JP4684727B2 - Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP4684727B2
JP4684727B2 JP2005122988A JP2005122988A JP4684727B2 JP 4684727 B2 JP4684727 B2 JP 4684727B2 JP 2005122988 A JP2005122988 A JP 2005122988A JP 2005122988 A JP2005122988 A JP 2005122988A JP 4684727 B2 JP4684727 B2 JP 4684727B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
carbon
peak intensity
lifepo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005122988A
Other languages
Japanese (ja)
Other versions
JP2006302671A (en
Inventor
達夫 梅野
忠則 綱分
憲二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Coke and Engineering Co Ltd
Original Assignee
Nippon Coke and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Coke and Engineering Co Ltd filed Critical Nippon Coke and Engineering Co Ltd
Priority to JP2005122988A priority Critical patent/JP4684727B2/en
Publication of JP2006302671A publication Critical patent/JP2006302671A/en
Application granted granted Critical
Publication of JP4684727B2 publication Critical patent/JP4684727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池用正極材料及びその製造方法、並びにその正極材料を用いてなるリチウムイオン二次電池に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery, a manufacturing method thereof, and a lithium ion secondary battery using the positive electrode material.

リチウムイオン二次電池は、軽量でエネルギー密度が高いことから、民生用では、IT情報端末を中心に携帯電話、ノート型パソコン、バックアップ電源の小型電池に幅広く使用されている。現在もその需要が世界的な規模で伸びている。   Lithium ion secondary batteries are lightweight and have a high energy density, and are therefore widely used in consumer applications, mainly in IT information terminals, for mobile phones, laptop computers, and small batteries for backup power supplies. Today, the demand is growing on a global scale.

この小型電池に加えて、産業用の大型電池としても、ハイブリッド自動車用、電気自動車用、電力平準化用、電力貯蔵用、ロボット用など多方面に、その需要が今後期待され、研究開発も盛んに行われている。   In addition to these small batteries, industrial large batteries are also expected to be used in various fields such as hybrid cars, electric cars, power leveling, power storage, and robots, and research and development are thriving. Has been done.

このような状況下で産業用の大型電池が本格的に実用化されるための課題として、正極材料には、高い安全性、高寿命、高出力、低価格が要求されている。その中で高い安全性と優れたサイクル性能を示し、低価格で製造可能なLiFePO4がLiCoO2、LiMn24代替正極材料として注目されている。 Under such circumstances, high safety, long life, high output, and low price are required for the positive electrode material as a problem for full-scale commercialization of large industrial batteries. Among them, LiFePO 4 , which exhibits high safety and excellent cycle performance and can be manufactured at a low price, has attracted attention as an alternative positive electrode material for LiCoO 2 and LiMn 2 O 4 .

従来のLiFePO4の合成は、合成原料となるFe源はシュウ酸鉄FeC24、燐酸鉄Fe3(PO4)2や酢酸鉄Fe(CH3COO)2などの2価の鉄塩を用い、リチウム化合物や燐酸アンモニウム塩とともに還元雰囲気下で高温焼成することで合成されていた。 In the conventional synthesis of LiFePO 4, the Fe source as a synthesis raw material is a divalent iron salt such as iron oxalate FeC 2 O 4 , iron phosphate Fe 3 (PO 4 ) 2 or iron acetate Fe (CH 3 COO) 2. It was synthesized by firing at a high temperature in a reducing atmosphere together with a lithium compound and ammonium phosphate.

しかしながら、LiFePO4合成に使用する原料は、大量且つ容易に入手可能であることが必要であるが、シュウ酸鉄FeC24、酢酸鉄Fe(CH3COO)2などは原料自身の毒性や高価格などの欠点があり、取扱い上あるいは安定供給に問題がある。Fe3(PO4)2については、繰り返し洗浄が必要なうえに、Naが残留する問題があるので好ましくない。 However, the raw materials used for LiFePO 4 synthesis need to be easily available in large quantities, but iron oxalate FeC 2 O 4 , iron acetate Fe (CH 3 COO) 2, etc. There are drawbacks such as high price, and there are problems in handling and stable supply. Fe 3 (PO 4 ) 2 is not preferable because it requires repeated washing and Na remains.

このような観点から、LiFePO4合成用の原料としては、鉄あるいは酸化鉄が好ましいと考えられる。鉄を原料として合成する方法が特許文献1で提案されている。この方法は安価で合成可能であるが、液相で前躯体を調製するために、廃液の処理が必要であり、また、焼成時に多量の塩素が発生するため、環境面からも好ましくない。 From such a viewpoint, it is considered that iron or iron oxide is preferable as a raw material for LiFePO 4 synthesis. Patent Document 1 proposes a method of synthesizing iron as a raw material. This method is inexpensive and can be synthesized, but it is not preferable from the viewpoint of the environment because it requires treatment of the waste liquid in order to prepare the precursor in a liquid phase, and a large amount of chlorine is generated during firing.

一方、2価、3価の酸化鉄から単相のLiFePO4を合成した例はなく、特許文献2、特許文献3で鉄粉や炭素粉末などの還元助剤を添加したり、焼成時の雰囲気を制御したりして2価の鉄から3価の鉄への酸化抑制が検討されてきている以外に検討された例はない。これは、2価、3価の酸化鉄の還元状態を制御することが難しく、還元力が強い場合は鉄になり、弱い場合は、酸化状態で存在するためである。酸化鉄からの合成の場合、焼成時に酸化鉄の還元によって生成されるのは、CO2のみであるので、環境に良いと考えられる。このように、LiFePO4合成用原料については、安価な酸化鉄を還元してLiFePO4を合成する方法が最も好ましいと考えられる。 On the other hand, there is no example of synthesizing single-phase LiFePO 4 from divalent or trivalent iron oxide. In Patent Documents 2 and 3, a reducing aid such as iron powder or carbon powder is added, or the atmosphere during firing. There is no example examined other than controlling oxidation from divalent iron to trivalent iron by controlling the above. This is because it is difficult to control the reduced state of divalent and trivalent iron oxide, and when the reducing power is strong, it becomes iron, and when it is weak, it exists in the oxidized state. In the case of synthesis from iron oxide, it is considered that it is good for the environment because only CO 2 is produced by reduction of iron oxide during firing. Thus, with regard to the LiFePO 4 synthesis raw material, a method of synthesizing LiFePO 4 by reducing inexpensive iron oxide is considered most preferable.

LiFePO4への導電性の付与方法については、2つの方法が提案されている。1つ目の方法は、粒子内部の導電性を改善するもので、合成原料中に非晶質カーボン、黒鉛などの導電性付与材料を混合して焼成することによって導電性を改善するものである。これについては、特許文献4、特許文献5、特許文献6、特許文献7など多くの特許が出願されているが、LiFePO4粒子表面への炭素の析出はほとんどない。なお、電気は材料の表面にも流れる場合、その材料は低抵抗を示す。そのため、特許文献4〜7の方法では、LiFePO4粒子は高抵抗のものとなり、実用的なものは得られていない。 Two methods have been proposed for imparting conductivity to LiFePO 4 . The first method is to improve the conductivity inside the particles, and to improve the conductivity by mixing and firing a conductivity-imparting material such as amorphous carbon and graphite in the synthetic raw material. . Regarding this, many patents such as Patent Document 4, Patent Document 5, Patent Document 6, and Patent Document 7 have been filed, but there is almost no carbon deposition on the surface of LiFePO 4 particles. Note that when electricity flows also on the surface of the material, the material exhibits low resistance. Therefore, in the methods of Patent Documents 4 to 7, LiFePO 4 particles have high resistance, and practical ones are not obtained.

2つ目の方法は、LiFePO4粒子に対する導電性付与を粒子内部と表面を同時に行うものである。この方法は、合成原料と気化成分を含む炭素前躯体、例えば石炭タール、ピッチ、糖類などとを混合して、焼成することによって、炭素前躯体の非気化分はそのまま粒子内部に炭素として残し、気化分の炭素を粒子表面に沈着させて粒子表面を炭素で被覆しようとするものであり、特許文献8で提案されている。この方法によれば、粒子の内部には非気化炭素が含有され、粒子の外部には気化炭素が被覆されるので、導電性は上記1つ目の方法に比較して向上する。 In the second method, conductivity is imparted to the LiFePO 4 particles simultaneously on the inside and on the surface of the particles. In this method, a carbon precursor containing a synthetic raw material and a vaporizing component, for example, coal tar, pitch, saccharides, and the like are mixed and baked, so that the non-vaporized content of the carbon precursor is left as carbon inside the particles as it is, The vaporized carbon is deposited on the particle surface to cover the particle surface with carbon, which is proposed in Patent Document 8. According to this method, since non-vaporized carbon is contained inside the particles and vaporized carbon is coated on the outside of the particles, the conductivity is improved as compared with the first method.

しかし、特許文献8の方法は一般的に固定床で焼成が行われるため、LiFePO4粒子表面を均一にしかも完全に炭素で被覆することは難しく、ラマン分光法などで測定するとLiFePO4由来の900〜1200 cm-1にピークが強く現れ、LiFePO4表面が炭素で完全に被覆されていないことを示す。この原因としては、以下の2つのことが要因として考えられる。 However, since the method of Patent Document 8 is generally fired in a fixed bed, it is difficult to uniformly and completely cover the surface of LiFePO 4 particles with carbon. When measured by Raman spectroscopy or the like, 900 derived from LiFePO 4 is used. A strong peak appears at ˜1200 cm −1 , indicating that the LiFePO 4 surface is not completely covered with carbon. There are two possible causes for this.

(1) 焼成時に粒子が移動しないため、炭素前躯体や石炭タールから発生した炭素により粒子同士の接着が起こり、これが焼成後の解砕、混合処理によって接点で剥離を生じてボイドとなり、LiFePO4表面が現れる。 (1) Since the particles do not move during firing, adhesion between the particles occurs due to the carbon generated from the carbon precursor or coal tar, which causes separation at the contact points by crushing and mixing treatment after firing, resulting in voids, and LiFePO 4 The surface appears.

(2) 焼成時に粒子が積層されて焼成されるため、上層と下層及び中心とエッジでは、ガスの流れが均一でなくなり、炭素の付着の多い部分と少ない部分が存在する。   (2) Since particles are laminated and fired at the time of firing, the gas flow is not uniform in the upper layer and the lower layer, and in the center and the edge, and there are portions where carbon adheres more and less.

HEV(ハイブリッド自動車)用などの電池では、回生、出力エネルギーに50〜200C程度のレートが必要である。このような用途の電池材料としては、材料の表面に大きな電気を流す必要があり、そのため、材料が発熱しないために、低抵抗の材料が好ましい。そのために、材料粒子表面を低抵抗の材料で被覆することが好ましく、現実的には、炭素で完全に被覆した材料が求められている。
特開2004−303496号公報 (特許請求の範囲、段落番号[0009]〜[0011]) 再表00/60679号公報 (特許請求の範囲、第11〜12頁) 特開平9−134725号公報 (特許請求の範囲、段落番号[0005]) 特開2003−34534号公報 (特許請求の範囲、段落番号[0008]〜[0010]) 特開2003−292307号公報 (特許請求の範囲、段落番号[0029]〜[0032]) 特開2003−292308号公報 (特許請求の範囲、段落番号[0015]〜[0029]) 特開2002−110163号公報 (特許請求の範囲、段落番号[0027]〜[0038]) 特開2004−303496号公報 (特許請求の範囲、段落番号[0044]〜[0050])
In a battery for HEV (hybrid vehicle) or the like, a rate of about 50 to 200 C is required for regeneration and output energy. As a battery material for such an application, it is necessary to pass a large amount of electricity on the surface of the material, and therefore, the material does not generate heat, and thus a low resistance material is preferable. Therefore, it is preferable to coat the surface of the material particles with a low-resistance material. In reality, a material that is completely covered with carbon is required.
JP-A-2004-303396 (Claims, paragraph numbers [0009] to [0011]) No. 00/60679 (Claims, pages 11 to 12) JP 9-134725 A (Claims, paragraph number [0005]) JP 2003-34534 A (claims, paragraph numbers [0008] to [0010]) JP 2003-292307 A (claims, paragraph numbers [0029] to [0032]) JP 2003-292308 A (Claims, paragraph numbers [0015] to [0029]) JP 2002-110163 A (claims, paragraph numbers [0027] to [0038]) JP 2004-303396 A (Claims, paragraph numbers [0044] to [0050])

本発明者らは、まず酸化鉄の還元剤としてアスコルビン酸や非晶質炭素、石炭タールを用いてLiFePO4の合成を試みた。アスコルビン酸については、還元力が強かったため鉄金属が生成し鉄相とLiFePO4相との複合相となり、単相のLiFePO4は得られなかった。非晶質炭素を用いた場合は還元力が低く、合成されたLiFePO4は、酸化鉄との混合状態であり、単相のLiFePO4が得られず、材料そのものの導電性が低かった。石炭タールについては、単相のLiFePO4に近い結晶性を示すものが合成可能であったが、表面の炭素被覆状態が悪いため、導電性が低く充放電出力の低い材料であった。また、非晶質炭素と石炭タールを組み合わせた場合も同様に充放電出力の大きな改善は認められなかった。 The present inventors first attempted to synthesize LiFePO 4 using ascorbic acid, amorphous carbon, and coal tar as a reducing agent for iron oxide. Ascorbic acid was strong in reducing power, and iron metal was produced to form a composite phase of an iron phase and a LiFePO 4 phase, and no single-phase LiFePO 4 was obtained. When amorphous carbon was used, the reducing power was low, and the synthesized LiFePO 4 was in a mixed state with iron oxide, so that single-phase LiFePO 4 was not obtained, and the conductivity of the material itself was low. As for coal tar, a material showing crystallinity close to that of single-phase LiFePO 4 could be synthesized. However, since the surface carbon coating state was poor, the material was low in conductivity and low in charge / discharge output. Similarly, when amorphous carbon and coal tar were combined, no significant improvement in charge / discharge output was observed.

このため、本発明者らは、酸化鉄の還元に有効な還元性を示し、さらに、合成原料に混合した場合に高導電性を示す導電材料について探索し、加えてLiFePO4表面を炭素で被覆する方法について鋭意研究を重ねた結果、酸化鉄の還元材、材料の導電材として黒鉛が有用であり、且つ材料表面を流動床熱CVD(化学蒸着処理)法により、単相のLiFePO4が得られ、その表面を炭素で均一の被覆することが可能であることを見出した。また、当該材料は電池試験において極めて良好な充放電出力特性を示し、HEV用正極材料として好適であると判断された。 For this reason, the present inventors have searched for conductive materials that exhibit effective reducibility for reducing iron oxide and that exhibit high conductivity when mixed with synthetic raw materials, and in addition, cover the surface of LiFePO 4 with carbon. As a result of earnest research on the method to perform, graphite is useful as a reducing material of iron oxide and a conductive material of the material, and a single-phase LiFePO 4 is obtained by fluidized bed thermal CVD (chemical vapor deposition) method on the material surface. And found that it is possible to uniformly coat the surface with carbon. Moreover, the said material showed the very favorable charging / discharging output characteristic in the battery test, and it was judged that it was suitable as a positive electrode material for HEV.

酸化鉄、リチウム化合物、燐酸化合物と反応させてLiFePO4を合成しようとする試みは以前からあったが、LiFePO4の合成と粒子の導電性の両方の物性を1度の処理で発現させようとするあまりに、酸化鉄の還元力が強い場合、鉄が生成し、還元力が弱い場合は、酸化鉄のまま残るため、単相のLiFePO4の合成は困難であった。そこで、本発明者らは、上記の課題を達成するために、下式のように、まず(1)酸化鉄を還元剤で良好に還元する反応[化1]、(2)粒子に導電性を与える反応[化2]の2段階反応を考えた。 There have been attempts to synthesize LiFePO 4 by reacting with iron oxide, lithium compounds, and phosphoric acid compounds. However, both the synthesis of LiFePO 4 and the electrical conductivity of the particles should be expressed by a single treatment. When the reducing power of iron oxide is too strong, iron is generated, and when the reducing power is weak, iron oxide remains, so that it is difficult to synthesize single-phase LiFePO 4 . Therefore, in order to achieve the above-mentioned problems, the present inventors firstly (1) a reaction for satisfactorily reducing iron oxide with a reducing agent [Chemical Formula 1], and (2) particles having conductivity. A two-step reaction of [Chem.

Figure 0004684727
Figure 0004684727

Figure 0004684727
まず酸化鉄に有効な還元剤として、様々な候補があるが、それ自体高い導電性を示し、酸化鉄、リチウム化合物、燐酸化合物と均一に分散させることができる材料であって、さらに、還元反応で単相のLiFePO4を生成する材料を探索した結果、黒鉛材料が好適であることが判明した。
Figure 0004684727
First, there are various candidates as effective reducing agents for iron oxide, but they themselves exhibit high electrical conductivity and can be uniformly dispersed with iron oxide, lithium compounds, and phosphate compounds. As a result of searching for a material that generates single-phase LiFePO 4 , a graphite material was found to be suitable.

次に、このLiFePO4を流動層で熱CVD処理を施すことにより、LiFePO4粒子表面へ熱CVD炭素膜を生成させることにより、高導電性の炭素で完全に被覆したLiFePO4核粒子と炭素層の2層構造の複合粒子が得られると考え、本発明に至った。 Next, the LiFePO 4 core particles and the carbon layer completely covered with highly conductive carbon are formed by subjecting this LiFePO 4 to thermal CVD treatment in a fluidized bed to generate a thermal CVD carbon film on the surface of the LiFePO 4 particles. It was considered that composite particles having a two-layer structure were obtained, and the present invention was achieved.

即ち、鉄原料として酸化鉄を用い、還元剤として導電性の高い黒鉛を使用することにより、安価にLiFePO4を合成し、その表面を流動層熱CVD法により均一に炭素で被覆することにより、高導電性を有するLiFePO4核と炭素層の2層構造複合体を有するHEV用リチウム二次電池正極材料として好適なLiFePO4と炭素の複合体を得ることができた。 That is, by using iron oxide as an iron raw material and using highly conductive graphite as a reducing agent, LiFePO 4 is synthesized at low cost, and its surface is uniformly coated with carbon by a fluidized bed thermal CVD method. A composite of LiFePO 4 and carbon suitable as a positive electrode material for a lithium secondary battery for HEV having a two-layer composite of a LiFePO 4 nucleus and a carbon layer having high conductivity could be obtained.

以上のように、本発明の目的は、上記問題を解決した、HEV用実電池として高充放電特性に優れるLiFePO4系正極材料を安価、多量に提供することにある。 As described above, an object of the present invention is to provide a LiFePO 4 -based positive electrode material excellent in high charge / discharge characteristics as a HEV real battery that solves the above-described problems at low cost and in large quantities.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 LiFePO4粒子及び炭素で形成された凝集粒子と、その凝集粒子の外側を被覆した炭素層との2層構造の複合粒子であり、ラマン分光法で1580cm-1のピーク強度Gに対する1360cm-1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm-1のピーク強度Gに対する900〜1200cm-1のピーク強度Fの比(F/G)が0.1以下であるリチウムイオン二次電池用正極材料。 [1] A composite particle having a two-layer structure of agglomerated particles formed of LiFePO 4 particles and carbon and a carbon layer covering the outside of the agglomerated particles, and 1360 cm for a peak intensity G of 1580 cm −1 by Raman spectroscopy. the ratio of the peak intensity C of -1 (C / G) is 0.5 or less, and the ratio of the peak intensity F of 900~1200Cm -1 to the peak intensity G of 1580 cm -1 (F / G) is 0.1 The positive electrode material for lithium ion secondary batteries which is the following.

〔2〕 平均粒度が1〜20μm、比表面積が1〜50m2/g、タップ密度が0.6〜1.6g/cm3である〔1〕に記載のリチウムイオン二次電池用正極材料。 [2] The positive electrode material for a lithium ion secondary battery according to [1], having an average particle size of 1 to 20 μm, a specific surface area of 1 to 50 m 2 / g, and a tap density of 0.6 to 1.6 g / cm 3 .

〔3〕 一般式FexOy(0<x≦3、0<y≦4)で表される酸化鉄と、黒鉛と、リチウム源と、燐源との混合物を不活性ガス中600〜900℃で加熱してLiFePO4粒子及び炭素で形成された凝集粒子を得、次いで前記凝集粒子を流動層熱CVD法で処理する、LiFePO4粒子及び炭素で形成された凝集粒子と、その凝集粒子の外側を被覆した炭素層との2層構造の複合粒子であり、ラマン分光法で1580cm-1のピーク強度Gに対する1360cm-1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm-1のピーク強度Gに対する900〜1200cm-1のピーク強度Fの比(F/G)が0.1以下であるリチウムイオン二次電池用正極材料の製造方法。 [3] A mixture of iron oxide represented by the general formula FexOy (0 <x ≦ 3, 0 <y ≦ 4), graphite, lithium source, and phosphorus source is heated at 600 to 900 ° C. in an inert gas. To obtain agglomerated particles formed of LiFePO 4 particles and carbon, and then the agglomerated particles are processed by a fluidized bed thermal CVD method. The agglomerated particles formed of LiFePO 4 particles and carbon are coated on the outside of the agglomerated particles. a composite particle of the two-layer structure of a carbon layer, the ratio of the peak intensity C of 1360 cm -1 to the peak intensity G of 1580cm -1 in Raman spectroscopy (C / G) is not less than 0.5, and 1580cm -1 ratio of the peak intensity F of 900~1200Cm -1 to the peak intensity G of (F / G) is method for producing a cathode material for a lithium ion secondary battery is 0.1 or less.

〔4〕 黒鉛の質量比が酸化鉄とリチウム源と燐源との合計量に対して3〜20質量%である〔3〕に記載のリチウムイオン二次電池用正極材料の製造方法。   [4] The method for producing a positive electrode material for a lithium ion secondary battery according to [3], wherein a mass ratio of the graphite is 3 to 20% by mass with respect to a total amount of the iron oxide, the lithium source, and the phosphorus source.

〔5〕 〔1〕に記載のリチウムイオン二次電池用正極材料を含む正極を有するリチウムイオン二次電池。   [5] A lithium ion secondary battery having a positive electrode including the positive electrode material for a lithium ion secondary battery according to [1].

本発明のリチウムイオン二次電池用正極材料は、LiFePO4粒子及び炭素で形成された凝集粒子を核粒子LiFePO4として流動層熱CVD法で被覆処理しているので、ラマン分光スペクトルは上記のピーク分布を示し、上記凝集粒子の表面は結晶性の炭素で均一に被覆されているので電気抵抗が低い。そのため、当該正極材料は電池試験において極めて良好な充放電出力特性を示し、HEV用正極材料として好適である。 The positive electrode material for a lithium ion secondary battery according to the present invention is obtained by coating LiFePO 4 particles and agglomerated particles formed of carbon as core particles LiFePO 4 by a fluidized bed thermal CVD method. It shows a distribution, and the surface of the aggregated particles is uniformly coated with crystalline carbon, so that the electric resistance is low. Therefore, the positive electrode material exhibits extremely good charge / discharge output characteristics in a battery test and is suitable as a positive electrode material for HEV.

本発明の製造方法によれば、核粒子LiFePO4の合成に際し、酸化鉄と、酸化鉄の還元材として黒鉛とを用いているので、上記核粒子LiFePO4を得ることが可能である。 According to the production method of the present invention, when the synthesis of the particulate core LiFePO 4, iron oxide, because of the use of graphite as a reducing agent of iron oxide, it is possible to obtain the core particles LiFePO 4.

また、上記正極材料を用いて形成された本発明のリチウムイオン二次電池は、高容量、高出力の優れた物性を示す。   Moreover, the lithium ion secondary battery of the present invention formed using the positive electrode material exhibits excellent physical properties such as high capacity and high output.

以下、本発明について更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明のリチウムイオン二次電池用正極材料は、LiFePO4核粒子と、その表面を覆う炭素層の2層構造の複合粒子である。前記正極材料は、ラマン分光法で1580cm-1のピーク強度Gに対する1360cm-1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm-1のピーク強度Gに対する900〜1200cm-1のピーク強度Fの比(F/G)が0.1以下である。 The positive electrode material for a lithium ion secondary battery of the present invention is a composite particle having a two-layer structure of LiFePO 4 core particles and a carbon layer covering the surface thereof. The positive electrode material, the ratio of the peak intensity C of 1360 cm -1 to the peak intensity G of 1580 cm -1 in Raman spectroscopy (C / G) is 0.5 or less, and 900 to the peak intensity G of 1580 cm -1 The ratio (F / G) of the peak intensity F at 1200 cm −1 is 0.1 or less.

本発明のLiFePO4正極材料の好適な平均粒度は1〜20μm、比表面積は1〜50m2/g、タップ密度は0.6〜1.6g/cm3である。 The preferred average particle size of the LiFePO 4 positive electrode material of the present invention is 1 to 20 μm, the specific surface area is 1 to 50 m 2 / g, and the tap density is 0.6 to 1.6 g / cm 3 .

LiFePO4表面のラマン分析スペクトルは900〜1200cm-1(F)に複数のピークを示す。また、非晶質炭素は1360cm-1(C)に結晶質炭素は1580cm-1(G)にピークを示す。従って、LiFePO4表面を炭素で完全に覆っている場合は、900〜1200 cm-1のピークの出現はなく、1360cm-1、1580cm-1のピークのみとなる。この場合、被覆されているかどうかの尺度としてピーク強度比F/Gをとると、このF/Gの値が0に近づくほど完全な被覆と定義可能である。また、非晶質、結晶質の判断は、ピーク強度比C/Gを算出することで容易に表すことが可能である。この場合もC/Gの値が0に近づくほど結晶質ということができる。理想的には、炭素被覆はF/G、C/Gが0に近い材料程、導電性が良い。 The Raman analysis spectrum of the LiFePO 4 surface shows a plurality of peaks at 900 to 1200 cm −1 (F). Amorphous carbon has a peak at 1360 cm −1 (C) and crystalline carbon has a peak at 1580 cm −1 (G). Therefore, if you are completely covers the LiFePO 4 surface with carbon, rather than the appearance of a peak of 900 to 1200 cm -1, and only the peak of 1360 cm -1, 1580 cm -1. In this case, when the peak intensity ratio F / G is taken as a measure of whether or not the coating is applied, it can be defined as a complete coating as the F / G value approaches zero. In addition, the determination of amorphous or crystalline can be easily expressed by calculating the peak intensity ratio C / G. Also in this case, the closer the C / G value is to 0, the more crystalline it can be said. Ideally, the carbon coating has better conductivity as the material with F / G and C / G closer to 0.

近年、リチウムイオン電池では、正極材料表面の状態が極めて重要な要素となっており、多くの研究者が材料表面の研究を行っている。これは、材料界面において電子のやり取りが行われるためで、材料表面の状態が非晶質、結晶質の違いがあるだけでも電解液の分解や電池の初期効率に大きく影響を与えるなどの現象がある。従って、正極材料表面が完全に炭素に覆われているか、覆われていないのかによって大きくリチウムイオン電池の物性が変化することは明らかである。特にHEV用では、表面に過大な電流が流れ、正極材料が発熱しやすいため、正極材料には、均一で体積抵抗の低いものが求められている。   In recent years, in the lithium ion battery, the state of the surface of the positive electrode material has become an extremely important factor, and many researchers have studied the surface of the material. This is because electrons are exchanged at the material interface, so even if the surface state of the material is amorphous and there is a difference in crystallinity, phenomena such as the decomposition of the electrolyte and the initial efficiency of the battery are greatly affected. is there. Therefore, it is clear that the physical properties of the lithium ion battery greatly change depending on whether the surface of the positive electrode material is completely covered with carbon or not. Particularly for HEV, since an excessive current flows on the surface and the positive electrode material easily generates heat, the positive electrode material is required to have a uniform and low volume resistance.

図1は、本発明のリチウムイオン二次電池用正極材料の一例を示す概念図である。2はリチウムイオン二次電池用正極材料である。8は凝集粒子で、LiFePO4粒子4と、還元材の黒鉛に由来する炭素6とが入り組んで凝集粒子8を形成している。凝集粒子8の外側(凝集粒子8の表面)は、炭素層10で被覆されている。 FIG. 1 is a conceptual diagram showing an example of a positive electrode material for a lithium ion secondary battery of the present invention. 2 is a positive electrode material for a lithium ion secondary battery. 8 is an agglomerated particle, and LiFePO 4 particle 4 and carbon 6 derived from graphite as a reducing material are intricately formed to form agglomerated particle 8. The outside of the aggregated particles 8 (the surface of the aggregated particles 8) is covered with a carbon layer 10.

通常、凝集粒子8内には空隙12が散在している。この空隙12と凝集粒子8との界面も、炭素層10で被覆されている。   Usually, voids 12 are scattered in the aggregated particles 8. The interface between the voids 12 and the aggregated particles 8 is also covered with the carbon layer 10.

このリチウムイオン二次電池用正極材料2の平均粒径は1〜20μmで、1〜10μmが好ましい。黒鉛に由来する炭素6の平均粒径は0.1〜5μmである。炭素6の含有量は3〜20質量%である。空隙12は5〜15容積%である。炭素層10の厚みは、0.05〜1μmで、0.1〜0.5μmが好ましい。炭素層10の含有量は3〜20質量%である。   The average particle diameter of the positive electrode material 2 for a lithium ion secondary battery is 1 to 20 μm, and preferably 1 to 10 μm. The average particle diameter of carbon 6 derived from graphite is 0.1 to 5 μm. The content of carbon 6 is 3 to 20% by mass. The space | gap 12 is 5-15 volume%. The thickness of the carbon layer 10 is 0.05-1 μm, preferably 0.1-0.5 μm. Content of the carbon layer 10 is 3-20 mass%.

本発明のリチウムイオン二次電池用正極材料は、例えば、以下の方法により製造することができる。   The positive electrode material for a lithium ion secondary battery of the present invention can be produced, for example, by the following method.

原料の酸化鉄としては、一般式FexOy(0<x≦3、0<y≦4)で表される物質であり、Fe:O=1:1〜2:3(モル比)が好ましく、特にFeO、Fe23、Fe34などが良い。純度は、98質量%以上が好ましく、特に99.5質量%以上のものが特に好ましい。純度が98質量%未満では、不純物となる金属酸化物が多くなり、製造した本発明の正極材料を用いて電池を構成する場合、電解液中に生ずるフッ酸と反応して不導体膜を生成するため、好ましくない。 The raw material iron oxide is a substance represented by the general formula FexOy (0 <x ≦ 3, 0 <y ≦ 4), preferably Fe: O = 1: 1 to 2: 3 (molar ratio), particularly FeO, Fe 2 O 3 , Fe 3 O 4 and the like are preferable. The purity is preferably 98% by mass or more, particularly preferably 99.5% by mass or more. When the purity is less than 98% by mass, the amount of metal oxides that become impurities increases, and when a battery is formed using the produced positive electrode material of the present invention, it reacts with hydrofluoric acid generated in the electrolytic solution to form a nonconductive film. Therefore, it is not preferable.

原料の酸化鉄の平均粒子径は、還元反応を均一にするために、0.1〜10μmが好ましく、0.5〜2μmが特に好ましい。酸化鉄以外の材料、例えば、シュウ酸鉄、燐酸鉄などは、還元雰囲気下では、鉄になりやすく本発明には使えない。   The average particle diameter of the raw iron oxide is preferably 0.1 to 10 μm, and particularly preferably 0.5 to 2 μm, in order to make the reduction reaction uniform. Materials other than iron oxide, such as iron oxalate and iron phosphate, tend to be iron in a reducing atmosphere and cannot be used in the present invention.

リチウム源としては、水酸化リチウム、炭酸リチウムなど一般的にLiFePO4の合成に用いられている材料で純度は99質量%以上のものが良い。リチウム源の平均粒子径は、1〜200μmが好ましく、1〜50μmが特に好ましい。リチウム源の配合量は、元素としてのFe1モルに対してLi元素として0.95〜1.05モルが好ましい。 The lithium source is a material generally used for the synthesis of LiFePO 4 such as lithium hydroxide and lithium carbonate, and preferably has a purity of 99% by mass or more. The average particle size of the lithium source is preferably 1 to 200 μm, particularly preferably 1 to 50 μm. The blending amount of the lithium source is preferably 0.95 to 1.05 mol as Li element with respect to 1 mol of Fe as element.

燐源としては、燐酸水素アンモニウム、燐酸二水素アンモニウム、燐酸アンモニウム、酸化燐などが良く不純物が少ないものが好ましい。燐源の平均粒子径は、1〜200μmが好ましく、1〜50μmが特に好ましい。燐源の配合量は、元素としてのFe1モルに対してP元素として0.95〜1.05モルが好ましい。   The phosphorus source is preferably ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphate, phosphorus oxide, or the like with low impurities. The average particle size of the phosphorus source is preferably 1 to 200 μm, particularly preferably 1 to 50 μm. The blending amount of the phosphorus source is preferably 0.95 to 1.05 mol as the P element with respect to 1 mol of Fe as the element.

酸化鉄の還元材には黒鉛を用いる。コークス、非晶質カーボン、ポリビニルアルコールやフェノール樹脂、フラン樹脂、エポキシ樹脂、セルロースなどの有機物などは還元力が不十分で、酸化鉄が十分に還元できないので好ましくなく、アスコルビン酸は、逆に還元力が強すぎるので好ましくない。   Graphite is used as a reducing material for iron oxide. Organic substances such as coke, amorphous carbon, polyvinyl alcohol, phenol resin, furan resin, epoxy resin, and cellulose are not preferable because the reducing power is insufficient and iron oxide cannot be reduced sufficiently, and ascorbic acid is reduced on the contrary. Since power is too strong, it is not preferable.

黒鉛は、酸化鉄の還元材としてばかりでなく、導電材としても作用する。この導電材としては、黒鉛以外に、石炭タール、石炭ピッチ、コークス、アセチレンブラックなどの炭素が考えられる。しかし、これらの炭素は、還元力は適度であるが、黒鉛に比べ導電率が1桁以上下がるので好ましくない。このように、酸化鉄の還元剤及び導電材として両方の性能を満足しているのは、唯一黒鉛のみである。黒鉛の添加量としては、酸化鉄の還元に1〜2質量%消費されるので、酸化鉄とリチウム源と燐源との合計量に対して3〜20質量%が好ましい。黒鉛の平均粒子径は、1〜70μmが好ましく、1〜20μmが特に好ましい。   Graphite acts not only as a reducing material for iron oxide but also as a conductive material. As this conductive material, carbon such as coal tar, coal pitch, coke, and acetylene black can be considered in addition to graphite. However, these carbons are not preferable because their reducing power is moderate, but their electrical conductivity is lower by one digit or more than graphite. Thus, graphite is the only one that satisfies both performances as a reducing agent and conductive material for iron oxide. The amount of graphite added is preferably 1 to 2% by mass for the reduction of iron oxide, and is preferably 3 to 20% by mass with respect to the total amount of iron oxide, lithium source and phosphorus source. The average particle diameter of graphite is preferably 1 to 70 μm, particularly preferably 1 to 20 μm.

本発明においては、上記炭素質材料とともにリチウム源、酸化鉄、燐源等の原料粒子を混合して、LiFePO4粒子及び炭素で形成された凝集粒子を合成するための混合物を作製する。混合方式としては乾式、湿式混合で行うことが好ましい。遊星ミル、振動ミル、ボールミル、ヘンシェルミキサー、アトライター等の汎用混合機を用いて1〜5時間混合することが好ましい。 In the present invention, raw material particles such as a lithium source, iron oxide, and phosphorus source are mixed together with the carbonaceous material to prepare a mixture for synthesizing LiFePO 4 particles and aggregated particles formed of carbon. The mixing method is preferably dry or wet mixing. It is preferable to mix for 1 to 5 hours using a general-purpose mixer such as a planetary mill, vibration mill, ball mill, Henschel mixer, or attritor.

この原料粒子の混合工程で、粉砕、混合、造粒が同時に起こる。後工程の流動床処理にとって混合物の粒度が大きくなりすぎる場合は、得られた混合物を、分級、篩分け、篩上分の解砕などを行い、最大粒子径を20μm以下に調節することが好ましい。   In this raw material particle mixing step, pulverization, mixing, and granulation occur simultaneously. When the particle size of the mixture becomes too large for the subsequent fluidized bed treatment, the obtained mixture is preferably classified, sieved, and crushed on the sieve to adjust the maximum particle size to 20 μm or less. .

得られた混合物は、不活性ガス中で600〜900℃で焼成する。これにより、LiFePO4粒子及び炭素で形成された凝集粒子を合成できる。この凝集粒子は正極に組込まれ、正極活物質となる。不活性ガスとしては、アルゴン、窒素等で問題なく、実用的には窒素で十分である。焼成温度は、より好ましくは600〜800℃である。焼成時間は1〜5時間が好ましい。焼成に用いる反応装置としては、流動床及び固定床反応装置のいずれのものを用いても行うことができるが、粉体に対する熱伝導が均一な流動床の方が品質的に優れたものが得られる。 The obtained mixture is fired at 600 to 900 ° C. in an inert gas. This allows synthesizing aggregated particles formed by LiFePO 4 particles and carbon. The aggregated particles are incorporated into the positive electrode and become a positive electrode active material. As the inert gas, there is no problem with argon, nitrogen or the like, and nitrogen is sufficient for practical use. The firing temperature is more preferably 600 to 800 ° C. The firing time is preferably 1 to 5 hours. As the reaction apparatus used for the calcination, either a fluidized bed or a fixed bed reaction apparatus can be used. However, a fluidized bed with uniform heat conduction with respect to the powder is superior in quality. It is done.

上記焼成によって製造された凝集粒子は、次いでその外表面に炭素層が形成される。炭素層の形成は熱CVD処理により行う。   The aggregated particles produced by the firing are then formed with a carbon layer on the outer surface. The carbon layer is formed by a thermal CVD process.

熱CVD反応は、粉体を混合しながらCVD処理可能な流動床炉で行うことが好ましい。固定床反応装置は、ガスが材料表面を流れ易いので、凝集粒子の堆積された位置により炭素の沈着量が不均一となるので使用することができない。流動床炉を用いる場合は、焼成反応、熱CVD反応を続けて行うことができるので設備的なコストメリットが大きい。   The thermal CVD reaction is preferably performed in a fluidized bed furnace capable of performing a CVD process while mixing powder. The fixed bed reactor cannot be used because the gas tends to flow on the surface of the material, and the deposited amount of carbon becomes uneven depending on the position where the aggregated particles are deposited. In the case of using a fluidized bed furnace, since the firing reaction and the thermal CVD reaction can be carried out continuously, the cost advantage of equipment is great.

熱CVD用炭素源は、有機溶剤、例えば、ベンゼン、トルエンなどの芳香族系の炭化水素化合物やガス状のメタンやエチレン、アセチレンなどの脂肪族系炭化水素化合物を用いることができる。芳香族系の炭化水素化合物を用いる場合、結晶性の高い炭素層で被覆された複合粒子が得られ、導電性が高くなるためより好ましい。CVD反応温度は、700〜950℃が好ましく、800〜900℃が特に好ましい。反応時間は0.5〜3時間が好ましい。   As the carbon source for thermal CVD, an organic solvent, for example, an aromatic hydrocarbon compound such as benzene or toluene, or an aliphatic hydrocarbon compound such as gaseous methane, ethylene, or acetylene can be used. In the case of using an aromatic hydrocarbon compound, composite particles coated with a carbon layer having high crystallinity are obtained, which is more preferable because conductivity is increased. The CVD reaction temperature is preferably 700 to 950 ° C, particularly preferably 800 to 900 ° C. The reaction time is preferably 0.5 to 3 hours.

熱CVD法以外の方法として石炭タールなどを予め原料中に混合し、固定床で焼成し、石炭タール中の揮発分によって材料をCVD処理する方法が提案されているが、この方法においてもガスの流れを均一に制御することは難しく、1粒子単位での炭素被覆が不完全になり、各粒子間での炭素量のばらつきも大きくなる。   As a method other than the thermal CVD method, coal tar or the like is previously mixed in the raw material, fired in a fixed bed, and a material is CVD-treated by the volatile matter in the coal tar. It is difficult to control the flow uniformly, and the carbon coating for each particle becomes incomplete, and the variation in the amount of carbon among the particles also increases.

これは、石炭タール中の揮発ガスの流れが、不均一であるとともにLiFePO4粒子そのものの移動がないことに起因しており、固定床炉では避けることができない問題である。加えて、揮発ガスの流れの良いところでは、粒子間での融着がおこるため、後処理の解砕や分級時に融着部分が剥離し、LiFePO4粒子表面が露出する。以上にように凝集粒子表面に均一に炭素層を形成するには凝集粒子を混ぜながら、炭素源ガスを高温で接触させることが好ましく、この観点から流動床を用いる熱CVD法は最適である。 This is because the flow of volatile gas in the coal tar is not uniform and the LiFePO 4 particles themselves do not move, which is a problem that cannot be avoided in a fixed bed furnace. In addition, since fusion between particles occurs where the flow of volatile gas is good, the fusion part is peeled off during disintegration and classification in post-processing, and the surface of LiFePO 4 particles is exposed. As described above, in order to uniformly form a carbon layer on the surface of the aggregated particles, it is preferable to contact the carbon source gas at a high temperature while mixing the aggregated particles. From this viewpoint, the thermal CVD method using a fluidized bed is optimal.

石炭タールや有機溶剤を除く有機物を炭素化して得られる炭素層は、一般的に非晶質であるために、導電性が低くなる傾向があるが、本発明による熱CVD法で形成される炭素層は結晶質になりやすく、導電性が非晶質のものより高くなる。凝集粒子を被覆する炭素層の違いを明らかにする方法としてラマン分析が好ましい。ラマン分析は、測定対象の表面の情報が得られるので、製造した正極材料を繰り返し測定することにより、正極材料の表面がどの程度完全に炭素層で被覆されているかに関する情報と被覆炭素層が非晶質、結晶質のどちらであるかを判定できる。   Carbon layers obtained by carbonizing organic substances other than coal tar and organic solvents are generally amorphous and therefore tend to have low conductivity, but carbon formed by the thermal CVD method according to the present invention. Layers tend to be crystalline and are more conductive than amorphous. Raman analysis is preferable as a method for clarifying the difference in the carbon layer covering the aggregated particles. In Raman analysis, information on the surface of the measurement target is obtained. By repeatedly measuring the manufactured positive electrode material, information on how completely the surface of the positive electrode material is covered with the carbon layer and the non-covered carbon layer are not present. Whether it is crystalline or crystalline can be determined.

被覆炭素が結晶質とは、例えば特開2001−202961号公報に開示されているように、被覆炭素のX線回折で求められる平均面間隔d002が0.337nm未満のものである。 And coating carbon crystalline, for example, as disclosed in JP 2001-202961, the average spacing d 002 obtained by X-ray diffraction of the carbon coating is of less than 0.337 nm.

本発明の正極材料と上記石炭タールで炭素層を形成した正極材料との表面状態をラマン分析で比較すると、本発明の正極材料は、ラマン分光法で1580cm-1のピーク強度Gに対する1360cm-1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm-1のピーク強度Gに対する900〜1200cm-1のピーク強度Fの比(F/G)が0.1以下である。 When the surface state of the positive electrode material in the positive electrode material and the coal tar to form a carbon layer of the present invention are compared with Raman analysis, the positive electrode material of the present invention, 1360 cm -1 to the peak intensity G of 1580 cm -1 in Raman spectroscopy of and the ratio of the peak intensity C (C / G) is 0.5 or less, and the ratio of the peak intensity F of 900~1200Cm -1 to the peak intensity G of 1580 cm -1 (F / G) is 0.1 or less is there.

(F/G)が0.1以下であることは、LiFePO4由来の900〜1200cm-1のピーク強度がほとんどないことを意味しており、本正極材料表面が炭素層で完全に被覆されていることを示している。また、(C/G)が0.5以下であることは、被覆炭素層が黒鉛層に近い結晶性の高い炭素層であることを示している。 That (F / G) is 0.1 or less means that there is almost no peak intensity of 900 to 1200 cm −1 derived from LiFePO 4 , and the surface of this positive electrode material is completely covered with a carbon layer. It shows that. Further, (C / G) being 0.5 or less indicates that the coated carbon layer is a carbon layer having high crystallinity close to that of the graphite layer.

一方、石炭タールで被覆した正極材料は、1580cm-1のピーク強度Gに対する1360cm-1のピーク強度Cの比(C/G)が0.5以上であり、且つ1580 cm-1のピーク強度Gに対する900〜1200cm-1のピーク強度Fの比(F/G)が0.5以上であるため、LiFePO4が炭素層で部分的にしか被覆されていない。しかも被覆されている炭素層は、非晶質炭素に近い性状を示す。 On the other hand, a positive electrode material coated with coal tar is a ratio of the peak intensity C of 1360 cm -1 to the peak intensity G of 1580 cm -1 (C / G) is 0.5 or more and 1580 peak intensity of cm -1 G Since the ratio (F / G) of the peak intensity F of 900 to 1200 cm −1 with respect to is 0.5 or more, LiFePO 4 is only partially covered with the carbon layer. Moreover, the coated carbon layer exhibits properties close to amorphous carbon.

本発明材料を正極材料として、リチウムイオン二次電池用正極を調製する方法を以下に示すが、特に限定されるものではない。   A method for preparing a positive electrode for a lithium ion secondary battery using the material of the present invention as a positive electrode material is shown below, but is not particularly limited.

本正極材料にバインダー(例えば、PVDF:ポリビニリデンフルオライド)を溶解した溶剤(例えば、1−メチル−2−ピロリドン)を加え、充分に混練しスラリー状にする。このスラリーをアルミ箔からなる集電体にドクターブレード等を用いて20〜100μmの厚みにコーティングする。これを乾燥しロールプレス等により加圧して電極を作製する。   A solvent (for example, 1-methyl-2-pyrrolidone) in which a binder (for example, PVDF: polyvinylidene fluoride) is dissolved is added to the positive electrode material, and the mixture is sufficiently kneaded to form a slurry. The slurry is coated on a current collector made of aluminum foil to a thickness of 20 to 100 μm using a doctor blade or the like. This is dried and pressed by a roll press or the like to produce an electrode.

負極材料は、金属リチウム、黒鉛及び黒鉛類似炭素材料、コークス、リチウムと合金可能な酸化物、金属及びその炭素との複合体等の公知の負極材料を用いることができる。これら負極材料はバインダーを溶解した溶剤と十分に混練後、集電体に塗布し成型して調製できる。また、セパレーターについても特に限定はなく、ポリプロピレンやポリエチレン等の公知の材料を用いることができる。   As the negative electrode material, known negative electrode materials such as metallic lithium, graphite and graphite-like carbon materials, coke, oxides capable of being alloyed with lithium, composites of metals and carbon thereof, and the like can be used. These negative electrode materials can be prepared by sufficiently kneading with a solvent in which a binder is dissolved, and then applying and molding the current collector. The separator is not particularly limited, and a known material such as polypropylene or polyethylene can be used.

電解液の主溶媒である非水系溶媒としては、リチウム塩を溶解する非プロトン性低誘電率の公知の溶媒を用いることができる。例えば、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ジエチレンカーボネート、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−ブチロラクトン等の溶媒を単独で、又は2種類以上の溶媒を混合して用いることができる。   As the non-aqueous solvent that is the main solvent of the electrolytic solution, a known aprotic low dielectric constant solvent that dissolves the lithium salt can be used. For example, solvents such as ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, and γ-butyrolactone can be used alone or in admixture of two or more kinds. .

電解質として用いられるリチウム塩としてはLiClO、LiAsF6、LiPF6、LiBF4、LiB(C65)4、LiCl、LiBr、CH3SO3Li等を例示できこれらの塩を単独、又は2種類以上を混合して用いることができる。 Examples of the lithium salt used as the electrolyte include LiClO, LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, etc., and these salts can be used alone or in two types The above can be mixed and used.

以上の材料を使用して、アルゴン雰囲気でコイン電池を作製し、電気化学的な充放電量を測定することにより、正極材料の評価が可能である。   The positive electrode material can be evaluated by producing a coin battery in an argon atmosphere using the above materials and measuring the electrochemical charge / discharge amount.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、これら実施例及び比較例における負極材の各物性値は以下の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, each physical property value of the negative electrode material in these Examples and Comparative Examples was measured by the following methods.

各物性は、以下の装置、手順で実施した。   Each physical property was implemented with the following apparatuses and procedures.

[ラマン分析]
ラマン分光装置は、JOVAN-YVON-SPEX製、分光器は500M、検出器はSpectrum One CCD検出器、Argon ion レーザー装備していた。レーザーの発振線は5145A、出力は50mWであった。得られたチャートより、ベースライン補正をし、900〜1200cm-1(F)、1360cm-1(C)、1580cm-1(G)の各ピーク強度を算出し、ピーク強度比C/G、F/Gを求めた。同様の測定を5回繰り返し、各ピーク強度比の平均値を求め、測定材料のピーク強度比とした。
[Raman analysis]
The Raman spectrometer was manufactured by JOVAN-YVON-SPEX, the spectrometer was equipped with 500M, the detector was equipped with a Spectrum One CCD detector, and an Argon ion laser. The laser oscillation line was 5145 A, and the output was 50 mW. Baseline correction is performed from the obtained chart, and peak intensities of 900 to 1200 cm −1 (F), 1360 cm −1 (C), and 1580 cm −1 (G) are calculated, and peak intensity ratios C / G, F / G was determined. The same measurement was repeated 5 times, the average value of each peak intensity ratio was calculated | required, and it was set as the peak intensity ratio of a measurement material.

[平均粒子径及び粒度分布]
島津製作所(株)製レーザー式回折粒度分布測定装置SALD−1000で測定した。
[Average particle size and particle size distribution]
This was measured with a laser diffraction particle size distribution analyzer SALD-1000 manufactured by Shimadzu Corporation.

[全炭素含有量]
JIS M 8813 シェフィールド高温法により測定した。
[Total carbon content]
Measured by JIS M 8813 Sheffield high temperature method.

[炭素被覆量]
JIS M 8813により測定した。
[Carbon coverage]
It was measured according to JIS M 8813.

[比表面積]
日本ベル製ベルソープ28で測定し、BET法により算出した。
[Specific surface area]
Measured with a bell soap 28 manufactured by Nippon Bell, and calculated by the BET method.

[タップ密度]
10mLのガラス製メスシリンダーに試料を入れてタッピングし、試料の容積が変化しなくなったことを確認した後、試料容積を測定した。試料質量を試料容積で除した値をタップ密度とした。
[Tap density]
The sample was put into a 10 mL glass graduated cylinder and tapped, and after confirming that the volume of the sample did not change, the sample volume was measured. The value obtained by dividing the sample mass by the sample volume was defined as the tap density.

[XRD法による結晶解析]
Philips社製X線回折装置 X‘pert pro(商品名)で測定した。
[Crystal analysis by XRD method]
Measurement was performed with an X-ray diffractometer X'pert pro (trade name) manufactured by Philips.

[実施例1]
四酸化三鉄(和光社製試薬1級Fe34)1モル(77g)、燐酸二水素アンモニウム(和光社製試薬特級)1モル(115g)と炭酸リチウム(和光社製試薬特級)1モル(37g)、黒鉛12g(酸化鉄とリチウム源と燐源との合計量に対して5質量%)を計量し、ボールミルで4hr混合した。得られた混合物を篩分けして得た粒度20μm以下のものを管状炉に充填して窒素雰囲気下、800℃で1hr焼成し凝集粒子を得た。この凝集粒子をCVD処理した。凝集粒子205gを流動層式炉に仕込み、窒素雰囲気下、昇温速度10℃/minで室温から800℃まで昇温した。昇温後、以下の条件でCVD処理を実施した。
[Example 1]
1 mol (77 g) of triiron tetroxide (reagent grade 1 Fe 3 O 4 manufactured by Wako), 1 mol (115 g) of ammonium dihydrogen phosphate (reagent grade made by Wako) and 1 mol of lithium carbonate (reagent grade made by Wako) (37 g) and 12 g of graphite (5% by mass with respect to the total amount of iron oxide, lithium source and phosphorus source) were weighed and mixed for 4 hr by a ball mill. A tube furnace having a particle size of 20 μm or less obtained by sieving the obtained mixture was filled in a tubular furnace and fired at 800 ° C. for 1 hr in a nitrogen atmosphere to obtain aggregated particles. The aggregated particles were subjected to CVD treatment. Aggregated particles (205 g) were charged into a fluidized bed furnace and heated from room temperature to 800 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. After the temperature increase, a CVD process was performed under the following conditions.

CVD処理では、炭素源としてのトルエンを0.5ml/minで1hr流動層反応炉に供給した。CVD処理後、炉内を冷却し、炭素層で被覆された粒度20μm以下の正極材料を炉から取出した。この正極材料を物性試験及び電極試験に供した。得られた正極材料をX線回折装置(XRD)で測定するとLiFePO4と同定された。 In the CVD treatment, toluene as a carbon source was supplied to the 1 hr fluidized bed reactor at 0.5 ml / min. After the CVD treatment, the inside of the furnace was cooled, and the positive electrode material with a particle size of 20 μm or less coated with the carbon layer was taken out from the furnace. This positive electrode material was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured with an X-ray diffractometer (XRD), it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度7μm、全炭素含有量8質量%、炭素被覆量3質量%、比表面積14m2/g、タップ密度1.39g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.2であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 7 μm, a total carbon content of 8% by mass, a carbon coating amount of 3% by mass, a specific surface area of 14 m 2 / g, a tap density of 1.39 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.2, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

本例の材料の電極評価を以下のように実施した。得られた正極材料93質量%にPVDFを7質量%配合し、全量を4gとした。スラリー濃度は、50質量%になるように2メチルピロリドンで調整し、これを遠心混合機で5min混合し、混合後コーターを用いて厚さ50μmの電極を作製し、乾燥した。   The electrode evaluation of the material of this example was performed as follows. 7 mass% of PVDF was mix | blended with 93 mass% of obtained positive electrode materials, and the whole quantity was set to 4 g. The slurry concentration was adjusted with 2 methylpyrrolidone so as to be 50% by mass, mixed for 5 min with a centrifugal mixer, and after mixing, an electrode having a thickness of 50 μm was prepared using a coater and dried.

乾燥後、2mmΦに切り出し7.3MPa(400kg/cm2)でプレスした。プレス後、乾燥してアルゴン雰囲気下でC2032セル電池を作製した。 After drying, it was cut into 2 mmφ and pressed at 7.3 MPa (400 kg / cm 2 ). After pressing, it was dried and a C2032 cell battery was produced under an argon atmosphere.

このセル電池は、正極に本例の材料を、負極にリチウム金属を、セパレーターにポリプロピレン膜を用い、電解液LiPF6 1mol/L;EC:DMC=1:2vol%(富山化学製)を0.23molの条件で使用して作製した。このセル電池について、0.1mA/cm2、3〜4V、25℃で、ナガノ製充放電装置2005wで初期特性を求めた。 In this cell battery, the material of this example is used for the positive electrode, the lithium metal is used for the negative electrode, and the polypropylene film is used for the separator, and the electrolyte LiPF 6 is 1 mol / L; EC: DMC = 1: 2 vol% (manufactured by Toyama Chemical Co., Ltd.). It was prepared using the conditions of 23 mol. About this cell battery, the initial characteristic was calculated | required by Nagano charging / discharging apparatus 2005w at 0.1 mA / cm < 2 >, 3-4V, and 25 degreeC.

高出力性能の測定は、対極をカーボン電極として充電条件 50mA/cm2、12sec、放電条件 25mA/cm2、24secの条件で実施した。 The high output performance was measured under the conditions of charging conditions of 50 mA / cm 2 and 12 sec and discharging conditions of 25 mA / cm 2 and 24 sec using the counter electrode as a carbon electrode.

以上の電池評価結果を表―2にまとめた。   The above battery evaluation results are summarized in Table 2.

[実施例2]
CVD処理の炭素源として、メタンを使用した以外は実施例1と同様に操作して、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 2]
A positive electrode material with a particle size of 20 μm or less coated with a carbon layer was obtained in the same manner as in Example 1 except that methane was used as the carbon source for the CVD treatment, and this was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度9μm、全炭素含有量9質量%、炭素被覆量4質量%、比表面積17m2/g、タップ密度1.37g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.4であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 9 μm, a total carbon content of 9% by mass, a carbon coating amount of 4% by mass, a specific surface area of 17 m 2 / g, a tap density of 1.37 g / cm 3 , and a peak intensity by Raman spectroscopic analysis. The ratio (C / G) was 0.4, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例3]
凝集粒子製造時の原料配合において四酸化三鉄(和光社製試薬1級Fe34)の代わりに酸化第一鉄(和光社製試薬1級FeO)1モル(72g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 3]
Except that 1 mol (72 g) of ferrous oxide (reagent primary FeO manufactured by Wako) was weighed in place of triiron tetroxide (reagent primary Fe 3 O 4 manufactured by Wako) in the raw material formulation during the production of the aggregated particles. A mixing process was performed under the same blending conditions as in Example 1, then a sieving process and a firing process in a tubular furnace were performed under the same conditions as in Example 1. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度7μm、全炭素含有量8質量%、炭素被覆量3質量%、比表面積6m2/g、タップ密度1.44g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 7 μm, a total carbon content of 8% by mass, a carbon coating amount of 3% by mass, a specific surface area of 6 m 2 / g, a tap density of 1.44 g / cm 3 , and a peak intensity by Raman spectroscopic analysis. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例4]
凝集粒子製造時の原料配合において四酸化三鉄(和光社製試薬1級Fe34)の代わりに酸化第二鉄(和光社製試薬1級Fe23)1モル(80g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 4]
1 mol (80 g) of ferric oxide (Wako Co., Ltd. reagent grade 1 Fe 2 O 3 ) is weighed in place of triiron tetroxide (Wako Co., Ltd. reagent grade 1 Fe 3 O 4 ) in the raw material formulation at the time of the production of aggregated particles Except for the above, a mixing process was performed under the same blending conditions as in Example 1, then a sieving process and a firing process in a tubular furnace were performed under the same conditions as in Example 1. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度6μm、全炭素含有量8質量%、炭素被覆量4質量%、比表面積8m2/g、タップ密度1.35g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 6 μm, a total carbon content of 8 mass%, a carbon coating amount of 4 mass%, a specific surface area of 8 m 2 / g, a tap density of 1.35 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例5]
凝集粒子製造時の原料配合において黒鉛23g(酸化鉄とリチウム源と燐源との合計量に対して10質量%)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 5]
Mixing treatment was performed under the same mixing conditions as in Example 1 except that 23 g of graphite (10% by mass with respect to the total amount of iron oxide, lithium source, and phosphorus source) was weighed in the raw material mixture during the production of the aggregated particles. The sieving process was performed under the same conditions as in No. 1, and the baking process was performed in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度10μm、全炭素含有量13質量%、炭素被覆量4質量%、比表面積9m2/g、タップ密度1.31g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.2であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 10 μm, a total carbon content of 13% by mass, a carbon coating amount of 4% by mass, a specific surface area of 9 m 2 / g, a tap density of 1.31 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.2, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例6]
凝集粒子製造時の原料配合において黒鉛34g(酸化鉄とリチウム源と燐源との合計量に対して15質量%)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 6]
Mixing treatment was performed under the same mixing conditions as in Example 1, except that 34 g of graphite (15% by mass with respect to the total amount of iron oxide, lithium source, and phosphorus source) was weighed in the raw material mixture during the production of aggregated particles. The sieving process was performed under the same conditions as in No. 1, and the baking process was performed in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度12μm、全炭素含有量18質量%、炭素被覆量4質量%、比表面積6m2/g、タップ密度1.25g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.2であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 12 μm, a total carbon content of 18% by mass, a carbon coating amount of 4% by mass, a specific surface area of 6 m 2 / g, a tap density of 1.25 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.2, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例7]
凝集粒子製造時の原料配合において燐酸二水素アンモニウム(和光社製試薬特級)0.95モル(109g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 7]
The mixing conditions were the same as in Example 1, except that 0.95 mol (109 g) of ammonium dihydrogen phosphate (special grade reagent manufactured by Wako Co., Ltd.) was weighed in the raw material mixture during the production of the aggregated particles. Sieving treatment and firing treatment in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度7μm、全炭素含有量8質量%、炭素被覆量4質量%、比表面積7m2/g、タップ密度1.38g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 7 μm, a total carbon content of 8% by mass, a carbon coating amount of 4% by mass, a specific surface area of 7 m 2 / g, a tap density of 1.38 g / cm 3 , and a peak intensity by Raman spectroscopic analysis. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例8]
凝集粒子製造時の原料配合において燐酸二水素アンモニウム(和光社製試薬特級)1.05モル(120g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 8]
Mixing treatment was carried out under the same mixing conditions as in Example 1 except that 1.05 mol (120 g) of ammonium dihydrogen phosphate (special grade reagent manufactured by Wako Co., Ltd.) was weighed in the raw material mixture at the time of production of the aggregated particles. Sieving treatment and firing treatment in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度8μm、全炭素含有量8質量%、炭素被覆量4質量%、比表面積7m2/g、タップ密度1.38g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 8 μm, a total carbon content of 8 mass%, a carbon coating amount of 4 mass%, a specific surface area of 7 m 2 / g, a tap density of 1.38 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例9]
凝集粒子製造時の原料配合において炭酸リチウム(和光社製試薬特級)0.95モル(35g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 9]
Except that 0.95 mol (35 g) of lithium carbonate (special grade reagent manufactured by Wako Co., Ltd.) was weighed in the raw material mixture at the time of the production of the aggregated particles, mixing treatment was performed under the same mixing conditions as in Example 1, and then sieved under the same conditions as in Example 1. Divided and fired in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度7μm、全炭素含有量8質量%、炭素被覆量4質量%、比表面積8m2/g、タップ密度1.39g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 7 μm, a total carbon content of 8% by mass, a carbon coating amount of 4% by mass, a specific surface area of 8 m 2 / g, a tap density of 1.39 g / cm 3 , and a peak intensity by Raman spectroscopic analysis. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[実施例10]
凝集粒子製造時の原料配合において炭酸リチウム(和光社製試薬特級)1.05モル(39g)を計量した以外は実施例1と同様の配合条件で混合処理、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理し、炭素層で被覆された粒度20μm以下の正極材料を得、これを物性試験及び電極試験に供した。得られた正極材料をXRDで測定するとLiFePO4と同定された。
[Example 10]
Except that 1.05 mol (39 g) of lithium carbonate (special grade reagent manufactured by Wako Co., Ltd.) was weighed in the raw material mixture at the time of the production of the aggregated particles, mixing treatment was performed under the same mixing conditions as in Example 1, and then sieved under the same conditions as in Example 1. Divided and fired in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1 to obtain a positive electrode material with a particle size of 20 μm or less coated with a carbon layer, which was subjected to a physical property test and an electrode test. When the obtained positive electrode material was measured by XRD, it was identified as LiFePO 4 .

この正極材料の物性は、平均粒度7μm、全炭素含有量8質量%、炭素被覆量4質量%、比表面積8m2/g、タップ密度1.37g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.3であり、ピーク強度比(F/G)が0.05以下であった。粉体物性を表―1にまとめた。 The physical properties of this positive electrode material are an average particle size of 7 μm, a total carbon content of 8% by mass, a carbon coating amount of 4% by mass, a specific surface area of 8 m 2 / g, a tap density of 1.37 g / cm 3 , and a peak intensity by Raman spectroscopy. The ratio (C / G) was 0.3, and the peak intensity ratio (F / G) was 0.05 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[比較例1]
酸化鉄の代わりにシュウ酸鉄180g使用して実施例1と同様の配合条件で混合処理し、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理した。得られた材料をXRDで測定するとLiFePO481質量%、Fe3413質量%、Fe6質量%の混合物と同定された。この混合物の物性は、平均粒度22μm、全炭素含有量7質量%、炭素被覆量2質量%、比表面積29m2/g、タップ密度1.43g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.1であり、ピーク強度比(F/G)が0.1以下であった。粉体物性を表―1にまとめた。
[Comparative Example 1]
180 g of iron oxalate was used instead of iron oxide and mixed under the same blending conditions as in Example 1, followed by sieving under the same conditions as in Example 1 and firing in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1. Measurement of the material obtained in XRD LiFePO 4 81 wt%, Fe 3 O 4 13 wt%, was identified as a mixture of Fe6 mass%. The physical properties of this mixture were an average particle size of 22 μm, a total carbon content of 7% by mass, a carbon coating amount of 2% by mass, a specific surface area of 29 m 2 / g, a tap density of 1.43 g / cm 3 , and a peak intensity ratio by Raman spectroscopy. (C / G) was 0.1, and the peak intensity ratio (F / G) was 0.1 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[比較例2]
黒鉛の代わりにアセチレンブラックを12g使用して実施例1と同様の配合条件で混合処理し、次いで実施例1と同条件で篩分け処理、管状炉での焼成処理をした。その処理物を流動層式炉に仕込み、実施例1と同条件でCVD処理した。得られた正極材料をXRDで測定するとLiFePO492質量%とFe348質量%の混合物と同定された。この混合物の物性は、平均粒度17μm、全炭素含有量9質量%、炭素被覆量4質量%、比表面積19m2/g、タップ密度1.33g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が0.1であり、ピーク強度比(F/G)が0.1以下であった。粉体物性を表―1にまとめた。
[Comparative Example 2]
12 g of acetylene black was used instead of graphite and mixed under the same blending conditions as in Example 1, followed by sieving under the same conditions as in Example 1 and firing in a tubular furnace. The treated product was charged into a fluidized bed furnace and subjected to CVD treatment under the same conditions as in Example 1. When the obtained positive electrode material was measured by XRD, it was identified as a mixture of 92% by mass of LiFePO 4 and 8% by mass of Fe 3 O 4 . The physical properties of this mixture are an average particle size of 17 μm, a total carbon content of 9% by mass, a carbon coating amount of 4% by mass, a specific surface area of 19 m 2 / g, a tap density of 1.33 g / cm 3 , and a peak intensity ratio by Raman spectroscopy. (C / G) was 0.1, and the peak intensity ratio (F / G) was 0.1 or less. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。   A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

[比較例3]
実施例1と同様の配合条件で混合処理した試料をCVD処理する代わりに石炭タールを15質量%原料中に混ぜて、固定床炉で焼成した。得られた材料をXRDで測定するとLiFePO4と同定された。この炭素とLiFePO4複合体からなる正極材料の物性は、平均粒度8μm、全炭素含有量13質量%、炭素被覆量8質量%、比表面積26m2/g、タップ密度1.35g/cm3であり、ラマン分光分析によるピーク強度比(C/G)が1.0であり、ピーク強度比(F/G)が2.0以上であった。粉体物性を表―1にまとめた。
[Comparative Example 3]
Instead of subjecting the sample mixed and processed under the same blending conditions as in Example 1 to CVD treatment, coal tar was mixed into 15% by mass raw material and fired in a fixed bed furnace. When the obtained material was measured by XRD, it was identified as LiFePO 4 . The physical properties of the positive electrode material composed of this carbon and LiFePO 4 composite are as follows: average particle size 8 μm, total carbon content 13 mass%, carbon coverage 8 mass%, specific surface area 26 m 2 / g, tap density 1.35 g / cm 3 Yes, the peak intensity ratio (C / G) by Raman spectroscopic analysis was 1.0, and the peak intensity ratio (F / G) was 2.0 or more. The powder properties are summarized in Table-1.

実施例1と同様に電池を作製し、その電池評価結果を表―2にまとめた。
A battery was produced in the same manner as in Example 1, and the battery evaluation results are summarized in Table 2.

Figure 0004684727
Figure 0004684727

Figure 0004684727
Figure 0004684727

本発明のリチウムイオン二次電池用正極材料の一例を示す概念図である。It is a conceptual diagram which shows an example of the positive electrode material for lithium ion secondary batteries of this invention. 実施例1〜2及び比較例1〜3で作製したリチウムイオン二次電池用正極材料についてのXRD法による結晶性の測定結果を示すXRDチャートである。It is an XRD chart which shows the measurement result of the crystallinity by the XRD method about the positive electrode material for lithium ion secondary batteries produced in Examples 1-2 and Comparative Examples 1-3. 実施例1で作製したリチウムイオン二次電池用正極材料についてのラマン分光法によるLiFePO4表面の炭素被覆状態の測定結果を示すラマン分光分析チャートである。6 is a Raman spectroscopic analysis chart showing the measurement results of the carbon coating state on the surface of LiFePO 4 by the Raman spectroscopic method for the positive electrode material for a lithium ion secondary battery produced in Example 1. FIG. 実施例2で作製したリチウムイオン二次電池用正極材料についてのラマン分光法によるLiFePO4表面の炭素被覆状態の測定結果を示すラマン分光分析チャートである。Is a Raman spectroscopic analysis chart showing the measurement results of the carbon-coated state of LiFePO 4 surface by Raman spectroscopy for the positive electrode material for a lithium ion secondary battery fabricated in Example 2. 比較例1で作製したリチウムイオン二次電池用正極材料についてのラマン分光法によるLiFePO4表面の炭素被覆状態の測定結果を示すラマン分光分析チャートである。Is a Raman spectroscopic analysis chart showing the measurement results of the carbon-coated state of LiFePO 4 surface by Raman spectroscopy for the positive electrode material for a lithium ion secondary battery produced in Comparative Example 1. 比較例2で作製したリチウムイオン二次電池用正極材料についてのラマン分光法によるLiFePO4表面の炭素被覆状態の測定結果を示すラマン分光分析チャートである。Is a Raman spectroscopic analysis chart showing the measurement results of the carbon-coated state of LiFePO 4 surface by Raman spectroscopy for the positive electrode material for a lithium ion secondary battery fabricated in Comparative Example 2. 比較例3で作製したリチウムイオン二次電池用正極材料についてのラマン分光法によるLiFePO4表面の炭素被覆状態の測定結果を示すラマン分光分析チャートである。Is a Raman spectroscopic analysis chart showing the measurement results of the carbon-coated state of LiFePO 4 surface by Raman spectroscopy for the positive electrode material for a lithium ion secondary battery fabricated in Comparative Example 3.

符号の説明Explanation of symbols

2 リチウムイオン二次電池用正極材料
4 LiFePO4粒子
6 還元材の黒鉛に由来する炭素
8 凝集粒子
10 凝集粒子の表面を被覆した炭素層
12 空隙
2 Positive electrode material for lithium ion secondary battery 4 LiFePO 4 particles 6 Carbon derived from graphite as a reducing material 8 Aggregated particles 10 Carbon layer covering the surface of aggregated particles 12 Void

Claims (5)

LiFePO粒子及び黒鉛で形成された凝集粒子と、その凝集粒子の外側を被覆した炭素層との2層構造の複合粒子であり、ラマン分光法で1580cm−1のピーク強度Gに対する1360cm−1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm−1のピーク強度Gに対する900〜1200cm−1のピーク強度Fの比(F/G)が0.1以下であるリチウムイオン二次電池用正極材料。 And aggregated particles formed by LiFePO 4 particles and graphite, a composite particle having a two-layer structure of a carbon layer covering the outside of the agglomerated particles, to the peak intensity G of 1580 cm -1 in Raman spectroscopy 1360 cm -1 and the ratio of the peak intensity C (C / G) is 0.5 or less, and the ratio of the peak intensity F of 900~1200Cm -1 to the peak intensity G of 1580 cm -1 (F / G) is 0.1 or less Positive electrode material for lithium ion secondary battery. 平均粒度が1〜20μm、比表面積が1〜50m/g、タップ密度が0.6〜1.6g/cmである請求項1に記載のリチウムイオン二次電池用正極材料。 2. The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the average particle size is 1 to 20 μm, the specific surface area is 1 to 50 m 2 / g, and the tap density is 0.6 to 1.6 g / cm 3 . 一般式FexOy(0<x≦3、0<y≦4)で表される酸化鉄と、黒鉛と、リチウム源と、燐源との混合物を不活性ガス中600〜900℃で加熱してLiFePO粒子及び炭素で形成された凝集粒子を得、次いで前記凝集粒子を流動層熱CVD法で処理する、LiFePO粒子及び炭素で形成された凝集粒子と、その凝集粒子の外側を被覆した炭素層との2層構造の複合粒子であり、ラマン分光法で1580cm−1のピーク強度Gに対する1360cm−1のピーク強度Cの比(C/G)が0.5以下であり、且つ1580cm−1のピーク強度Gに対する900〜1200cm−1のピーク強度Fの比(F/G)が0.1以下であるリチウムイオン二次電池用正極材料の製造方法。 A mixture of iron oxide represented by the general formula FexOy (0 <x ≦ 3, 0 <y ≦ 4), graphite, a lithium source, and a phosphorus source is heated in an inert gas at 600 to 900 ° C. to form LiFePO 4. 4 Agglomerated particles formed of 4 particles and carbon are obtained, and then the agglomerated particles are processed by a fluidized bed thermal CVD method. Agglomerated particles formed of LiFePO 4 particles and carbon, and a carbon layer covering the outside of the agglomerated particles a composite particle having a two-layer structure with the ratio of the peak intensity C of 1360 cm -1 to the peak intensity G of 1580 cm -1 in Raman spectroscopy (C / G) is 0.5 or less, and the 1580 cm -1 The manufacturing method of the positive electrode material for lithium ion secondary batteries whose ratio (F / G) of 900-1200cm < -1 > peak intensity F with respect to the peak intensity G is 0.1 or less. 黒鉛の質量比が酸化鉄とリチウム源と燐源との合計量に対して3〜20質量%である請求項3に記載のリチウムイオン二次電池用正極材料の製造方法。   4. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 3, wherein a mass ratio of the graphite is 3 to 20 mass% with respect to a total amount of the iron oxide, the lithium source, and the phosphorus source. 請求項1に記載のリチウムイオン二次電池用正極材料を含む正極を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a positive electrode containing the positive electrode material for lithium ion secondary batteries of Claim 1.
JP2005122988A 2005-04-20 2005-04-20 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Active JP4684727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122988A JP4684727B2 (en) 2005-04-20 2005-04-20 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122988A JP4684727B2 (en) 2005-04-20 2005-04-20 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006302671A JP2006302671A (en) 2006-11-02
JP4684727B2 true JP4684727B2 (en) 2011-05-18

Family

ID=37470725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122988A Active JP4684727B2 (en) 2005-04-20 2005-04-20 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4684727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534145A (en) * 2015-05-01 2018-01-02 艾利电力能源有限公司 Positive electrode active material for nonaqueous electrolyte secondary battery, positive pole and secondary cell

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2566906A1 (en) * 2006-10-30 2008-04-30 Nathalie Ravet Carbon-coated lifepo4 storage and handling
CA2569991A1 (en) * 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making
JP5239153B2 (en) * 2006-12-11 2013-07-17 住友大阪セメント株式会社 Electrode material composite method, electrode and lithium ion battery
EP2108202B1 (en) * 2007-01-24 2017-03-08 LG Chem, Ltd. A secondary battery with improved safety
JP5385616B2 (en) * 2007-01-29 2014-01-08 関東電化工業株式会社 COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
JP4317239B2 (en) * 2007-04-27 2009-08-19 Tdk株式会社 Method for producing composite particles for electrodes
JP5158410B2 (en) * 2007-10-12 2013-03-06 トヨタ自動車株式会社 Secondary battery electrode material powder and method for producing the same
JP4492683B2 (en) * 2007-11-23 2010-06-30 トヨタ自動車株式会社 Battery system
TWI369019B (en) * 2007-12-27 2012-07-21 Ind Tech Res Inst Cathodal materials for lithium cells, methods for fabricating the same, and lithium secondary cells using the same
CN102496712A (en) * 2008-01-28 2012-06-13 财团法人工业技术研究院 Fabrication method for lithium battery anode material
JP2009295465A (en) * 2008-06-06 2009-12-17 Iwate Univ Positive electrode active material for lithium secondary battery and manufacturing method
CA2638410A1 (en) 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP5396798B2 (en) 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
JP5365126B2 (en) * 2008-09-30 2013-12-11 Tdk株式会社 Active material for positive electrode of lithium ion secondary battery and method for producing active material for positive electrode of lithium ion secondary battery
DE102009020832A1 (en) * 2009-05-11 2010-11-25 Süd-Chemie AG Composite material containing a mixed lithium metal oxide
JP5131246B2 (en) * 2009-05-26 2013-01-30 Tdk株式会社 Composite particles for electrodes and electrochemical devices
JP5464330B2 (en) * 2009-07-31 2014-04-09 戸田工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CA2678540A1 (en) * 2009-09-15 2011-03-15 Hydro-Quebec Material made of composite oxide particles, the process for its preparation, and its use as an active electrode material
JP2011076820A (en) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and positive electrode for lithium secondary battery
JP5486907B2 (en) 2009-11-18 2014-05-07 電気化学工業株式会社 Positive electrode material for lithium ion secondary battery and method for producing the same
CA2691265A1 (en) * 2010-01-28 2011-07-28 Phostech Lithium Inc. Optimized cathode material for a lithium-metal-polymer battery
US9269950B2 (en) 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
JP2011238594A (en) * 2010-04-13 2011-11-24 Nippon Electric Glass Co Ltd Cathode material for lithium ion secondary battery and method for manufacturing the same
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
WO2012005180A1 (en) * 2010-07-05 2012-01-12 独立行政法人産業技術総合研究所 Electrode material, electrode containing same, battery, method for producing electrode material precursor, and method for producing electrode material using the method for producing electrode material precursor
JP5680351B2 (en) * 2010-08-06 2015-03-04 Amaz技術コンサルティング合同会社 Metal compound powder and method for producing the same
US20140004421A1 (en) * 2011-03-16 2014-01-02 Sheng Shih Chang Cathode material with double carbon coatings and manufacturing method thereof
JP5851707B2 (en) * 2011-04-01 2016-02-03 三井造船株式会社 Lithium iron phosphate positive electrode material and method for producing the same
CN103782424B (en) 2011-07-04 2016-06-08 昭荣化学工业株式会社 The manufacture method of lithium ion secondary battery anode material, positive pole parts, lithium-ion secondary cell and above-mentioned positive electrode material
JP5760871B2 (en) * 2011-09-05 2015-08-12 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery
JP5637102B2 (en) * 2011-09-05 2014-12-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP6077206B2 (en) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, ELECTRODE, LITHIUM ION BATTERY
WO2013047233A1 (en) 2011-09-28 2013-04-04 昭栄化学工業株式会社 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode member, and lithium ion secondary battery
CA2859113C (en) 2011-11-15 2020-04-14 Denki Kagaku Kogyo Kabushiki Kaisha Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
CN103946157A (en) 2011-11-15 2014-07-23 电气化学工业株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
CA2776205A1 (en) * 2012-05-08 2013-11-08 Hydro-Quebec Lithium-ion secondary battery and method of producing same
JP6119123B2 (en) * 2012-06-15 2017-04-26 トヨタ自動車株式会社 Active material, battery, and method for producing active material
JP2014063681A (en) * 2012-09-24 2014-04-10 Murata Mfg Co Ltd Electrode active material for secondary battery, electrode, and secondary battery
JP6070222B2 (en) 2013-01-30 2017-02-01 日立金属株式会社 Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
JP5838994B2 (en) * 2013-04-30 2016-01-06 住友大阪セメント株式会社 Electrode material, electrode forming paste, electrode plate, lithium ion battery, and method for producing electrode material
JP6197202B2 (en) * 2014-05-23 2017-09-20 住友大阪セメント株式会社 Electrode material and membrane
JP2015229606A (en) * 2014-06-04 2015-12-21 日立化成株式会社 Magnesium silicate complex
US10431823B2 (en) * 2014-08-04 2019-10-01 National Institute For Materials Science Method for manufacturing base material powder having carbon nano-coating layer, method for manufacturing MgB2 superconductor using the method, MgB2 superconductor, method for manufacturing positive electrode material for lithium ion battery, lithium ion battery, and method for manufacturing photocatalyst
JP6064143B2 (en) * 2014-09-10 2017-01-25 太平洋セメント株式会社 Positive electrode material for lithium ion secondary battery
CN107615532B (en) * 2015-05-14 2020-07-31 株式会社村田制作所 Nonaqueous electrolyte secondary battery
JP2018055886A (en) * 2016-09-27 2018-04-05 株式会社Gsユアサ Carbon-coated positive electrode active material, method for manufacturing the same, positive electrode, and nonaqueous electrolyte power storage device
JP7087889B2 (en) * 2018-09-27 2022-06-21 株式会社豊田自動織機 Composite particles
JP7131258B2 (en) * 2018-09-27 2022-09-06 株式会社豊田自動織機 Composite particle manufacturing method
WO2020256115A1 (en) * 2019-06-19 2020-12-24 Tpr株式会社 Current collector for power storage device electrode, manufacturing method thereof, and power storage device
JP6947259B1 (en) * 2020-08-20 2021-10-13 住友大阪セメント株式会社 Positive electrode material for alkali metal ion batteries, positive electrode and alkali metal ion batteries
KR102553635B1 (en) * 2022-09-27 2023-07-10 주식회사 케이켐비즈 Positive electrode active material, positive electrode and secondary battery comprising the same
WO2024197861A1 (en) 2023-03-31 2024-10-03 昆明理工大学 Battery positive electrode material and treatment method therefor, and battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534145A (en) * 2015-05-01 2018-01-02 艾利电力能源有限公司 Positive electrode active material for nonaqueous electrolyte secondary battery, positive pole and secondary cell

Also Published As

Publication number Publication date
JP2006302671A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4684727B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
Zhang et al. Improved rate capability of carbon coated Li3. 9Sn0. 1Ti5O12 porous electrodes for Li-ion batteries
US7390472B1 (en) Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
Criado et al. Effect of chromium doping on Na3V2 (PO4) 2F3@ C as promising positive electrode for sodium-ion batteries
JP5379026B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor
JP6659282B2 (en) Active material for battery, negative electrode, non-aqueous electrolyte battery, battery pack and car
Kandhasamy et al. Polyvinylpyrrolidone assisted sol–gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery
Yuan et al. Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance
CN101894946A (en) Make the method for the Li-Ti composite oxides of nitrogenize, the Li-Ti composite oxides and the lithium ion battery of nitrogenize
KR102128796B1 (en) Silicon Oxide, Making Method, Negative Electrode, Lithium Ion Secondary Battery, and Electrochemical Capacitor
Nanthagopal et al. An encapsulation of nitrogen and sulphur dual-doped carbon over Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium-ion battery applications
KR20210062694A (en) Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power car
Ghobadi et al. Improved lithium-ion battery anode performance via multiple element approach
Lin et al. Synthesis, structural, and electrochemical properties of NaCo (PO 3) 3 cathode for sodium-ion batteries
Li et al. Microwave assisted synthesis of core–shell LiFe1/3Mn1/3Co1/3PO4/C nanocomposite cathode for high-performance lithium-ion batteries
Son et al. Surface modification of over-lithiated layered oxide by low-temperature chemical vapor deposition for high energy lithium-ion batteries
Shreenivasa et al. Engineering of highly conductive and mesoporous ZrV 2 O 7: a cathode material for lithium secondary batteries
KR20130128330A (en) Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor
Jia et al. Ternary chalcogenide LiInSe2: a promising high-performance anode material for lithium ion batteries
Şahan et al. Effect of silver coating on electrochemical performance of 0.5 Li 2 MnO 3. 0.5 LiMn 1/3 Ni 1/3 Co 1/3 O 2 cathode material for lithium-ion batteries
JP2003323892A (en) Manufacturing method for positive electrode material for secondary battery and nonaqueous secondary battery using the method
KR20240063150A (en) lithium sulfur battery
Rangasamy et al. Influence of sol-gel precursors on the electrochemical performance of NaMn 0.33 Ni 0.33 Co 0.33 O 2 positive electrode for sodium-ion battery
Wu et al. Synthesis and electrochemical properties of cation‐disordered rock‐salt x Li3NbO4·(1− x) NiO compounds for Li‐ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250