JPH1167207A - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JPH1167207A
JPH1167207A JP9231817A JP23181797A JPH1167207A JP H1167207 A JPH1167207 A JP H1167207A JP 9231817 A JP9231817 A JP 9231817A JP 23181797 A JP23181797 A JP 23181797A JP H1167207 A JPH1167207 A JP H1167207A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
phosphorus
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9231817A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Kojima
由継 小島
Akio Ito
明生 伊藤
Akihiko Koiwai
明彦 小岩井
Yoshihiro Shimizu
吉広 清水
Nobuaki Suzuki
伸明 鈴木
Yoji Takeuchi
要二 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9231817A priority Critical patent/JPH1167207A/en
Publication of JPH1167207A publication Critical patent/JPH1167207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium secondary battery with small irreversible capacity and low average discharge voltage. SOLUTION: A negative electrode for a lithium secondary battery is formed by absorbing lithium in a negative electrode active material. The negative electrode active material consists of 60-95% (by weight) graphite and 5-40% carbonaceous material. The carbonaceous material contains phosphorous, oxygen, and unavoidable impurities, and the content of the phosphorous is 0.01-10% based on the weight of the carbonaceous material and the content of the oxygen is 0.01-15%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,充放電容量に優れたリチウム二
次電池用負極に関する。
TECHNICAL FIELD The present invention relates to a negative electrode for a lithium secondary battery having excellent charge / discharge capacity.

【0002】[0002]

【従来技術】近年,携帯電話のような電子機器の小型
化,コードレス化が急速に進んでいる。また,環境問
題,エネルギー問題から,電気自動車の開発,普及が望
まれている。これらに伴い高エネルギー密度を有する二
次電池が要求されている。従来,二次電池としては,ニ
ッケルカドミウム電池,ニッケル水素電池,鉛蓄電池が
知られている。ところが,これらの二次電池は重量が重
く,エネルギー密度も低い。
2. Description of the Related Art In recent years, miniaturization and cordlessness of electronic devices such as mobile phones have been rapidly progressing. In addition, development and diffusion of electric vehicles are desired due to environmental problems and energy problems. Accordingly, a secondary battery having a high energy density is required. Conventionally, as a secondary battery, a nickel cadmium battery, a nickel hydride battery, and a lead storage battery are known. However, these secondary batteries are heavy and have low energy density.

【0003】そこで,コークスや黒鉛等の炭素材料を負
極に用い,正極にリチウム含有金属酸化物を用いた電池
が開発された。この電池は充電することにより,正極の
リチウム含有金属酸化物から負極にリチウムを供給し,
放電では負極炭素中のリチウムを正極に戻すという,ロ
ッキングチェア型電池である。
[0003] Therefore, a battery using a carbon material such as coke or graphite for a negative electrode and a lithium-containing metal oxide for a positive electrode has been developed. This battery supplies lithium to the negative electrode from the lithium-containing metal oxide of the positive electrode by charging,
It is a rocking chair type battery that discharges lithium in the negative electrode carbon back to the positive electrode.

【0004】このようなリチウムを用いた非水電解液二
次電池(リチウム二次電池)は軽く,エネルギー密度も
高く,電気自動車用電池として期待されている。また,
リチウム二次電池用の負極については,有機材料を炭素
化して炭素質材料とする際にリン化合物を添加すること
によって,リチウムの吸蔵量を大きくできることが開示
されている(特開平3−137010号公報,特開平5
−74457号公報)。
[0004] Such a non-aqueous electrolyte secondary battery (lithium secondary battery) using lithium is lightweight, has a high energy density, and is expected as a battery for electric vehicles. Also,
As for a negative electrode for a lithium secondary battery, it is disclosed that the amount of lithium occlusion can be increased by adding a phosphorus compound when an organic material is carbonized into a carbonaceous material (Japanese Patent Application Laid-Open No. Hei 3-137010). Gazette, JP-A-5
-74457).

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池用負極としての上記炭素質材料において
は,次の問題がある。即ち,従来のリチウム二次電池の
負極材料は,リンを含有する炭素質材料を用いているの
で,その放電容量はリン無添加炭素質材料に比べ大きく
なる。その一方,上記炭素質材料は,不可逆容量が大き
く,平均放電電圧(負極炭素からのリチウムの脱ドープ
を放電とする)が黒鉛に比べ高くなる。そのため,この
炭素質材料よりなる負極材料を用いた二次電池における
エネルギー密度は十分には大きくならない。
However, the above carbonaceous material as the conventional negative electrode for a lithium secondary battery has the following problems. That is, since the negative electrode material of the conventional lithium secondary battery uses a carbonaceous material containing phosphorus, its discharge capacity is larger than that of a carbonaceous material without phosphorus. On the other hand, the carbonaceous material has a large irreversible capacity and an average discharge voltage (discharge of lithium from the negative electrode carbon as discharge) is higher than that of graphite. Therefore, the energy density in a secondary battery using the negative electrode material made of the carbonaceous material does not become sufficiently large.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,不可逆容量が小さく,平均放電電圧の低
いリチウム二次電池用負極を提供しようとするものであ
る。
The present invention has been made in view of such conventional problems, and has as its object to provide a negative electrode for a lithium secondary battery having a small irreversible capacity and a low average discharge voltage.

【0007】[0007]

【課題の解決手段】本発明は,負極活物質にリチウムを
吸蔵させてなるリチウム二次電池用負極であって,上記
負極活物質は,60〜95%(重量%,以下同じ)の黒
鉛と,5〜40%の炭素質材料とからなり,該炭素質材
料はリン,酸素および不可避不純物を含んでおり,かつ
炭素質材料全体に対する上記リンの含有量は0.01〜
10%,上記酸素の含有量は0.01〜15%であるこ
とを特徴とするリチウム二次電池用負極にある。
According to the present invention, there is provided a negative electrode for a lithium secondary battery in which lithium is occluded in the negative electrode active material, wherein the negative electrode active material comprises 60 to 95% (% by weight, hereinafter the same) of graphite. , 5 to 40% of a carbonaceous material, said carbonaceous material contains phosphorus, oxygen and unavoidable impurities, and the content of said phosphorus in the whole carbonaceous material is 0.01 to 0.01%.
The negative electrode for a lithium secondary battery is characterized in that the content of oxygen is 10% and the content of oxygen is 0.01 to 15%.

