JP2009224323A - Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material - Google Patents

Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material Download PDF

Info

Publication number
JP2009224323A
JP2009224323A JP2009035886A JP2009035886A JP2009224323A JP 2009224323 A JP2009224323 A JP 2009224323A JP 2009035886 A JP2009035886 A JP 2009035886A JP 2009035886 A JP2009035886 A JP 2009035886A JP 2009224323 A JP2009224323 A JP 2009224323A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035886A
Other languages
Japanese (ja)
Inventor
Daisuke Ikeda
大佐 池田
Katsuhito Kuramae
勝仁 倉前
Kazuki Tagawa
和樹 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2009035886A priority Critical patent/JP2009224323A/en
Priority to PCT/JP2009/052915 priority patent/WO2009104690A1/en
Publication of JP2009224323A publication Critical patent/JP2009224323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material for a nonaqueous electrolyte secondary battery negative electrode excellent in charge and discharge characteristics, and to provide a manufacturing method thereof. <P>SOLUTION: The nonaqueous electrolyte secondary battery negative electrode active material includes a carbon material using at least one of either petroleum-based heavy oil and coal-based heavy oil as a raw material and a phosphorus compound, and is manufactured with a distance d<SB>002</SB>between crystal planes to be 0.340 nm or larger, a crystallite size Lc (110) in the direction of the C axis to be 5 nm or smaller, the intensity ratio (R1=I<SB>1,360</SB>/I<SB>1,580</SB>) of the diffraction peak near 1,360 cm<SP>-1</SP>to that of near 1,580 cm<SP>-1</SP>measured by the Raman spectroscopy to be increased in the range of 1% to 40% compared with the intensity ratio (R0=I<SB>1,360</SB>/I<SB>1,580</SB>) in a material that is the same intensity ratio without containing the phosphorus compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池負極活物質及び非水電解質二次電池負極活物質の製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery negative electrode active material and a method for producing a non-aqueous electrolyte secondary battery negative electrode active material.

非水電解質二次電池の一種であるリチウムイオン二次電池は高エネルギー密度、貯蔵特性および信頼性に優れた二次電池の一種であり、近年注目されている。しかしながら金属リチウムを二次電池の負極活物質に用いた場合、充電時に負極表面にデントライトと称される針状結晶の金属リチウムが析出し、この針状結晶がセパレータを突き破り正極と負極との間で内部短絡を起こすことがあった。このため、充電時には、リチウムが炭素材料中に挿入するように構成した負極材が用いられている。この場合用いる炭素材料の放電容量ならびに充放電効率はその焼成温度によりある程度決まってしまうことが知られている。   A lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, is a kind of secondary battery excellent in high energy density, storage characteristics, and reliability, and has attracted attention in recent years. However, when lithium metal is used as the negative electrode active material of the secondary battery, acicular crystal lithium called dentite is deposited on the negative electrode surface during charging, and the acicular crystal breaks through the separator to form a contact between the positive electrode and the negative electrode. There was an internal short circuit. For this reason, the negative electrode material comprised so that lithium may be inserted in a carbon material at the time of charge is used. It is known that the discharge capacity and charge / discharge efficiency of the carbon material used in this case are determined to some extent by the firing temperature.

炭素材料のなかでも黒鉛材料は、少なくとも2,000℃程度以上、通常は2,600〜3,000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、高入出力特性やサイクル特性に課題を有している。このため、例えば電力貯蔵用や電気自動車等の高入出力用途には、黒鉛材料よりも低い温度で焼成され、黒鉛化度の低い低結晶炭素材料の利用が主に研究されている。   Among the carbon materials, the graphite material is an excellent material having a high energy density, which is obtained at a high temperature of at least about 2,000 ° C., usually about 2,600 to 3,000 ° C., but has high input / output characteristics. And has problems with cycle characteristics. For this reason, for example, for high input / output applications such as power storage and electric vehicles, the use of a low-crystalline carbon material that is fired at a temperature lower than that of the graphite material and has a low degree of graphitization is mainly studied.

例えば、易黒鉛化炭素である安価なピッチを原料とすることにより、高性能なHEV用リチウム電池用炭素材料が製造可能であることが報告されている(特許文献1参照)。 この報告によれば、リチウム二次電池用負極活物質として、炭素前駆体を焼成して得られる、所定の結晶構造および細孔構造を有する炭素質粉末をリチウム二次電池用負極活物質として用いたリチウム二次電池は、急速な充放電が可能で、高出力特性に優れるとされている。   For example, it has been reported that a high-performance carbon material for a lithium battery for HEV can be produced by using an inexpensive pitch that is graphitizable carbon as a raw material (see Patent Document 1). According to this report, as a negative electrode active material for a lithium secondary battery, a carbonaceous powder having a predetermined crystal structure and pore structure obtained by firing a carbon precursor is used as a negative electrode active material for a lithium secondary battery. The lithium secondary battery is capable of rapid charge and discharge and is said to be excellent in high output characteristics.

これに対して、上記の炭素前駆体を焼成して得られるものは一般に充放電容量やサイクル性などの特性が十分ではないとして、樹脂組成物あるいはその硬化物を予備炭化処理し、得られる炭素前駆体の表面にリン含有化合物を担持させてリン担持前駆体とした後、これを炭化処理し、さらに、水洗によりリン成分を実質的に除去して二次電池用負極材用活物質を得る方法が提案されている(特許文献2参照)。   On the other hand, what is obtained by firing the above carbon precursor is generally obtained by precarbonizing the resin composition or its cured product, assuming that characteristics such as charge / discharge capacity and cycleability are not sufficient. After a phosphorus-containing compound is supported on the surface of the precursor to form a phosphorus-supported precursor, this is carbonized, and the phosphorus component is substantially removed by washing with water to obtain an active material for a negative electrode material for a secondary battery. A method has been proposed (see Patent Document 2).

そして、この方法により得られる活物質を二次電池用負極材に用いることで、充放電特性に優れた二次電池を得ることができるとされている。   And it is supposed that the secondary battery excellent in charging / discharging characteristic can be obtained by using the active material obtained by this method for the negative electrode material for secondary batteries.

特開2007−311322号公報JP 2007-311322 A 特開2006−89349号公報JP 2006-89349 A

しかしながら、上記特許文献2の方法により得られる活物質を二次電池用負極材に用いた二次電池についても、充放電特性は必ずしも十二分に優れるものではない。また、樹脂を使用する難黒鉛化炭素は、原料が高価である。また、製造時に架橋剤を使用する等、プロセスが複雑であり低コスト化が困難である。加えて、低温焼成材料(負極材料)は真密度が低いことからリチウム二次電池の小型化・軽量化が困難な材料である。   However, the charge / discharge characteristics of the secondary battery using the active material obtained by the method of Patent Document 2 as the negative electrode material for the secondary battery are not always excellent. Moreover, the raw material of the non-graphitizable carbon using a resin is expensive. Further, the process is complicated, such as using a crosslinking agent at the time of production, and it is difficult to reduce the cost. In addition, the low-temperature fired material (negative electrode material) is a material that is difficult to reduce the size and weight of the lithium secondary battery because of its low true density.

