JP5653185B2 - Secondary battery negative electrode and secondary battery using the same - Google Patents

Secondary battery negative electrode and secondary battery using the same Download PDF

Info

Publication number
JP5653185B2
JP5653185B2 JP2010253995A JP2010253995A JP5653185B2 JP 5653185 B2 JP5653185 B2 JP 5653185B2 JP 2010253995 A JP2010253995 A JP 2010253995A JP 2010253995 A JP2010253995 A JP 2010253995A JP 5653185 B2 JP5653185 B2 JP 5653185B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
bis
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010253995A
Other languages
Japanese (ja)
Other versions
JP2011142069A (en
Inventor
利昌 田中
利昌 田中
和徳 小関
和徳 小関
真二 及川
真二 及川
池田 大佐
大佐 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010253995A priority Critical patent/JP5653185B2/en
Priority to PCT/JP2010/072113 priority patent/WO2011071106A1/en
Priority to TW099143236A priority patent/TW201137072A/en
Publication of JP2011142069A publication Critical patent/JP2011142069A/en
Application granted granted Critical
Publication of JP5653185B2 publication Critical patent/JP5653185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、二次電池用の負極、及びそれを用いた二次電池に関する。   The present invention relates to a negative electrode for a secondary battery and a secondary battery using the same.

二次電池のひとつであるリチウム二次電池は、他の二次電池と比べて高いエネルギー密度を有することから、小型化・軽量化が可能であり、携帯電話、パソコン、携帯情報端末(PDA)、ハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。   Lithium secondary batteries, which are one of the secondary batteries, have a higher energy density than other secondary batteries, so they can be reduced in size and weight, such as mobile phones, personal computers, and personal digital assistants (PDAs). It is widely used as a power source for mobile electronic devices such as handy video cameras, and its demand is expected to increase in the future.

特に、近年においては、エネルギー問題や環境問題に対応するために、電気自動車や、ニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(Hybrid Electric Vehicle:HEV)への需要も増し、初期効率や充・放電容量のほか、入出力特性やサイクル寿命といったリチウム二次電池の性能の更なる向上が求められている。   In particular, in recent years, demand for electric vehicles and hybrid electric vehicles (HEVs) that combine nickel-metal hydride battery-powered motors and gasoline engines to increase energy and environmental issues has increased. In addition to initial efficiency and charge / discharge capacity, further improvements in lithium secondary battery performance such as input / output characteristics and cycle life are required.

リチウム二次電池(リチウムイオン二次電池)は、正極と負極の間にリチウムイオンを含んだ電解質が満たされた構造を有し、このうち負極は、リチウムをインターカレートする負極活物質がバインダー(結着剤)で結着されて、集電体上で一体化された活物質層を備える。そして、上記のようバインダーとしては、これまでポリフッ化ビニリデン(PVDF)が主に使用されてきた。   A lithium secondary battery (lithium ion secondary battery) has a structure in which an electrolyte containing lithium ions is filled between a positive electrode and a negative electrode. Among these, a negative electrode active material that intercalates lithium is a binder. An active material layer that is bound by (binder) and integrated on the current collector is provided. As described above, polyvinylidene fluoride (PVDF) has been mainly used so far.

ところが、PVDFでは、負極活物質同士や集電体との接着力が十分ではなく、次第に密着性が悪くなり、サイクル寿命が短くなるといった問題が明らかになった。また、短絡等により電池温度が異常に上昇すると、PVDFが分解してHFが発生し、このHFがLiと激しく発熱反応するため、電池が破損するなど、信頼性の点でも問題があった。   However, PVDF has a problem in that the adhesive strength between the negative electrode active materials and the current collector is not sufficient, the adhesion gradually becomes worse, and the cycle life is shortened. Further, if the battery temperature rises abnormally due to a short circuit or the like, PVDF is decomposed to generate HF, and this HF reacts violently with Li, so that the battery is damaged.

そこで、サイクル寿命をより長くすると共に、信頼性に優れた二次電池を得るために、ポリイミド樹脂をバインダーとして用いた負極が提案されている(特許文献1参照)。更には、ポリイミド樹脂をバインダーとした負極について、以下のような改良技術が提案されている。例えば、炭素質粉末からなる負極活物質とポリイミド樹脂との配合割合を特定して、充放電容量を向上させる技術(特許文献2参照)や、ポリイミド樹脂と負極活物質とからなる活物質層の厚み、活物質層におけるポリイミド樹脂の割合、及び活物質層形成時の乾燥温度の3つのパラメータを特定することで、サイクル特性の改善を図る技術(特許文献3参照)のほか、特定の酸無水物を用いたポリイミド樹脂を2種類組み合わせることで、集電体に対する負極活物質とバインダーの接着をより確実にすると共に、負極活物質同士の結着力を高めて、負極における抵抗の増大を抑制する技術(特許文献4参照)、所定の粒径を有したケイ素粒子を含んだ負極活物質を、特定のジアミンを用いたポリイミド樹脂で結着して負極を得ることで、充放電の繰り返しに耐え得るようにして、サイクル特性の向上を図る技術(特許文献5参照)などが知られている。   In view of this, a negative electrode using a polyimide resin as a binder has been proposed in order to obtain a secondary battery having a longer cycle life and excellent reliability (see Patent Document 1). Furthermore, the following improved technologies have been proposed for the negative electrode using a polyimide resin as a binder. For example, the ratio of the negative electrode active material made of carbonaceous powder and the polyimide resin is specified to improve the charge / discharge capacity (see Patent Document 2), or the active material layer made of the polyimide resin and the negative electrode active material. In addition to the technology for improving cycle characteristics (see Patent Document 3) by specifying three parameters: thickness, proportion of polyimide resin in the active material layer, and drying temperature at the time of active material layer formation, a specific acid anhydride By combining two types of polyimide resins using materials, the negative electrode active material and the binder are more reliably bonded to the current collector, and the binding force between the negative electrode active materials is increased to suppress an increase in resistance at the negative electrode. Technology (see Patent Document 4), a negative electrode active material containing silicon particles having a predetermined particle size is bound with a polyimide resin using a specific diamine to obtain a negative electrode. As withstand repeated electrodeposition, such techniques to improve the cycle characteristics (see Patent Document 5) are known.