【0008】本発明において最も注目すべきことは,上
記負極活物質は,上記特定量の黒鉛と炭素質材料との複
合体であり,かつ該炭素質材料には上記特定量のリン及
び酸素を含有していることである。
[0008] Most notably, in the present invention, the negative electrode active material is a composite of the specified amount of graphite and a carbonaceous material, and the carbonaceous material contains the specified amounts of phosphorus and oxygen. It is contained.

【0009】上記黒鉛としては,天然黒鉛や人造黒鉛が
利用できる。そして,上記負極活物質における黒鉛の含
有量は60〜95%とする。黒鉛量が60%未満の場合
には不可逆容量が増加して,平均放電電位が上昇すると
いう問題がある。一方,黒鉛量が95%を超える場合に
は,黒鉛の特性が支配的となって集電体との接着性が低
下し,成形性が下がるという問題がある。
As the above graphite, natural graphite and artificial graphite can be used. The graphite content in the negative electrode active material is set to 60 to 95%. When the amount of graphite is less than 60%, there is a problem that the irreversible capacity increases and the average discharge potential increases. On the other hand, if the amount of graphite exceeds 95%, there is a problem that the properties of graphite become dominant, the adhesiveness to the current collector is reduced, and the formability is reduced.

【0010】また上記炭素質材料とは,本発明において
は,リンを含有する非黒鉛系の炭素材料をいう。例え
ば,生コークス(石油系重質油を500℃で熱分解反応
させたもの)にリン化合物を添加して熱処理することで
リチウム吸蔵量の大きな炭素質材料が得られる。そし
て,この炭素質材料の含有量は,上記黒鉛含有量の残部
となる5〜40%とする。これにより,上記の黒鉛量が
不適当な場合の不具合発生を防止しつつ,リチウム吸蔵
量の増大を図ることができる。
In the present invention, the above carbonaceous material refers to a non-graphite carbon material containing phosphorus. For example, a carbonaceous material having a large lithium storage capacity can be obtained by adding a phosphorus compound to raw coke (a substance obtained by thermally decomposing petroleum heavy oil at 500 ° C.) and subjecting it to heat treatment. The content of the carbonaceous material is 5 to 40%, which is the balance of the graphite content. As a result, it is possible to increase the amount of lithium occlusion while preventing the occurrence of a problem when the amount of graphite is inappropriate.

【0011】また上記炭素質材料には,リン(P)を
0.01〜10%含有させる。リン含有量が0.01%
未満あるいは10%を超える場合には,いずれも上記の
リチウム吸蔵量増加という改良効果が小さくなる。また
上記炭素質材料には,酸素(O)を0.01〜15%含
有させる。酸素含有量が0.01%未満の場合には放電
容量が低下するという問題があり,一方15%を超える
場合には放電容量が低下するにもかかわらず不可逆容量
が著しく増大するという問題を生ずるおそれがある。
The carbonaceous material contains 0.01 to 10% of phosphorus (P). Phosphorus content is 0.01%
If it is less than 10% or more than 10%, the above-mentioned improvement effect of increasing the amount of lithium occlusion becomes smaller. The carbonaceous material contains 0.01 to 15% oxygen (O). When the oxygen content is less than 0.01%, there is a problem that the discharge capacity is reduced. On the other hand, when the oxygen content is more than 15%, there is a problem that the irreversible capacity is significantly increased although the discharge capacity is reduced. There is a risk.

【0012】さらに,炭素質材料には不可避不純物が含
まれてもよい。不可避不純物としては,水素,窒素,珪
素,硫黄等がある。例えば上記の生コークスから作製し
た炭素質材料には,一般的に不可避不純物として水素が
含まれ,さらに,窒素が含まれることもある。
Further, the carbonaceous material may contain unavoidable impurities. Inevitable impurities include hydrogen, nitrogen, silicon, sulfur and the like. For example, a carbonaceous material produced from the above-mentioned raw coke generally contains hydrogen as an inevitable impurity, and may further contain nitrogen.

【0013】次に,本発明の作用につき説明する。本発
明における負極活物質は,上記黒鉛と炭素質材料との複
合体よりなり,さらに炭素質材料には上記のごとくリン
及び酸素を含有させている。そのため,この負極活物質
は,従来の黒鉛のみからなる負極活物質よりも放電容量
が大きく,かつ,従来のリン含有炭素質材料のみからな
る負極活物質よりも不可逆容量が小さく,平均放電電圧
が低いという特性を発揮する。それ故,この優れた負極
活物質を用いたリチウム二次電池用負極においても,上
記負極活物質の優れた特性をそのまま得ることができ
る。
Next, the operation of the present invention will be described. The negative electrode active material in the present invention is composed of a composite of the above graphite and a carbonaceous material, and the carbonaceous material further contains phosphorus and oxygen as described above. Therefore, this negative electrode active material has a larger discharge capacity than the conventional negative electrode active material consisting only of graphite, has a smaller irreversible capacity than the conventional negative electrode active material consisting only of phosphorus-containing carbonaceous material, and has a lower average discharge voltage. It exhibits the characteristic of being low. Therefore, even in the negative electrode for a lithium secondary battery using the excellent negative electrode active material, the excellent characteristics of the negative electrode active material can be obtained as it is.

【0014】したがって,本発明によれば,不可逆容量
が小さく,平均放電電圧の低いリチウム二次電池用負極
を提供することができる。以下,実施形態例に基づい
て,上記作用効果につき詳説する。
Therefore, according to the present invention, it is possible to provide a negative electrode for a lithium secondary battery having a small irreversible capacity and a low average discharge voltage. Hereinafter, the operation and effect will be described in detail based on an embodiment.

【0015】なお,上記黒鉛のX線回折による格子面
(002)面の面間隔は3.35Å以上であり,かつC
軸方向の結晶子の大きさは150Å以上であることが好
ましい。これにより,上記作用効果を確実に発揮するこ
とができる。上記C軸方向の結晶子の大きさが150Å
未満の場合には放電容量が低下するという問題がある。
The lattice spacing of the (002) plane of the graphite by X-ray diffraction is 3.35 ° or more, and C
The size of the crystallite in the axial direction is preferably 150 ° or more. As a result, the above operation and effect can be reliably exhibited. The crystallite size in the C-axis direction is 150 °
If it is less than this, there is a problem that the discharge capacity is reduced.