本発明は、上記の課題に鑑みてなされたものであり、充放電特性に優れる非水電解質二次電池負極用活物質、及びその製造方法を提供することを目的とする。   This invention is made | formed in view of said subject, and it aims at providing the active material for nonaqueous electrolyte secondary battery negative electrodes which is excellent in charging / discharging characteristics, and its manufacturing method.

上記目的を達成すべく、本発明は、
石油系重質油および石炭系重質油のうちの少なくとも1つを原料とする炭素材とリン化合物とを含み、
X線回折による結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下であって、
ラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大していることを特徴とする、非水電解質二次電池負極活物質に関する。
In order to achieve the above object, the present invention provides:
A carbon material and a phosphorus compound made from at least one of petroleum heavy oil and coal heavy oil;
The distance d 002 between crystal planes by X-ray diffraction is 0.340 nm or more, the crystallite size Lc (110) in the C-axis direction is 5 nm or less,
The intensity ratio when the intensity ratio diffraction peaks 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by Raman spectroscopy (R1 = I 1360 / I 1580 ) is, not including the phosphorus compound (R0 = I 1360 / I 1580 ), and relates to a non-aqueous electrolyte secondary battery negative electrode active material characterized by an increase in the range of 1% to 40%.

また、本発明は、
非水電解質二次電池負極活物質の製造方法であって、
石油系重質油および石炭系重質油のうちの少なくとも1つの原料から炭素材を得る工程と、
前記炭素材にリン化合物を添着した後に焼成して焼成体を得る工程とを具え、
X線回折による結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下であって、
ラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大してなる非水電解質二次電池負極活物質の製造方法に関する。
The present invention also provides:
A method for producing a non-aqueous electrolyte secondary battery negative electrode active material comprising:
Obtaining a carbon material from at least one raw material of petroleum heavy oil and coal heavy oil;
Including a step of attaching a phosphorus compound to the carbon material and firing to obtain a fired body,
The distance d 002 between crystal planes by X-ray diffraction is 0.340 nm or more, the crystallite size Lc (110) in the C-axis direction is 5 nm or less,
The intensity ratio when the intensity ratio diffraction peaks 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by Raman spectroscopy (R1 = I 1360 / I 1580 ) is, not including the phosphorus compound (R0 = I 1360 / I 1580 ), and relates to a method for producing a non-aqueous electrolyte secondary battery negative electrode active material that increases in the range of 1% to 40%.

本発明の非水電解質二次電池負極活物質は、石油系重質油および石炭系重質油のうちの少なくとも1つを原料とする炭素材及びリン化合物を含み、X線回折による結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下であり、ラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大してなる。 The negative electrode active material of the nonaqueous electrolyte secondary battery of the present invention includes a carbon material and a phosphorus compound that are made from at least one of petroleum heavy oil and coal heavy oil, and has a crystal plane by X-ray diffraction. spacing d 002 is more than 0.340 nm, or less C-axis crystallite size Lc (110) is 5 nm, for the diffraction peak of 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by Raman spectroscopy The intensity ratio (R1 = I 1360 / I 1580 ) increases in the range of 1% to 40% compared to the intensity ratio (R0 = I 1360 / I 1580 ) when no phosphorus compound is contained. .

これは、前記非水電解質二次電池負極活物質がリン化合物を含むことによって、前記活物質が微結晶の粒子から構成され、かつ全体的な結晶性がある程度低下することを意味している。以前より、非水電解質二次電池負極活物質の諸特性を向上させるには、その結晶性をある程度低下させることが望ましいことが知られているが、上記条件はその要件を満足するものである。   This means that when the non-aqueous electrolyte secondary battery negative electrode active material contains a phosphorus compound, the active material is composed of microcrystalline particles, and the overall crystallinity is reduced to some extent. In the past, it has been known that it is desirable to reduce the crystallinity to some extent in order to improve various characteristics of the negative electrode active material of the nonaqueous electrolyte secondary battery, but the above conditions satisfy the requirements. .

これは、上述した本発明の製造方法に示すように、上記非水電解質二次電池負極活物質を製造するに際し、その骨格を成す炭素材に対してリン化合物を添着させた状態で焼成を行うことに起因する。すなわち、リン成分が触媒として機能し、炭素材の炭素環の縮合が抑制され、さらに、炭素材の中心部から外表面に向かうにつれ結晶性が傾斜的に低くなることに起因するためと推定される。   As shown in the manufacturing method of the present invention described above, when the non-aqueous electrolyte secondary battery negative electrode active material is manufactured, firing is performed in a state where a phosphorus compound is attached to the carbon material constituting the skeleton. Due to that. That is, it is estimated that the phosphorus component functions as a catalyst, the carbocyclic condensation of the carbon material is suppressed, and the crystallinity gradually decreases from the center of the carbon material toward the outer surface. The

したがって、上記本発明の非水電解質二次電池負極活物質によれば、その充放電特性を向上させることができ、前記非水電解質二次電池負極活物質を、リチウム二次電池の負極活物質として用いることにより、その充放電特性をも向上させることができる。   Therefore, according to the non-aqueous electrolyte secondary battery negative electrode active material of the present invention, the charge / discharge characteristics can be improved, and the non-aqueous electrolyte secondary battery negative electrode active material is used as the negative electrode active material of a lithium secondary battery. As a result, the charge / discharge characteristics can be improved.

以上、本発明によれば、充放電特性に優れる非水電解質二次電池負極用活物質、及びその製造方法を提供することができる。   As mentioned above, according to this invention, the active material for nonaqueous electrolyte secondary battery negative electrodes which is excellent in charging / discharging characteristics, and its manufacturing method can be provided.

本実施の形態に係るリチウム二次電池の一例について、その概略構成を示す図である。It is a figure which shows the schematic structure about an example of the lithium secondary battery which concerns on this Embodiment.

以下、本発明の詳細、並びにその他の特徴及び利点について、実施の形態に基づいて説明する。   Hereinafter, details of the present invention and other features and advantages will be described based on embodiments.

最初に、本実施の形態に係る水電解質二次電池負極活物質について説明する。   First, the water electrolyte secondary battery negative electrode active material according to the present embodiment will be described.

本実施の形態に係る非水電解質二次電池負極活物質は、石油系重質油および石炭系重質油のうちの少なくとも1つを原料とした炭素材及びリン化合物を含み、X線回折による結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下、およびラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大していることを特徴とする。 The non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment includes a carbon material and a phosphorus compound that are made from at least one of petroleum heavy oil and coal heavy oil, and is obtained by X-ray diffraction. spacing d 002 of the crystal plane than 0.340 nm, C-axis crystallite size Lc (110) is 5nm or less, and Raman spectroscopy diffraction 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by The intensity ratio to the peak (R1 = I 1360 / I 1580 ) is increased in the range of 1% to 40% compared to the intensity ratio (R0 = I 1360 / I 1580 ) when the phosphorus compound is not included. It is characterized by.