特許第3311402号公報Japanese Patent No. 3311402 特開2008−252550号公報JP 2008-252550 A 特開2008−84562号公報JP 2008-84562 A 特許第4215532号公報Japanese Patent No. 4215532 特開2008−34352号公報JP 2008-34352 A

とりわけ、リチウム二次電池をハイブリッド自動車や電気自動車の車載電源として利用する場合には、二次電池の代表的な性能である放電容量のほかに、充放電の繰り返し性能を示すサイクル寿命や、走行とエネルギー回生とのバランスを示す入出力特性に優れていることが重要になってくる。ところが、上述したように、ポリイミド樹脂をバインダーとして用いた負極について種々の改良がなされてはいるものの、サイクル寿命や出力特性は、未だ十分なレベルであるとは言えない。   In particular, when lithium secondary batteries are used as in-vehicle power sources for hybrid vehicles and electric vehicles, in addition to the discharge capacity, which is a typical performance of secondary batteries, cycle life that shows repeated charge / discharge performance, It is important to have excellent input / output characteristics that show a balance between energy recovery and energy recovery. However, as described above, although various improvements have been made on the negative electrode using a polyimide resin as a binder, the cycle life and output characteristics are still not at a sufficient level.

そこで、本発明者等は、上記問題について鋭意検討した結果、特定の酸無水物とジアミンを原料にしたポリイミド樹脂をバインダーとして用いることで、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池用の負極を得ることができることを見出し、本発明を完成した。   Therefore, as a result of intensive studies on the above problems, the present inventors were excellent in the balance of discharge capacity, output characteristics, and cycle characteristics by using a polyimide resin made from a specific acid anhydride and diamine as a raw material. It discovered that the negative electrode for secondary batteries could be obtained, and completed this invention.

したがって、本発明の目的は、放電容量、出力特性、及びサイクル特性といった性能をバランス良く発現する二次電池を得ることができる負極を提供することにある。また、本発明の別の目的は、このような負極を用いて、特に、ハイブリッド自動車や電気自動車用等の電源として好適な二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode capable of obtaining a secondary battery that exhibits a good balance of performance such as discharge capacity, output characteristics, and cycle characteristics. Another object of the present invention is to provide a secondary battery suitable as a power source for a hybrid vehicle or an electric vehicle, using such a negative electrode.

すなわち、本発明は、炭素材料を用いた負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記バインダーとして、下記一般式(1)で表される繰返し単位を有するポリイミド樹脂を用いたことを特徴とする二次電池用負極である。

Figure 0005653185
〔式中、Ar1は、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、及び1,3-ビス(3-アミノフェノキシ)ベンゼンから選ばれるいずれかによって与えられて、少なくとも2個のエーテル結合を有した2価の芳香族ジアミン残基を50モル%以上含有するものであり、Ar2は、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
Figure 0005653185
〔式(3)において、Yは、直結合又は−CO−のいずれかを示す。〕 That is, this invention is a negative electrode for secondary batteries provided with the active material layer which integrated the negative electrode active material using a carbon material with the binder, Comprising: As said binder, it represents with following General formula (1). A negative electrode for a secondary battery using a polyimide resin having a repeating unit.
Figure 0005653185
[ Wherein Ar 1 represents 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis (4-aminophenoxy) benzene, and 1,3-bis (3-amino Phenoxy) containing 50 mol% or more of a divalent aromatic diamine residue having at least two ether bonds , given by any one selected from benzene , and Ar 2 is represented by the following formula (2): Or the tetravalent acid dianhydride residue represented by Formula (3) is shown. ]
Figure 0005653185
[In Formula (3), Y shows either a direct bond or -CO-. ]

また、本発明は、上記の負極を用いた二次電池である。   Moreover, this invention is a secondary battery using said negative electrode.

本発明の負極は、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池用の負極を得ることができる。そのため、本発明の負極によれば、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。   The negative electrode of the present invention can provide a negative electrode for a secondary battery having an excellent balance of discharge capacity, output characteristics, and cycle characteristics. Therefore, according to the negative electrode of the present invention, it is possible to obtain a secondary battery having a balance of practical characteristics required for a power source for in-vehicle use such as a hybrid vehicle or an electric vehicle.

以下、本発明を、二次電池用負極の実施の形態に基づいて、詳細に説明する。
本発明では、バインダーとして、下記のとおり、所定のポリイミド樹脂を用いる。一般に、ポリイミド樹脂は、負極活物質同士の結着力に優れるほか、PVDFと比べて負極を形成する集電体に対する接着性に優れる。加えて、ポリイミド樹脂は、フッ素樹脂の一種であるPVDFと異なり、構造内にフッ素を含有せず、また、熱的に安定で耐熱性が高いため、電池温度が異常に上昇したときでも電池が破損、破裂する危険性が低い。
Hereinafter, the present invention will be described in detail based on embodiments of a negative electrode for a secondary battery.
In the present invention, a predetermined polyimide resin is used as a binder as described below. In general, the polyimide resin is excellent in the binding force between the negative electrode active materials, and more excellent in adhesiveness to the current collector forming the negative electrode than PVDF. In addition, unlike PVDF, which is a type of fluororesin, polyimide resin does not contain fluorine in the structure, and because it is thermally stable and has high heat resistance, the battery can be used even when the battery temperature rises abnormally. Low risk of breakage or rupture.

本発明で用いるポリイミド樹脂は、先ず、上記一般式(1)に示した繰返し単位を有し、Ar1が、少なくとも2個のエーテル結合を有した2価の芳香族ジアミン残基であり、好適には以下のものを挙げることができる。

Figure 0005653185
〔式(4)においてXは、芳香環を1以上有する2価の有機基を表し、好ましくは、下記(5)に示した構造のものが挙げられる。〕
Figure 0005653185
The polyimide resin used in the present invention has a repeating unit represented by the general formula (1), and Ar 1 is a divalent aromatic diamine residue having at least two ether bonds. The following can be mentioned.
Figure 0005653185
[In formula (4), X represents a divalent organic group having one or more aromatic rings, and preferably has a structure shown in the following (5). ]
Figure 0005653185

このような芳香族ジアミン残基を与える好ましいジアミン成分として、具体的には2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-ビス(4-アミノフェノキシ)ビフェニル(BAPB)等が挙げられる。   As a preferred diamine component that gives such an aromatic diamine residue, specifically, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 1,3-bis (4-amino) And phenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB), and the like.