【0016】また,上記炭素質材料中におけるリンは炭
素の中に単に分散されているだけでなく,炭素とリンと
の直接結合ないしは酸素を介した結合が存在することが
好ましい。これは,XPS(X線光電子分光法),31
核−固体高分子NMR測定法により確認することができ
る。
Preferably, the phosphorus in the carbonaceous material is not only dispersed in carbon but also has a direct bond between carbon and phosphorus or a bond via oxygen. This is based on XPS (X-ray photoelectron spectroscopy), 31 P
It can be confirmed by a nuclear-solid polymer NMR measurement method.

【0017】さらに,上記炭素質材料のX線回折による
格子面(002)面の面間隔は3.4Å以上でC軸方向
の結晶子の大きさが150Å以下であることが好まし
い。これらにより,上記作用効果を確実に発揮すること
ができる。
Further, it is preferable that the lattice spacing (002) plane of the carbonaceous material by X-ray diffraction is 3.4 ° or more and the crystallite size in the C-axis direction is 150 ° or less. With these, the above-mentioned effects can be reliably exerted.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施の形態にかかるリチウム二次電池用負極に
つき,2つの実施例と,2つの比較例を用いて説明す
る。実施例1,2は,いずれも,60〜95%(重量
%,以下同じ)の黒鉛と,5〜40%の炭素質材料とか
らなり,該炭素質材料はリン,酸素および不可避不純物
を含んでおり,かつ炭素質材料全体に対する上記リンの
含有量は0.01〜10%,上記酸素の含有量は0.0
1〜15%である負極活物質からなるリチウム二次電池
用負極である。なお,実施例1と実施例2との違いは,
黒鉛の種類の違い及び炭素質材料の製造条件の違いにあ
る。
First Embodiment A negative electrode for a lithium secondary battery according to an embodiment of the present invention will be described using two examples and two comparative examples. Examples 1 and 2 each consist of 60 to 95% (wt%, the same applies hereinafter) of graphite and 5 to 40% of a carbonaceous material, which contains phosphorus, oxygen and unavoidable impurities. And the content of phosphorus is 0.01 to 10% with respect to the whole carbonaceous material, and the content of oxygen is 0.0
It is a negative electrode for a lithium secondary battery, comprising a negative electrode active material of 1 to 15%. The difference between the first embodiment and the second embodiment is as follows.
The difference lies in the type of graphite and the manufacturing conditions of the carbonaceous material.

【0019】(実施例1)最初に,本実施例における負
極活物質の製造について説明する。まず,石油生コーク
スを平均粒径30μmに粉砕し粒子を得た。次いで,こ
の粒子に10%(重量%,以下同じ)の五酸化リンを添
加して,電気炉中において,窒素気流下,温度1000
℃に1時間保持するという条件で焼成し,リン添加熱処
理コークス(炭素質材料)を得た。得られたリン添加熱
処理コークスを冷却した後,乳鉢で粉砕し,メッシュに
て60μm以下に分級して,試料とした。
(Example 1) First, the production of the negative electrode active material in this example will be described. First, petroleum raw coke was pulverized to an average particle size of 30 μm to obtain particles. Next, 10% (% by weight, the same applies hereinafter) of phosphorus pentoxide is added to the particles, and the temperature is set to 1000 in an electric furnace under a nitrogen stream.
C. for 1 hour to obtain a phosphorus-added heat treated coke (carbonaceous material). After cooling the obtained phosphorus-added heat-treated coke, it was pulverized in a mortar and classified with a mesh to 60 μm or less to obtain a sample.

【0020】この試料は,広角X線回折によると(00
2)面の面間隔は3.56Å,C軸方向の結晶子の厚さ
は18.0Åであった。また誘導結合プラズマ(IC
P)発光分析法によるとリン添加熱処理コークス中のリ
ン量は4.4%,酸素量は0.68%であった。
According to wide-angle X-ray diffraction, the sample
2) The plane spacing was 3.56 °, and the crystallite thickness in the C-axis direction was 18.0 °. In addition, inductively coupled plasma (IC
P) According to emission spectrometry, the phosphorus content in the phosphorus-added heat-treated coke was 4.4%, and the oxygen content was 0.68%.

【0021】次いで,後述する表1に示すごとく,上記
リン添加熱処理コークスに平均粒径20μmのマダガス
カル産天然黒鉛粒子(黒鉛)を60〜95%添加するこ
とにより,コークス−リン−黒鉛複合体(負極活物質)
を4種類(E1〜E4)作製した。なお使用した天然黒
鉛粒子の(002)面の面間隔は3.35Å,C軸方向
の結晶子の厚さは700Åであった。
Next, as shown in Table 1 below, by adding 60 to 95% of natural graphite particles (graphite) from Madagascar having an average particle diameter of 20 μm to the above-mentioned phosphorus-added heat-treated coke, a coke-phosphorus-graphite composite ( Negative electrode active material)
Were produced in four types (E1 to E4). The natural graphite particles used had a (002) plane spacing of 3.35 ° and a crystallite thickness in the C-axis direction of 700 °.

【0022】次に上記4種類の負極活物質よりなるリチ
ウム二次電池用負極の性能を評価するため,テストセル
を用いて評価した。テストセルは,上記4種類の負極活
物質によりそれぞれ作製した負極(炭素電極)を用い,
4種類のテストセルを次のように構成した。
Next, in order to evaluate the performance of the negative electrode for a lithium secondary battery comprising the above four kinds of negative electrode active materials, the performance was evaluated using a test cell. The test cell uses negative electrodes (carbon electrodes) made of the above four types of negative electrode active materials, respectively.
Four types of test cells were configured as follows.

【0023】テストセルの構成につき,図1を用いて説
明する。同図に示すごとく,テストセル1は,セパレー
タ3を中心に,これを挟むように一対の電解液4を配置
し,さらにこれらを挟むように,その一方の面に炭素電
極(負極)6と負極集電体7とを積層し,他方の面に対
極5と対極集電体9を積層配置したものである。また,
同図に示すごとく,各集電体7,9は充放電装置8に接
続してある。
The configuration of the test cell will be described with reference to FIG. As shown in the figure, a test cell 1 has a separator 3 as a center, a pair of electrolytes 4 arranged so as to sandwich the separator 3, and a carbon electrode (negative electrode) 6 on one surface so as to sandwich the electrolyte. A negative electrode current collector 7 is stacked, and a counter electrode 5 and a counter electrode current collector 9 are stacked on the other surface. Also,
As shown in the figure, the current collectors 7 and 9 are connected to a charging / discharging device 8.

