JP5928302B2 - Method for producing positive electrode active material for lithium secondary battery - Google Patents

Method for producing positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP5928302B2
JP5928302B2 JP2012242414A JP2012242414A JP5928302B2 JP 5928302 B2 JP5928302 B2 JP 5928302B2 JP 2012242414 A JP2012242414 A JP 2012242414A JP 2012242414 A JP2012242414 A JP 2012242414A JP 5928302 B2 JP5928302 B2 JP 5928302B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242414A
Other languages
Japanese (ja)
Other versions
JP2014093171A (en
Inventor
達哉 遠山
達哉 遠山
寛 北川
寛 北川
崇 中林
崇 中林
秀一 高野
秀一 高野
豊隆 湯浅
豊隆 湯浅
心 高橋
高橋  心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012242414A priority Critical patent/JP5928302B2/en
Publication of JP2014093171A publication Critical patent/JP2014093171A/en
Application granted granted Critical
Publication of JP5928302B2 publication Critical patent/JP5928302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用正極活物質の製造方法並びにリチウム二次電池、リチウム二次電池用正極及びリチウム二次電池用正極活物質に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, a lithium secondary battery, a positive electrode for a lithium secondary battery, and a positive electrode active material for a lithium secondary battery.

リチウム二次電池用の正極活物質としては、従来はコバルト酸リチウムが主流であり、これを用いたリチウム二次電池が広く用いられている。しかし、コバルト酸リチウムの原料であるコバルトは産出量が少なく高価であり、代替材料が検討されている。代替材料として挙げられているスピネル構造を持つマンガン酸リチウムは、放電容量が十分でなく、高温でマンガンが溶出することが問題となっている。また、高容量が期待できるニッケル酸リチウムは、高温時の熱安定性(安全性)に課題を有する。   As a positive electrode active material for a lithium secondary battery, lithium cobaltate has hitherto been the mainstream, and lithium secondary batteries using this have been widely used. However, cobalt, which is a raw material for lithium cobaltate, is low in production and expensive, and alternative materials are being studied. Lithium manganate having a spinel structure listed as an alternative material has a problem in that the discharge capacity is insufficient and manganese is eluted at a high temperature. In addition, lithium nickelate, which can be expected to have a high capacity, has a problem in thermal stability (safety) at high temperatures.

熱安定性(安全性)の観点では、オリビン型構造を有する化合物が特に優れており、リチウム二次電池用の正極活物質として期待されている。オリビン型構造を有する化合物(以下、オリビンと略す場合がある)は、化学式LiMPO(Mは遷移金属)で表され、構造内に強固なP‐O結合を有し、高温時も酸素が脱離しないため熱安定性(安全性)が高い。 From the viewpoint of thermal stability (safety), a compound having an olivine structure is particularly excellent and is expected as a positive electrode active material for a lithium secondary battery. A compound having an olivine structure (hereinafter sometimes abbreviated as olivine) is represented by the chemical formula LiMPO 4 (M is a transition metal), has a strong PO bond in the structure, and deoxidizes even at high temperatures. Thermal stability (safety) is high because it is not separated.

しかし、オリビンは、コバルト酸リチウムと比較して電子伝導性に劣るといった欠点を有する。このため、電流値が大きくなると放電容量を十分に取り出すことができないといった課題がある。オリビンの電子伝導性が低い理由は、上述した強固なP‐O結合が存在するために、電子が局在化してしまうためである。   However, olivine has the disadvantage that it is inferior in electronic conductivity compared to lithium cobaltate. For this reason, there is a problem that the discharge capacity cannot be taken out sufficiently when the current value increases. The reason why the electron conductivity of olivine is low is that electrons are localized because the above-mentioned strong PO bond exists.

このような課題に対し、電子伝導性を向上させるために、オリビンの表面を炭素で被覆する(炭素被覆する)プロセスが必要となる。炭素被覆したオリビン型構造を有する化合物の製造方法としては、原料を混合して熱処理する工程を基本とし、性能向上やプロセス簡略化等を目的とした様々な方法が提案されている。   In order to improve the electron conductivity for such a problem, a process of coating the surface of olivine with carbon (carbon coating) is required. As a method for producing a carbon-coated compound having an olivine structure, various methods have been proposed for the purpose of improving performance, simplifying the process, etc., based on a process of mixing raw materials and heat-treating.

例えば、特許文献1には、リチウム化合物、鉄化合物、およびリン酸化合物を混合し、原料混合物を作製する工程(A)と、原料混合物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で仮焼成し、仮焼成物を作製する工程(B)と、仮焼成物に、高分子材料を混合し、被焼成物を作製する工程(C)と、被焼成物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で焼成する工程(D)とをこの順で含むことを特徴とするLiイオン電池用正極活物質の製造方法が開示されている。特許文献1によると、上記の方法で得られたLiFePOは表面にカーボン微粒子が存在し、放電容量が非常に高く、サイクル特性のよいLiイオン電池用正極活物質を、高価な装置および原料を用いることなく、簡便に製造することができるとしている。 For example, in Patent Document 1, a lithium compound, an iron compound, and a phosphoric acid compound are mixed to prepare a raw material mixture (A), and the raw material mixture is placed in an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere. In the inert atmosphere, the step (B) of pre-baking to prepare a pre-fired product, the step (C) of preparing a fired product by mixing the pre-fired product with a polymer material, and the fired product in an inert atmosphere And a step (D) of firing in a reducing atmosphere or in a vacuum atmosphere in this order, a method for producing a positive electrode active material for a Li-ion battery is disclosed. According to Patent Document 1, LiFePO 4 obtained by the above method has a carbon fine particle on the surface, a discharge capacity is very high, and a positive electrode active material for a Li-ion battery with good cycle characteristics, an expensive apparatus and a raw material are used. It is said that it can be easily manufactured without using it.

また、特許文献2には、リン酸、カルボン酸およびリチウム源を含む水溶液に、酸素を0.5質量%以上含有する鉄粒子を添加し、酸化雰囲気下で上記水溶液中の成分と上記鉄粒子とを反応させて反応液を作製する合成工程と、上記合成工程で得られた反応液を乾燥させてリン酸鉄リチウム前駆体を生成する前駆体生成工程と、上記前駆体生成工程で得られたリン酸鉄リチウム前駆体を非酸化性雰囲気下で焼成してリン酸鉄リチウムを得る一次焼成工程とを有するリン酸鉄リチウムの製造方法が開示されている。特許文献2によると、鉄粒子の反応を制御することにより、原子レベルで均一に混合したリン酸鉄リチウムの前駆体を調製することができ、その結果正極活物質に要求される重要特性である高速充放電特性に優れたリン酸鉄リチウムを、低コストかつ安定的に生産することができるとしている。   In Patent Document 2, iron particles containing 0.5% by mass or more of oxygen are added to an aqueous solution containing phosphoric acid, carboxylic acid and a lithium source, and the components in the aqueous solution and the iron particles are added in an oxidizing atmosphere. Obtained in the above-mentioned precursor production step, the precursor production step for producing a lithium iron phosphate precursor by drying the reaction solution obtained in the synthesis step, In addition, a method for producing lithium iron phosphate is disclosed that includes a primary firing step of firing a lithium iron phosphate precursor in a non-oxidizing atmosphere to obtain lithium iron phosphate. According to Patent Document 2, by controlling the reaction of iron particles, a precursor of lithium iron phosphate uniformly mixed at an atomic level can be prepared, and as a result, it is an important characteristic required for a positive electrode active material. It is said that lithium iron phosphate excellent in high-speed charge / discharge characteristics can be produced stably at low cost.

また、特許文献3には、一般式LiMPO(式中のMは、Co、Ni、FeおよびMnからなる群より選択される少なくとも1種以上の元素であり、0<x≦1の条件を満たす。)で表されるオリビン型リチウム含有リン酸化合物からなる正極活物質を製造する方法であって、リチウム源、リン酸源およびM元素源を包含する前記正極活物質を構成するための出発原料を水系溶媒中で混合してゲル状の原料混合物を調製する工程と、前記出発原料が結晶化しない所定の温度域で、前記原料混合物を加熱して仮焼成する工程および、前記仮焼成工程で得た仮焼成物に導電性粉末を添加し混合して焼成する工程を包含する正極活物質製造方法が開示されている。特許文献3によると、化学量論組成に近いリチウム含有リン酸化合物の結晶が安定して成長し、結晶化度の高く、導電性に優れた正極活物質を提供することができるとしている。 Patent Document 3 discloses a general formula Li x MPO 4 (wherein M is at least one element selected from the group consisting of Co, Ni, Fe and Mn, and 0 <x ≦ 1). A positive electrode active material comprising the olivine-type lithium-containing phosphate compound represented by the above-mentioned condition)), for constituting the positive electrode active material including a lithium source, a phosphate source and an M element source A starting material mixture in an aqueous solvent to prepare a gel-like raw material mixture, heating the raw material mixture in a predetermined temperature range where the starting raw material does not crystallize, and calcining the temporary material A method for producing a positive electrode active material is disclosed which includes a step of adding conductive powder to a calcined product obtained in the firing step, mixing and firing. According to Patent Document 3, it is said that a lithium-containing phosphoric acid compound crystal close to the stoichiometric composition can stably grow, and a positive electrode active material having high crystallinity and excellent conductivity can be provided.

なお、非特許文献1及び非特許文献2にはオリビン型構造を有する化合物の構造及び物性についての記載がある。非特許文献1によると、LiO‐P系(オリビンのLi、Pが過剰な場合に相当)では、非晶質のLi及び/又はLiPOが生成すると記載されている。また、非特許文献2によると、オリビン型構造を有するLiFePOの結晶化温度は420℃付近であるとされている。 Non-Patent Document 1 and Non-Patent Document 2 describe the structure and physical properties of a compound having an olivine structure. According to Non-Patent Document 1, amorphous Li 4 P 2 O 7 and / or Li 3 PO 4 is formed in the Li 2 O—P 2 O 5 system (corresponding to olivine Li and P being excessive). Then it is described. According to Non-Patent Document 2, the crystallization temperature of LiFePO 4 having an olivine type structure is considered to be around 420 ° C.

特開2011−210376号公報JP 2011-210376 国際公開第2011/086872号International Publication No. 2011/086872 特開2010−267501号公報JP 2010-267501 A

Journal of the European Ceramic Society 29 (2009) 1895−1902.Journal of the European Ceramic Society 29 (2009) 1895-1902. Robert Dominko, Marjan Bele, Jean−Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik “Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4” Chemistry of Materials 19(2007), pp. 2960−2969.Robert Dominko, Marjan Bele, Jean-Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik "Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4" Chemistry of Materials 19 (2007), pp. 2960-2969.

オリビンは炭素被覆することによって十分な電子伝導性が初めて得られる一方、炭素等がオリビンの結晶内部に取り込まれると、結晶性が低下して放電容量が低下するといった課題がある。   While olivine can obtain sufficient electron conductivity for the first time by carbon coating, there is a problem that when carbon or the like is taken into the crystal of olivine, the crystallinity is lowered and the discharge capacity is lowered.

特許文献1では、原料混合物および被焼成物を不活性雰囲気中、還元性雰囲気中または真空雰囲気中などの非酸化雰囲気中で焼成する工程が記載されている。この場合、原料混合物を非酸化雰囲気中で熱処理すると、原料混合物に含まれるLi、M、P、O以外の成分の一部が結晶内部に取り込まれ、仮焼成体の結晶性が低下して容量が低下するおそれがある。   Patent Document 1 describes a step of firing a raw material mixture and a material to be fired in a non-oxidizing atmosphere such as an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere. In this case, when the raw material mixture is heat-treated in a non-oxidizing atmosphere, a part of the components other than Li, M, P, and O contained in the raw material mixture is taken into the crystal, and the crystallinity of the pre-fired body is reduced, resulting in a capacity. May decrease.

特許文献2では、リン酸、カルボン酸およびリチウム源を含む水溶液に、安価な鉄粒子を添加し、酸化雰囲気中で反応液を作製する合成工程と、得られた反応液を乾燥させて前駆体を作製する前駆体生成工程と、得られた前駆体を非酸化雰囲気下で焼成する一次焼成工程が記載されている。この場合、水溶液に溶解したカルボン酸は乾燥時に前駆体の一部となっており、非酸化雰囲気下で焼成する一次焼成工程で仮焼成体内部に取り込まれ、仮焼成体の結晶性が低下して容量が低下するおそれがある。   In Patent Document 2, a precursor is prepared by adding inexpensive iron particles to an aqueous solution containing phosphoric acid, carboxylic acid and a lithium source, and preparing a reaction liquid in an oxidizing atmosphere, and drying the obtained reaction liquid. And a primary firing step of firing the obtained precursor in a non-oxidizing atmosphere. In this case, the carboxylic acid dissolved in the aqueous solution becomes a part of the precursor when dried, and is taken into the temporary fired body in the primary firing step of firing in a non-oxidizing atmosphere, and the crystallinity of the temporarily fired body is reduced. May reduce the capacity.

特許文献3では、リチウム源、リン酸源、およびM元素源(Mは、Co、Ni、FeおよびMnからなる群より選択される少なくとも1種以上の元素)を包含する出発原料を水系溶媒中で混合してゲル状の原料混合物を調整する工程と、原料混合物を結晶化しない温度で加熱する仮焼成工程と、仮焼成体に導電性粉末を添加して混合して焼成する工程が記載されている。この場合、仮焼成工程では結晶化しない温度で加熱しているため、仮焼成体はオリビンを形成していない。そのため、導電性粉末を添加して混合して焼成する段階で、オリビンが結晶化すると共に、オリビン内部に導電性粉末が取り込まれ、結晶性が低下して容量が低下するおそれがある。   In Patent Document 3, a starting material including a lithium source, a phosphoric acid source, and an M element source (M is at least one element selected from the group consisting of Co, Ni, Fe, and Mn) in an aqueous solvent. The step of adjusting the gel-like raw material mixture by mixing, the pre-baking step of heating the raw material mixture at a temperature at which it does not crystallize, and the step of adding and mixing conductive powder to the pre-fired body are described. ing. In this case, since the calcination process is performed at a temperature that does not crystallize, the calcination body does not form olivine. Therefore, at the stage where the conductive powder is added, mixed and fired, olivine is crystallized, and the conductive powder is taken into the olivine, resulting in a decrease in crystallinity and a decrease in capacity.

したがって本発明の目的は、安全性の高いオリビン型構造を有する化合物を使用したリチウム二次電池用正極活物質の製造方法において、該オリビン型構造を有する化合物の結晶性の低下を抑制し、従来よりも高容量(150Ah/kg以上)及び高レート特性(80%以上)の両方を達成することができるリチウム二次電池用正極活物質の製造方法を提供することにある。   Accordingly, an object of the present invention is to suppress a decrease in crystallinity of a compound having an olivine type structure in a method for producing a positive electrode active material for a lithium secondary battery using a highly safe compound having an olivine type structure. An object of the present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery that can achieve both higher capacity (150 Ah / kg or more) and higher rate characteristics (80% or more).

本発明の一態様は、上記目的を達成するため、
下記(化学式1)で示されるリチウム二次電池用正極活物質の原料と、金属元素を含まない有機物とを混合する工程と、
前記正極活物質の原料及び前記有機物との混合物を、420℃〜600℃の温度、かつ酸化雰囲気で仮焼成する工程と、
前記仮焼成する工程により得た仮焼成体に、金属元素を含まない炭素化合物を混合する工程と、
前記炭素化合物が混合された前記仮焼成体を、前記仮焼成温度以上の温度、かつ還元雰囲気もしくは不活性雰囲気で本焼成する工程と、を有し、
前記本焼成工程後に得られる下記(化学式1)で示されるリチウム二次電池用正極活物質中のFeにおいて、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が0.01≦(III/II)≦0.3であることを特徴とするリチウム二次電池用正極活物質の製造方法を提供する。
LiMP1−x(化学式1)
(Mは金属元素であって、Feを含み、かつMn、Co及びNiのうち少なくとも1つを含み、AはB、Si、Ti、Vから選ばれる少なくとも一つを含み、0≦x≦0.25である。)
In order to achieve the above object, one embodiment of the present invention provides
A step of mixing a raw material of a positive electrode active material for a lithium secondary battery represented by the following (Chemical Formula 1) and an organic substance not containing a metal element;
A step of calcining a mixture of the raw material of the positive electrode active material and the organic substance at a temperature of 420 ° C. to 600 ° C. in an oxidizing atmosphere;
A step of mixing a carbon compound not containing a metal element into the pre-fired body obtained by the pre-baking step;
A step of subjecting the calcined body mixed with the carbon compound to a temperature equal to or higher than the calcining temperature and a calcining in a reducing atmosphere or an inert atmosphere,
In Fe in the positive electrode active material for a lithium secondary battery represented by the following (Chemical Formula 1) obtained after the main firing step, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ ) Is 0.01 ≦ (III / II) ≦ 0.3. A method for producing a positive electrode active material for a lithium secondary battery is provided.
LiMP 1-x A x O 4 (Chemical Formula 1)
(M is a metal element, includes Fe, and includes at least one of Mn, Co, and Ni, A includes at least one selected from B, Si, Ti, and V, and 0 ≦ x ≦ 0 .25.)

本発明によれば、安全性の高いオリビン型構造を有する化合物を使用したリチウム二次電池用正極活物質において、該オリビン型構造を有する化合物の結晶性の低下を抑制し、従来よりも高容量(150Ah/kg以上)及び高レート特性(80%以上)の両方を達成することができるリチウム二次電池用正極活物質の製造方法を提供することができる。   According to the present invention, in a positive electrode active material for a lithium secondary battery using a highly safe compound having an olivine structure, a decrease in crystallinity of the compound having an olivine structure is suppressed, and the capacity is higher than before. A method for producing a positive electrode active material for a lithium secondary battery that can achieve both (150 Ah / kg or more) and high rate characteristics (80% or more) can be provided.

本発明に係るリチウム二次電池用正極活物質の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the positive electrode active material for lithium secondary batteries which concerns on this invention. 本発明が適用されるリチウム二次電池(18650型リチウムイオン二次電池)の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lithium secondary battery (18650 type lithium ion secondary battery) with which this invention is applied. 実施例1のリチウム二次電池用正極活物質のX線回折プロファイルを示す図である。2 is a diagram showing an X-ray diffraction profile of a positive electrode active material for a lithium secondary battery of Example 1. FIG. 実施例1〜15、比較例1、2、参考例1及び2の正極活物質の単極放電容量とレート特性の関係を示すグラフである。It is a graph which shows the relationship between the monopolar discharge capacity and rate characteristic of the positive electrode active material of Examples 1-15, Comparative Examples 1, 2, and Reference Examples 1 and 2.

前述したように、本発明に係るリチウム二次電池用正極活物質の製造方法は、
前記(化学式1)で示されるリチウム二次電池用正極活物質の原料と、金属元素を含まない有機物とを混合する工程(原料混合工程)、
前記正極活物質の原料及び前記有機物との混合物を、420℃〜600℃の温度、かつ酸化雰囲気で仮焼成する工程(仮焼成工程)と、
前記仮焼成する工程により得た仮焼成体に、金属元素を含まない炭素化合物を混合する工程(炭素源混合工程)と、
前記炭素化合物が混合された前記仮焼成体を、前記仮焼成温度以上の温度、かつ還元雰囲気もしくは不活性雰囲気で本焼成する工程(本焼成工程)と、を有する。
As described above, the method for producing a positive electrode active material for a lithium secondary battery according to the present invention includes:
A step of mixing a raw material of the positive electrode active material for a lithium secondary battery represented by (Chemical Formula 1) and an organic substance not containing a metal element (raw material mixing step);
A step of pre-baking the mixture of the raw material of the positive electrode active material and the organic substance in a temperature of 420 ° C. to 600 ° C. in an oxidizing atmosphere (pre-baking step);
A step of mixing a carbon compound not containing a metal element (carbon source mixing step) into the pre-fired body obtained by the pre-baking step;
And a step of subjecting the temporary fired body mixed with the carbon compound to a temperature equal to or higher than the preliminary firing temperature and a reducing atmosphere or an inert atmosphere (main firing step).

本発明のリチウム二次電池用正極活物質の製造方法は、以下の2つの特長を有する。すなわち、(1)原料混合工程において、金属元素を含まない有機物を混合すること及び仮焼成工程において、420℃〜600℃の温度、かつ酸化雰囲気で焼成することによって、前記有機物の分解によって発生するガスが、有害な異相の発生を抑制する。ここで有害な異相とは、原料の金属元素から発生する遷移金属を含む金属酸化物のうち、オリビン型構造を有する化合物以外のもので、具体的には、Fe、LiFeP、LiFe(PO、Mn、MnO、Mn等が挙げられる。(2)また該仮焼成工程は酸化雰囲気であるので、前記有機物は、該仮焼成工程で消失し、正極活物質の結晶構造内に残留することはない。 The method for producing a positive electrode active material for a lithium secondary battery of the present invention has the following two features. That is, (1) It is generated by decomposition of the organic substance by mixing an organic substance not containing a metal element in the raw material mixing step and baking in an oxidizing atmosphere at a temperature of 420 ° C. to 600 ° C. in the preliminary baking step. Gas suppresses the generation of harmful foreign phases. Here, the harmful foreign phase is a metal oxide other than a compound having an olivine structure among metal oxides containing a transition metal generated from a raw metal element. Specifically, Fe 2 O 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Mn 2 O 3 , MnO 2 , Mn 2 P 2 O 7 and the like. (2) Since the preliminary firing step is an oxidizing atmosphere, the organic matter disappears in the temporary firing step and does not remain in the crystal structure of the positive electrode active material.

上記(1)及び(2)によって、結晶性の高いオリビン型構造を有する化合物を得ることができ、高容量及び高レート特性を有するリチウム二次電池を提供することが可能となる。なお、詳細については後述する。   According to the above (1) and (2), a compound having a highly crystalline olivine structure can be obtained, and a lithium secondary battery having high capacity and high rate characteristics can be provided. Details will be described later.

本発明は、上記の本発明に係るリチウム二次電池用正極活物質の製造方法において、以下のような改良や変更を加えることができる。
(i)前記正極活物質において、Mに占めるFeの割合が10mol%〜50mol%である。
(ii)前記正極活物質として、非晶質のLi及び/又はLiPOが含まれる。
(iii)前記金属元素を含まない有機物がカルボン酸である。
(iv)前記カルボン酸が酢酸、クエン酸、リンゴ酸からなる群より選択される一つ以上である。
(v)前記金属元素を含まない有機物が糖である。
(vi)前記糖がスクロース、グルコース、デンプン、セルロース、デキストリンからなる群より選択される一つ以上である。
(vii)前記仮焼成の温度が、430℃以上500℃以下である。
(viii)前記仮焼成する工程の酸化雰囲気が、酸素濃度1%以上である。
In the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, the present invention can be improved or changed as follows.
(I) In the positive electrode active material, the proportion of Fe in M is 10 mol% to 50 mol%.
(Ii) The positive electrode active material includes amorphous Li 4 P 2 O 7 and / or Li 3 PO 4 .
(Iii) The organic substance not containing the metal element is carboxylic acid.
(Iv) The carboxylic acid is one or more selected from the group consisting of acetic acid, citric acid and malic acid.
(V) The organic substance not containing the metal element is sugar.
(Vi) The sugar is one or more selected from the group consisting of sucrose, glucose, starch, cellulose, and dextrin.
(Vii) The temperature of the said pre-baking is 430 degreeC or more and 500 degrees C or less.
(Viii) The oxidizing atmosphere of the pre-baking step has an oxygen concentration of 1% or more.

また本発明は、上記リチウム二次電池について以下のような改良や変更を加えることができる。
(ix)前記正極活物質において、非晶質のLi及び/又はLiPOが含まれる。
Moreover, the present invention can add the following improvements and changes to the lithium secondary battery.
(Ix) The positive electrode active material includes amorphous Li 4 P 2 O 7 and / or Li 3 PO 4 .

以下、本発明に係る実施形態を説明する。ただし、本発明は、ここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   Embodiments according to the present invention will be described below. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the scope of the invention.

(リチウム二次電池用正極活物質の製造方法)
図1は本発明に係るリチウム二次電池用正極活物質の製造方法を示すフロー図である。以下、図1に沿って本発明に係るリチウム二次電池用正極活物質の製造方法について説明する。
(1)原料混合工程
まず、前記(化学式1)で示される正極活物質原料と、金属元素を含まない有機物とを混合する。ここで、有機物とは、原料混合工程で混合するものと定義する。正極活物質原料としては、炭酸塩、水酸化物、硫酸塩、酢酸塩、塩化物、シュウ酸塩、クエン酸塩または硝酸塩等を用いることができる。この中でも、有害ガス等の発生を抑制する観点から、炭酸塩、水酸化物、シュウ酸塩を用いることが好ましい。
(Method for producing positive electrode active material for lithium secondary battery)
FIG. 1 is a flowchart showing a method for producing a positive electrode active material for a lithium secondary battery according to the present invention. Hereafter, the manufacturing method of the positive electrode active material for lithium secondary batteries which concerns on this invention along FIG. 1 is demonstrated.
(1) Raw Material Mixing Step First, the positive electrode active material raw material represented by (Chemical Formula 1) and an organic substance not containing a metal element are mixed. Here, the organic substance is defined as one that is mixed in the raw material mixing step. As the positive electrode active material raw material, carbonate, hydroxide, sulfate, acetate, chloride, oxalate, citrate, nitrate, or the like can be used. Among these, it is preferable to use carbonates, hydroxides, and oxalates from the viewpoint of suppressing the generation of harmful gases and the like.

有機物としては、金属元素を含まないものを用いる。このような有機物は、後述する仮焼成工程において分解し、分解によって非酸化性ガス(例えば、COやCO等)が発生する。このような非酸化性ガスが発生することによって、原料の金属元素から発生する遷移金属が酸化して生成しうるオリビン型構造を有する化合物以外のもの、具体的には、Fe、LiFeP、LiFe(PO、Mn、MnO、Mn等の正極活物質原料から生じる金属酸化物の有害な異相の発生を抑制し、結晶性の高いオリビン型構造を有する化合物を得ることができる。このような観点から、有機物は、正極活物質原料に対し、1重量%から40重量%含まれていることが好ましい。1重量%未満では、正極活物質原料から生じる金属酸化物の有害な異相の発生を十分抑制することができない。一方、40重量%を越えると、分解によって発生する非酸化性ガスが過剰となり、不要なガスが発生するだけになる。 As the organic substance, an organic substance that does not contain a metal element is used. Such an organic substance is decomposed in a pre-baking step described later, and a non-oxidizing gas (for example, CO, CO 2 or the like) is generated by the decomposition. By generating such non-oxidizing gas, other than compounds having an olivine structure that can be generated by oxidation of transition metal generated from the metal element of the raw material, specifically Fe 2 O 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Mn 2 O 3 , MnO 2 , Mn 2 P 2 O 7, etc. A compound having a highly olivine type structure can be obtained. From such a viewpoint, the organic material is preferably contained in an amount of 1 to 40% by weight with respect to the positive electrode active material raw material. If it is less than 1% by weight, it is not possible to sufficiently suppress the occurrence of a harmful foreign phase of the metal oxide generated from the positive electrode active material raw material. On the other hand, if it exceeds 40% by weight, the non-oxidizing gas generated by the decomposition becomes excessive, and only unnecessary gas is generated.

金属元素を含まない有機物としては、カルボン酸、糖等が好適である。カルボン酸としては、具体的には、酢酸、クエン酸、リンゴ酸からなる群より選択される一つ以上であることが好ましい。また、糖としては、具体的には、スクロース、グルコース、デンプン、セルロース、デキストリンからなる群より選択される一つ以上であることが好ましい。
正極活物質原料と金属元素を含まない有機物との混合手段は特に限定されず、固相法、液相法、共沈法、錯体法など公知の手法を用いることができる。これらの中でも、固相法でビーズミルなどを用いて1μm以下に粉砕して混合することがより好ましい。
(2)仮焼成工程
上記で準備した混合物を、420℃〜600℃の温度、かつ酸化雰囲気で仮焼成を行う。なお、本明細書において「420℃〜600℃」とは、420℃以上、600℃以下を意味するものとする。前述した非特許文献2によると、オリビン型構造を有するLiFePOの結晶化温度は420℃であるので、仮焼成は420℃以上で行う。420℃未満ではLiMP1−x(Mは金属元素であって、Feを含み、かつMn、Co及びNiのうち少なくとも1つを含み、AはB、Si、Ti、Vから選ばれる少なくとも一つを含み、0≦x≦0.25である。)が結晶化しない可能性があるため、本焼成時に結晶内部に炭素源が混入して結晶性が低下する恐れがある。また、仮焼成は600℃以下で行う。600℃を越えると、結晶粒子が粗大化し、リチウムの拡散距離が大きくなって容量が低下してしまうおそれがある。より好ましくは、430℃以上500℃以下である。
As the organic substance not containing a metal element, carboxylic acid, sugar and the like are preferable. Specifically, the carboxylic acid is preferably at least one selected from the group consisting of acetic acid, citric acid, and malic acid. Specifically, the sugar is preferably one or more selected from the group consisting of sucrose, glucose, starch, cellulose, and dextrin.
The mixing means of the positive electrode active material raw material and the organic substance not containing a metal element is not particularly limited, and a known method such as a solid phase method, a liquid phase method, a coprecipitation method, or a complex method can be used. Among these, it is more preferable to grind and mix to 1 μm or less using a bead mill or the like by a solid phase method.
(2) Temporary calcination step The mixture prepared above is calcined at a temperature of 420 ° C. to 600 ° C. in an oxidizing atmosphere. In this specification, “420 ° C. to 600 ° C.” means 420 ° C. or more and 600 ° C. or less. According to Non-Patent Document 2 described above, since the crystallization temperature of LiFePO 4 having an olivine structure is 420 ° C., the pre-baking is performed at 420 ° C. or higher. Below 420 ° C., LiMP 1-x A x O 4 (M is a metal element, contains Fe, and contains at least one of Mn, Co, and Ni, and A is selected from B, Si, Ti, and V) In this case, there is a possibility that the carbon source does not crystallize, so that the carbon source may be mixed into the inside of the crystal during the main baking and the crystallinity may be lowered. Moreover, temporary baking is performed at 600 degrees C or less. If the temperature exceeds 600 ° C., the crystal grains become coarse, the lithium diffusion distance increases, and the capacity may decrease. More preferably, it is 430 degreeC or more and 500 degrees C or less.

仮焼成の焼成時間は2時間〜30時間であることが好ましい。2時間未満であると十分結晶化が進まず、結晶性が向上しない。一方、30時間を越えても、保持温度での結晶成長は十分進んでいるため、更なる結晶性向上にはほとんど効果が得られず、生産性が低下するだけである。より好ましくは、4〜15時間である。   The calcining time for the pre-firing is preferably 2 hours to 30 hours. If it is less than 2 hours, crystallization does not proceed sufficiently and the crystallinity is not improved. On the other hand, even if it exceeds 30 hours, the crystal growth at the holding temperature has progressed sufficiently, so that it is hardly possible to further improve the crystallinity and only the productivity is lowered. More preferably, it is 4 to 15 hours.

仮焼成時の雰囲気は酸化雰囲気とする。酸化雰囲気で仮焼成を行うと、前記有機物が燃焼により消失するため、オリビン型結晶中に残留することがなく、結晶性の低下を防ぐことができる。また、前記有機物は、酸化雰囲気で焼成するとオリビンが結晶化する温度の近傍で、非酸化性のガス(例えば、CO、CO等)を生成し、該非酸化性ガスが金属酸化物等の有害な異相の生成を抑制する。これらの効果によって、結晶性の高いオリビン型構造を有する正極活物質を得ることができる。 The atmosphere at the time of temporary baking is an oxidizing atmosphere. When pre-baking is performed in an oxidizing atmosphere, the organic matter disappears due to combustion, so that it does not remain in the olivine type crystal, and a decrease in crystallinity can be prevented. In addition, the organic substance generates a non-oxidizing gas (for example, CO, CO 2, etc.) near the temperature at which olivine crystallizes when fired in an oxidizing atmosphere, and the non-oxidizing gas is harmful to a metal oxide or the like. Suppresses the generation of other heterogeneous phases. With these effects, a positive electrode active material having a highly crystalline olivine structure can be obtained.

本発明において酸化雰囲気とは、酸素濃度が1%以上の雰囲気であることが好ましい。より好ましくは、酸素濃度が1%以上50%以下である。酸素濃度が1%未満では、原料混合粉に含まれる有機物の一部が仮焼成体に残留してしまい、結晶性が低下する。一方、酸素濃度が50%を越えると、オリビン結晶化近傍の温度で有機物から生成する非酸化性のガスの効果が小さくなり、金属酸化物等の有害な異相が生成してリチウム二次電池の容量が低下してしまう。
(3)炭素源混合工程
上記で得た仮焼成体に、炭素源として金属元素を含まない炭素化合物を混合する。ここで、炭素化合物とは、炭素源混合工程で混合するものと定義する。炭素源としては、金属元素を含まない炭素化合物であれば特に限定はなく、原料混合工程で用いた金属元素を含まない有機物を用いることもできる。より好適なのは、炭素含有率の高い、スクロースやデキストリンである。添加量は、本焼成後の炭素含有量が正極活物質に対して0.5質量%〜10質量%となる量であることが好ましく、1質量%〜5質量%となる量であることがより好ましい。
In the present invention, the oxidizing atmosphere is preferably an atmosphere having an oxygen concentration of 1% or more. More preferably, the oxygen concentration is 1% or more and 50% or less. When the oxygen concentration is less than 1%, a part of the organic matter contained in the raw material mixed powder remains in the temporarily fired body, and the crystallinity is lowered. On the other hand, when the oxygen concentration exceeds 50%, the effect of the non-oxidizing gas generated from the organic substance at a temperature in the vicinity of olivine crystallization is reduced, and a harmful foreign phase such as a metal oxide is generated. Capacity will drop.
(3) Carbon source mixing process The carbon compound which does not contain a metal element as a carbon source is mixed with the temporary baking body obtained above. Here, the carbon compound is defined to be mixed in the carbon source mixing step. As a carbon source, if it is a carbon compound which does not contain a metal element, there will be no limitation in particular, The organic substance which does not contain the metal element used at the raw material mixing process can also be used. More preferred are sucrose and dextrin with a high carbon content. The amount added is preferably such that the carbon content after the main calcination is 0.5% by mass to 10% by mass with respect to the positive electrode active material, and preferably 1% by mass to 5% by mass. More preferred.

仮焼成体と炭素化合物を効率よく混合する手法としては、ボールミルやビーズミルを用いて機械的圧力を加えることが好ましい。
(4)本焼成工程
上記で得た仮焼成体と炭素化合物の混合物に対して本焼成を行い、オリビン型構造を有する化合物を炭素被覆する。本焼成工程は、結晶構造中の金属元素の酸化を防ぐと共に炭素被覆を行うため、不活性雰囲気または還元雰囲気(非酸化雰囲気)で行う。具体的には、窒素、アルゴン又は水素雰囲気が好ましい。
As a method for efficiently mixing the calcined body and the carbon compound, it is preferable to apply a mechanical pressure using a ball mill or a bead mill.
(4) Main firing step Main firing is performed on the mixture of the temporarily fired body and the carbon compound obtained above, and the compound having an olivine structure is coated with carbon. The main baking step is performed in an inert atmosphere or a reducing atmosphere (non-oxidizing atmosphere) in order to prevent oxidation of metal elements in the crystal structure and to perform carbon coating. Specifically, nitrogen, argon or hydrogen atmosphere is preferable.

本焼成は、仮焼成温度以上の温度で行う。有機物を炭化して導電性を向上させるためには、本焼成温度は600℃以上が望ましい。また、本焼成は、正極活物質の熱分解が起きる温度以下で行うことが望ましい。望ましい本焼成温度の範囲は、600℃〜800℃である。600℃未満では、炭素源を十分炭化できず、導電性を付与することができない。一方、800℃を越えると、粒子が粗大化してリチウム二次電池の容量が低下する。より好ましくは、650℃〜750℃である。本焼成後は、雰囲気制御したまま徐冷したり液体窒素等を利用して急冷したりしてもよい。   The main baking is performed at a temperature equal to or higher than the temporary baking temperature. In order to carbonize the organic matter and improve the conductivity, the firing temperature is desirably 600 ° C. or higher. In addition, it is desirable that the main baking is performed at a temperature lower than the temperature at which the positive electrode active material is thermally decomposed. A desirable range of the main firing temperature is 600 ° C to 800 ° C. If it is less than 600 degreeC, a carbon source cannot fully be carbonized and electroconductivity cannot be provided. On the other hand, when the temperature exceeds 800 ° C., the particles become coarse and the capacity of the lithium secondary battery decreases. More preferably, it is 650 degreeC-750 degreeC. After the main firing, it may be gradually cooled while the atmosphere is controlled, or may be rapidly cooled using liquid nitrogen or the like.

以上説明したように、本発明に係る正極活物質の製造方法を用いると、結晶性が高く、炭素被覆されたオリビン型構造を有する化合物を得ることができる。   As described above, when the method for producing a positive electrode active material according to the present invention is used, a compound having a high crystallinity and a carbon-coated olivine structure can be obtained.

上述した本発明に係るリチウム二次電池用正極活物質の製造方法によれば、Feにおいて、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が0.01≦(III/II)≦0.3である正極活物質が得られる。このことについては、追って詳述する。 According to the above-described method for producing a positive electrode active material for a lithium secondary battery according to the present invention, in Fe, the molar ratio (III / II) of the Fe 3+ ratio (III) to the Fe 2+ ratio (II) is 0.00. A positive electrode active material satisfying 01 ≦ (III / II) ≦ 0.3 is obtained. This will be described in detail later.

(リチウム二次電池)
本発明が適用されるリチウム二次電池の構成について説明する。図2は、本発明が適用されるリチウム二次電池(18650型リチウムイオン二次電池)の一例を示す断面模式図である。図2に示したように、リチウム二次電池10において、正極1および負極2は、これらが直接接触しないようにセパレータ3を挟み込んだ状態で惓回されて、電極群を形成している。なお、電極群の構造は、円筒状、扁平状などの形状の捲回に限定されるものではなく、短冊状電極を積層したものであってもよい。
(Lithium secondary battery)
A configuration of a lithium secondary battery to which the present invention is applied will be described. FIG. 2 is a schematic cross-sectional view showing an example of a lithium secondary battery (18650 type lithium ion secondary battery) to which the present invention is applied. As shown in FIG. 2, in the lithium secondary battery 10, the positive electrode 1 and the negative electrode 2 are wound in a state where the separator 3 is sandwiched so that they are not in direct contact with each other to form an electrode group. The structure of the electrode group is not limited to winding in a cylindrical shape, a flat shape, or the like, and may be a laminate of strip electrodes.

正極1には正極リード7が付設されており、負極2には負極リード5が付設されている。リード5、7は、ワイヤ状、箔状、板状などの任意の形状を採ることができる。電気的損失を小さくし、かつ化学的安定性を確保できるような構造・材質が選定される。   A positive electrode lead 7 is attached to the positive electrode 1, and a negative electrode lead 5 is attached to the negative electrode 2. The leads 5 and 7 can take any shape such as a wire shape, a foil shape, and a plate shape. A structure and material that can reduce electrical loss and ensure chemical stability are selected.

電極群は、電池缶4に収容されており、電池缶4の上部に設置された絶縁板4および底部に設置された絶縁板9によって、挿入された電極群が電池缶4と直接接触しないようになっている。さらに、電池缶4の内部には、非水電解液(図示せず)が注入されている。電池缶4の形状は、通常、電極群の形状に合わせた形状(例えば、円筒状、扁平長円柱状、角柱など)が選択される。絶縁板9としては、非水電解液と反応せず、かつ気密性に優れた任意の材質(例えば、熱硬化性樹脂、ガラスハーメチックシールなど)が好適である。   The electrode group is accommodated in the battery can 4, so that the inserted electrode group is not in direct contact with the battery can 4 by the insulating plate 4 installed on the top of the battery can 4 and the insulating plate 9 installed on the bottom. It has become. Further, a non-aqueous electrolyte (not shown) is injected into the battery can 4. As the shape of the battery can 4, a shape (for example, a cylindrical shape, a flat columnar shape, a rectangular column, or the like) that matches the shape of the electrode group is usually selected. As the insulating plate 9, any material (for example, thermosetting resin, glass hermetic seal, etc.) that does not react with the non-aqueous electrolyte and has excellent airtightness is suitable.

電池缶4の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、非水電解液に対し耐食性のある材料から選択される。電池缶4への密閉蓋部6の取り付けは、溶接の他に、かしめ、接着などの方法も採ることができる。   The material of the battery can 4 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel. The sealing lid 6 can be attached to the battery can 4 by other methods such as caulking and adhesion in addition to welding.

電池缶4と密閉蓋部6との間には、電解液の漏れを防止するとともにプラス極の正極1とマイナス極の負極2とを分けるパッキン(シール材)8が形成される。パッキン8は、ゴムなどの電気絶縁性を有する材料で形成される。   Between the battery can 4 and the sealing lid portion 6, a packing (seal material) 8 that prevents leakage of the electrolyte and separates the positive electrode 1 of the positive electrode and the negative electrode 2 of the negative electrode is formed. The packing 8 is made of an electrically insulating material such as rubber.

リチウム二次電池10を構成する正極2は、正極集電体の片面または両面に正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。正極の集電体には、厚さが5〜25μmのアルミニウム箔や、厚さ10μmの銅箔、厚さ10〜100μmで孔径0.1〜10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウム、銅の他に、ステンレス、チタンなども適用可能である。   The positive electrode 2 constituting the lithium secondary battery 10 is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material on one side or both sides of a positive electrode current collector, and then compression-molding using a roll press machine or the like. It is produced by cutting into a predetermined size. For the positive electrode current collector, an aluminum foil having a thickness of 5 to 25 μm, a copper foil having a thickness of 10 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, and an aluminum foam plate Etc. are used. In addition to aluminum and copper, stainless steel, titanium, and the like are also applicable.

同様に、リチウムイオン二次電池を構成する負極2は、負極集電体の片面または両面に負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。負極の集電体には、厚さが5〜20μmの銅箔や、厚さ10〜100μmで孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用可能である。   Similarly, the negative electrode 2 constituting the lithium ion secondary battery is formed by applying and drying a negative electrode mixture slurry containing a negative electrode active material on one side or both sides of a negative electrode current collector, and then compression molding using a roll press or the like. Then, it is produced by cutting into a predetermined size. For the negative electrode current collector, a copper foil having a thickness of 5 to 20 μm, a copper perforated foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed copper plate, and the like are used. In addition, stainless steel, titanium, nickel, and the like are also applicable.

正極合剤スラリーおよび負極合剤スラリーの塗布方法に特段の限定はなく、従前の方法(例えば、ドクターブレード法、ディッピング法、スプレー法など)を利用することができる。   There is no particular limitation on the method for applying the positive electrode mixture slurry and the negative electrode mixture slurry, and conventional methods (for example, a doctor blade method, a dipping method, a spray method, etc.) can be used.

正極1に用いられる正極活物質としては、前述した本発明の製造方法を用いて製造した正極活物質を用いる。正極活物質に対して、バインダ、増粘剤、導電材(例えば、アセチレンブラック、デンカブラック(登録商標)、黒鉛粉末等)、溶媒等を必要に応じて混合して正極合剤スラリーが作製される。オリビンは高比表面積であるため、導電ネットワークを形成するためには導電材の比表面積が大きいことが望ましく、具体的にはアセチレンブラックやデンカブラック(登録商標)が望ましい。なお、本発明では正極活物質のオリビンが炭素被覆されており、該被覆炭素が導電材としても機能する。結着剤は、集電体との密着性を確保するためのものであり、PVDF(ポリフッ化ビニリデン)やポリアクリロニトリルなど、一般の結着剤を用いることが可能である。十分な結着性を有するものならば、結着剤の種類は特に制限されない。   As the positive electrode active material used for the positive electrode 1, the positive electrode active material manufactured by using the manufacturing method of the present invention described above is used. A positive electrode mixture slurry is prepared by mixing a binder, a thickener, a conductive material (for example, acetylene black, Denka black (registered trademark), graphite powder, etc.), a solvent, and the like as necessary with the positive electrode active material. The Since olivine has a high specific surface area, it is desirable that the specific surface area of the conductive material is large in order to form a conductive network. Specifically, acetylene black or Denka Black (registered trademark) is desirable. In the present invention, the positive electrode active material olivine is coated with carbon, and the coated carbon also functions as a conductive material. The binder is for ensuring adhesion with the current collector, and a general binder such as PVDF (polyvinylidene fluoride) or polyacrylonitrile can be used. The type of the binder is not particularly limited as long as it has sufficient binding properties.

負極2に用いられる負極活物質は、リチウムイオンの吸蔵および放出をすることができる材料であれば特に限定されない。例えば、人造黒鉛、天然黒鉛、非晶質炭素、難黒鉛化炭素類、活性炭、コークス、熱分解炭素、金属酸化物、金属窒化物、リチウム金属またはリチウム金属合金などが挙げられる。これらいずれかの単独または2種以上の混合物を用いることができる。その中でも、非晶質炭素はリチウムイオンの吸蔵および放出の際の体積変化率が少ない材料であるため、充放電のサイクル特性が高まることから、負極活物質として非晶質炭素を含むことは好ましい。負極活物質に対して、バインダ、増粘剤、導電材、溶媒等を必要に応じて混合して負極合剤スラリーが作製される。   The negative electrode active material used for the negative electrode 2 is not particularly limited as long as the material can occlude and release lithium ions. Examples thereof include artificial graphite, natural graphite, amorphous carbon, non-graphitizable carbons, activated carbon, coke, pyrolytic carbon, metal oxide, metal nitride, lithium metal, or lithium metal alloy. Any one of these or a mixture of two or more of them can be used. Among these, since amorphous carbon is a material having a small volume change rate during insertion and extraction of lithium ions, it is preferable to include amorphous carbon as the negative electrode active material because the cycle characteristics of charge and discharge are enhanced. . A negative electrode mixture slurry is prepared by mixing a negative electrode active material with a binder, a thickener, a conductive material, a solvent, and the like as necessary.

また、リチウムイオン(Li)を挿入可能またはリチウムの化合物を形成可能な材料としては、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウム等の金属、これらの元素を含む合金、またはスズやケイ素等を含む金属酸化物が挙げられる。さらにまた、これらの金属や合金や金属酸化物と黒鉛系や非晶質炭素の炭素材料との複合材が挙げられる。 Examples of materials that can insert lithium ions (Li + ) or can form lithium compounds include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, tin, silicon, and the like. And metal oxides containing Furthermore, composite materials of these metals, alloys, metal oxides, and graphite-based or amorphous carbon materials can be mentioned.

負極導電材としては、上述した正極活物質の導電材の他、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンなど)を用いることが可能である。   As the negative electrode conductive material, a conductive polymer material (for example, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.) can be used in addition to the conductive material of the positive electrode active material described above.

合剤スラリーに用いられるバインダ、増粘剤および溶媒に特段の限定はなく、従前と同様のものを用いることができる。   There are no particular limitations on the binder, thickener and solvent used in the mixture slurry, and the same ones as before can be used.

セパレータ3は、二次電池の充放電時にリチウムイオンを透過させる必要があるため、多孔体(例えば、細孔径が0.01〜10μm、気孔率が20〜90%)であることが好ましい。セパレータ3の素材としては、ポリオレフィン系高分子シート(例えば、ポリエチレンやポリプロピレンなど)や、ポリオレフィン系高分子シートとフッ素系高分子シート(例えば、四フッ化ポリエチレン)とを溶着させた多層構造シート、またはガラス繊維シートを好適に使用できる。また、セパレータ3の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。   The separator 3 is preferably a porous body (for example, a pore diameter of 0.01 to 10 μm and a porosity of 20 to 90%) because it is necessary to transmit lithium ions during charging and discharging of the secondary battery. Examples of the material of the separator 3 include a polyolefin polymer sheet (for example, polyethylene and polypropylene), a multilayer structure sheet in which a polyolefin polymer sheet and a fluorine polymer sheet (for example, tetrafluoropolyethylene) are welded, Or a glass fiber sheet can be used conveniently. Further, a mixture of ceramics and binder may be formed in a thin layer on the surface of the separator 3.

電解質は、LiPF、LiBF、LiCFSO、LiN(SOCF、LiN(SOF)などのリチウム塩を単独でまたは混合して用いることができる。リチウム塩を溶解する溶媒としては、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物などを用いることができる。具体的には、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ―ブチロラクトン、n−メチルピロリジン、アセトニトリルなどである。 As the electrolyte, lithium salts such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 can be used alone or in combination. As the solvent for dissolving the lithium salt, a chain carbonate, a cyclic carbonate, a cyclic ester, a nitrile compound, or the like can be used. Specific examples include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, n-methylpyrrolidine, and acetonitrile.

電解質は溶媒中に0.8〜1.5M含まれていることが好ましい。   The electrolyte is preferably contained in the solvent in an amount of 0.8 to 1.5M.

他に、ポリマーゲル電解質や固体電解質も、電解質として使用できる。固体高分子電解質(ポリマー電解質)を用いる場合には、エチレンオキシド、アクリロニトリル、ポリフッ化ビニリデン、メタクリル酸メチル、ヘキサフルオロプロピレンのポリエチレンオキサイドなどのイオン導電性ポリマーを好適に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ3を省略することができる。   In addition, a polymer gel electrolyte or a solid electrolyte can also be used as the electrolyte. When a solid polymer electrolyte (polymer electrolyte) is used, an ion conductive polymer such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, and hexafluoropropylene polyethylene oxide can be preferably used. When these solid polymer electrolytes are used, the separator 3 can be omitted.

さらに、カルボン酸無水基を有する化合物や、プロパンスルトン等の硫黄元素(S)を有する化合物、ホウ素(B)を有する化合物を混合させてもよい。これらの化合物の添加目的は、負極2の表面での電解液の還元分解反応の抑制や、正極1から溶出したMn等の金属元素の負極2での還元析出の防止、電解液のイオン導電性の向上、電解液の難燃化等である。混合させる化合物は、添加目的に応じて選択すればよい。   Furthermore, a compound having a carboxylic anhydride group, a compound having a sulfur element (S) such as propane sultone, and a compound having boron (B) may be mixed. The purpose of adding these compounds is to suppress the reductive decomposition reaction of the electrolytic solution on the surface of the negative electrode 2, to prevent reduction deposition of the metal element such as Mn eluted from the positive electrode 1 on the negative electrode 2, and to the ionic conductivity of the electrolytic solution. Improvement of the electrolyte, flame resistance of the electrolyte, and the like. The compound to be mixed may be selected according to the purpose of addition.

(リチウム二次電池用正極及びリチウム二次電池用正極活物質)
本発明に係るリチウム二次電池用正極及びリチウム二次電池用正極活物質は、上述した本発明に係るリチウム二次電池用正極活物質の製造方法を用いて製造される。
(Positive electrode for lithium secondary battery and positive electrode active material for lithium secondary battery)
The positive electrode for a lithium secondary battery and the positive electrode active material for a lithium secondary battery according to the present invention are manufactured using the above-described method for manufacturing a positive electrode active material for a lithium secondary battery according to the present invention.

上記本発明に係る前記(化学式1)で表わされるリチウム二次電池用正極活物質は、Feにおいて、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が0.01≦(III/II)≦0.3となる。これらの値は仮焼成及び本焼成の焼成条件(温度及び雰囲気)に依存する。本願発明では仮焼成を大気中で実施するため、(III/II)は0.01以上となる。0.01以上の場合、Fe3+が反応開始の起点となって、リチウム拡散性が向上するといった効果がある。また、本願発明の仮焼成及び本焼成の焼成条件では、(III/II)は0.3以下となる。0.3より大きくなると、すなわちFe3+の割合がより大きくなると、Fe3+からFe2+へ還元するのに必要なLiイオン量が多すぎて、電解液中の電解質濃度が高くなってリチウム拡散性が低下し、容量が低下する。 In the positive electrode active material for a lithium secondary battery represented by (Chemical Formula 1) according to the present invention, the molar ratio (III / II) of the Fe 3+ ratio (III) to the Fe 2+ ratio (II) is Fe. 0.01 ≦ (III / II) ≦ 0.3. These values depend on the firing conditions (temperature and atmosphere) of pre-baking and main baking. In the present invention, since pre-baking is performed in the atmosphere, (III / II) is 0.01 or more. In the case of 0.01 or more, there is an effect that Fe 3+ becomes a starting point of the reaction and lithium diffusibility is improved. Further, (III / II) is 0.3 or less under the pre-firing and main-firing conditions of the present invention. When the ratio is larger than 0.3, that is, when the proportion of Fe 3+ is larger, the amount of Li ions required for reduction from Fe 3+ to Fe 2+ is too large, and the electrolyte concentration in the electrolytic solution is increased, resulting in lithium diffusibility. Decreases and the capacity decreases.

またFe3+の割合がより大きくなると、有害な異相(Feなど)が生成しやすくなり、レート特性の低下をまねく恐れがある。(III/II)の範囲は、0.06≦(III/II)≦0.17であることがより好ましい。なお、Feの価数は、メスバウアー分光分析、XAFS測定等で確認することが可能である。 Further, when the proportion of Fe 3+ becomes larger, harmful foreign phases (such as Fe 2 O 3 ) are likely to be generated, which may lead to a decrease in rate characteristics. The range of (III / II) is more preferably 0.06 ≦ (III / II) ≦ 0.17. The valence of Fe can be confirmed by Mossbauer spectroscopy, XAFS measurement, or the like.

前記(化学式1)で表わされる化合物において、Feの割合が10mol%以上であることが好ましい。(化学式1)におけるMにおいて、Feの割合が高いほど抵抗が低くなり、MnやNiやCoの占める割合が高いほど平均電圧が高くなる。平均電圧が高くなると、エネルギー密度(容量×電圧)が高くなる。しかし、MnやNiやCoの占める割合が90%を超えると、抵抗が高すぎて容量が得られず、エネルギー密度も低下する。   In the compound represented by (Chemical Formula 1), the proportion of Fe is preferably 10 mol% or more. In M in (Chemical Formula 1), the higher the proportion of Fe, the lower the resistance, and the higher the proportion of Mn, Ni and Co, the higher the average voltage. As the average voltage increases, the energy density (capacity × voltage) increases. However, if the proportion of Mn, Ni or Co exceeds 90%, the resistance is too high to obtain a capacity, and the energy density is also reduced.

MとしてFeを10mol%程度加えると抵抗が低下し、容量も得られるために高いエネルギー密度が得られる。しかし、Feが多すぎる領域では抵抗が低くなりすぎ、高い容量は得られるものの、容量の増加の効果よりも平均電圧の低下の効果が高く、エネルギー密度が低下する。以上より、Feの割合が、10mol%〜50mol%であることが好ましい。   When about 10 mol% of Fe is added as M, the resistance is reduced and the capacity is obtained, so that a high energy density is obtained. However, in a region where there is too much Fe, the resistance becomes too low and a high capacity can be obtained, but the effect of lowering the average voltage is higher than the effect of increasing the capacity, and the energy density is lowered. As mentioned above, it is preferable that the ratio of Fe is 10 mol%-50 mol%.

正極活物質において、LiとPがM以上の割合で含まれていることが好ましい。このような場合、X線を用いて結晶構造を確認するとオリビンの単相しか確認できない場合でも、過剰に含まれるLiとPが非晶質のLi及び/又はLiPOが生成し、これらの化合物がLiイオンの伝導性向上に寄与すると考えられる(非特許文献1)。なお、これら非晶質化合物の存在は、MAS‐NMR法、FT‐IR法等で確認することが可能である。 In the positive electrode active material, it is preferable that Li and P are contained at a ratio of M or more. In such a case, even if only a single phase of olivine can be confirmed by confirming the crystal structure using X-rays, Li and P contained excessively are amorphous Li 4 P 2 O 7 and / or Li 3 PO 4. It is considered that these compounds contribute to improving the conductivity of Li ions (Non-patent Document 1). The presence of these amorphous compounds can be confirmed by MAS-NMR method, FT-IR method or the like.

また、PのサイトはB、Si、Ti、Vからなる群より選択される一つ以上の元素で置換されていてもよい。置換量は、Liに対して0.25mol%以下であることが好ましく、0.10mol%以下であることがより好ましい。置換量が0.25mol%より大きくなると、オリビンの結晶構造が不安定になる。   The P site may be substituted with one or more elements selected from the group consisting of B, Si, Ti, and V. The amount of substitution is preferably 0.25 mol% or less, and more preferably 0.10 mol% or less with respect to Li. If the amount of substitution exceeds 0.25 mol%, the olivine crystal structure becomes unstable.

以下、実施例及び比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1のリチウム二次電池の作製)
原料として炭酸リチウム(LiCO)、炭酸マンガン(MnCO)、しゅう酸鉄二水和物(FeC・2HO)、リン酸(HPO)、金属元素を含まない有機物としてクエン酸(C)を用い、モル比でLi:Mn:Fe:P=1.1:0.8:0.2:1.1となるよう秤量した。クエン酸は原料粉末全体の18質量%となるよう秤量した。これらを乾式ビーズミルで粉砕・混合した後、仮焼成した。仮焼成の雰囲気は大気とし、仮焼成温度は440℃、仮焼成時間は8時間とした。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The present invention is not limited to these examples.
(Preparation of lithium secondary battery of Example 1)
As raw materials, lithium carbonate (Li 2 CO 3 ), manganese carbonate (MnCO 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), phosphoric acid (H 3 PO 4 ), organic substances not containing metal elements Citric acid (C 6 H 8 O 7 ) was used and weighed so that the molar ratio was Li: Mn: Fe: P = 1.1: 0.8: 0.2: 1.1. Citric acid was weighed so as to be 18% by mass of the total raw material powder. These were pulverized and mixed with a dry bead mill and then calcined. The calcination atmosphere was air, the calcination temperature was 440 ° C., and the calcination time was 8 hours.

得られた仮焼成体に対し、炭素源としてスクロースを添加した。添加量は、正極活物質の14質量%となるよう添加した。これを、ボールミルを用いて粉砕・混合した後、本焼成した。本焼成雰囲気は窒素気流下とし、本焼成温度は700℃、本焼成時間は10時間とした。以上の工程により、正極活物質を得た。   Sucrose was added as a carbon source to the obtained calcined product. The addition amount was 14% by mass of the positive electrode active material. This was pulverized and mixed using a ball mill and then fired. The main baking atmosphere was a nitrogen stream, the main baking temperature was 700 ° C., and the main baking time was 10 hours. The positive electrode active material was obtained by the above process.

続いて、上記で得た正極活物質を用いて正極を作成した。以下に電極の作成方法を説明する。正極活物質、炭素系導電材料、及び予めN‐メチル‐2‐ピロジノン(NMP)に溶解させた結着剤を、質量パーセントで表してそれぞれ82.5:10:7.5の割合で混合してスラリーを作製した。均一に混合されたスラリーを、厚さ20μmのアルミ箔の集電体上に塗布した。その後、120℃で乾燥し、プレスにて電極密度が2.0g/cmになるように圧縮成形した。圧縮成形後、直径15mmの円盤状に、打ち抜き金具を用いて打ち抜き、試験電池用の正極を作製した。 Then, the positive electrode was created using the positive electrode active material obtained above. Hereinafter, a method for producing the electrode will be described. A positive electrode active material, a carbon-based conductive material, and a binder previously dissolved in N-methyl-2-pyrodinone (NMP) were mixed in a ratio of 82.5: 10: 7.5, expressed in mass percent, respectively. A slurry was prepared. The uniformly mixed slurry was applied onto an aluminum foil current collector having a thickness of 20 μm. Then, it dried at 120 degreeC and compression-molded so that the electrode density might be set to 2.0 g / cm < 3 > with a press. After compression molding, a positive electrode for a test battery was manufactured by punching into a disk shape having a diameter of 15 mm using a punched metal fitting.

続いて、上記で得た正極を用い、金属リチウムを負極として、試験電池を作製した。電解液には、1.2モルのLiPF6を電解質とし、EC(エチレンカーボネート)とエチルメチルカーボネート(EMC)の混合液を溶媒としたものを用いた。
(試験及び評価)
(a)XRD測定(結晶相同定)
以下の手順で粉末X線回折測定(XRD測定)を行い、上記で得た、炭素被覆した正極活物質の結晶相の同定を行った。測定装置には、自動X線回折装置(株式会社リガク製、型式:RINT‐UltimaIII)を用いた。測定条件は、集中法で、X線としてCuKα線を用い、X線出力を48kV×40mAとし、走査範囲を2θ=15〜50degとし、発散スリットをDS=1deg、散乱スリットをSS=1deg、受光スリットをRS=0.3mm、モノクロメータスリットを0.6mmとし、ステップスキャン法でステップ幅0.02°、1ステップ当たりの測定時間が1秒とした。
Subsequently, a test battery was produced using the positive electrode obtained above and metallic lithium as the negative electrode. As the electrolytic solution, a solution containing 1.2 mol of LiPF 6 as an electrolyte and a mixed solution of EC (ethylene carbonate) and ethyl methyl carbonate (EMC) as a solvent was used.
(Test and evaluation)
(A) XRD measurement (crystal phase identification)
Powder X-ray diffraction measurement (XRD measurement) was performed by the following procedure, and the crystal phase of the carbon-coated positive electrode active material obtained above was identified. An automatic X-ray diffractometer (manufactured by Rigaku Corporation, model: RINT-UltimaIII) was used as the measuring apparatus. The measurement conditions are a concentration method, using CuK α- ray as X-ray, X-ray output is 48 kV × 40 mA, scanning range is 2θ = 15 to 50 deg, diverging slit is DS = 1 deg, scattering slit is SS = 1 deg, The light receiving slit was RS = 0.3 mm, the monochromator slit was 0.6 mm, the step width was 0.02 ° by the step scanning method, and the measurement time per step was 1 second.

測定して得た回折パターンについて、ICSD(Inorganic Crystal Structure Database)を用いて結晶相を同定した。   About the diffraction pattern obtained by the measurement, the crystal phase was identified using ICSD (Inorganic Crystal Structure Database).

実施例1のリチウム二次電池用正極活物質のX線回折プロファイルを図3に示す。
(b)元素重量比測定(正極活物質組成評価)
正極活物質の元素の重量比は、高周波誘導結合プラズマ発光分光(以下「ICP」と略す)分析装置(株式会社日立製作所製、型式:P−4000)を用いて、以下のように測定した。
The X-ray diffraction profile of the positive electrode active material for a lithium secondary battery of Example 1 is shown in FIG.
(B) Element weight ratio measurement (evaluation of positive electrode active material composition)
The weight ratio of elements of the positive electrode active material was measured as follows using a high-frequency inductively coupled plasma emission spectroscopy (hereinafter abbreviated as “ICP”) analyzer (manufactured by Hitachi, Ltd., model: P-4000).

まず、ビーカに入れた45mlのイオン交換水に5gの正極活物質と2mlの硝酸を投入し、スターラ(攪拌機)で30分間攪拌した。5分間放置後、濾紙で濾過した濾液をアルゴンガスとともに高周波雰囲気中に噴霧し、励起された各元素特有の光の強度を測定して、元素の重量比を算出した。実施例1の正極活物質の組成を、後述する表1に示す。
(c)Fe価数測定(Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)算出)
Feの価数は、メスバウアー分光装置を用いて行い、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)を算出した。算出した値を表1に併記する。
(d)炭素含有量測定
正極活物質の炭素含有量は、固体中炭素分析装置(株式会社堀場製作所製、型式:EMIA−110)を用いて、以下のように測定した。空焼きした磁性るつぼに100mgの試料と助燃剤を加え、酸素気流中、高周波加熱炉で燃焼した。燃焼ガス中のCO及びCOガスを定量し、炭素の重量を算出した。測定結果を表1に併記する。
(e)充放電試験(容量評価)
上記で作製した試験電池について、以下の充放電試験を実施し、容量を評価した。充電レートを0.1C(10時間で100%の充電が完了する速さ)として4.5Vまで定電流/定電圧で充電し、4.5Vに達した後は電流値が0.03Cに減衰するまで定電圧充電を行った。その後、2Vまで0.1Cの定電流で放電し、その際の放電容量を容量とした。結果を表1に併記する。
(f)レート特性評価
上記の充放電サイクルを3サイクル繰り返した後、以下の条件でレート特性を評価した。容量測定と同様に定電流充電と定電圧充電を行った試験電池を、5Cの電流値で定電流放電したときの容量を0.1Cの単極放電容量で除した値(%)をレート特性とした。結果を表1に併記する。
First, 5 g of a positive electrode active material and 2 ml of nitric acid were added to 45 ml of ion exchange water in a beaker, and the mixture was stirred for 30 minutes with a stirrer (stirrer). After standing for 5 minutes, the filtrate filtered with filter paper was sprayed into a high-frequency atmosphere together with argon gas, and the light intensity specific to each excited element was measured to calculate the weight ratio of the elements. The composition of the positive electrode active material of Example 1 is shown in Table 1 described later.
(C) Fe valence measurement (calculation of molar ratio (III / II) of Fe 3+ ratio (III) and Fe 2+ ratio (II))
The valence of Fe was measured using a Mossbauer spectrometer, and the molar ratio (III / II) of the ratio (III) of Fe 3+ and the ratio (II) of Fe 2+ was calculated. The calculated values are also shown in Table 1.
(D) Carbon content measurement The carbon content of the positive electrode active material was measured as follows using a solid carbon analyzer (manufactured by Horiba, Ltd., model: EMIA-110). A 100 mg sample and a combustor were added to an air-baked magnetic crucible and burned in a high-frequency heating furnace in an oxygen stream. CO 2 and CO gas in the combustion gas were quantified, and the weight of carbon was calculated. The measurement results are also shown in Table 1.
(E) Charge / discharge test (capacity evaluation)
About the test battery produced above, the following charging / discharging test was implemented and the capacity | capacitance was evaluated. Charged at a constant current / constant voltage up to 4.5V with a charging rate of 0.1C (speed of 100% charging in 10 hours). After reaching 4.5V, the current value decays to 0.03C Constant voltage charging was performed until Thereafter, the battery was discharged at a constant current of 0.1 C up to 2 V, and the discharge capacity at that time was defined as the capacity. The results are also shown in Table 1.
(F) Rate characteristic evaluation After repeating the above charge / discharge cycle for 3 cycles, the rate characteristic was evaluated under the following conditions. Rate characteristics obtained by dividing the capacity when a constant-current charge and constant-voltage charge test battery is discharged at a current value of 5C by the constant current discharge of 5C as with the capacity measurement (%) It was. The results are also shown in Table 1.

なお、全ての試験は、室温(25℃)で行った。
(実施例2のリチウム二次電池の作製)
仮焼成時の雰囲気を大気から空気+窒素(流量比1:1)の混合気流下とした以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例3のリチウム二次電池の作製)
原料をLi:Mn:Fe:P=1.1:0.85:0.15:1.1となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.85Fe0.15POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例4のリチウム二次電池の作製)
原料混合工程時に添加する金属元素を含まない有機物をクエン酸から酢酸(CHCOOH)に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例5のリチウム二次電池の作製)
原料混合時に添加する金属元素を含まない有機物をクエン酸からリンゴ酸(C)に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例6のリチウム二次電池の作製)
原料混合時に添加する金属元素を含まない有機物をクエン酸からスクロース(C122211)に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例7のリチウム二次電池の作製)
原料混合時に添加する金属元素を含まない有機物をクエン酸からデキストリン(C10)に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例8のリチウム二次電池の作製)
仮焼成温度を440℃から420℃に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例9のリチウム二次電池の作製)
仮焼成温度を440℃から600℃に変更した以外は、実施例1と同様に合成し、LiMn0.8Fe0.2POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例10のリチウム二次電池の作製)
原料として水酸化マグネシウム(Mg(OH))を加えてLi:Mn:Fe:Mg:P=1.1:0.88:0.10:0.02:1.1となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.88Fe0.10Mg0.02POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例11のリチウム二次電池の作製)
原料として微粒子の酸化チタン(TiO)を加えてLi:Mn:Fe:P:Ti=1.1:0.8:0.2:1.07:0.04:となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.8Fe0.20.96Ti0.04POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例12のリチウム二次電池の作製)
原料として微粒子の五酸化二バナジウム(V)を加えてLi:Mn:Fe:P:V=1.1:0.8:0.2:1.07:0.04となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.8Fe0.20.960.04POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例13のリチウム二次電池の作製)
原料をLi:Mn:Fe:P=1.1:0.5:0.5:1.1となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.5Fe0.5POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例14のリチウム二次電池の作製)
原料として炭酸コバルト(CoCO)を加えてLi:Mn:Fe:Co:P=1.1:0.8:0.15:0.05:1.1となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.8Fe0.15Co0.05POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(実施例15のリチウム二次電池の作製)
原料として炭酸ニッケル(NiCO・HO)を加えてLi:Mn:Fe:Ni:P=1.1:0.8:0.15:0.05:1.1となるよう秤量した以外は、実施例1と同様に合成し、LiMn0.8Fe0.15Ni0.05POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価結果を表1に併記する。
(参考例1のリチウム二次電池の作製)
仮焼成温度を350℃にした以外は、実施例1と同様に合成し、LiFe0.2Mn0.8POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価も実施例1と同様に行った。結果を表2に記載する。
(参考例2のリチウム二次電池の作製)
本焼成時の雰囲気を大気とした以外は、実施例1と同様に合成し、LiFe0.2Mn0.8POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価も実施例1と同様に行った。結果を表2に併記する。
All tests were performed at room temperature (25 ° C.).
(Preparation of lithium secondary battery of Example 2)
Synthesis was performed in the same manner as in Example 1 except that the atmosphere at the time of calcination was changed from the air to a mixed air stream of air + nitrogen (flow rate ratio 1: 1) to obtain LiMn 0.8 Fe 0.2 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 3)
The raw material was synthesized in the same manner as in Example 1 except that Li: Mn: Fe: P = 1.1: 0.85: 0.15: 1.1, and LiMn 0.85 Fe 0.15 PO 4 was obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 4)
A LiMn 0.8 Fe 0.2 PO 4 was obtained by synthesizing in the same manner as in Example 1 except that the organic substance not containing a metal element added in the raw material mixing step was changed from citric acid to acetic acid (CH 3 COOH). . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Production of lithium secondary battery of Example 5)
It was synthesized in the same manner as in Example 1 except that the organic substance not containing a metal element added at the time of raw material mixing was changed from citric acid to malic acid (C 4 H 6 O 5 ), and LiMn 0.8 Fe 0.2 PO 4 Got. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 6)
A LiMn 0.8 Fe 0.2 PO 4 was synthesized in the same manner as in Example 1 except that the organic substance not containing a metal element added at the time of raw material mixing was changed from citric acid to sucrose (C 12 H 22 O 11 ). Obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 7)
Synthesis was performed in the same manner as in Example 1 except that the organic substance not containing a metal element added at the time of raw material mixing was changed from citric acid to dextrin (C 6 H 10 O 5 ), and LiMn 0.8 Fe 0.2 PO 4 was synthesized. Obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Production of lithium secondary battery of Example 8)
Synthesis was performed in the same manner as in Example 1 except that the calcination temperature was changed from 440 ° C. to 420 ° C. to obtain LiMn 0.8 Fe 0.2 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 9)
A LiMn 0.8 Fe 0.2 PO 4 was obtained in the same manner as in Example 1 except that the calcination temperature was changed from 440 ° C. to 600 ° C. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 10)
Other than adding magnesium hydroxide (Mg (OH) 2 ) as a raw material and weighing to make Li: Mn: Fe: Mg: P = 1.1: 0.88: 0.10: 0.02: 1.1 Was synthesized in the same manner as in Example 1 to obtain LiMn 0.88 Fe 0.10 Mg 0.02 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 11)
Except for adding fine particle titanium oxide (TiO 2 ) as a raw material and weighing it to be Li: Mn: Fe: P: Ti = 1.1: 0.8: 0.2: 1.07: 0.04: In the same manner as in Example 1, LiMn 0.8 Fe 0.2 P 0.96 Ti 0.04 PO 4 was obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 12)
Weigh so that Li: Mn: Fe: P: V = 1.1: 0.8: 0.2: 1.07: 0.04 by adding fine particle vanadium pentoxide (V 2 O 5 ) as a raw material. Except that, synthesis was performed in the same manner as in Example 1 to obtain LiMn 0.8 Fe 0.2 P 0.96 V 0.04 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Production of lithium secondary battery of Example 13)
The raw material was synthesized in the same manner as in Example 1 except that Li: Mn: Fe: P = 1.1: 0.5: 0.5: 1.1, and LiMn 0.5 Fe 0.5 PO 4 was obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 14)
Example except that cobalt carbonate (CoCO 3 ) was added as a raw material and weighed so that Li: Mn: Fe: Co: P = 1.1: 0.8: 0.15: 0.05: 1.1 1 was obtained in the same manner as in Example 1 to obtain LiMn 0.8 Fe 0.15 Co 0.05 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of lithium secondary battery of Example 15)
Other than adding nickel carbonate (NiCO 3 .H 2 O) as a raw material and weighing to make Li: Mn: Fe: Ni: P = 1.1: 0.8: 0.15: 0.05: 1.1 Was synthesized in the same manner as in Example 1 to obtain LiMn 0.8 Fe 0.15 Ni 0.05 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the evaluation results of capacity and rate characteristics are also shown in Table 1.
(Preparation of the lithium secondary battery of Reference Example 1)
Synthesis was performed in the same manner as in Example 1 except that the calcination temperature was 350 ° C., to obtain LiFe 0.2 Mn 0.8 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the capacity and the rate characteristics were also evaluated in the same manner as in Example 1. The results are listed in Table 2.
(Preparation of lithium secondary battery of Reference Example 2)
Synthesis was performed in the same manner as in Example 1 except that the atmosphere during the main firing was air, and LiFe 0.2 Mn 0.8 PO 4 was obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the capacity and the rate characteristics were also evaluated in the same manner as in Example 1. The results are also shown in Table 2.

なお、本明細書において参考例とは本発明と同様に、金属元素を含まない有機物を添加して酸化雰囲気下で本焼成することにより正極活物質を合成したものであるが、仮焼成温度がオリビンの結晶化温度より低い温度、または本焼成時の雰囲気が還元雰囲気もしくは不活性雰囲気ではないものである。したがって参考例はそれ自体公知ではないが本発明の仮焼成温度及び本焼成時の雰囲気の重要性を示すために記載した。
(比較例1のリチウム二次電池の作製)
仮焼成時の雰囲気を大気から窒素気流下に変更した以外は、実施例1と同様に合成し、LiFe0.2Mn0.8POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価も実施例1と同様に行った。結果を表2に記載する。
(比較例2のリチウム二次電池の作製)
仮焼成体に炭素源として加えるスクロースを除いた以外は、実施例1と同様に合成し、LiFe0.2Mn0.8POを得た。XRD測定、元素重量比測定、Fe価数測定、炭素含有量測定、充放電試験、レート特性評価も同様に行った。正極活物質の組成、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)、容量及びレート特性の評価も実施例1と同様に行った。結果を表2に記載する。
In the present specification, the reference example is the same as the present invention, in which a positive electrode active material is synthesized by adding an organic substance that does not contain a metal element and firing it in an oxidizing atmosphere. The temperature is lower than the crystallization temperature of olivine, or the atmosphere during the main baking is not a reducing atmosphere or an inert atmosphere. Therefore, although the reference example is not known per se, it is described in order to show the importance of the preliminary baking temperature and the atmosphere during the main baking of the present invention.
(Preparation of lithium secondary battery of Comparative Example 1)
Synthesis was performed in the same manner as in Example 1 except that the atmosphere at the time of calcination was changed from air to a nitrogen stream to obtain LiFe 0.2 Mn 0.8 PO 4 . XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the capacity and the rate characteristics were also evaluated in the same manner as in Example 1. The results are listed in Table 2.
(Preparation of lithium secondary battery of Comparative Example 2)
Synthesis was performed in the same manner as in Example 1 except that sucrose added as a carbon source to the calcined product was obtained, and LiFe 0.2 Mn 0.8 PO 4 was obtained. XRD measurement, element weight ratio measurement, Fe valence measurement, carbon content measurement, charge / discharge test, and rate characteristic evaluation were similarly performed. The composition of the positive electrode active material, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ (III / II), the capacity and the rate characteristics were also evaluated in the same manner as in Example 1. The results are listed in Table 2.

Figure 0005928302
Figure 0005928302

Figure 0005928302
Figure 0005928302

表1及び表2に示したように、本発明に係るリチウム二次電池用正極活物質の製造方法を用いて製造したリチウム二次電池は、高容量(150Ah/kg以上)及び高レート特性(80%以上)の両方を同時に達成することができた。一方、比較例及び参考例の容量及びレート特性ともに、実施例と比較して低い値を示した。   As shown in Table 1 and Table 2, the lithium secondary battery manufactured using the method for manufacturing a positive electrode active material for a lithium secondary battery according to the present invention has a high capacity (150 Ah / kg or more) and a high rate characteristic ( 80% or more) could be achieved at the same time. On the other hand, both the capacity and rate characteristics of the comparative example and the reference example showed lower values than the example.

また表1及び表2から、本発明に係るリチウム二次電池用正極活物質の製造方法を用いて製造したリチウム二次電池は、全てFe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が0.01≦(III/II)≦0.3の範囲にあった。一方、比較例1及び比較例2のFe3+の割合(III)とFe2+の割合(II)のモル比(III/II)は、該範囲から外れていた。 Further, from Tables 1 and 2, the lithium secondary batteries manufactured using the method for manufacturing a positive electrode active material for a lithium secondary battery according to the present invention are all Fe 3+ ratio (III) and Fe 2+ ratio (II). The molar ratio (III / II) was in the range of 0.01 ≦ (III / II) ≦ 0.3. On the other hand, the molar ratio (III / II) of the ratio (III) of Fe 3+ and the ratio (II) of Fe 2+ in Comparative Examples 1 and 2 was out of this range.

図3において、実施例1のXRDプロファイルの定性分析の結果、実施例1は斜方晶のオリビン型構造を有するLiMn0.8Fe0.2POであることが確認された。 In FIG. 3, as a result of the qualitative analysis of the XRD profile of Example 1, it was confirmed that Example 1 was LiMn 0.8 Fe 0.2 PO 4 having an orthorhombic olivine structure.

より詳細に、実施例1、参考例及び比較例について説明する。参考例1は、仮焼成温度が本発明の規定より低い。このため、本焼成時のオリビンの結晶化の際に有機物等が結晶内部に多く取り込まれ、結晶性が低下した結果、容量及びレート特性が低下したものと考えられる。   In more detail, Example 1, a reference example, and a comparative example are demonstrated. In Reference Example 1, the calcination temperature is lower than that of the present invention. For this reason, when olivine is crystallized during the main firing, a large amount of organic substances and the like are taken into the crystal, and the crystallinity is lowered. As a result, the capacity and rate characteristics are considered to be lowered.

参考例2は、本焼成時の雰囲気が酸化雰囲気であり、本発明の規定と異なる。このため、本焼成時に金属元素が酸化されて、オリビン構造が維持できず、容量及びレート特性が著しく低下したものと考えられる。また、本焼成が酸化性雰囲気下で行われたため、Feがより酸化され、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が本発明の規定する範囲から大きく外れたものと考えられる。 In Reference Example 2, the atmosphere during the main firing is an oxidizing atmosphere, which is different from the provisions of the present invention. For this reason, it is considered that the metal element was oxidized during the main firing, the olivine structure could not be maintained, and the capacity and rate characteristics were significantly reduced. Further, since the main calcination was performed in an oxidizing atmosphere, Fe was further oxidized, and the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ was within the range defined by the present invention. It is thought that it was greatly deviated from.

比較例1は、仮焼成時の雰囲気が従来の窒素雰囲気であり、本発明の規定と異なる。このため、仮焼成時に、仮焼成前に添加した有機物が消失せず、本焼成後にも炭素源が過剰に残留し、容量が低下したものと考えられる。また、仮焼成、本焼成ともに不活性雰囲気下で行われているため、Feは酸化されず、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)は0となったと考えられる。 In Comparative Example 1, the atmosphere at the time of temporary firing is a conventional nitrogen atmosphere, which is different from the provisions of the present invention. For this reason, it is considered that the organic matter added before the pre-firing does not disappear at the time of pre-firing, the carbon source remains excessively even after the main firing, and the capacity is reduced. Further, since both the pre-firing and the main firing are performed in an inert atmosphere, Fe is not oxidized, and the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ is 0. It is thought that it became.

比較例2は、本焼成時に炭素源を添加していない。このため、正極活物質が炭素被覆されず、導電性が向上しなかったため、容量及びレート特性が低下したものと考えられる。また、炭素源を添加せずに本焼成を行っているため、添加した場合と比較してFeはより酸化され、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)は0.5となったと考えられる。 In Comparative Example 2, no carbon source was added during the main firing. For this reason, it is considered that the positive electrode active material was not coated with carbon and the conductivity was not improved, so that the capacity and rate characteristics were lowered. In addition, since the main calcination is performed without adding a carbon source, Fe is more oxidized as compared with the case where it is added, and the molar ratio (III) of the ratio of Fe 3+ (III) to the ratio of Fe 2+ (II) (III / II) is considered to be 0.5.

実施例1〜15の正極活物質の炭素含有量は、実施例1〜3及び実施例5〜15は4質量%で、実施例4は3質量%だった。また、参考例1の炭素含有量は6質量%で、参考例2では炭素は検出されなかった。また、比較例1の炭素含有量は12質量%で、比較例2では炭素は検出されなかった。   The carbon contents of the positive electrode active materials of Examples 1 to 15 were 4% by mass in Examples 1 to 3 and Examples 5 to 15, and 3% by mass in Example 4. Further, the carbon content of Reference Example 1 was 6% by mass, and no carbon was detected in Reference Example 2. The carbon content of Comparative Example 1 was 12% by mass, and no carbon was detected in Comparative Example 2.

図4は、実施例1〜15、比較例1、2及び参考例1及び2の正極活物質の単極放電容量とレート特性の関係を示すグラフである。図4に示したように、本発明に係るリチウム二次電池用正極活物質は、容量及びレート特性ともに、比較例及び参考例よりも優れていることがわかる。   FIG. 4 is a graph showing the relationship between the single electrode discharge capacity and rate characteristics of the positive electrode active materials of Examples 1 to 15, Comparative Examples 1 and 2, and Reference Examples 1 and 2. As shown in FIG. 4, it can be seen that the positive electrode active material for a lithium secondary battery according to the present invention is superior to the comparative example and the reference example in both capacity and rate characteristics.

以上の結果から、本発明に係るリチウム二次電池用正極活物質は、安全性の高いポリアニオン系化合物を使用し、従来のポリアニオン系正極活物質を用いたリチウム二次電池よりも、高容量(150Ah/kg以上)及び高レート特性(80%以上)を同時に達成することができることが示された。   From the above results, the positive electrode active material for a lithium secondary battery according to the present invention uses a highly safe polyanion compound, and has a higher capacity than a lithium secondary battery using a conventional polyanion positive electrode active material ( It has been shown that 150 Ah / kg and higher) and high rate characteristics (80% and higher) can be achieved simultaneously.

1…正極、2…負極、3…セパレータ、4…電池缶、5…負極リード、6…密閉蓋部、7…正極リード、8…パッキン、9…絶縁板、10…リチウム二次電池。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Battery can, 5 ... Negative electrode lead, 6 ... Sealing lid part, 7 ... Positive electrode lead, 8 ... Packing, 9 ... Insulating plate, 10 ... Lithium secondary battery.

Claims (9)

下記(化学式1)で示されるリチウム二次電池用正極活物質の原料と、金属元素を含まない有機物とを混合する工程と、
前記正極活物質の原料及び前記有機物との混合物を、420℃〜600℃の温度、かつ酸化雰囲気で仮焼成する工程と、
前記仮焼成する工程により得た仮焼成体に、金属元素を含まない炭素化合物を混合する工程と、
前記炭素化合物が混合された前記仮焼成体を、前記仮焼成温度以上の温度、かつ還元雰囲気もしくは不活性雰囲気で本焼成する工程と、を有し、
前記本焼成工程後に得られる下記(化学式1)で示されるリチウム二次電池用正極活物質中のFeにおいて、Fe3+の割合(III)とFe2+の割合(II)のモル比(III/II)が0.01≦(III/II)≦0.3であることを特徴とするリチウム二次電池用正極活物質の製造方法。
LiMP1−x (化学式1)
(Mは金属元素であって、Feを含み、かつMn、Co及びNiのうち少なくとも1つを含み、AはB、Si、Ti、Vから選ばれる少なくとも一つを含み、0≦x≦0.25である。)
A step of mixing a raw material of a positive electrode active material for a lithium secondary battery represented by the following (Chemical Formula 1) and an organic substance not containing a metal element;
A step of calcining a mixture of the raw material of the positive electrode active material and the organic substance at a temperature of 420 ° C. to 600 ° C. in an oxidizing atmosphere;
A step of mixing a carbon compound not containing a metal element into the pre-fired body obtained by the pre-baking step;
A step of subjecting the calcined body mixed with the carbon compound to a temperature equal to or higher than the calcining temperature and a calcining in a reducing atmosphere or an inert atmosphere,
In Fe in the positive electrode active material for a lithium secondary battery represented by the following (Chemical Formula 1) obtained after the main firing step, the molar ratio (III / II) of the ratio (III) of Fe 3+ to the ratio (II) of Fe 2+ ) Is 0.01 ≦ (III / II) ≦ 0.3. A method for producing a positive electrode active material for a lithium secondary battery.
LiMP 1-x A x O 4 (Chemical Formula 1)
(M is a metal element, includes Fe, and includes at least one of Mn, Co, and Ni, A includes at least one selected from B, Si, Ti, and V, and 0 ≦ x ≦ 0 .25.)
前記正極活物質において、Mに占めるFeの割合が10mol%〜50mol%であることを特徴とする請求項1に記載のリチウム二次電池用正極活物質の製造方法。   2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the proportion of Fe in M in the positive electrode active material is 10 mol% to 50 mol%. 前記正極活物質として、非晶質のLi及び/又はLiPOが含まれることを特徴とする請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material includes amorphous Li 4 P 2 O 7 and / or Li 3 PO 4. . 前記金属元素を含まない有機物がカルボン酸であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3, wherein the organic substance not containing the metal element is a carboxylic acid. 前記カルボン酸が酢酸、クエン酸、リンゴ酸からなる群より選択される一つ以上であることを特徴とする請求項4に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 4, wherein the carboxylic acid is one or more selected from the group consisting of acetic acid, citric acid, and malic acid. 前記金属元素を含まない有機物が糖であることを特徴とする請求項1乃至請求項5のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 5, wherein the organic substance not containing the metal element is sugar. 前記糖がスクロース、グルコース、デンプン、セルロース、デキストリンからなる群より選択される一つ以上であることを特徴とする請求項6に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 6, wherein the sugar is one or more selected from the group consisting of sucrose, glucose, starch, cellulose, and dextrin. 前記仮焼成の温度が、430℃以上500℃以下であることを特徴とする請求項1乃至請求項7のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 7, wherein a temperature of the pre-baking is not less than 430 ° C and not more than 500 ° C. 前記仮焼成する工程の酸化雰囲気が、酸素濃度1%以上であることを特徴とする請求項1乃至請求項8のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 8, wherein an oxidizing atmosphere in the pre-baking step has an oxygen concentration of 1% or more.
JP2012242414A 2012-11-02 2012-11-02 Method for producing positive electrode active material for lithium secondary battery Active JP5928302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242414A JP5928302B2 (en) 2012-11-02 2012-11-02 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242414A JP5928302B2 (en) 2012-11-02 2012-11-02 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014093171A JP2014093171A (en) 2014-05-19
JP5928302B2 true JP5928302B2 (en) 2016-06-01

Family

ID=50937117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242414A Active JP5928302B2 (en) 2012-11-02 2012-11-02 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5928302B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042511B2 (en) * 2015-03-09 2016-12-14 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6023295B2 (en) * 2015-03-26 2016-11-09 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6252524B2 (en) * 2015-03-12 2017-12-27 トヨタ自動車株式会社 Method for producing positive electrode active material for solid state battery
JP6832073B2 (en) * 2016-03-29 2021-02-24 Fdk株式会社 Manufacturing method of positive electrode active material for all-solid-state batteries
CA2956857A1 (en) * 2017-02-02 2018-08-02 Hydro-Quebec Electrode material, solid electrode and battery including a complex oxide with olivine structure
CN109301174B (en) * 2017-07-24 2020-11-13 宁德时代新能源科技股份有限公司 Positive electrode material, method for producing same, and lithium secondary battery
JP6477948B1 (en) * 2018-03-29 2019-03-06 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
CN117043985A (en) * 2022-03-31 2023-11-10 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode sheet comprising positive electrode active material, secondary battery and power utilization device
CN115477295B (en) * 2022-09-16 2023-09-12 广东邦普循环科技有限公司 Method for preparing lithium iron manganese phosphate anode material by spray combustion and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483253B2 (en) * 2003-09-30 2010-06-16 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5017778B2 (en) * 2005-01-05 2012-09-05 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
WO2009122686A1 (en) * 2008-03-31 2009-10-08 戸田工業株式会社 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
WO2012133566A1 (en) * 2011-03-28 2012-10-04 兵庫県 Electrode material for secondary battery, method for producing electrode material for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP2014093171A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5928302B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5554780B2 (en) Nonaqueous electrolyte secondary battery
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
JP6094584B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same, and method for producing positive electrode active material for lithium secondary battery
JP5116177B2 (en) Method for producing lithium silicate compound
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP5915732B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery, method for producing positive electrode for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP2013187032A (en) Positive electrode material for lithium secondary battery, and lithium secondary battery
WO2017126312A1 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery
JP2015082476A (en) Positive electrode active material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JP5909131B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP2016081865A (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2015002091A (en) Positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery positive electrode arranged by use thereof, lithium ion secondary battery, lithium ion secondary battery module, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JP2015195130A (en) Cathode active material, secondary battery cathode, secondary battery and cathode active material production method
JP2015002092A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JP2018170249A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery arranged by use thereof
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP2010027604A (en) Cathode active material for lithium secondary battery and lithium secondary battery
JP5446036B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2012248283A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6998176B2 (en) Positive electrode active material, positive electrode and lithium secondary battery
JP5648732B2 (en) Positive electrode active material and lithium ion secondary battery
JP2015056222A (en) Positive electrode active material for nonaqueous secondary batteries, method for manufacturing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350