また、本発明で用いるポリイミド樹脂は、上記一般式(1)に示したAr2が、下記式(2)又は式(3)で表される4価の酸二無水物残基である。

Figure 0005653185
〔式(3)において、Yは、直結合又は−CO−のいずれかを示す。〕 In the polyimide resin used in the present invention, Ar 2 shown in the general formula (1) is a tetravalent acid dianhydride residue represented by the following formula (2) or formula (3).
Figure 0005653185
[In Formula (3), Y shows either a direct bond or -CO-. ]

このような酸二無水物残基を与える好ましい酸二無水物として、具体的には無水ピロメリット酸(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)等が挙げられる。なお、ポリイミド樹脂の原料となるジアミン及び酸無水物は、それぞれ2種以上の成分を混合してもよく、また、上記Ar1及びAr2で表される以外のジアミンや酸無水物を併用してもよいが、その場合には、上記Ar1及びAr2で表される以外の成分の割合が、それぞれの成分においてモル比で50%以下となるようにするのが望ましい。一般式(1)以外のポリイミド構成単位を構成するAr1とAr2としては、Ar1が、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,3'-ジメチル-4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、ベンジジン、3,3'-ジアミノビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4''-ジアミノ-p-ターフェニル、1,5-ジアミノナフタレン、2,6-ジアミノナフタレンなどから得られるジアミン残基が挙げられ、単独で又は2種以上混合して用いることができる。また、繰り返し数が1〜20のシロキサン鎖を有するシロキサンジアミンなどを用いてもよい。更には、Ar2が式(2)又は式(3)以外の酸二無水物からなるものを使用してもよい。Ar2が一般式(2)及び(3)以外の酸無水物残基を与える酸無水物としては、4,4'-オキシジフタル酸二無水物,ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられ、単独で又は2種以上用いることもできる。 Preferred acid dianhydrides that give such acid dianhydride residues are specifically pyromellitic anhydride (PMDA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and the like. In addition, the diamine and acid anhydride used as the raw material for the polyimide resin may be a mixture of two or more components, respectively, and a diamine or acid anhydride other than those represented by Ar 1 and Ar 2 may be used in combination. However, in that case, it is desirable that the ratio of the components other than those represented by Ar 1 and Ar 2 is 50% or less in terms of the molar ratio of each component. As Ar 1 and Ar 2 constituting the polyimide structural unit other than the general formula (1), Ar 1 is 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, m -Phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'- Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diamino Diphenylsulfone, 3,3'-diaminodiphenylsulfone, benzidine, 3,3'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphe , 3,3′-dimethoxybenzidine, 4,4 ''-diamino-p-terphenyl, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, and the like. Two or more kinds can be mixed and used. Moreover, you may use the siloxane diamine etc. which have the siloxane chain of 1-20 repetition numbers. Furthermore, Ar 2 may be used those comprising the formula (2) or (3) other than the acid dianhydride. Examples of the acid anhydride in which Ar 2 gives an acid anhydride residue other than those represented by the general formulas (2) and (3) include 4,4′-oxydiphthalic dianhydride, naphthalene-2,3,6,7-tetracarboxylic Acid dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetra Carboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3 , 4-Dicarboxyphenyl) -propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3.4-dicarboxyphenyl) ) Methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, and the like. It can also be used above.

一般式(1)のポリイミド樹脂を得る際には、原料のジアミンと酸無水物とを溶媒の存在下で重合し、ポリイミド前駆体樹脂とした後、熱処理してイミド化することにより製造することができる。なお、負極材バインダーとする場合、一般には、ポリイミド前駆体樹脂の状態で活物質、溶媒、その他必要な添加剤と分散混合され活物質層を形成するための組成物とされる。ここで用いる反応溶媒としては、例えばジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種又は2種以上を使用してもよい。また、ポリイミド前駆体樹脂は、バインダーとしての結着性・接着性と活物質と混ぜて得られるスラリーの粘度とのバランスの観点から、得られるポリイミド樹脂の重量平均分子量が10,000〜500,000の範囲となるようにするのが好ましい。   When the polyimide resin of the general formula (1) is obtained, it is produced by polymerizing raw material diamine and acid anhydride in the presence of a solvent to obtain a polyimide precursor resin, followed by heat treatment and imidization. Can do. In addition, when setting it as a negative electrode material binder, generally it is set as the composition for disperse-mixing with an active material, a solvent, and other required additives in the state of a polyimide precursor resin, and forming an active material layer. Examples of the reaction solvent used here include dimethylacetamide, dimethylformamide, N-methylpyrrolidone, 2-butanone, diglyme, and xylene, and one or more of these may be used. In addition, the polyimide precursor resin has a weight average molecular weight of 10,000 to 500, from the viewpoint of the balance between the binding property / adhesiveness as a binder and the viscosity of the slurry obtained by mixing with the active material. It is preferable to be in the range of 000.

また、本発明における負極活物質は、二次電池の種類に応じて適宜選定することができ、例えばリチウム二次電池(リチウムイオン二次電池)の場合には、リチウムをインターカレートすることができるものであればよく、具体的には、黒鉛や非晶質炭素などの炭素材料のほか、リチウム−遷移金属化合物、リチウム−チタン複合酸化物、金属材料、更には、リチウムアルミニウム合金、リチウムスズ合金、リチウムケイ素合金などのリチウム合金等を利用することができ、場合によっては、これら2種以上の負極活物質を併用するようにしてもよい。このうち、一般的には、炭素質材料が用いられ、なかでも黒鉛材料は、少なくとも2000℃程度以上、通常は2600〜3000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、入出力特性やサイクル特性に課題を有することから、ハイブリッド自動車、電気自動車などの車載電源や、電力貯蔵に用いられるような高入出力用途には、黒鉛材料よりも低い温度で焼成されて、黒鉛化度の低い低結晶炭素材料が好適に利用される。   Moreover, the negative electrode active material in this invention can be suitably selected according to the kind of secondary battery, for example, in the case of a lithium secondary battery (lithium ion secondary battery), lithium can be intercalated. Specifically, in addition to carbon materials such as graphite and amorphous carbon, lithium-transition metal compounds, lithium-titanium composite oxides, metal materials, and lithium aluminum alloys, lithium tin An alloy, a lithium alloy such as a lithium silicon alloy, or the like can be used. In some cases, these two or more negative electrode active materials may be used in combination. Of these, carbonaceous materials are generally used, and in particular, the graphite material is an excellent material having a high energy density, which is obtained at a high temperature of at least about 2000 ° C., usually about 2600 to 3000 ° C. However, because it has problems with input / output characteristics and cycle characteristics, it is fired at a temperature lower than that of graphite materials for in-vehicle power sources such as hybrid cars and electric cars, and high input / output applications used for power storage. A low crystalline carbon material having a low degree of graphitization is preferably used.