【0024】上記対極5は直径15mm,厚さ0.4m
mのタブレット状のリチウム金属よりなる。また,セパ
レータ3は多孔質ポリエチレンよりなり,その大きさは
直径20mm,厚さ75μmとした。また,電解液4は
エチレンカーボネートとジエチルカーボネート(EC/
DEC)との混合液(容量比にして1対1)に,LiP
6 を1mo1/リットルの割合で溶解したものを使用
した。
The counter electrode 5 has a diameter of 15 mm and a thickness of 0.4 m.
m of tablet-shaped lithium metal. The separator 3 was made of porous polyethylene and had a size of 20 mm in diameter and 75 μm in thickness. Electrolyte solution 4 is composed of ethylene carbonate and diethyl carbonate (EC /
DEC) (1: 1 in volume ratio) with LiP
The F 6 was used after dissolved in a proportion of 1Mo1 / liter.

【0025】次に,炭素電極(負極)6の製造方法につ
いて説明する。まず,上述した各負極活物質を96重量
部と,CarboxymethylCellose S
odium Salt(CMCNa)の水溶液(4重量
%)を100重量部と,イオン交換水100重量部を十
分混合することにより,スラリーを得た。
Next, a method of manufacturing the carbon electrode (negative electrode) 6 will be described. First, 96 parts by weight of each of the above-mentioned negative electrode active materials was added to Carboxymethyl Cellulose S.
A slurry was obtained by sufficiently mixing 100 parts by weight of an aqueous solution of odium salt (CMCNa) (4% by weight) and 100 parts by weight of ion-exchanged water.

【0026】次いで,該スラリーを長さ30mm,幅3
0mm,厚さ10μmの銅箔(負極集電体7)上に塗布
後,乾燥プレスした。これにより,片面にコークス−リ
ン−黒鉛複合体よりなる負極活物質を塗布してなる負極
が得られた。そして,この負極を直径15mmの円板状
に打ち抜いて上記テストセル1の炭素電極(負極)6と
した。
Next, the slurry was 30 mm long and 3 mm wide.
After coating on a copper foil (negative electrode current collector 7) having a thickness of 0 mm and a thickness of 10 μm, the resultant was dried and pressed. As a result, a negative electrode obtained by applying a negative electrode active material composed of a coke-phosphorus-graphite composite on one surface was obtained. The negative electrode was punched into a disk having a diameter of 15 mm to form a carbon electrode (negative electrode) 6 of the test cell 1.

【0027】次に,各テストセル1における充放電の試
験により,該テストセル1の充放電容量を測定した。ま
ず,上記テストセル1を1.0mA/cm2 の定電流下
において0Vまで定電流,定電圧充電(充電時間:15
時間)した。放電は0.5mA/cm2 の定電流で行
い,テストセル1の電池電圧が1.5Vに達した時点で
終了とした。
Next, the charge / discharge capacity of each test cell 1 was measured by a charge / discharge test. First, the test cell 1 was charged at a constant current and a constant voltage to 0 V under a constant current of 1.0 mA / cm 2 (charge time: 15
Time). The discharge was performed at a constant current of 0.5 mA / cm 2 , and the test was terminated when the battery voltage of the test cell 1 reached 1.5 V.

【0028】以上の試験において,充放電により流れた
電気量から不可逆容量と放電容量,平均放電電圧を求め
た。また,負極の成形性を評価すべく,負極活物質を塗
布した集電体を10枚準備した。そして,これをプレス
する際に,集電体から負極活物質が剥離するか否かをそ
れぞれ調査し,剥離が発生した枚数によって成形性を評
価した。結果を表1に示す。
In the above tests, the irreversible capacity, the discharge capacity, and the average discharge voltage were determined from the amount of electricity flowing through charging and discharging. In order to evaluate the moldability of the negative electrode, ten current collectors coated with the negative electrode active material were prepared. Then, when this was pressed, it was investigated whether or not the negative electrode active material was separated from the current collector, and the moldability was evaluated based on the number of sheets where the separation occurred. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】(比較例1)本比較例は,実施例1におい
て得られたリン添加熱処理コークス(炭素質材料)と天
然黒鉛粒子(黒鉛)の添加割合を変更したものである。
その他は,実施例1と同様にした。具体的には,表2に
示すごとく,負極活物質における天然黒鉛粒子の添加量
を0〜50%(C5〜C8)又は98%(C9)とし
た。また,天然黒鉛粒子100%のもの(C10)も準
備した。
Comparative Example 1 In this comparative example, the addition ratios of the phosphorus-added heat-treated coke (carbonaceous material) and the natural graphite particles (graphite) obtained in Example 1 were changed.
Others were the same as Example 1. Specifically, as shown in Table 2, the addition amount of the natural graphite particles in the negative electrode active material was 0 to 50% (C5 to C8) or 98% (C9). In addition, 100% natural graphite particles (C10) were also prepared.

【0031】次に,上記6種類の負極活物質を用いて,
実施例1と同様にテストセルをそれぞれ構成し,実施例
1と同様の試験を行った。即ち,不可逆容量と放電容
量,平均放電電位を求めると共に,成形性を評価した。
結果を表2に示す。
Next, using the above six kinds of negative electrode active materials,
Test cells were configured in the same manner as in Example 1, and the same tests as in Example 1 were performed. That is, the irreversible capacity, the discharge capacity, and the average discharge potential were determined, and the moldability was evaluated.
Table 2 shows the results.

【0032】[0032]

【表2】 [Table 2]

【0033】上記表1及び表2より知られるごとく,黒
鉛量が60〜95%の負極活物質(E1〜E4)は,黒
鉛量が0〜50%の負極活物質(C5〜C8)に比べ
て,不可逆容量が低く,平均放電電位は低下して電極特
性に優れものとなった。また,黒鉛量が60〜95%の
負極活物質(E1〜E4)は黒鉛量が98%の負極活物
質(C9)や黒鉛(C10)に比べ,特に成形性の面で
優れる。
As can be seen from Tables 1 and 2, the negative electrode active materials (E1 to E4) having a graphite content of 60 to 95% are compared with the negative electrode active materials (C5 to C8) having a graphite amount of 0 to 50%. As a result, the irreversible capacity was low, the average discharge potential was lowered, and the electrode characteristics became excellent. Further, the negative electrode active materials (E1 to E4) having a graphite amount of 60 to 95% are particularly excellent in moldability as compared with the negative electrode active materials (C9) and graphite (C10) having a graphite amount of 98%.