本実施の形態に用いられる炭素粉末の原料は、石油系重質油由来の石油ピッチ、原油分解ピッチまたは石油スラッジピッチ等、および石炭系重質油由来のコールタールピッチ等のいずれかを単独でまたは2以上を複合して用いる。このとき、これらのピッチに水添処理等を施したものを用いてもよい。また、この原料から得られる炭素材は、好ましくは石炭系生コークスである。石炭系生コークスは、安価であるとともに比較的軟らかいので、以下に説明する製造方法における作業工程を簡易化することができる。なお、前記生コークスをか焼することによって得たか焼コークスをも使用することができる。   The raw material of the carbon powder used in the present embodiment is any one of petroleum heavy oil-derived petroleum pitch, crude oil cracking pitch or petroleum sludge pitch, and coal-based heavy oil-derived coal tar pitch. Or two or more are used in combination. At this time, those pitches subjected to hydrogenation treatment or the like may be used. The carbon material obtained from this raw material is preferably coal-based raw coke. Coal-based raw coke is inexpensive and relatively soft, so the work process in the manufacturing method described below can be simplified. In addition, the calcination coke obtained by calcining the said raw coke can also be used.

結晶面の間隔d002は、学振法に準拠してX線回折で求められる値であり、0.340nm以上である(第1の特徴)。結晶面の間隔d002が0.340を下回ると結晶性が向上し、充放電容量および入出力特性が低下するおそれがある。結晶面の間隔d002の上限は特にないが、二次電池に用いたときのエネルギー効率の観点からは0.350以下程度であることが望ましい。 The distance d 002 between crystal planes is a value obtained by X-ray diffraction based on the Gakushin method, and is 0.340 nm or more (first feature). If the distance d 002 between the crystal planes is less than 0.340, the crystallinity is improved, and the charge / discharge capacity and the input / output characteristics may be deteriorated. There is no particular upper limit on the distance d 002 between crystal planes, but it is preferably about 0.350 or less from the viewpoint of energy efficiency when used in a secondary battery.

炭素の積層面への結晶構造成長を示すC軸方向の結晶子サイズLc(110)は、学振法に準拠してX線回折で求められる値であり、5nm以下である(第2の特徴)。C軸方向の結晶子サイズLc(110)が5nmを上回ると結晶性が向上し、充放電特性が低下するおそれがある。C軸方向の結晶子サイズLc(110)の下限は特にないが、二次電池に用いたときのエネルギー効率の観点からは2nm以上程度であることが望ましい。   The crystallite size Lc (110) in the C-axis direction showing the crystal structure growth on the carbon laminate surface is a value obtained by X-ray diffraction based on the Gakushin method, and is 5 nm or less (second characteristic) ). If the crystallite size Lc (110) in the C-axis direction exceeds 5 nm, the crystallinity may be improved and the charge / discharge characteristics may be deteriorated. Although there is no particular lower limit on the crystallite size Lc (110) in the C-axis direction, it is preferably about 2 nm or more from the viewpoint of energy efficiency when used in a secondary battery.

また、アルゴンレーザを用いたラマン分光法により求められる1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲、好ましくは2%〜35%の範囲で増大していることが要求される(第3の特徴)。 The intensity ratio (R1 = I 1360 / I 1580 ) of the diffraction peak in the vicinity of 1,360 cm −1, which is obtained by Raman spectroscopy using an argon laser, to the diffraction peak in the vicinity of 1,580 cm −1 is Compared to the same strength ratio (R0 = I 1360 / I 1580 ) when not included, it is required to increase in the range of 1% to 40%, preferably in the range of 2% to 35%. 3 features).

上述した第1の特徴から第3の特徴は、上記非水電解質二次電池負極活物質を製造する際に、炭素材に対してリン化合物を添着したことによって、前記負極活物質の全体的な結晶性がある程度低下していることを意味している。以前より、非水電解質二次電池負極活物質の諸特性を向上させるには、その結晶性をある程度低下させることが望ましいことが知られているが、上記条件はその要件を満足するものである。   The first to third features described above are characterized in that when the non-aqueous electrolyte secondary battery negative electrode active material is manufactured, a phosphorous compound is attached to the carbon material, so that the whole of the negative electrode active material can be obtained. It means that the crystallinity is lowered to some extent. In the past, it has been known that it is desirable to reduce the crystallinity to some extent in order to improve various characteristics of the negative electrode active material of the nonaqueous electrolyte secondary battery, but the above conditions satisfy the requirements. .

これは、以下に説明する本発明の製造方法において、上記非水電解質二次電池負極活物質を製造するに際し、その骨格を成す炭素材に対してリン化合物を添着させた状態で焼成を行うことに起因する。すなわち、リン成分が触媒として機能し、炭素材の炭素環の縮合が抑制され、さらに、炭素材の中心部から外表面に向かうにつれ結晶性が傾斜的に低くなることに起因するためと推定される。   This is because, in the production method of the present invention described below, when the non-aqueous electrolyte secondary battery negative electrode active material is produced, firing is performed in a state where a phosphorus compound is attached to the carbon material constituting the skeleton. caused by. That is, it is estimated that the phosphorus component functions as a catalyst, the carbocyclic condensation of the carbon material is suppressed, and the crystallinity gradually decreases from the center of the carbon material toward the outer surface. The

なお、上記非水電解質二次電池負極活物質に含まれるリン化合物は、炭素材の100重量部に対してリン換算で0.1〜6.0重量部、好ましく0.1〜4.0重量部、特には0.1〜3.5重量部とする。添着量が0.1重量部未満ではリン化合物を添着する効果が十分得られないおそれがあり、一方、添着量が6.0重量部を超えると生コークスの炭化が過剰に促進されるおそれがあるためである。   In addition, the phosphorus compound contained in the said nonaqueous electrolyte secondary battery negative electrode active material is 0.1-6.0 weight part in conversion of phosphorus with respect to 100 weight part of a carbon material, Preferably it is 0.1-4.0 weight. Parts, particularly 0.1 to 3.5 parts by weight. If the amount of addition is less than 0.1 parts by weight, the effect of attaching the phosphorus compound may not be sufficiently obtained. On the other hand, if the amount of addition exceeds 6.0 parts by weight, carbonization of raw coke may be excessively promoted. Because there is.

本実施の形態におけるリン化合物の含有量は、リン酸水溶液中のリン成分が全て炭素表面に添着するものとして、リン酸使用量から算出される値である。   The content of the phosphorus compound in the present embodiment is a value calculated from the amount of phosphoric acid used, assuming that all phosphorus components in the phosphoric acid aqueous solution are attached to the carbon surface.

本実施の形態で使用するリン化合物は、特に限定するものではないが、容易に水溶液を調製でき、かつ高い安全性を有する等の観点からは、リン酸類が好ましい。リン酸類としては、リン酸(オルトリン酸)を用いることがより好ましいが、これに限らず直鎖状ポリリン酸や環状ポリリン酸、あるいは各種リン酸エステル化合物等から適宜選択して用いることができる。これらのリン酸類は、いずれか1つを単独で使用してよく、また、2以上を配合して使用してもよい。   The phosphorus compound used in the present embodiment is not particularly limited. However, phosphoric acids are preferable from the viewpoint of easily preparing an aqueous solution and having high safety. Phosphoric acid (orthophosphoric acid) is more preferably used as the phosphoric acid, but is not limited thereto, and can be appropriately selected from linear polyphosphoric acid, cyclic polyphosphoric acid, various phosphoric ester compounds, and the like. Any one of these phosphoric acids may be used alone, or two or more thereof may be used in combination.

次に、本実施の形態に係る非水電解質二次電池負極活物質の製造方法について説明する。   Next, the manufacturing method of the non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment will be described.