黒鉛化度の低い低結晶炭素材料としては、例えば、石油系又は石炭系の重質油を最高到達温度400℃〜800℃程度の温度で24時間前後、熱分解・重縮合反応を行って得られた生コークスや、この生コークスを最高到達温度800℃〜1500℃程度でか焼したか焼コークス等が挙げられ、これらを所定の割合で混合するようにしても良い。また、これらの炭素材料にホウ素化合物、リン化合物、窒素化合物等を加えて焼成し、特定の元素で炭素の一部を置換したものを用いることもできる。このような炭素材料は、通常、塊状で得られるため、粉砕機を用いて所定の粒径になるように粉砕するのが良く、その際、二次電池に用いたときのエネルギー効率の観点から、メジアン径として求められる平均粒子径が5〜50μmであるのが好ましく、より好ましくは5〜15μmであり、また、BET比表面積が5m2/g以下となるようにするのが好ましく、より好ましくは1m2/g以下となるようにするのが良い。粉砕された炭素材料は、更に800〜1400℃程度で焼成することで、負極活物質として使用できる。 As a low crystalline carbon material having a low degree of graphitization, for example, a petroleum-based or coal-based heavy oil is obtained by performing a thermal decomposition / polycondensation reaction at a maximum temperature of about 400 ° C. to 800 ° C. for about 24 hours. The raw coke produced and calcined coke obtained by calcining this raw coke at a maximum reached temperature of about 800 ° C. to 1500 ° C. may be mentioned, and these may be mixed at a predetermined ratio. In addition, a material obtained by adding a boron compound, a phosphorus compound, a nitrogen compound, or the like to these carbon materials, firing, and replacing a part of carbon with a specific element can also be used. Since such a carbon material is usually obtained in the form of a lump, it is better to pulverize it to a predetermined particle size using a pulverizer. In that case, from the viewpoint of energy efficiency when used in a secondary battery The average particle diameter determined as the median diameter is preferably 5 to 50 μm, more preferably 5 to 15 μm, and the BET specific surface area is preferably 5 m 2 / g or less, more preferably. Is preferably 1 m 2 / g or less. The pulverized carbon material can be used as a negative electrode active material by further firing at about 800 to 1400 ° C.

そして、本発明では、上記ポリイミド樹脂と負極活物質とを、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)あるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作製し、集電体上に塗布、乾燥することにより、活物質層を備えた負極を得ることができる。   In the present invention, the polyimide resin and the negative electrode active material are mixed by using a solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), dimethylformamide (DMF) or water, alcohol, etc. The negative electrode provided with the active material layer can be obtained by preparing and applying and drying on the current collector.

ここで、集電体として使用される導電性基材の材質は、特に制限されるものではないが、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属箔を用いることができる。また、このような導電性基材の形態は、連続シート、穴あきシート、ネット状(網状)シートなど、いろいろな形態とすることができるが、特に連続シートとすることが好ましい。さらに、導電性基材の厚さは2〜30μmとすることが好ましい。   Here, the material of the conductive substrate used as the current collector is not particularly limited, but a metal foil such as aluminum, copper, nickel, titanium, and stainless steel can be used. Moreover, although the form of such an electroconductive base material can be made into various forms, such as a continuous sheet, a perforated sheet, and a net-like (net-like) sheet, it is particularly preferable to use a continuous sheet. Furthermore, the thickness of the conductive substrate is preferably 2 to 30 μm.

集電体上への活物質層の形成にあたっては、ポリイミド樹脂又はその前駆体をNMP等の有機溶媒に溶かした溶液に、負極活物質及び必要に応じて導電助剤を混合してスラリーとした後、エクストルージョン塗布、カーテン塗布、ロール塗布、グラビア塗布等の公知の手段により集電体に均一な厚みで塗工し、乾燥して有機溶媒を除去した後、加熱硬化させることにより活物質層を形成する。この際、結着性と放電容量とのバランスの観点から、負極活物質に対するポリイミド樹脂の含有割合が0.1〜10質量%の範囲となるようにするのが良く、好ましくは0.3〜8質量%の範囲となるようにするのが良い。また、活物質層の厚みについては、公知の二次電池用の負極を形成する場合と同程度であればよく、特に制限はないが、一般には10〜500μm程度である。   In forming the active material layer on the current collector, a negative electrode active material and, if necessary, a conductive aid were mixed into a slurry obtained by dissolving a polyimide resin or a precursor thereof in an organic solvent such as NMP. Then, the active material layer is formed by coating the current collector with a uniform thickness by a known means such as extrusion coating, curtain coating, roll coating or gravure coating, drying to remove the organic solvent, and then heat curing. Form. At this time, from the viewpoint of the balance between the binding property and the discharge capacity, the content ratio of the polyimide resin with respect to the negative electrode active material may be in the range of 0.1 to 10% by mass, preferably 0.3 to It is good to make it the range of 8 mass%. Further, the thickness of the active material layer may be about the same as that for forming a known negative electrode for a secondary battery, and is not particularly limited, but is generally about 10 to 500 μm.