【0034】(実施例2)本実施例においては,まず,
実施例1における,炭素質材料作製工程の焼成熱処理の
温度を1200℃に変更してリン添加熱処理コークス
(炭素質材料)を作製した。次いで,上記リン添加熱処
理コークスを実施例1と同様に粉砕して60μm以下に
分級した試料を得た。
(Embodiment 2) In this embodiment, first,
In Example 1, the temperature of the firing heat treatment in the carbonaceous material production step was changed to 1200 ° C. to produce a phosphorus-added heat treatment coke (carbonaceous material). Next, the phosphorus-added heat-treated coke was ground in the same manner as in Example 1 to obtain a sample classified to 60 μm or less.

【0035】また,得られた試料,即ちリン添加熱処理
コークス(炭素質材料)は,広角X線回折によると(0
02)面の面間隔は3.49Å,C軸方向の結晶子の厚
さは27.3Åであった。誘導結合プラズマ(ICP)
発光分析法によるとリン添加熱処理コークス中のリン量
は4.2%,酸素量は0.1%であった。
The obtained sample, ie, the phosphorus-added heat-treated coke (carbonaceous material) was found to have (0
The plane spacing of the 02) plane was 3.49 °, and the crystallite thickness in the C-axis direction was 27.3 °. Inductively coupled plasma (ICP)
According to emission spectrometry, the phosphorus content in the phosphorus-added heat-treated coke was 4.2%, and the oxygen content was 0.1%.

【0036】次いで,黒鉛としては,実施例1における
マダガスカル産天然黒鉛粒子に代えて平均粒径20μm
の人造黒鉛粒子を用いた。なお,人造黒鉛粒子の(00
2)面の面間隔は3.36Å,C軸方向の結晶子の厚さ
は500Åであった。そして,表3に示すごとく,上記
リン添加熱処理コークスに人造黒鉛粒子を60〜95%
添加することにより,コークス−リン−黒鉛複合体より
なる負極活物質を4種類(E11〜E14)作製した。
Next, the graphite was replaced with the natural graphite particles produced in Madagascar in Example 1 and had an average particle size of 20 μm.
Was used. The artificial graphite particles (00
2) The plane spacing was 3.36 °, and the crystallite thickness in the C-axis direction was 500 °. Then, as shown in Table 3, 60 to 95% of artificial graphite particles were added to the phosphorus-added heat-treated coke.
By addition, four types (E11 to E14) of negative electrode active materials made of a coke-phosphorus-graphite composite were prepared.

【0037】次に,上記4種類の負極活物質を用い,実
施例1と同様にテストセルを作製し,実施例1と同様の
試験を行った。即ち,不可逆容量と放電容量,平均放電
電位を求めると共に,成形性を評価した。結果を表3に
示す。
Next, a test cell was prepared in the same manner as in Example 1 using the above four kinds of negative electrode active materials, and the same test as in Example 1 was performed. That is, the irreversible capacity, the discharge capacity, and the average discharge potential were determined, and the moldability was evaluated. Table 3 shows the results.

【0038】[0038]

【表3】 [Table 3]

【0039】(比較例2)本比較例は,実施例2におい
て得られたリン添加熱処理コークス(炭素質材料)と人
造黒鉛粒子(黒鉛)の添加割合を変更したものである。
その他は,実施例2と同様にした。具体的には,表4に
示すごとく,負極活物質における人造黒鉛粒子の添加量
を0〜50%(C15〜C18)又は98%(C19)
とした。また,人造黒鉛粒子100%のもの(C20)
も準備した。
(Comparative Example 2) In this comparative example, the addition ratio of the phosphorus-added heat-treated coke (carbonaceous material) obtained in Example 2 and artificial graphite particles (graphite) was changed.
Others were the same as Example 2. Specifically, as shown in Table 4, the addition amount of the artificial graphite particles in the negative electrode active material was 0 to 50% (C15 to C18) or 98% (C19).
And And 100% artificial graphite particles (C20)
Also prepared.

【0040】次に,上記6種類の負極活物質を用いて,
実施例1と同様にテストセルをそれぞれ構成し,実施例
1と同様の試験を行った。即ち,不可逆容量と放電容
量,平均放電電位を求めると共に,成形性を評価した。
結果を表4に示す。
Next, using the above six types of negative electrode active materials,
Test cells were configured in the same manner as in Example 1, and the same tests as in Example 1 were performed. That is, the irreversible capacity, the discharge capacity, and the average discharge potential were determined, and the moldability was evaluated.
Table 4 shows the results.

【0041】[0041]

【表4】 [Table 4]

【0042】表3,表4より知られるごとく,黒鉛量が
60〜95%の負極活物質(E11〜E14)は,黒鉛
量が0〜50%の負極活物質(C15〜C18)に比
べ,不可逆容量が低く,平均放電電圧が低下して電極特
性に優れたものとなった。また,黒鉛量が60〜95%
の負極活物質(E11〜E14)は,黒鉛量が98%の
負極活物質(C19)及び黒鉛100%のもの(C2
0)に比べ,特に成形性の面で優れる。
As can be seen from Tables 3 and 4, the negative electrode active materials (E11 to E14) having a graphite content of 60 to 95% are smaller than the negative electrode active materials (C15 to C18) having a graphite amount of 0 to 50%. The irreversible capacity was low, the average discharge voltage was reduced, and the electrode characteristics were excellent. The graphite content is 60-95%
Of the negative electrode active materials (E11 to E14) are a negative electrode active material (C19) having a graphite content of 98% and a negative electrode active material (C2
Compared with 0), it is particularly excellent in formability.

【0043】以上の結果から,黒鉛量が60〜95%の
コークス−リン−黒鉛複合体よりなる負極活物質は,高
性能なリチウム二次電池負極へ応用できることがわか
る。
From the above results, it can be seen that the negative electrode active material comprising the coke-phosphorus-graphite composite having a graphite content of 60 to 95% can be applied to a high performance lithium secondary battery negative electrode.

【0044】実施形態例2 次に,本実施形態例においては,リチウム二次電池用負
極における結着材の種類を変更し(実施例3,比較例
3,4),その適性を評価した。
Embodiment 2 Next, in this embodiment, the type of the binder in the negative electrode for a lithium secondary battery was changed (Example 3, Comparative Examples 3 and 4), and its suitability was evaluated.

【0045】(実施例3)最初に,本例における負極の
製造方法につき説明する。まず,平均粒径20μmのマ
ダガスカル産天然黒鉛90重量部と,実施例1に記載の
リン添加熱処理コークス10重量部とを混合することに
よりコークス−リン−黒鉛複合体を作製した。次いで,
このコークス−リン−黒鉛複合体192gと,結着材と
してのCarboxymethyl Cellose
Sodium Salt(CMCNa)を8gとイオン
交換水400gとを混練して,負極材ペーストを作製し
た。
(Embodiment 3) First, a method for manufacturing a negative electrode in this embodiment will be described. First, a coke-phosphorus-graphite composite was prepared by mixing 90 parts by weight of natural graphite from Madagascar having an average particle diameter of 20 μm with 10 parts by weight of the phosphorus-added heat-treated coke described in Example 1. Then,
192 g of the coke-phosphorus-graphite composite and Carboxymethyl Cellulose as a binder
8 g of Sodium Salt (CMCNa) and 400 g of ion-exchanged water were kneaded to prepare a negative electrode material paste.

【0046】次いで,この負極材ペーストを塗工機を用
いて幅150mm,厚さ10μmの銅箔に幅80mm,
厚さ230μmに塗布し,温度130℃の温風乾燥器に
て乾燥した。乾燥後の電極材厚さは130μmであっ
た。さらに,これをロールプレス機によりプレスするこ
とにより負極材の厚さ50μm,密度1.7g/cm3
の負極を得た。
Next, the negative electrode material paste was applied to a copper foil having a width of 150 mm and a thickness of 10 μm using a coating machine to a width of 80 mm,
It was applied to a thickness of 230 μm and dried with a hot air dryer at a temperature of 130 ° C. The electrode material thickness after drying was 130 μm. Further, this was pressed by a roll press to obtain a negative electrode material having a thickness of 50 μm and a density of 1.7 g / cm 3.
A negative electrode was obtained.

【0047】得られた負極について,ロールプレス前後
の電極材と集電体との接着性を,テープ剥離試験により
評価した。評価結果を表5に示す。尚,評価結果は3段
階表示とし,電極材と集電体との界面で剥離した場合に
“×”印を,電極材の内部で剥離した(剥離後,集電体
に電極材が付着している)場合に“○”印を,また,両
者の中間の状態に“△”印を付けた。
With respect to the obtained negative electrode, the adhesiveness between the electrode material before and after roll pressing and the current collector was evaluated by a tape peeling test. Table 5 shows the evaluation results. In addition, the evaluation results were displayed in three levels, and when peeled at the interface between the electrode material and the current collector, the mark “x” was peeled inside the electrode material (after the peeling, the electrode material adhered to the current collector. ), And a mark “△” was placed between them.

【0048】[0048]

【表5】 [Table 5]

【0049】表5より知られるごとく,ロールプレス前
は,テープ剥離試験により一部電極材と集電体との界面
での剥離が観察されたが,ロールプレス後は,電極材と
集電体との接着は強固となり,界面での剥離は観察され
なかった。
As can be seen from Table 5, before the roll press, peeling was partially observed at the interface between the electrode material and the current collector by a tape peel test, but after the roll press, the electrode material and the current collector were removed. The adhesion with the solid became strong, and peeling at the interface was not observed.

【0050】次に,上記負極を直径15mmの円板状に
打ち抜いて,直径15mmのLiMn2O4正極と組み
合わせて,図1に記載のテストセル(対極に正極を使
用)を用いて電池特性を評価した。尚,充電は終止電圧
4.2V,電流密度1mA/cm2 の定電流−定電圧充
電(充電時間:6時間)とし,また,放電は終止電圧
2.5V,電流密度0.5mAh/(正極1g)cm2
の定電流放電とした。
Next, the negative electrode was punched into a disk having a diameter of 15 mm, combined with a LiMn 2 O 4 positive electrode having a diameter of 15 mm, and the battery characteristics were evaluated using the test cell shown in FIG. 1 (using the positive electrode as a counter electrode). . The charging was performed at a constant current-constant voltage charging (charging time: 6 hours) with a final voltage of 4.2 V and a current density of 1 mA / cm 2 , and discharging was performed with a final voltage of 2.5 V and a current density of 0.5 mAh / (positive electrode) 1g) cm 2
At a constant current.

【0051】評価結果を,正極材単位重量当たりの電池
容量として表5に示す。表5に示すごとく,結着材とし
てCMCNaを用いた負極を用いた電池は,100mA
/cm2 の高容量を示すことがわかった。
Table 5 shows the evaluation results as the battery capacity per unit weight of the positive electrode material. As shown in Table 5, the battery using the negative electrode using CMCNa as the binder was 100 mA.
/ Cm 2 .

【0052】(比較例3)本比較例においては,実施例
3に記載のコークス−リン−黒鉛複合体192gと,ポ
リフッ化ビニリデン(PVDF)8gとN−メチル−2
−ピロリドン300gとを混練し負極材ペーストを作製
した。即ち,結着剤としては,ポリフッ化ビニリデン
(PVDF)とN−メチル−2−ピロリドンとを用い
た。
Comparative Example 3 In this comparative example, 192 g of the coke-phosphorus-graphite composite described in Example 3, 8 g of polyvinylidene fluoride (PVDF) and N-methyl-2 were used.
And 300 g of pyrrolidone were kneaded to prepare a negative electrode material paste. That is, polyvinylidene fluoride (PVDF) and N-methyl-2-pyrrolidone were used as the binder.

【0053】次に,この負極材ペーストを塗工機を用い
て幅150mm,厚さ10μmの銅箔に幅80mm,厚
さ230μmに塗布し,温度130℃の温風乾燥器にて
乾燥した。さらに,これをロールプレス機によりプレス
することにより負極材の厚さ60μm,密度1.6g/
cm3 の電極を得た。そして,ロールプレス前後の電極
材と集電体との接着性について,テープ剥離試験により
評価した。
Next, this negative electrode material paste was applied to a copper foil having a width of 150 mm and a thickness of 10 μm to a width of 80 mm and a thickness of 230 μm using a coating machine and dried with a hot air drier at a temperature of 130 ° C. Further, this was pressed by a roll press to obtain a negative electrode material having a thickness of 60 μm and a density of 1.6 g /
cm 3 electrodes were obtained. Then, the adhesiveness between the electrode material and the current collector before and after the roll pressing was evaluated by a tape peeling test.

【0054】評価結果を上述した表5に示す。表5より
知られるごとく,ロールプレス前は,電極材が集電体か
ら容易に剥離し,接着性が非常に低かった。また,ロー
ルプレス後も,電極材と集電体との接着性の改善は観ら
れず,テープ剥離試険では,電極材と集電体との界面で
剥離した。
Table 5 shows the evaluation results. As known from Table 5, before the roll pressing, the electrode material was easily peeled off from the current collector, and the adhesion was very low. Even after the roll pressing, no improvement in the adhesion between the electrode material and the current collector was observed, and the tape peeling test peeled off at the interface between the electrode material and the current collector.

【0055】なお,上記負極を直径15mmの円板状に
打ち抜いて,評価用電極の作製を試みたが,電極材と集
電体との接着性か低いために,すべて電極材が集重体か
ら剥離した。このため,電池放電容量のテストは実施不
可能であった。
The negative electrode was punched out into a disk shape having a diameter of 15 mm, and an electrode for evaluation was prepared. However, since the adhesiveness between the electrode material and the current collector was low, all of the electrode material was removed from the collector. Peeled off. For this reason, the test of the battery discharge capacity was not feasible.

【0056】(比較例4)本比較例においては,電極材
と集電体との接着性を改善することを目的として,比較
例3に対して電極材中の結着材の量を2倍にした。すな
わち,実施側3に記載のコークス−リン−黒鉛複合体1
84gと,ポリフッ化ビニリデン(PVDF)16gと
N−メチル−2−ピロリドン300gとを混練し負極材
ペーストを作製した。
Comparative Example 4 In this comparative example, the amount of the binder in the electrode material was twice that of the comparative example 3 in order to improve the adhesion between the electrode material and the current collector. I made it. That is, the coke-phosphorus-graphite composite 1 according to the embodiment 3
84 g, 16 g of polyvinylidene fluoride (PVDF) and 300 g of N-methyl-2-pyrrolidone were kneaded to prepare a negative electrode material paste.

【0057】次いで,この負極材ペーストを塗工機を用
いて幅150mm,厚さ10μmの銅箔に幅80mm,
厚さ200μmに塗布し,温度130℃の温風乾燥器に
て乾燥した。さらに,これをロールプレス機によりプレ
スすることにより負極材の厚さ60μm,密度1.6g
/cm3 の電極を得た。そして,上記と同様に,ロール
プレス前後の電極材と集電体との接着性について,テー
プ剥離試験により評価した。
Next, the negative electrode material paste was applied to a copper foil having a width of 150 mm and a thickness of 10 μm using a coating machine to a width of 80 mm,
It was applied to a thickness of 200 μm and dried with a hot air dryer at a temperature of 130 ° C. Further, this was pressed by a roll press to obtain a negative electrode material having a thickness of 60 μm and a density of 1.6 g.
/ Cm 3 was obtained. Then, similarly to the above, the adhesiveness between the electrode material before and after the roll pressing and the current collector was evaluated by a tape peeling test.

【0058】評価結果を上述した表5に示す。表5より
知られるごとく,ロールプレス前は,電極材が集電体か
ら容易の剥離し,接着性が非常に低かった。また,ロー
ルプレス後も,電極材と集電体との接着性の改善は観ら
れず,テープ剥離試験では,電極材と集電体との界面で
剥離した。このことから,コークス−リン−黒鉛複合体
では,PVDFを結着材として用いた場合,電極材と集
電体との接着性が低いことがわかった。
Table 5 shows the evaluation results. As known from Table 5, before the roll pressing, the electrode material was easily peeled off from the current collector, and the adhesiveness was very low. Even after the roll pressing, no improvement was observed in the adhesiveness between the electrode material and the current collector, and the tape peeled off at the interface between the electrode material and the current collector. From this, it was found that in the coke-phosphorus-graphite composite, when PVDF was used as the binder, the adhesiveness between the electrode material and the current collector was low.

【0059】なお,本比較例においても評価用電極の作
製を試みたが,電極材と集電体との接着性か低いため
に,すべて電極材が集重体から剥離した。そのため,放
電容量の評価は不可能であった。
Although an electrode for evaluation was also prepared in this comparative example, all of the electrode material was peeled off from the collector due to low adhesion between the electrode material and the current collector. Therefore, it was impossible to evaluate the discharge capacity.

【0060】本実施形態例2の結果から,コークス−リ
ン−黒鉛複合体を負極活物質として用いる場合には,結
着材としてPVDFを用いて電極を作製することが非常
に困難であることがわかった。一方,Carboxym
ethyl Cellose Sodium Salt
(CMCNa)は,上記負極活物質の結着材として非常
に適していることが分かった。
According to the result of the second embodiment, when the coke-phosphorus-graphite composite is used as the negative electrode active material, it is very difficult to produce an electrode using PVDF as a binder. all right. Meanwhile, Carboxym
ethyl Cellulose Sodium Salt
(CMCNa) was found to be very suitable as a binder for the negative electrode active material.

【0061】[0061]

【発明の効果】上述のごとく,本発明によれば,不可逆
容量が小さく,平均放電電圧の低いリチウム二次電池用
負極を提供することができる。
As described above, according to the present invention, a negative electrode for a lithium secondary battery having a small irreversible capacity and a low average discharge voltage can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例における,テストセルの構成を示す
説明図。
FIG. 1 is an explanatory diagram showing a configuration of a test cell in an embodiment.

【符号の説明】[Explanation of symbols]

1...テストセル 3...セパレータ, 4...電解液, 5...対極, 6...炭素電極(負極), 7...負極集電体, 8...充放電装置, 9...正極集電体, 1. . . Test cell 3. . . 3. separator, . . Electrolyte, 5. . . Counter electrode, 6. . . 6. carbon electrode (negative electrode); . . 7. negative electrode current collector, . . 8. Charge / discharge device, . . Positive electrode current collector,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小岩井 明彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 清水 吉広 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 鈴木 伸明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 竹内 要二 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akihiko Koiwai 41-cho, Yokomichi, Nagakute-machi, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Nobuaki Suzuki No. 41, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 Toyota-Chuo R & D Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質にリチウムを吸蔵させてなる
リチウム二次電池用負極であって,上記負極活物質は,
60〜95%(重量%,以下同じ)の黒鉛と,5〜40
%の炭素質材料とからなり,該炭素質材料はリン,酸素
および不可避不純物を含んでおり,かつ炭素質材料全体
に対する上記リンの含有量は0.01〜10%,上記酸
素の含有量は0.01〜15%であることを特徴とする
リチウム二次電池用負極。
1. A negative electrode for a lithium secondary battery in which lithium is stored in a negative electrode active material, wherein the negative electrode active material comprises:
60-95% (% by weight, the same applies hereinafter) graphite and 5-40%
% Of the carbonaceous material, the carbonaceous material contains phosphorus, oxygen and unavoidable impurities, and the content of the phosphorus in the entire carbonaceous material is 0.01 to 10%, and the content of the oxygen is A negative electrode for a lithium secondary battery, which is 0.01 to 15%.
JP9231817A 1997-08-12 1997-08-12 Negative electrode for lithium secondary battery Pending JPH1167207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9231817A JPH1167207A (en) 1997-08-12 1997-08-12 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9231817A JPH1167207A (en) 1997-08-12 1997-08-12 Negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1167207A true JPH1167207A (en) 1999-03-09

Family

ID=16929492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231817A Pending JPH1167207A (en) 1997-08-12 1997-08-12 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1167207A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219051A (en) * 2009-03-18 2010-09-30 Qinghua Univ Phosphorus composite material, method for manufacturing the same, and lithium-ion secondary battery adopting the same
WO2010131476A1 (en) * 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
WO2010137249A1 (en) * 2009-05-29 2010-12-02 新日鐵化学株式会社 Negative-electrode active material for lithium secondary cell, negative electrode for lithium secondary cell, vehicle-mounted lithium secondary cell making use thereof, and method for manufacturing negative-electrode active material for lithium secondary cell
WO2011068097A1 (en) * 2009-12-02 2011-06-09 新日鐵化学株式会社 Negative electrode for secondary battery, and secondary battery using same
US9054383B2 (en) 2012-01-18 2015-06-09 Samsung Electronics Co., Ltd. Porous carbonaceous composite material, positive electrode and lithium air battery including the material, and method of preparing the material
WO2017010334A1 (en) * 2015-07-13 2017-01-19 株式会社カネカ Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219051A (en) * 2009-03-18 2010-09-30 Qinghua Univ Phosphorus composite material, method for manufacturing the same, and lithium-ion secondary battery adopting the same
US8389158B2 (en) 2009-03-18 2013-03-05 Tsinghua University Lithium-ion battery using phosphorated composite
JP2010287566A (en) * 2009-05-15 2010-12-24 Nippon Steel Chem Co Ltd Anode active material for lithium secondary battery, and in-vehicle lithium secondary battery using the same
WO2010131476A1 (en) * 2009-05-15 2010-11-18 新日鐵化学株式会社 Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
US8877384B2 (en) 2009-05-15 2014-11-04 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery for vehicle installation using the negative electrode active material and negative electrode, and method for manufacturing the negative electrode active material
WO2010137249A1 (en) * 2009-05-29 2010-12-02 新日鐵化学株式会社 Negative-electrode active material for lithium secondary cell, negative electrode for lithium secondary cell, vehicle-mounted lithium secondary cell making use thereof, and method for manufacturing negative-electrode active material for lithium secondary cell
JP2011009185A (en) * 2009-05-29 2011-01-13 Nippon Steel Chem Co Ltd Anode active material for lithium secondary battery and lithium secondary battery for vehicle using the same
WO2011068097A1 (en) * 2009-12-02 2011-06-09 新日鐵化学株式会社 Negative electrode for secondary battery, and secondary battery using same
JP5715572B2 (en) * 2009-12-02 2015-05-07 新日鉄住金化学株式会社 Secondary battery negative electrode and secondary battery using the same
TWI495181B (en) * 2009-12-02 2015-08-01 Nippon Steel & Sumikin Chem Co A battery negative electrode and a battery using the same
US9054383B2 (en) 2012-01-18 2015-06-09 Samsung Electronics Co., Ltd. Porous carbonaceous composite material, positive electrode and lithium air battery including the material, and method of preparing the material
WO2017010334A1 (en) * 2015-07-13 2017-01-19 株式会社カネカ Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2017010334A1 (en) * 2015-07-13 2018-04-26 株式会社カネカ Electrode sheet used for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10826056B2 (en) 2015-07-13 2020-11-03 Kaneka Corporation Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6238251B2 (en) Porous silicon-based negative electrode active material and lithium secondary battery including the same
JP2005011808A (en) Negative electrode composite for lithium battery, and negative electrode and lithium battery using the composite
JPWO2006068066A1 (en) Composite electrode active material for non-aqueous electrolyte secondary battery or non-aqueous electrolyte electrochemical capacitor and its production method
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
RU2695127C1 (en) Method of producing sulphide solid-state batteries
CN111799470B (en) Positive pole piece and sodium ion battery
EP3675252A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
KR101951637B1 (en) Negative electrode for secondary battery, method thereof and lithium secondary batteries fabricated by using the same
KR20130106687A (en) Negative active material and lithium battery containing the material
CN112349953A (en) Lithium ion battery
JP2003100284A (en) Lithium secondary battery
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2009230976A (en) Nonaqueous electrolyte secondary battery and manufacturing method for the same
CN112714971A (en) Negative electrode active material for lithium secondary battery, and negative electrode and lithium secondary battery comprising same
JP7392151B2 (en) Secondary batteries, battery modules, battery packs, and devices containing the secondary batteries
JP2023538082A (en) Negative electrode and secondary battery containing the same
EP3200265A1 (en) Battery, battery pack and continuous power supply
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
JPH10241683A (en) Negative electrode active material for lithium secondary battery
JPH1167207A (en) Negative electrode for lithium secondary battery
JP2021093312A (en) Lithium ion battery manufacturing method
CN116365013A (en) Secondary battery and electric equipment
KR100663180B1 (en) Anode active material for lithium secondary battery having high energy density
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP2009238488A (en) Nonaqueous electrolyte secondary battery and its manufacturing method