本実施の形態に係る非水電解質二次電池負極活物質では、最初に、石油系重質油又および石炭系重質油のうちの少なくとも1つの原料を準備し、これより所定の炭素材を製造する。前記炭素材は、粒径を特に限定するものではないが、メジアン径として求められる平均粒子径が5〜15μmであるとより好ましく、このとき、BET比表面積が5m/g以下であるとより好ましい。 In the non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment, first, at least one raw material of petroleum heavy oil or coal heavy oil is prepared, and a predetermined carbon material is prepared therefrom. To manufacture. The carbon material is not particularly limited in particle diameter, but the average particle diameter calculated as the median diameter is more preferably 5 to 15 μm, and in this case, the BET specific surface area is 5 m 2 / g or less. preferable.

なお、平均粒子径が5μmを下回ると比表面積が過度に増加するおそれがあり、一方、平均粒子径が15μmを上回ると充放電特性が低下するおそれがある。BET比表面積は、5m/gを上回ると、二次電池に用いたときのエネルギー効率が低下するおそれがある。BET比表面積は微細細孔を形成する観点からは2m/g以上程度であることが望ましい。 If the average particle diameter is less than 5 μm, the specific surface area may be excessively increased. On the other hand, if the average particle diameter is more than 15 μm, the charge / discharge characteristics may be deteriorated. If the BET specific surface area exceeds 5 m 2 / g, the energy efficiency when used in a secondary battery may be reduced. The BET specific surface area is desirably about 2 m 2 / g or more from the viewpoint of forming fine pores.

また、前記炭素材を石炭系生コークスとする場合は、石油系重質油又および石炭系重質油を原料を例えばディレードコーカー等のそれぞれ適宜のコークス化設備を用い、いずれも、例えば500℃程度の温度で24時間程度、熱分解・重縮合反応を進めることにより得ることができる。なお、生コークスは比較的軟らかいので、上記炭素材を前記生コークスとすることによって、以下の粉砕を容易に行うことができる。   When the carbon material is coal-based raw coke, petroleum coke heavy oil or coal heavy oil is used as a raw material, for example, a suitable coking facility such as a delayed coker, It can be obtained by advancing the thermal decomposition / polycondensation reaction at a temperature of about 24 hours. In addition, since raw coke is comparatively soft, the following grinding | pulverization can be easily performed by making the said carbon material into the said raw coke.

得られた生コークスは、次の工程である焼成を行う際の型に入るように所定の大きさに粉砕する。粉砕には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー等を挙げることができるが、特にこれに限定されるものではない。   The obtained raw coke is pulverized to a predetermined size so as to enter a mold used in the subsequent firing. An industrially used pulverizer can be used for the pulverization. Specific examples include an atomizer, a Raymond mill, an impeller mill, a ball mill, a cutter mill, a jet mill, and a hybridizer, but are not particularly limited thereto.

なお、上述した生コークスの代わりに、この生コークスを例えば1400℃程度でか焼したか焼コークスを上記炭素材として用いることもできる。   Instead of the above-mentioned raw coke, calcined coke obtained by calcining this raw coke at about 1400 ° C. can also be used as the carbon material.

生コークスの焼成には、大量熱処理が可能なリードハンマー炉、シャトル炉、トンネル炉、ロータリーキルン、ローラーハースキルンあるいはマイクロウェーブ等の設備を用いることができるが、雰囲気制御が可能であれば特にこれに限定されるものではない。また、これらの焼成設備は、連続式およびバッチ式のどちらでもよい。   For firing raw coke, equipment such as lead hammer furnace, shuttle furnace, tunnel furnace, rotary kiln, roller hearth kiln or microwave capable of mass heat treatment can be used, especially if the atmosphere can be controlled. It is not limited. Further, these firing facilities may be either a continuous type or a batch type.

次いで、焼成工程は、上述した炭素材にリン化合物を添着させた状態で行う。例えば900℃以上、より好ましくは1,000℃以上まで昇温した後に、除冷して室温近傍まで降温することによって行う。なお、焼成温度が2,000℃を超えると炭素粉末の黒鉛化が進行するので避けることが好ましい。これにより、得られる炭素粉末の結晶構造が適度に制御される。最高温度での保持時間は特に限定しないが30分以上が好ましい。また、焼成雰囲気は、アルゴンあるいは窒素等の不活性ガス雰囲気とする。   Next, the firing step is performed in a state where a phosphorus compound is attached to the carbon material described above. For example, the temperature is raised to 900 ° C. or higher, more preferably 1,000 ° C. or higher, and then the temperature is lowered to near room temperature after cooling. In addition, since the graphitization of carbon powder will advance when a calcination temperature exceeds 2,000 degreeC, it is preferable to avoid. Thereby, the crystal structure of the carbon powder obtained is controlled moderately. The holding time at the maximum temperature is not particularly limited, but is preferably 30 minutes or more. The firing atmosphere is an inert gas atmosphere such as argon or nitrogen.

また、上記リン化合物は、上述したように、炭素材の100重量部に対してリン換算で0.1〜6.0重量部であることが好ましい。添着量が0.1重量部未満ではリン化合物を添着する効果が十分得られないおそれがあり、一方、添着量が6.0重量部を超えると生コークスの炭化が過剰に促進されるおそれがあるためである。   Moreover, as above-mentioned, it is preferable that the said phosphorus compound is 0.1-6.0 weight part in conversion of phosphorus with respect to 100 weight part of a carbon material. If the amount of addition is less than 0.1 parts by weight, the effect of attaching the phosphorus compound may not be sufficiently obtained. On the other hand, if the amount of addition exceeds 6.0 parts by weight, carbonization of raw coke may be excessively promoted. Because there is.

なお、本実施の形態におけるリン化合物の含有量は、リン酸水溶液中のリン成分が全て炭素表面に添着するものとして、リン酸使用量から算出される値である。   In addition, the content of the phosphorus compound in the present embodiment is a value calculated from the amount of phosphoric acid used, assuming that all phosphorus components in the phosphoric acid aqueous solution are attached to the carbon surface.

また、上記同様に、上述したリン化合物としては、容易に水溶液を調製でき、かつ高い安全性を有する等の観点からリン酸類が好ましい。リン酸類としては、リン酸(オルトリン酸)を用いることがより好ましいが、これに限らず直鎖状ポリリン酸や環状ポリリン酸、あるいは各種リン酸エステル化合物等から適宜選択して用いることができる。これらのリン酸類は、いずれか1つを単独で使用してよく、また、2以上を配合して使用してもよい。   Similarly to the above, as the above-mentioned phosphorus compound, phosphoric acids are preferable from the viewpoint of easily preparing an aqueous solution and having high safety. Phosphoric acid (orthophosphoric acid) is more preferably used as the phosphoric acid, but is not limited thereto, and can be appropriately selected from linear polyphosphoric acid, cyclic polyphosphoric acid, various phosphoric ester compounds, and the like. Any one of these phosphoric acids may be used alone, or two or more thereof may be used in combination.

本実施の形態に係る非水電解質二次電池負極用活物質の製造方法により得られる非水電解質二次電池負極用活物質は、非水電解質二次電池に用いるときに充放電特性に優れる非水電解質二次電池を得ることができる。   The non-aqueous electrolyte secondary battery negative electrode active material obtained by the method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment has excellent charge / discharge characteristics when used in a non-aqueous electrolyte secondary battery. A water electrolyte secondary battery can be obtained.

また、樹脂を使用する難黒鉛化炭素を負極材料に用いる場合に比べて、製造コストが安価であり、さらにまた、易黒鉛化炭素は熱処理温度の上昇により、容易に高密度化が可能であることからリチウム二次電池の小型化・軽量化が容易である。   In addition, the manufacturing cost is low compared to the case where non-graphitizable carbon using a resin is used for the negative electrode material. Further, graphitizable carbon can be easily densified by increasing the heat treatment temperature. Therefore, it is easy to reduce the size and weight of the lithium secondary battery.

つぎに、本実施の形態に係る非水電解質二次電池について説明する。この二次電池は、上記本実施の形態に係る非水電解質二次電池負極用活物質の製造方法により得られる非水電解質二次電池負極用活物質を用いて製造するものである。このとき、好ましくは、リチウムイオン二次電池を製造する。   Next, the nonaqueous electrolyte secondary battery according to the present embodiment will be described. This secondary battery is manufactured using the non-aqueous electrolyte secondary battery negative electrode active material obtained by the method for manufacturing a non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment. At this time, preferably, a lithium ion secondary battery is manufactured.

本実施の形態に係る非水電解質二次電池は、負極材を、セパレータを介して正極材と対向して配置した内部に、電解液を満たしたものである。   The non-aqueous electrolyte secondary battery according to the present embodiment is one in which the negative electrode material is filled with the electrolytic solution in the interior of the negative electrode material facing the positive electrode material with a separator interposed therebetween.

前記非水電解質二次電池負極活物質を用いて負極を形成する方法は、用いられるリチウム二次電池の性能を充分に引き出し且つ、賦形性が高く、化学的、電気化学的に安定であれば特に限定されるものではない。例えば、本実施の形態に係る非水電解質二次電池負極活物質にポリフッ化ビニリデン(PVDF)等のフッ素系樹脂粉末あるいはスチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水溶性粘結剤を炭素質バインダーにして、N-メチルピロリドン(NMP)、ジメチルホルムアミドあるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作製し、集電体上に塗布、乾燥することにより成形することができる。   The method of forming a negative electrode using the non-aqueous electrolyte secondary battery negative electrode active material should sufficiently draw out the performance of the lithium secondary battery used, have high formability, and be chemically and electrochemically stable. There is no particular limitation. For example, the non-aqueous electrolyte secondary battery negative electrode active material according to the present embodiment is a fluorine resin powder such as polyvinylidene fluoride (PVDF) or a water-soluble binder such as styrene butadiene rubber (SBR) or carboxymethyl cellulose (CMC). A carbonaceous binder is used to form a slurry by mixing with N-methylpyrrolidone (NMP), dimethylformamide, or a solvent such as water, alcohol, etc., and coating and drying on a current collector. Can do.

前記正極材を構成する正極活物質は、リチウム二次電池に通常用いることのできるものであれば、特に限定するものではない。正極活物質としては、例えばリチウム含有遷移金属酸化物LiM(1)X2(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)YM(2)2-YO4(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、遷移金属カルコゲン化物(Ti、S2、NbSe、等)、バナジウム酸化物(V25、613、V24、36、等)およびリチウム化合物、一般式MxMo6Ch6-y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等を用いることができる。 The positive electrode active material constituting the positive electrode material is not particularly limited as long as it can be normally used for a lithium secondary battery. As the positive electrode active material, for example, a lithium-containing transition metal oxide LiM (1) X O 2 (wherein x is a numerical value in the range of 0 ≦ x ≦ 1, where M (1) represents a transition metal, Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In), or LiM (1) Y M (2) 2-Y O 4 (where y is 0 ≦ y ≦ 1, where M (1) and M (2) represent transition metals, Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In), transition metal chalcogenides (Ti, S 2 , NbSe, etc.), vanadium oxides (V 2 O 5, V 6 O 13 , V 2 O 4, V 3 O 6, etc.) And lithium compound, general formula M x Mo 6 Ch 6-y (wherein x is a value in the range of 0 ≦ x ≦ 4, y is in a range of 0 ≦ y ≦ 1, where M includes transition metals, etc.) A metal, Ch represents a chalcogen metal), a activated carbon fiber, activated carbon fiber, or the like.

非水系電解質は、リチウム二次電池に通常用いることのできるものであれば、特に限定するものではない。   The non-aqueous electrolyte is not particularly limited as long as it can be normally used for a lithium secondary battery.

電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO4、LiBF4、LiPF6、LiAsF6、LiB(C65)、LiCl、LiBr、Li3SO3、Li(CF3SO2)2N、Li(CF3SO2)3C、Li)CF3CH2OSO2)2N、Li(CF3CF2CH2OSO2)2N、Li(HCF2CF2CH2OSO2)2N、Li((CF32CHOSO22N、LiB[C63(CF32]4等の1種または2種以上の混合物を挙げることができる。 As the electrolyte, any known ones can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl, LiBr, Li 3 SO 3, Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li) CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4, or a mixture of two or more thereof can be given.

一方、非水系電解質、例えば、有機溶媒系電解質における有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−ジメトキシエタン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。   On the other hand, as an organic solvent in a non-aqueous electrolyte, for example, an organic solvent-based electrolyte, for example, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methyl Sulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, A single solvent such as limethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, dimethyl sulfite, etc. Can be used.

本実施の形態に係る高入力特性用リチウム二次電池の一例を図1に示す。
図1に示す簡易セルは、市販のCR2032型コイン電池と同じ構造であり、参照符号10は正極缶を、参照符号12は絶縁パッキンを、参照符号14は正極集電体を、参照符号16は正極を、参照符号18はセパレータを、参照符号20は負極を、参照符号22は負極集電体を、参照符号24は負極缶を、それぞれ示す。
An example of the lithium secondary battery for high input characteristics according to this embodiment is shown in FIG.
The simple cell shown in FIG. 1 has the same structure as a commercially available CR2032-type coin battery. Reference numeral 10 denotes a positive electrode can, reference numeral 12 denotes an insulating packing, reference numeral 14 denotes a positive electrode current collector, and reference numeral 16 denotes a positive electrode current collector. Reference numeral 18 indicates a separator, reference numeral 20 indicates a negative electrode, reference numeral 22 indicates a negative electrode current collector, and reference numeral 24 indicates a negative electrode can.

なお、図1に示すリチウム二次電池において、充放電は、従来と同様に、正極16及び負極20間に電流を流す、あるいは正極16及び負極20間から電流を放出させることによって実施する。   In the lithium secondary battery shown in FIG. 1, charging / discharging is performed by passing a current between the positive electrode 16 and the negative electrode 20 or discharging a current from between the positive electrode 16 and the negative electrode 20 as in the conventional case.

以下に本発明の実施例および比較例を述べる。但し、これら実施例及び比較例によって、本発明の内容が制限されるものではない。   Examples of the present invention and comparative examples will be described below. However, the contents of the present invention are not limited by these examples and comparative examples.

以下の条件で負極材用炭素材料(非水電解質二次電池負極用活物質)を調製した。 A carbon material for negative electrode material (active material for nonaqueous electrolyte secondary battery negative electrode) was prepared under the following conditions.

(実施例1)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を、ジェットミルにて微粉砕、および整粒し、平均粒径が9.9μmの炭素材料粉末(微粉砕生コークス)を得た。
Example 1
Using a refined pitch from which heavy quinoline insolubles have been removed from heavy coal-based oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is pulverized and conditioned with a jet mill. The carbon material powder (fine pulverized raw coke) having an average particle diameter of 9.9 μm was obtained.

ついで、得られた炭素材料粉末15重量部を、水150部に対してリン酸(85質量%水溶液)3.11重量部(リン換算:0.82重量部)および界面活性剤5重量部を溶解させたリン酸水溶液に浸漬した。この後、ホットスターラーを用いて150℃で加熱攪拌することにより水分のみを除去し、リン担持前駆体(リン化合物を添着した微粉砕生コークス)を得た。   Subsequently, 15 parts by weight of the obtained carbon material powder was charged with 3.11 parts by weight (phosphorus conversion: 0.82 parts by weight) of phosphoric acid (85 mass% aqueous solution) and 5 parts by weight of a surfactant with respect to 150 parts of water. It was immersed in the dissolved phosphoric acid aqueous solution. Thereafter, only water was removed by heating and stirring at 150 ° C. using a hot stirrer to obtain a phosphorus-supported precursor (finely pulverized raw coke to which a phosphorus compound was added).

さらに、得られたリン担持前駆体を、室温から600℃/時間の速度で昇温して、1,000℃に到達後、さらに2時間保持して炭化処理(焼成)を行い、負極材用炭素材料(非水電解質二次電池負極用活物質)を得た。   Further, the obtained phosphorus-carrying precursor is heated from room temperature at a rate of 600 ° C./hour, and after reaching 1000 ° C., it is further maintained for 2 hours for carbonization treatment (firing) to be used for the negative electrode material A carbon material (active material for nonaqueous electrolyte secondary battery negative electrode) was obtained.

(比較例1)
リン担持を行わなかった以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Comparative Example 1)
A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that phosphorus was not supported.

(実施例2)
リン担持前駆体調製時に水150重量部に対してリン酸(85質量%水溶液)1.77重量部(リン換算:0.47重量部)を用い、および負極材用炭素材料調製時に炭化温度を1,100℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 2)
Phosphoric acid (85 mass% aqueous solution) 1.77 parts by weight (phosphorus conversion: 0.47 parts by weight) with respect to 150 parts by weight of water during the preparation of the phosphorus-supporting precursor, and the carbonization temperature during the preparation of the carbon material for the negative electrode material A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the temperature was 1,100 ° C.

(比較例2)
リン担持を行わなかった以外は、実施例2と同様にして、負極材用炭素材料を得た。
(Comparative Example 2)
A carbon material for a negative electrode material was obtained in the same manner as in Example 2 except that phosphorus was not supported.

(実施例3)
リン担持前駆体調製時に水150重量部に対してリン酸(85質量%水溶液)0.93重量部(リン換算:0.25重量部)を用い、および負極材用炭素材料調製時に炭化温度を1,300℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 3)
Phosphoric acid (85 mass% aqueous solution) 0.93 parts by weight (phosphorus conversion: 0.25 parts by weight) is used for 150 parts by weight of water when preparing the phosphorus-supporting precursor, and the carbonization temperature is set when preparing the carbon material for the negative electrode material. A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the temperature was 1,300 ° C.

(比較例3)
リン担持を行わなかった以外は、実施例3と同様にして、負極材用炭素材料を得た。
(Comparative Example 3)
A carbon material for a negative electrode material was obtained in the same manner as in Example 3 except that phosphorus was not supported.

(実施例4)
リン担持前駆体調製時に生コークス100重量部に対してリン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10−ジヒドロ−9−オキサ−10−オスファフェナントレン−10−オキサイド )22.3重量部(リン換算:3.1重量部)を用い、および負極材用炭素材料調製時に炭化温度を1,100℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
Example 4
Phosphoric acid ester (14% by mass active phosphorus solid resin: trade name HCA manufactured by Sanko Co., Ltd., chemical name: 9,10-dihydro-9-oxa-10-osfa with respect to 100 parts by weight of raw coke at the time of preparing phosphorus-carrying precursor Phenanthrene-10-oxide) 22.3 parts by weight (phosphorus equivalent: 3.1 parts by weight) and the carbonization temperature at the time of preparing the carbon material for the negative electrode material was changed to 1,100 ° C. Thus, a carbon material for a negative electrode material was obtained.

(比較例4)
リン担持を行わなかった以外は、実施例4と同様にして、負極材用炭素材料を得た。
(Comparative Example 4)
A carbon material for a negative electrode material was obtained in the same manner as in Example 4 except that phosphorus was not supported.

(実施例5)
リン担持前駆体調製時に生コークス100重量部に対してリン酸エステル(POD:9,10-ジハイドロ-9-オクサ-10-ホスファフェナントレン-10-オキサイド)22.3重量部(リン換算:3.1重量部)を用い、および負極材用炭素材料調製時に炭化温度を800℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 5)
Phosphoric acid ester (POD: 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) 22.3 parts by weight (phosphorus conversion: 3) with respect to 100 parts by weight of raw coke at the time of preparing the phosphorus-carrying precursor 0.1 parts by weight) and a carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the carbonization temperature was set to 800 ° C. during the preparation of the carbon material for a negative electrode material.

(比較例5)
リン担持を行わなかった以外は、実施例5と同様にして、負極材用炭素材料を得た。
(Comparative Example 5)
A carbon material for a negative electrode material was obtained in the same manner as in Example 5 except that phosphorus was not supported.

(実施例6)
リン担持前駆体調製時に生コークス100重量部に対してリン酸エステル(POD)22.3重量部(リン換算:3.1重量部)を用い、および負極材用炭素材料調製時に炭化温度を900℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 6)
Phosphate ester (POD) 22.3 parts by weight (phosphorus equivalent: 3.1 parts by weight) is used for 100 parts by weight of raw coke at the time of preparing the phosphorus-carrying precursor, and the carbonization temperature is 900 at the time of preparing the carbon material for the negative electrode material. A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the temperature was changed to ° C.

(比較例6)
リン担持を行わなかった以外は、実施例6と同様にして、負極材用炭素材料を得た。
(Comparative Example 6)
A carbon material for a negative electrode material was obtained in the same manner as in Example 6 except that phosphorus was not supported.

(実施例7)
リン担持前駆体調製時に生コークス100重量部に対してリン酸エステル(POD)22.3重量部(リン換算:3.1重量部)を用い、および負極材用炭素材料調製時に炭化温度を1,000℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 7)
Phosphoric acid ester (POD) 22.3 parts by weight (phosphorus conversion: 3.1 parts by weight) is used with respect to 100 parts by weight of raw coke at the time of preparing the phosphorus-carrying precursor, and the carbonization temperature is set to 1 at the time of preparing the carbon material for the negative electrode material. A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the temperature was 1,000 ° C.

(比較例7)
リン担持を行わなかった以外は、実施例7と同様にして、負極材用炭素材料を得た。
(Comparative Example 7)
A carbon material for a negative electrode material was obtained in the same manner as in Example 7 except that phosphorus was not supported.

(実施例8)
リン担持前駆体調製時に生コークス100重量部に対してリン酸エステル(POD)22.3重量部(リン換算:3.1重量部)を用い、および負極材用炭素材料調製時に炭化温度を1,200℃とした以外は、実施例1と同様にして、負極材用炭素材料を得た。
(Example 8)
Phosphoric acid ester (POD) 22.3 parts by weight (phosphorus conversion: 3.1 parts by weight) is used with respect to 100 parts by weight of raw coke at the time of preparing the phosphorus-carrying precursor, and the carbonization temperature is set to 1 at the time of preparing the carbon material for the negative electrode material. A carbon material for a negative electrode material was obtained in the same manner as in Example 1 except that the temperature was 200 ° C.

(比較例8)
リン担持を行わなかった以外は、実施例8と同様にして、負極材用炭素材料を得た。
(Comparative Example 8)
A carbon material for a negative electrode material was obtained in the same manner as in Example 8 except that phosphorus was not supported.

実施例1〜8および比較例1〜8で調製した負極材用炭素材料を用いて以下の要領で二次電池を作製し性能を評価した。   Using the carbon materials for negative electrode materials prepared in Examples 1 to 8 and Comparative Examples 1 to 8, secondary batteries were produced in the following manner and performance was evaluated.

負極材用炭素材料にバインダーとしてポリフッ化ビニリデン(PVDF)を5質量%加え、N-メチルピロリドン(NMP)を溶媒として混練してスラリーを作製し、これを厚さ18μmの銅箔に均一となるように塗布して負極電極箔を得た。この負極電極箔を乾燥し所定の電極密度にプレスすることにより電極シートを作製し、このシートから直径15mmΦの円形に切り出すことにより負極電極を作製した。この負極電極単極での電極特性を評価するために、対極には約15.5mmΦに切り出した金属リチウムを用いた。   5% by mass of polyvinylidene fluoride (PVDF) as a binder is added to the carbon material for the negative electrode material, and N-methylpyrrolidone (NMP) is kneaded as a solvent to prepare a slurry, which is uniformly formed on a copper foil having a thickness of 18 μm. In this way, a negative electrode foil was obtained. This negative electrode foil was dried and pressed to a predetermined electrode density to prepare an electrode sheet, and a negative electrode was prepared by cutting out from this sheet into a circle having a diameter of 15 mmΦ. In order to evaluate the electrode characteristics of the single electrode of the negative electrode, metallic lithium cut into about 15.5 mmΦ was used for the counter electrode.

電解液としてエチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)にLiPF6を1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作製し、25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で0.4mA/cm2の定電流定電圧充電、定電流放電下で充放電試験を行なった。 A coin cell was prepared by using a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1 mixture) as an electrolyte solution at a concentration of 1 mol / l, and using a porous membrane of propylene as a separator. Charge / discharge test under constant current and constant voltage charge of 0.4 mA / cm 2 at a constant voltage of 25 ° C, with a terminal voltage lower limit voltage of 0V and a discharge upper limit voltage of 1.5V. I did it.

これらの評価結果を、上記負極材用炭素材料の特性と併せて表1に示す。

Figure 2009224323
These evaluation results are shown in Table 1 together with the characteristics of the carbon material for a negative electrode material.
Figure 2009224323

表1から明らかなように、本発明に従ってリン化合物を含む負極材用炭素材料を用いて作製した実施例に係わる二次電池においては、前記負極材用炭素材料がリン化合物を含む場合、特にラマン分光法による強度が減少し、その結晶性が低下していることが分かる。   As is apparent from Table 1, in the secondary battery according to the example manufactured using the carbon material for negative electrode material containing the phosphorus compound according to the present invention, particularly when the carbon material for negative electrode material contains the phosphorus compound, Raman is used. It can be seen that the intensity by the spectroscopic method is reduced and the crystallinity is lowered.

また、このような負極材用炭素材料の低結晶性に起因して、リン化合物を含むあるいは含まないこと以外を除いて同一条件で負極材用炭素材料を作製し、二次電池を作製した実施例1及び比較例1等を比べた場合は、リン化合物を含むような実施例においては、充電容量(mAh/g)、放電容量(mAh/g)及び充放電効率(%)ともに優れることが分かる。   Moreover, due to the low crystallinity of such a carbon material for negative electrode materials, a carbon material for negative electrode materials was manufactured under the same conditions except that a phosphorus compound was included or not included, and a secondary battery was manufactured. When Example 1 and Comparative Example 1 are compared, in an example including a phosphorus compound, the charge capacity (mAh / g), the discharge capacity (mAh / g), and the charge / discharge efficiency (%) may be excellent. I understand.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   While the present invention has been described in detail based on the above specific examples, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

10 正極缶
12 絶縁パッキン
14 正極集電体
16 正極
18 セパレータ
20 負極
22 負極集電体
24 負極缶
DESCRIPTION OF SYMBOLS 10 Positive electrode can 12 Insulation packing 14 Positive electrode collector 16 Positive electrode 18 Separator 20 Negative electrode 22 Negative electrode collector 24 Negative electrode can

Claims (9)

石油系重質油および石炭系重質油のうちの少なくとも1つを原料とする炭素材とリン化合物とを含み、
結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下であって、
ラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大していることを特徴とする、非水電解質二次電池負極活物質。
A carbon material and a phosphorus compound made from at least one of petroleum heavy oil and coal heavy oil;
The distance d 002 between crystal planes is 0.340 nm or more, the crystallite size Lc (110) in the C-axis direction is 5 nm or less,
The intensity ratio when the intensity ratio diffraction peaks 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by Raman spectroscopy (R1 = I 1360 / I 1580 ) is, not including the phosphorus compound (R0 = I 1360 / I 1580 ), a non-aqueous electrolyte secondary battery negative electrode active material characterized by increasing in the range of 1% to 40%.
前記強度比(R1=I1360/I1580)が、前記強度比(R0=I1360/I1580)に比較して、2%〜35%の範囲で増大していることを特徴とする、請求項1に記載の非水電解質二次電池負極活物質。 The intensity ratio (R1 = I 1360 / I 1580 ) is increased in a range of 2% to 35% compared to the intensity ratio (R 0 = I 1360 / I 1580 ), Item 2. The negative electrode active material for nonaqueous electrolyte secondary batteries according to Item 1. 前記リン化合物は、前記炭素材の100重量部に対してリン換算で0.1重量部〜6・0重量部の割合で含まれることを特徴とする、請求項1又は2に記載の非水電解質二次電池負極活物質。   The non-water according to claim 1 or 2, wherein the phosphorus compound is contained in a proportion of 0.1 to 6.0 parts by weight in terms of phosphorus with respect to 100 parts by weight of the carbon material. Electrode secondary battery negative electrode active material. 前記原料は、石炭系生コークスであることを特徴とする、請求項1〜3のいずれか一に記載の非水電解質二次電池負極活物質。   The non-aqueous electrolyte secondary battery negative electrode active material according to claim 1, wherein the raw material is coal-based raw coke. 非水電解質二次電池負極活物質の製造方法であって、
石油系重質油および石炭系重質油のうちの少なくとも1つの原料から炭素材を得る工程と、
前記炭素材にリン化合物を添着した後に焼成して焼成体を得る工程とを具え、
結晶面の間隔d002が0.340nm以上、C軸方向の結晶子サイズLc(110)が5nm以下であって、
ラマン分光法による1,360cm-1近傍の回折ピークの1,580cm-1近傍の回折ピークに対する強度比(R1=I1360/I1580)が、前記リン化合物を含まない場合の同強度比(R0=I1360/I1580)に比較して、1%〜40%の範囲で増大してなる非水電解質二次電池負極活物質の製造方法。
A method for producing a non-aqueous electrolyte secondary battery negative electrode active material comprising:
Obtaining a carbon material from at least one raw material of petroleum heavy oil and coal heavy oil;
Including a step of attaching a phosphorus compound to the carbon material and firing to obtain a fired body,
The distance d 002 between crystal planes is 0.340 nm or more, the crystallite size Lc (110) in the C-axis direction is 5 nm or less,
The intensity ratio when the intensity ratio diffraction peaks 1,580Cm -1 vicinity of the diffraction peak of 1,360Cm -1 vicinity by Raman spectroscopy (R1 = I 1360 / I 1580 ) is, not including the phosphorus compound (R0 = I 1360 / I 1580 ), a method for producing a non-aqueous electrolyte secondary battery negative electrode active material that increases in the range of 1% to 40%.
前記強度比(R1=I1360/I1580)が、前記強度比(R0=I1360/I1580)に比較して、2%〜35%の範囲で増大していることを特徴とする、請求項5に記載の非水電解質二次電池負極活物質の製造方法。 The intensity ratio (R1 = I 1360 / I 1580 ) is increased in a range of 2% to 35% compared to the intensity ratio (R 0 = I 1360 / I 1580 ), Item 6. A method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to Item 5. 前記リン化合物は、前記炭素材の100重量部に対してリン換算で0.1重量部〜6・0重量部の割合で添着させることを特徴とする、請求項5又は6に記載の非水電解質二次電池負極活物質の製造方法。   7. The non-aqueous composition according to claim 5, wherein the phosphorus compound is attached at a ratio of 0.1 to 6.0 parts by weight in terms of phosphorus with respect to 100 parts by weight of the carbon material. A method for producing an electrolyte secondary battery negative electrode active material. 前記焼成は、900℃〜2000℃の温度で実施することを特徴とする、請求項5〜7のいずれか一に記載の非水電解質二次電池負極活物質の製造方法。   The said baking is implemented at the temperature of 900 to 2000 degreeC, The manufacturing method of the nonaqueous electrolyte secondary battery negative electrode active material as described in any one of Claims 5-7 characterized by the above-mentioned. 前記原料は、石炭系生コークスであることを特徴とする、請求項5〜8のいずれか一に記載の非水電解質二次電池負極活物質の製造方法。   The method for producing a non-aqueous electrolyte secondary battery negative electrode active material according to any one of claims 5 to 8, wherein the raw material is coal-based raw coke.
JP2009035886A 2008-02-21 2009-02-18 Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material Pending JP2009224323A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009035886A JP2009224323A (en) 2008-02-21 2009-02-18 Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material
PCT/JP2009/052915 WO2009104690A1 (en) 2008-02-21 2009-02-19 Negative electrode active material for rechargeable battery with nonaqueous electrolyte and process for producing negative electrode active material for rechargeable battery with nonaqueous electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008039471 2008-02-21
JP2009035886A JP2009224323A (en) 2008-02-21 2009-02-18 Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material

Publications (1)

Publication Number Publication Date
JP2009224323A true JP2009224323A (en) 2009-10-01

Family

ID=40985568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035886A Pending JP2009224323A (en) 2008-02-21 2009-02-18 Nonaqueous electrolyte secondary battery negative electrode active material, and manufacturing method of nonaqueous electrolyte secondary battery negative electrode active material

Country Status (2)

Country Link
JP (1) JP2009224323A (en)
WO (1) WO2009104690A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068097A1 (en) * 2009-12-02 2011-06-09 新日鐵化学株式会社 Negative electrode for secondary battery, and secondary battery using same
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
US20120119138A1 (en) * 2010-11-12 2012-05-17 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040913A (en) * 1996-07-24 1998-02-13 Osaka Gas Co Ltd Lithium secondary battery, negative pole carbon material, and manufacture thereof
JP2006089349A (en) * 2004-09-27 2006-04-06 Sumitomo Bakelite Co Ltd Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09328306A (en) * 1996-04-08 1997-12-22 Ngk Insulators Ltd Carbonaceous material, its production and nonaqueous electrolyte cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040913A (en) * 1996-07-24 1998-02-13 Osaka Gas Co Ltd Lithium secondary battery, negative pole carbon material, and manufacture thereof
JP2006089349A (en) * 2004-09-27 2006-04-06 Sumitomo Bakelite Co Ltd Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP2007227368A (en) * 2006-01-27 2007-09-06 Mitsubishi Chemicals Corp Lithium ion secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068097A1 (en) * 2009-12-02 2011-06-09 新日鐵化学株式会社 Negative electrode for secondary battery, and secondary battery using same
JP5715572B2 (en) * 2009-12-02 2015-05-07 新日鉄住金化学株式会社 Secondary battery negative electrode and secondary battery using the same
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
US20120119138A1 (en) * 2010-11-12 2012-05-17 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
JP2012104443A (en) * 2010-11-12 2012-05-31 Nippon Steel Chem Co Ltd Negative electrode active material for lithium secondary battery and lithium secondary battery using the same
US9070933B2 (en) * 2010-11-12 2015-06-30 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
KR20130124584A (en) * 2011-03-10 2013-11-14 가부시끼가이샤 구레하 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
KR101578275B1 (en) 2011-03-10 2015-12-16 가부시끼가이샤 구레하 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Also Published As

Publication number Publication date
WO2009104690A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP2020529709A (en) Negative electrode active material, negative electrode containing it and lithium secondary battery
KR101993030B1 (en) Lmfp cathode materials with improved electrochemical performance
JP5570577B2 (en) Method for producing non-graphitizable carbon material
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
KR101124893B1 (en) Anode active material improved safety and secondary battery employed with the same
JP5928302B2 (en) Method for producing positive electrode active material for lithium secondary battery
TW201306363A (en) Method of producing cathode active material for lithium secondary battery, cathode active material for lithium secondary battery, and lithium secondary battery
JP5469347B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP5603589B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5242210B2 (en) Non-aqueous electrolyte secondary battery negative electrode active material and method for producing non-aqueous electrolyte secondary battery
WO2009104690A1 (en) Negative electrode active material for rechargeable battery with nonaqueous electrolyte and process for producing negative electrode active material for rechargeable battery with nonaqueous electrolyte
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
KR20120105019A (en) Negative electrode for secondary battery, and secondary battery using same
JP5603590B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
KR20110138606A (en) Negative electrode with improved wetting property to electrolyte and secondary battery comprising the same
JP5662698B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
WO2018087928A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5697954B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery using the same
KR102537059B1 (en) Anode for lithium secondary batteries and manufacturing method thereof
KR102334493B1 (en) Carbon material for negative electrode of lithium ion secondary battery, manufacturing method thereof, and negative electrode and lithium ion secondary battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140514

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160129