こうして得た負極は、リチウム二次電池をはじめとした二次電池の電極として好適に用いることができる。本発明の負極を用いてリチウム二次電池を構成する場合、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)x2(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)yM(2)2-y4(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)及びM(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)xM(2)yM(3)z2(式中x、y及びzはx+y+z=1の関係を満たす範囲の数値であり、式中M(1)、M(2)及びM(3)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、LiM(1)xPO4(式中xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、遷移金属カルコゲン化物(Ti、S2、NbSe等)、バナジウム酸化物(V25、V613、V24、V36等)およびリチウム化合物、一般式MxMo6Ch6-y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を用いることができる。 The negative electrode thus obtained can be suitably used as an electrode for a secondary battery such as a lithium secondary battery. When a lithium secondary battery is formed using the negative electrode of the present invention, the opposite positive electrode includes a lithium-containing transition metal oxide LiM (1) x O 2 (where x is a numerical value in the range of 0 ≦ x ≦ 1). Where M (1) represents a transition metal and is composed of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, and In), or LiM (1) y M (2) 2-y O 4 (wherein y is a numerical value in the range of 0 ≦ y ≦ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn , Ti, Cr, V, Fe, Zn, Al, Sn, In), LiM (1) x M (2) y M (3) z O 2 (wherein x, y and z are x + y + z = 1 in the range satisfying the relationship, where M (1), M (2) and M (3) represent transition metals, Co, Ni, Mn, Ti, Cr, V, Fe, Zn , Al, Sn, In at least Consisting types), LiM (1) x PO 4 ( wherein x is a number in the range of 0 ≦ x ≦ 1, wherein M (1) represents a transition metal, Co, Ni, Mn, Ti , Cr , V, Fe, Zn, Al, Sn, In), transition metal chalcogenides (Ti, S 2 , NbSe, etc.), vanadium oxides (V 2 O 5 , V 6 O 13 , V 2) O 4 , V 3 O 6, etc.) and lithium compounds, general formula M x Mo 6 Ch 6-y (where x is a numerical value in the range of 0 ≦ x ≦ 4, y is 0 ≦ y ≦ 1, Medium M is a metal including a transition metal, Ch is a chalcogen metal), or a positive electrode active material such as activated carbon or activated carbon fiber.

また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiB(C65)、LiCl、LiBr、Li3SO3、Li(CF3SO2)2N、Li(CF3SO2)3C、Li(CF3CH2OSO2)2N、Li(CF3CF2CH2OSO2)2N、Li(HCF2CF2CH2OSO2)2N、Li((CF3)2CHOSO2)2N、LiB[C63(CF3)2]4等の1種または2種以上の混合物を挙げることができる。 Further, Examples of the electrolyte filling the space between the positive electrode and the negative electrode, and any known ones can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl LiBr, Li 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4 Mention may be made of mixtures of more than one species.

また、非水系電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−ジメトキシエタン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。   Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1, 2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propio Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene Benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, a single solvent or a mixture of two or more solvents such as dimethyl sulfite may be used.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例により何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of examples. However, the present invention is not limited to the following examples in any way, and can be implemented with appropriate modifications without departing from the scope of the present invention. .

(実施例1)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
Example 1
Using refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained. The size was adjusted to obtain a raw coke powder having an average particle size of 9.9 μm.

上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。   The bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke. The powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 μm.

上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10−ジヒドロ−9−オキサ−10−オスファフェナントレン−10−オキサイド)17.9質量部(リン換算:2.5質量部)、及び炭化ホウ素3.2質量部(ホウ素換算:2.5質量部)を添加してコークス材料とした。   Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder). Name HCA, chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide) 17.9 parts by mass (phosphorus conversion: 2.5 parts by mass), and 3.2 parts by mass of boron carbide (Boron conversion: 2.5 parts by mass) was added to obtain a coke material.

次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Aを得た。   Next, the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material A was obtained.

一方、バインダーの重合は、酸二無水物として無水ピロメリット酸(PMDA)と、ジアミンとして2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)とをほぼ同モル使用して、ジメチルアセトアミド(DMAC)中において常温で4時間反応させることにより、重量平均分子量が144,000のポリイミド樹脂1の前駆体を得た。   On the other hand, for the polymerization of binder, pyromellitic anhydride (PMDA) is used as acid dianhydride and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) is used in approximately the same mole as diamine. Then, a precursor of polyimide resin 1 having a weight average molecular weight of 144,000 was obtained by reacting in dimethylacetamide (DMAC) at room temperature for 4 hours.

次に、上記で得られた負極活物質Aとポリイミド樹脂1の前駆体を用いて以下の要領で負極を作製し、二次電池としての性能を評価した。   Next, the negative electrode was prepared in the following manner using the negative electrode active material A and the polyimide resin 1 precursor obtained above, and the performance as a secondary battery was evaluated.

下記表1に示すように、負極活物質Aとポリイミド樹脂1の前駆体を95質量%と5質量%の比率になるようにし、ジメチルアセトアミド(DMAC)を溶媒として用いて混練してスラリーを作製した。これを厚さ10μmの銅箔に厚みが均一となるように塗布し、その後窒素雰囲気中350℃で30分間熱処理することにより、銅箔上に活物質層を形成した。活物質層を備えた銅箔を乾燥し、所定の電極密度になるようにプレスして、トータル厚みとして60μmの電極シートを作製し、このシートから直径15mmΦの円形に切り出すことにより負極電極を得た。   As shown in Table 1 below, the negative electrode active material A and the polyimide resin 1 precursor were mixed at a ratio of 95% by mass and 5% by mass, and kneaded using dimethylacetamide (DMAC) as a solvent to produce a slurry. did. This was applied to a copper foil having a thickness of 10 μm so as to have a uniform thickness, and then heat-treated at 350 ° C. for 30 minutes in a nitrogen atmosphere, thereby forming an active material layer on the copper foil. The copper foil provided with the active material layer is dried and pressed to a predetermined electrode density to produce an electrode sheet having a total thickness of 60 μm, and a negative electrode is obtained by cutting the sheet into a circle having a diameter of 15 mmΦ. It was.

得られた負極電極について、負極電極単極での電極特性を評価するために、次のようにして試験用リチウム二次電池を作製した。対極には約15.5mmΦに切り出した金属リチウムを用いた。また、電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作製した。 For the obtained negative electrode, in order to evaluate the electrode characteristics of the negative electrode single electrode, a test lithium secondary battery was prepared as follows. As the counter electrode, metallic lithium cut out to about 15.5 mmΦ was used. In addition, a coin cell was prepared by using LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixture) as an electrolytic solution, and using a porous membrane of propylene as a separator. did.

得られたこのコインセルを使用して、25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で、0.5mA/cm2の定電流放電により初期の放電容量を、5mA/cm2の定電流放電及び充電を実施した際の出力特性及び入力特性を容量維持率で調べたところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が78.2%、入力特性に関する容量維持率が56.2%であった。また、これらの割合の積を入出力バランスとして評価したところ、0.44であった。ここで、出力特性に関する容量維持率は、初期の放電容量に対する5mA/cm2定電流放電時の放電容量の比から求め、入力特性に関する容量維持率は、初期の充電容量に対する5mA/cm2定電流充電時の充電容量の比から求めた。また、0.5mA/cm2における定電流放電及び充電を3サイクル繰り返して、1サイクル目の放電容量に対する3サイクル目の放電容量の比から求めた3サイクル後の容量維持率は95.2%であった。更に、定電流放電及び充電を100サイクル繰り返して、1サイクル目の放電容量に対する100サイクル目の放電容量の比から求めた100サイクル後の容量維持率は87.7%であった。なお、この100サイクル後の容量維持率(サイクル特性)については、容量維持率が80%以上であれば◎、70%以上80%未満であれば○、60%以上70%未満であれば△、60%未満であれば×として、表1には4段階で評価した結果を記した。 Using this coin cell obtained, a constant current discharge of 0.5 mA / cm 2 was performed at a constant temperature of 25 ° C., with a terminal voltage lower limit voltage of 0 V and a discharge upper limit voltage of 1.5 V. When the initial discharge capacity was examined for output characteristics and input characteristics at a constant current discharge of 5 mA / cm 2 and charging with the capacity maintenance ratio, the discharge capacity was 313 mAh / g, and the capacity maintenance ratio related to the output characteristics. Was 78.2%, and the capacity retention rate related to the input characteristics was 56.2%. The product of these ratios was evaluated as the input / output balance and found to be 0.44. Here, the capacity maintenance rate related to the output characteristics is obtained from the ratio of the discharge capacity during 5 mA / cm 2 constant current discharge to the initial discharge capacity, and the capacity maintenance ratio related to the input characteristics is 5 mA / cm 2 constant relative to the initial charge capacity. It calculated | required from ratio of the charge capacity at the time of electric current charge. The capacity maintenance rate after 3 cycles obtained from the ratio of the discharge capacity at the 3rd cycle to the discharge capacity at the 1st cycle by repeating constant current discharge and charging at 0.5 mA / cm 2 for 3 cycles was 95.2%. Met. Furthermore, constant capacity discharge and charging were repeated 100 cycles, and the capacity retention rate after 100 cycles, which was obtained from the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle, was 87.7%. As for the capacity retention ratio (cycle characteristics) after 100 cycles, ◎ if the capacity retention ratio is 80% or more, ◯ if it is 70% or more and less than 80%, △ if it is 60% or more and less than 70%. If less than 60%, the result of evaluation in four stages is shown in Table 1 as x.

(比較例1)
上記実施例1において使用したバインダーをポリフッ化ビニリデン(PVDF)とし、350℃での熱処理を省略した以外は実施例1と同様にして負極電極を得た(表3)。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は291mAh/gであり、出力特性に関する容量維持率が61.2%、入力特性に関する容量維持率が32.8%であった。また、これらの割合の積から得られる入出力バランスは0.20であり、定電流放電及び充電を3サイクル繰り返して求めた3サイクル後の容量維持率は88.0%であり、定電流放電及び充電を100サイクル繰り返して求めた100サイクル後の容量維持率は63.9%であった。
(Comparative Example 1)
A negative electrode was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (PVDF) was used as the binder used in Example 1 and the heat treatment at 350 ° C. was omitted (Table 3). The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 291 mAh / g, the capacity maintenance ratio related to output characteristics was 61.2%, and the capacity maintenance ratio related to input characteristics was 32.8%. Met. Moreover, the input / output balance obtained from the product of these ratios is 0.20, the capacity retention rate after 3 cycles obtained by repeating 3 cycles of constant current discharge and charge is 88.0%, and constant current discharge The capacity retention rate after 100 cycles obtained by repeating 100 cycles of charging was 63.9%.

(実施例2〜5、比較例2〜5)
実施例1において使用したバインダーを、表1に示す組成を有するポリイミド樹脂2〜5にかえた以外は、実施例1と同様にして実施例2〜5に係る負極電極を得た。また、バインダーを表3に示す組成のポリイミド樹脂9〜12にかえた以外は実施例1と同様にして、比較例2〜5に係る負極電極を得た。得られた負極電極について、それぞれ、実施例1と同様にして放電容量、出力特性、及びサイクル特性を評価した。結果を表1及び表3に示す。なお、表1〜表3に記した略称の意味は以下のとおりであり、ポリイミド樹脂2〜5及び9〜12は、実施例1と同様の操作によってそれぞれ前駆体を重合し、活物質層を形成する際の熱処理によりイミド化させた。
BTDA:3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
DSDA:3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物
BPADA:2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物
PDA:p-フェニレンジアミン
DAPE:4,4'-ジアミノジフェニルエーテル
(Examples 2-5, Comparative Examples 2-5)
Negative electrodes according to Examples 2 to 5 were obtained in the same manner as in Example 1 except that the binders used in Example 1 were changed to polyimide resins 2 to 5 having the compositions shown in Table 1. Moreover, except having changed the binder into the polyimide resin 9-12 of the composition shown in Table 3, it carried out similarly to Example 1, and obtained the negative electrode which concerns on Comparative Examples 2-5. About the obtained negative electrode, it carried out similarly to Example 1, and evaluated discharge capacity, output characteristics, and cycling characteristics, respectively. The results are shown in Tables 1 and 3. In addition, the meaning of the abbreviation described in Table 1-Table 3 is as follows, and polyimide resin 2-5 and 9-12 respectively polymerize a precursor by the same operation as Example 1, and an active material layer is formed. It was imidized by heat treatment during formation.
BTDA: 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
TPE-R: 1,3-bis (4-aminophenoxy) benzene
APB: 1,3-bis (3-aminophenoxy) benzene
DSDA: 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride
BPADA: 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
PDA: p-Phenylenediamine
DAPE: 4,4'-diaminodiphenyl ether

Figure 0005653185
Figure 0005653185

Figure 0005653185
Figure 0005653185

Figure 0005653185
Figure 0005653185

(実施例6)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得て、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
(Example 6)
Using refined pitch from which quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained. The size was adjusted to obtain a raw coke powder having an average particle size of 9.9 μm.

上述のようにして得た塊状の生コークスを、ロータリーキルンによって入口付近温度700℃から出口付近温度1500℃(最高到達温度)の温度で1時間以上熱処理して塊状のか焼コークスを得て、同じくジェットミルにて微粉砕及び整粒し、平均粒径が9.5μmのか焼コークス粉を得た。   The bulk raw coke obtained as described above is heat-treated for 1 hour or more at a temperature from the inlet temperature of 700 ° C. to the outlet temperature of 1500 ° C. (maximum temperature reached) by a rotary kiln to obtain massive calcined coke. The powder was pulverized and sized by a mill to obtain calcined coke powder having an average particle size of 9.5 μm.

上述のようにして得た生コークス粉の50質量部とか焼コークス粉の50質量部の合計(コークス粉100質量部)に対し、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10−ジヒドロ−9−オキサ−10−オスファフェナントレン−10−オキサイド)17.9質量部(リン換算:2.5質量部)を添加してコークス材料とした。   Phosphoric acid ester (14% by mass active phosphorus solid resin: manufactured by Sanko Co., Ltd.) with respect to the total of 50 parts by mass of raw coke powder and 50 parts by mass of calcined coke powder obtained as described above (100 parts by mass of coke powder). Name HCA, chemical name: 9,10-dihydro-9-oxa-10-osfaphenanthrene-10-oxide) 17.9 parts by mass (phosphorus conversion: 2.5 parts by mass) was added to obtain a coke material.

次いで、上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質Bを得た。   Next, the coke material is heated from room temperature at a rate of 600 ° C./hour, reaches 900 ° C. (maximum temperature reached), and is further held for 2 hours for carbonization treatment (firing), and a lithium secondary battery Negative electrode active material B was obtained.

バインダーには、実施例1において使用したポリイミド樹脂1の前駆体を用いて、実施例1と同様にして負極電極を得た(表2)。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は313mAh/gであり、出力特性に関する容量維持率が80.1%、入力特性に関する容量維持率が57.0%であった。これらの割合の積から得られる入出力バランスは0.46であった。また、3サイクル後の容量維持率は95.8%であり、100サイクル後の容量維持率に関するサイクル特性の評価は◎であった。   As the binder, the precursor of polyimide resin 1 used in Example 1 was used, and a negative electrode was obtained in the same manner as in Example 1 (Table 2). The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 313 mAh / g, the capacity maintenance ratio related to output characteristics was 80.1%, and the capacity maintenance ratio related to input characteristics was 57.0%. Met. The input / output balance obtained from the product of these ratios was 0.46. Further, the capacity retention rate after 3 cycles was 95.8%, and the evaluation of the cycle characteristics related to the capacity retention rate after 100 cycles was ◎.

(実施例7〜11)
実施例6において使用したバインダーを、表2に示す組成を有するポリイミド樹脂2、3及び6〜8にかえた以外は、実施例6と同様にして負極電極を得た。得られた負極電極について、実施例6と同様にして放電容量、出力特性、及びサイクル特性を評価した。結果を表2に示す。なお、表2に記した新たな略称の意味は以下のとおりであり、その他は上述したとおりである。また、ポリイミド樹脂6〜8は、実施例1と同様の操作によってそれぞれ前駆体を重合し、活物質層を形成する際の熱処理によりイミド化させた。
m-TB:2,2'-ジメチル-4,4'-ジアミノビフェニル
(Examples 7 to 11)
A negative electrode was obtained in the same manner as in Example 6 except that the binder used in Example 6 was changed to polyimide resins 2, 3 and 6-8 having the composition shown in Table 2. About the obtained negative electrode, it carried out similarly to Example 6, and evaluated discharge capacity, output characteristics, and cycling characteristics. The results are shown in Table 2. In addition, the meaning of the new abbreviation described in Table 2 is as follows, and others are as above-mentioned. In addition, polyimide resins 6 to 8 were respectively imidized by heat treatment in forming an active material layer by polymerizing precursors by the same operation as in Example 1.
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl

(実施例12)
実施例1において使用した負極活物質Aのかわりに天然黒鉛を用いた以外は、実施例1と同様にして負極電極を得た(表2)。得られた負極電極について、実施例1と同様にして評価したところ、放電容量は352mAh/gであり、出力特性に関する容量維持率が93.7%であった。また、3サイクル後の容量維持率は98.6%であり、100サイクル後の容量維持率に関するサイクル特性の評価は○であった。
(Example 12)
A negative electrode was obtained in the same manner as in Example 1 except that natural graphite was used instead of the negative electrode active material A used in Example 1 (Table 2). The obtained negative electrode was evaluated in the same manner as in Example 1. As a result, the discharge capacity was 352 mAh / g, and the capacity retention rate related to output characteristics was 93.7%. Moreover, the capacity retention rate after 3 cycles was 98.6%, and the evaluation of the cycle characteristics related to the capacity retention rate after 100 cycles was ◯.

上記実施例1〜12、及び比較例1〜5の結果から明らかなように、本発明に係る実施例1〜12の負極によれば、バインダーとしてPVDFを使用した比較例1や、一般式(1)で表されるもの以外のポリイミド樹脂を使用した比較例2〜5の場合と比べて、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を得ることができることが分かった。   As is clear from the results of Examples 1 to 12 and Comparative Examples 1 to 5, according to the negative electrodes of Examples 1 to 12 according to the present invention, Comparative Example 1 using PVDF as a binder and the general formula ( It was found that a secondary battery excellent in the balance of discharge capacity, output characteristics, and cycle characteristics can be obtained as compared with Comparative Examples 2 to 5 using polyimide resins other than those represented by 1). .

本発明の負極は、放電容量、出力特性、及びサイクル特性のバランスに優れた二次電池を得ることができる。そのため、この負極を用いれば、ハイブリッド自動車や電気自動車用等の車載用途の電源に要求される実用特性をバランス良く兼ね備えた二次電池を得ることができる。また、これらの用途に限られず、燃料電池自動車用電源をはじめ、電動工具用電源など、高出力、高容量、長寿命が要求される電源として好適に利用することができる。   The negative electrode of the present invention can provide a secondary battery having an excellent balance of discharge capacity, output characteristics, and cycle characteristics. Therefore, by using this negative electrode, it is possible to obtain a secondary battery having a balance of practical characteristics required for a power source for in-vehicle use such as a hybrid vehicle or an electric vehicle. Moreover, it is not restricted to these uses, It can utilize suitably as a power supply by which high output, a high capacity | capacitance, and a long life are requested | required, such as a power supply for electric power tools, including a power supply for fuel cell vehicles.

Claims (4)

炭素材料を用いた負極活物質をバインダーで一体化した活物質層を備えた二次電池用の負極であって、前記バインダーとして、下記一般式(1)で表される繰返し単位を有するポリイミド樹脂を用いたことを特徴とする二次電池用負極。
Figure 0005653185
〔式中、Ar1は、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、及び1,3-ビス(3-アミノフェノキシ)ベンゼンから選ばれるいずれかによって与えられて、少なくとも2個のエーテル結合を有した2価の芳香族ジアミン残基を50モル%以上含有するものであり、Ar2は、下記式(2)又は式(3)で表される4価の酸二無水物残基を示す。〕
Figure 0005653185
〔式(3)において、Yは、直結合又は−CO−のいずれかを示す。〕
A negative electrode for a secondary battery comprising an active material layer in which a negative electrode active material using a carbon material is integrated with a binder, the polyimide resin having a repeating unit represented by the following general formula (1) as the binder The negative electrode for secondary batteries characterized by using.
Figure 0005653185
[ Wherein Ar 1 represents 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis (4-aminophenoxy) benzene, and 1,3-bis (3-amino Phenoxy) containing 50 mol% or more of a divalent aromatic diamine residue having at least two ether bonds , given by any one selected from benzene , and Ar 2 is represented by the following formula (2): Or the tetravalent acid dianhydride residue represented by Formula (3) is shown. ]
Figure 0005653185
[In Formula (3), Y shows either a direct bond or -CO-. ]
負極活物質に対するポリイミド樹脂の含有割合が、0.1〜10質量%の範囲である請求項1に記載の二次電池用負極。   The negative electrode for a secondary battery according to claim 1, wherein a content ratio of the polyimide resin with respect to the negative electrode active material is in a range of 0.1 to 10% by mass. 請求項1又は2に記載の負極を用いた二次電池。   A secondary battery using the negative electrode according to claim 1. ハイブリッド自動車又は電気自動車用の車載電源として用いる請求項3に記載の二次電池。   The secondary battery according to claim 3, which is used as an in-vehicle power source for a hybrid vehicle or an electric vehicle.
JP2010253995A 2009-12-11 2010-11-12 Secondary battery negative electrode and secondary battery using the same Expired - Fee Related JP5653185B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010253995A JP5653185B2 (en) 2009-12-11 2010-11-12 Secondary battery negative electrode and secondary battery using the same
PCT/JP2010/072113 WO2011071106A1 (en) 2009-12-11 2010-12-09 Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery
TW099143236A TW201137072A (en) 2009-12-11 2010-12-10 Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009282097 2009-12-11
JP2009282097 2009-12-11
JP2010253995A JP5653185B2 (en) 2009-12-11 2010-11-12 Secondary battery negative electrode and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2011142069A JP2011142069A (en) 2011-07-21
JP5653185B2 true JP5653185B2 (en) 2015-01-14

Family

ID=44457764

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010253993A Withdrawn JP2011142068A (en) 2009-12-11 2010-11-12 Resin precursor for binder, resin precursor solution, and binder composition
JP2010253995A Expired - Fee Related JP5653185B2 (en) 2009-12-11 2010-11-12 Secondary battery negative electrode and secondary battery using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010253993A Withdrawn JP2011142068A (en) 2009-12-11 2010-11-12 Resin precursor for binder, resin precursor solution, and binder composition

Country Status (2)

Country Link
JP (2) JP2011142068A (en)
TW (1) TW201137072A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543826B2 (en) * 2010-03-31 2014-07-09 新日鉄住金化学株式会社 Secondary battery negative electrode and secondary battery using the same
JP5508358B2 (en) * 2011-07-29 2014-05-28 株式会社Shカッパープロダクツ Rolled copper foil, method for producing the same, and lithium ion secondary battery negative electrode using the rolled copper foil
WO2013115219A1 (en) * 2012-01-31 2013-08-08 独立行政法人産業技術総合研究所 Resin composition for lithium ion cell positive electrode
JP5358754B1 (en) * 2012-03-07 2013-12-04 三井化学株式会社 Electrode composite paste and electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302771A (en) * 1997-04-22 1998-11-13 Toyobo Co Ltd Negative electrode for secondary battery and secondary battery using the same
JP2003193398A (en) * 2001-12-18 2003-07-09 Ube Ind Ltd Impregnating material using polyimide as a binder and laminated product therefrom
JP2007012310A (en) * 2005-06-28 2007-01-18 Jsr Corp Solid polyelectrolyte, proton conduction membrane, electrode electrolyte, electrode paste, and membrane-electrode assembly
JP5398962B2 (en) * 2006-06-30 2014-01-29 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP5186855B2 (en) * 2007-09-25 2013-04-24 宇部興産株式会社 Binder resin
JP5361232B2 (en) * 2008-03-28 2013-12-04 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
TW201137072A (en) 2011-11-01
JP2011142069A (en) 2011-07-21
JP2011142068A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US10056614B2 (en) Polyimide binder for power storage device, electrode sheet using same, and power storage device
WO2017099247A1 (en) Solid-state electrolyte composition, sheet for all-solid-state secondary battery, electrode sheet for all-solid-state second battery and manufacturing method therefor, and all-solid-state secondary battery and manufacturing method therefor
CN107431207B (en) Binder resin for electrode of lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6442607B2 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP5715572B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2010251126A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
KR20170102949A (en) Carbon material, production method thereof and use thereof
JP5653185B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2010287557A (en) Anode active material for lithium secondary battery, and on-board lithium secondary battery using the same
JP5543826B2 (en) Secondary battery negative electrode and secondary battery using the same
TW201343840A (en) Electrode mixture paste for lithium ion secondary battery, electrode and lithium ion secondary battery
JP4503807B2 (en) Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery
JP2001345103A (en) Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP5603590B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
WO2011071106A1 (en) Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery
JP5886543B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP7070421B2 (en) Electrode with heat-resistant insulating layer
JP5662698B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
WO2023140276A1 (en) Polyimide binder precursor composition, and power storage device using same
JP2023155344A (en) Polyimide binder for power storage device, electrode mixture paste, negative electrode active material layer, negative electrode sheet for power storage device, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R150 Certificate of patent or registration of utility model

Ref document number: 5653185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees