to a predetermined electrode density to produce an electrode sheet having a total thickness of 60 μm, and a negative electrode is obtained by cutting the sheet into a circle having a diameter of 15 mmΦ. It was.

得られた負極電極について、負極電極単極での電極特性を評価するために、次のようにして試験用リチウム二次電池を作製した。対極には約15.5mmΦに切り出した金属リチウムを用いた。また、電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作製した。For the obtained negative electrode, in order to evaluate the electrode characteristics of the negative electrode single electrode, a test lithium secondary battery was prepared as follows. As the counter electrode, metallic lithium cut out to about 15.5 mmΦ was used. In addition, a coin cell was prepared by using LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixture) as an electrolytic solution, and using a porous membrane of propylene as a separator. did.

得られたこのコインセルを使用して、25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で、0.5mA/cmの定電流放電により初期の放電容量を、5mA/cm2の定電流放電及び充電を実施した際の出力特性及び入力特性を容量維持率で調べたところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が78.2%、入力特性に関する容量維持率が56.2%であった。また、これらの割合の積を入出力バランスとして評価したところ、0.44であった。ここで、出力特性に関する容量維持率は、初期の放電容量に対する5mA/cm2定電流放電時の放電容量の比から求め、入力特性に関する容量維持率は、初期の充電容量に対する5mA/cm2定電流充電時の充電容量の比から求めた。また、この定電流放電及び充電を100サイクル繰り返して、1サイクル目の放電容量に対する100サイクル目の放電容量の比から求めた100サイクル後の容量維持率は87.7%であった。この100サイクル後の容量維持率(サイクル特性)については、容量維持率が80%以上であれば◎、70%以上80%未満であれば○、70%未満であれば△として、表1には3段階で評価した結果を記した。Using this coin cell obtained, a constant current discharge of 0.5 mA / cm 2 was performed at a constant temperature of 25 ° C. with a terminal voltage lower limit voltage of 0 V and a discharge upper limit voltage of 1.5 V. When the initial discharge capacity was examined for output characteristics and input characteristics at a constant current discharge of 5 mA / cm 2 and charging with the capacity maintenance ratio, the discharge capacity was 313 mAh / g, and the capacity maintenance ratio related to the output characteristics. Was 78.2%, and the capacity retention rate related to the input characteristics was 56.2%. The product of these ratios was evaluated as the input / output balance and found to be 0.44. Here, the capacity maintenance rate related to the output characteristics is obtained from the ratio of the discharge capacity during 5 mA / cm 2 constant current discharge to the initial discharge capacity, and the capacity maintenance ratio related to the input characteristics is 5 mA / cm 2 constant relative to the initial charge capacity. It calculated | required from ratio of the charge capacity at the time of electric current charge. The constant current discharge and charge were repeated 100 cycles, and the capacity retention rate after 100 cycles, which was obtained from the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle, was 87.7%. The capacity retention rate (cycle characteristics) after 100 cycles is shown in Table 1 as ◎ if the capacity retention rate is 80% or more, ○ if it is 70% or more and less than 80%, and Δ if it is less than 70%. Shows the results of evaluation in three stages.

(比較例1)
実施例1において使用した負極活物質Aのかわりに天然黒鉛を用いた以外は、実施例1と同様にして負極電極を得た。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は352mAh/gであり、出力特性に関する容量維持率が93.7%、入力特性に関する容量維持率が4.9%であった。また、これらの割合の積から得られる入出力バランスは0.05であった。
(Comparative Example 1)
A negative electrode was obtained in the same manner as in Example 1 except that natural graphite was used instead of the negative electrode active material A used in Example 1. The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 352 mAh / g, the capacity maintenance ratio related to the output characteristics was 93.7%, and the capacity maintenance ratio related to the input characteristics was 4.9%. Met. The input / output balance obtained from the product of these ratios was 0.05.

(比較例2)
実施例1において使用したバインダーをポリフッ化ビニリデン(PVDF)とし、350℃での熱処理を省略した以外は実施例1と同様にして負極電極を得た。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は291mAh/gであり、出力特性に関する容量維持率が61.2%、入力特性に関する容量維持率が32.8%であった。また、これらの割合の積から得られる入出力バランスは0.20であり、定電流放電及び充電を100サイクル繰り返して求めた100サイクル後の容量維持率は63.9%であった。
(Comparative Example 2)
A negative electrode was obtained in the same manner as in Example 1 except that the binder used in Example 1 was polyvinylidene fluoride (PVDF) and the heat treatment at 350 ° C. was omitted. The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 291 mAh / g, the capacity maintenance ratio related to output characteristics was 61.2%, and the capacity maintenance ratio related to input characteristics was 32.8%. Met. The input / output balance obtained from the product of these ratios was 0.20, and the capacity retention rate after 100 cycles obtained by repeating 100 cycles of constant current discharge and charge was 63.9%.

(実施例2〜5)
実施例1において使用したバインダーを、表1に示す組成を有するポリイミド樹脂2〜5にかえた以外は、実施例1と同様にして負極電極を得た。得られた負極電極について、実施例1と同様にして放電容量、出力特性、及びサイクル特性を評価した。結果を表1に示す。なお、表1に記した略称の意味は以下のとおりであり、ポリイミド樹脂2〜5は、実施例1と同様の操作によってそれぞれ前駆体を重合し、活物質層を形成する際の熱処理によりイミド化させた。
BTDA:3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
(Examples 2 to 5)
A negative electrode was obtained in the same manner as in Example 1 except that the binder used in Example 1 was changed to polyimide resins 2 to 5 having the composition shown in Table 1. About the obtained negative electrode, it carried out similarly to Example 1, and evaluated discharge capacity, output characteristics, and cycling characteristics. The results are shown in Table 1. In addition, the meaning of the abbreviation described in Table 1 is as follows, and polyimide resins 2 to 5 polymerize precursors by the same operation as in Example 1, respectively, and heat treatment when forming an active material layer Made it.
BTDA: 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
TPE-R: 1,3-bis (4-aminophenoxy) benzene
APB: 1,3-bis (3-aminophenoxy) benzene

Figure 0005715572
Figure 0005715572

(実施例6)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
(Example 6)
Using refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained. The size was adjusted to obtain a raw coke powder having an average particle size of 9.9 μm.

上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。   The bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke. The powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 μm.

上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10−ジヒドロ−9−オキサ−10−オスファフェナントレン−10−オキサイド)17.9質量部(リン換算:2.5質量部)を添加してコークス材料とした。   Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder). Name HCA, chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide) 17.9 parts by mass (phosphorus conversion: 2.5 parts by mass) was added to obtain a coke material.

次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Bを得た。
また、上記活物質BをICP発光分光分析を行った結果、活物質B中のリン含有量は、14000ppmであった。
Next, the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material B was obtained.
Moreover, as a result of performing the ICP emission spectral analysis of the said active material B, phosphorus content in the active material B was 14000 ppm.

バインダーには、実施例1において使用したポリイミド樹脂1の前駆体を用いて、実施例1と同様にして負極電極を得た。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が80.1%、入力特性に関する容量維持率が57.0%であった。また、これらの割合の積から得られる入出力バランスは0.46であった。   A negative electrode was obtained in the same manner as in Example 1 by using the polyimide resin 1 precursor used in Example 1 as the binder. The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 313 mAh / g, the capacity maintenance ratio related to output characteristics was 80.1%, and the capacity maintenance ratio related to input characteristics was 57.0%. Met. The input / output balance obtained from the product of these ratios was 0.46.

(実施例7及び8)
実施例6において使用したバインダーを、表1に示す組成を有するポリイミド樹脂2及び3にかえた以外は、実施例6と同様にして負極電極を得た。得られた負極電極について、実施例6と同様にして放電容量、出力特性、及びサイクル特性を評価した。結果を表1に示す。
(Examples 7 and 8)
A negative electrode was obtained in the same manner as in Example 6 except that the binder used in Example 6 was changed to polyimide resins 2 and 3 having the composition shown in Table 1. About the obtained negative electrode, it carried out similarly to Example 6, and evaluated discharge capacity, output characteristics, and cycling characteristics. The results are shown in Table 1.

上記実施例1〜8、及び比較例1〜2の結果から明らかなように、天然黒鉛を負極活物質として使用した比較例1では、活物質A或いはBを使用した実施例1、6と比べて、放電容量では優れるものの、入力特性が大きく劣るため入出力バランスが悪化していることが分かった。また、バインダーとしてPVDFを使用した比較例2では、ポリイミド樹脂を使用した実施例と比べて、総じて放電容量、入出力バランス、及びサイクル特性に劣ることが分かった。このように、本発明によれば、放電容量、入出力バランス及びサイクル特性が総合的に優れた負極が得られることが確認された。   As is clear from the results of Examples 1 to 8 and Comparative Examples 1 and 2, Comparative Example 1 using natural graphite as the negative electrode active material is compared with Examples 1 and 6 using active material A or B. Although the discharge capacity was excellent, it was found that the input / output balance was deteriorated because the input characteristics were greatly inferior. Further, it was found that Comparative Example 2 using PVDF as a binder was generally inferior in discharge capacity, input / output balance, and cycle characteristics as compared with Examples using polyimide resin. As described above, according to the present invention, it was confirmed that a negative electrode having excellent discharge capacity, input / output balance, and cycle characteristics was obtained.

Claims (5)

負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、
前記負極活物質が、石炭系又は石油系のいずれか1以上の生コークスと、石炭系又は石油系のいずれか1以上のか焼コークスとが質量比で90:10〜10:90に配合されると共に、前記生コークスとか焼コークスの合計量100質量部に対して、リン化合物が、リン換算で0.1〜6.0質量部の割合で添加されたコークス材料を最高到達温度で800℃〜1400℃の範囲の焼成温度で焼成してなり、
前記バインダーが、ポリイミド樹脂であることを特徴とする二次電池用負極。
A negative electrode for a secondary battery having an active material layer in which a negative electrode active material is integrated with a binder,
The negative electrode active material is blended at a mass ratio of 90:10 to 10:90 in any one of coal-based or petroleum-based raw coke and any one of coal-based or petroleum-based calcined coke. A coke material in which a phosphorus compound is added in a proportion of 0.1 to 6.0 parts by mass in terms of phosphorus with respect to a total amount of 100 parts by mass of the raw coke and calcined coke is 800 ° C. Fired at a firing temperature in the range of 1400 ° C. ,
The negative electrode for a secondary battery, wherein the binder is a polyimide resin.
負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、
前記負極活物質が、石炭系又は石油系のいずれか1以上の生コークスと、石炭系又は石油系のいずれか1以上のか焼コークスとが質量比で90:10〜10:90に配合されると共に、前記生コークスとか焼コークスの合計量100質量部に対して、リン化合物及びホウ素化合物が、リン及びホウ素換算で各々0.1〜6.0質量部の割合で添加されたコークス材料を最高到達温度で800℃〜1400℃の範囲の焼成温度で焼成してなり、
前記バインダーが、ポリイミド樹脂であることを特徴とする二次電池用負極。
A negative electrode for a secondary battery having an active material layer in which a negative electrode active material is integrated with a binder,
The negative electrode active material is blended at a mass ratio of 90:10 to 10:90 in any one of coal-based or petroleum-based raw coke and any one of coal-based or petroleum-based calcined coke. up with respect to the total amount 100 parts by mass of the raw coke and calcination coke, phosphorus compounds and boron compounds, the coke material has been added in a proportion of each 0.1 to 6.0 parts by weight of phosphorus and boron in terms It is fired at a firing temperature ranging from 800 ° C. to 1400 ° C. at the ultimate temperature ,
The negative electrode for a secondary battery, wherein the binder is a polyimide resin.
前記バインダーが、繰り返し単位構造中にエーテル結合を有するポリイミド樹脂である請求項1又は2に記載の二次電池用負極。   The negative electrode for a secondary battery according to claim 1, wherein the binder is a polyimide resin having an ether bond in a repeating unit structure. 負極活物質に対するポリイミド樹脂の含有割合が、0.1〜10質量%の範囲である請求項1〜3のいずれかに記載の二次電池用負極。   The negative electrode for a secondary battery according to any one of claims 1 to 3, wherein a content ratio of the polyimide resin with respect to the negative electrode active material is in a range of 0.1 to 10% by mass. 請求項1〜4のいずれかに記載の負極を用いて得た二次電池。   The secondary battery obtained using the negative electrode in any one of Claims 1-4.
JP2011544253A 2009-12-02 2010-11-30 Secondary battery negative electrode and secondary battery using the same Expired - Fee Related JP5715572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011544253A JP5715572B2 (en) 2009-12-02 2010-11-30 Secondary battery negative electrode and secondary battery using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009274763 2009-12-02
JP2009274763 2009-12-02
JP2010253994 2010-11-12
JP2010253994 2010-11-12
JP2011544253A JP5715572B2 (en) 2009-12-02 2010-11-30 Secondary battery negative electrode and secondary battery using the same
PCT/JP2010/071354 WO2011068097A1 (en) 2009-12-02 2010-11-30 Negative electrode for secondary battery, and secondary battery using same

Publications (2)

Publication Number Publication Date
JPWO2011068097A1 JPWO2011068097A1 (en) 2013-04-18
JP5715572B2 true JP5715572B2 (en) 2015-05-07

Family

ID=44114944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544253A Expired - Fee Related JP5715572B2 (en) 2009-12-02 2010-11-30 Secondary battery negative electrode and secondary battery using the same

Country Status (5)

Country Link
JP (1) JP5715572B2 (en)
KR (1) KR20120105019A (en)
CN (1) CN102640330B (en)
TW (1) TWI495181B (en)
WO (1) WO2011068097A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697954B2 (en) 2010-11-12 2015-04-08 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery using the same
EP3019541B1 (en) 2013-07-09 2018-09-19 Evonik Degussa GmbH Electroactive polymers, manufacturing process thereof, electrode and use thereof
CN105633410B (en) * 2014-10-29 2019-06-18 江苏华东锂电技术研究院有限公司 The lithium ion battery of negative electrode material and the application negative electrode material
JP7000011B2 (en) * 2016-06-02 2022-01-19 トヨタ自動車株式会社 Negative electrode layer for fluoride ion battery and fluoride ion battery
US20190148710A1 (en) * 2016-09-12 2019-05-16 Panasonic Intellectual Property Management Co., Ltd. Lithium batteries
CN113621249B (en) * 2021-08-24 2022-07-26 浙江鼎富橡塑科技有限公司 Abnormal sound prevention TPE dustproof sleeve and production process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543318A (en) * 1991-08-09 1993-02-23 Ibiden Co Ltd Composition for carbonaceous form
JPH1167207A (en) * 1997-08-12 1999-03-09 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary battery
JPH11312520A (en) * 1998-04-27 1999-11-09 Furukawa Battery Co Ltd:The Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2001023638A (en) * 1999-07-05 2001-01-26 Sumitomo Metal Ind Ltd Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP2002270169A (en) * 2001-03-06 2002-09-20 Nippon Steel Corp Material for lithium secondary battery negative electrode, producing method thereof and lithium secondary battery
JP2003297357A (en) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd Negative electrode material for lithium secondary battery and manufacturing method for negative electrode material
JP2007019257A (en) * 2005-07-07 2007-01-25 Japan Energy Corp Low-temperature burned carbon for material of electrode
JP2009224323A (en) * 2008-02-21 2009-10-01 Nippon Steel Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978914A (en) * 1982-10-28 1984-05-08 Ibiden Co Ltd Manufacture of special carbonaceous material
KR100839369B1 (en) * 2006-11-27 2008-06-19 삼성에스디아이 주식회사 Negative active material for rechargeable lithitum battery, negative electrode for rechargable lithium battery and rechargeable lithium battery prepared using same
CN101087021B (en) * 2007-07-18 2014-04-30 深圳市贝特瑞新能源材料股份有限公司 Man-made graphite cathode material for lithium ion battery and its making method
EP2187468B1 (en) * 2007-08-10 2018-02-28 Showa Denko K.K. Negative electrode for lithium secondary battery, method for producing carbon-based negative electrode active material, lithium secondary battery and use thereof
JP5603589B2 (en) * 2009-05-15 2014-10-08 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5662698B2 (en) * 2009-05-15 2015-02-04 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5603590B2 (en) * 2009-05-29 2014-10-08 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543318A (en) * 1991-08-09 1993-02-23 Ibiden Co Ltd Composition for carbonaceous form
JPH1167207A (en) * 1997-08-12 1999-03-09 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary battery
JPH11312520A (en) * 1998-04-27 1999-11-09 Furukawa Battery Co Ltd:The Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2001023638A (en) * 1999-07-05 2001-01-26 Sumitomo Metal Ind Ltd Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP2002270169A (en) * 2001-03-06 2002-09-20 Nippon Steel Corp Material for lithium secondary battery negative electrode, producing method thereof and lithium secondary battery
JP2003297357A (en) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd Negative electrode material for lithium secondary battery and manufacturing method for negative electrode material
JP2007019257A (en) * 2005-07-07 2007-01-25 Japan Energy Corp Low-temperature burned carbon for material of electrode
JP2009224323A (en) * 2008-02-21 2009-10-01 Nippon Steel Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material

Also Published As

Publication number Publication date
CN102640330A (en) 2012-08-15
WO2011068097A1 (en) 2011-06-09
KR20120105019A (en) 2012-09-24
CN102640330B (en) 2015-06-24
TW201203671A (en) 2012-01-16
JPWO2011068097A1 (en) 2013-04-18
TWI495181B (en) 2015-08-01

Similar Documents

Publication Publication Date Title
US10056614B2 (en) Polyimide binder for power storage device, electrode sheet using same, and power storage device
JP5715572B2 (en) Secondary battery negative electrode and secondary battery using the same
JP5603589B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5469347B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP5653185B2 (en) Secondary battery negative electrode and secondary battery using the same
JP5603590B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
WO2009104690A1 (en) Negative electrode active material for rechargeable battery with nonaqueous electrolyte and process for producing negative electrode active material for rechargeable battery with nonaqueous electrolyte
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2011216320A (en) Negative electrode for secondary battery, and secondary battery using the same
JP5662698B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5886543B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
WO2011071106A1 (en) Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery
JP5697954B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150313

R150 Certificate of patent or registration of utility model

Ref document number: 5715572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees