JP2011258348A - Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP2011258348A
JP2011258348A JP2010130252A JP2010130252A JP2011258348A JP 2011258348 A JP2011258348 A JP 2011258348A JP 2010130252 A JP2010130252 A JP 2010130252A JP 2010130252 A JP2010130252 A JP 2010130252A JP 2011258348 A JP2011258348 A JP 2011258348A
Authority
JP
Japan
Prior art keywords
csp
negative electrode
film
lithium secondary
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010130252A
Other languages
Japanese (ja)
Inventor
Yoshinari Makimura
嘉也 牧村
Takashi Izeki
崇 伊関
Yuka Yamada
由香 山田
Kazuyuki Nakanishi
和之 中西
Hiroyuki Tezuka
裕之 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010130252A priority Critical patent/JP2011258348A/en
Publication of JP2011258348A publication Critical patent/JP2011258348A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve battery characteristics of an electrode formed by a film-shaped carbon material.SOLUTION: A negative electrode for a lithium secondary battery includes a collector 22 and an active material film 24. The active material film 24 is comprised of an amorphous carbon film in which an atom ratio Csp/Cspsatisfies 0<Csp/Csp≤0.25, where Cspis defined as a ratio of the number of atoms of carbon having an sphybrid orbit to the number of atoms of total carbon formed as a deposition film on the collector 22, and Cspis defined as a ratio of the number of atoms of carbon having an sphybrid orbit to the number of atoms of total carbon. Furthermore, it is more preferable that the active material film 24 contains nitrogen at 20 atom% or less and hydrogen at 15 atom% or less. Moreover, it is preferable for the active material film to have an inter-layer distance d of a carbon layer within a range of 0.35 nm<d<0.45 nm, which is calculated from a broad diffraction peak that appears within a range where 2θ in an X-ray diffraction measurement is 20° or more and 25° or less.

Description

本発明は、リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法に関する。   The present invention relates to a negative electrode for a lithium secondary battery, a lithium secondary battery, and a method for producing a negative electrode for a lithium secondary battery.

従来、リチウム二次電池用負極としては、基体表面を覆うように形成された平面薄膜部と、平面薄膜部に対して垂直方向に起立せしめられ、規則的に配列された六角網面構造をもつ起立薄膜部とからなるグラファイト薄膜を、モリブデン若しくは単結晶シリコン基体表面にプラズマジェット法によって作製するものが提案されている(例えば、特許文献1参照)。   Conventionally, as a negative electrode for a lithium secondary battery, a flat thin film portion formed so as to cover the surface of a substrate, and a hexagonal mesh surface structure that is vertically arranged with respect to the flat thin film portion and regularly arranged There has been proposed a method in which a graphite thin film including an upstanding thin film portion is formed on a molybdenum or single crystal silicon substrate surface by a plasma jet method (see, for example, Patent Document 1).

特開平9−315808号公報JP 9-315808 A

しかしながら、上述の特許文献1の電極は、黒鉛を薄膜とするものであり、例えば、急速充電などの負荷特性などがまだ十分でなく、電池特性をより向上することが求められていた。   However, the electrode of Patent Document 1 described above uses graphite as a thin film, and for example, load characteristics such as rapid charging are not yet sufficient, and it has been demanded to further improve battery characteristics.

本発明は、このような課題に鑑みなされたものであり、炭素材料を膜状に形成した電極において、電池特性をより向上することができるリチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法を提供することを主目的とする。   The present invention has been made in view of such problems, and in an electrode in which a carbon material is formed in a film shape, a negative electrode for a lithium secondary battery, a lithium secondary battery, and a lithium secondary battery that can further improve battery characteristics. The main object is to provide a method for producing a negative electrode for a secondary battery.

上述した目的を達成するために鋭意研究したところ、本発明者らは、全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2を好適な範囲とすると、炭素材料を膜状に形成した電極の充放電効率、負荷特性及び充放電耐久性などの電池特性をより向上することができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-described object, the present inventors have determined that the ratio of the number of carbon atoms having sp 2 hybrid orbits to the total number of carbon atoms is Csp 2, and the sp 3 hybridization to the total number of carbon atoms. If the atomic ratio Csp 3 / Csp 2 is within a suitable range when the ratio of the number of carbon atoms having orbits is Csp 3 , the charge / discharge efficiency, load characteristics, and charge / discharge durability of an electrode formed of a carbon material in a film shape The inventors have found that the battery characteristics such as the property can be further improved, and have completed the present invention.

即ち、本発明のリチウム二次電池用負極は、集電体と、該集電体上に蒸着膜として形成され全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25を満たす非晶質炭素膜よりなる活物質膜と、を備えたものである。 That is, the negative electrode for a lithium secondary battery of the present invention, current collector and, Csp the ratio of the number of atoms of carbon having sp 2 hybrid orbital for the number of atoms of the total carbon formed as a deposited film on the current collector 2 And an atomic ratio Csp 3 / Csp 2 where the ratio of the number of carbon atoms having sp 3 hybrid orbits to the total number of carbon atoms is Csp 3 is 0 <Csp 3 / Csp 2 ≦ 0.25 And an active material film made of a carbonaceous film.

また、本発明のリチウム二次電池は、上述したリチウム二次電池用負極と、正極活物質を有する正極と、前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、を備えたものである。   The lithium secondary battery of the present invention includes the above-described negative electrode for a lithium secondary battery, a positive electrode having a positive electrode active material, an ion conductive medium that is interposed between the positive electrode and the negative electrode, and conducts lithium ions. , With.

また、本発明のリチウム二次電池用負極の製造方法は、sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとsp3混成軌道をもつ炭素を含む炭素環式化合物ガスとのうち少なくとも一方を含む原料ガスを、集電体を配置した反応容器内に導入して放電することにより、全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25の範囲となるように前記集電体上に非晶質炭素膜よりなる活物質膜を形成する工程、を含むものである。 The method for producing a negative electrode for a lithium secondary battery according to the present invention includes at least one of a carbocyclic compound gas containing carbon having sp 2 hybrid orbitals and a carbocyclic compound gas containing carbon having sp 3 hybrid orbitals. Is introduced into a reaction vessel in which a current collector is arranged and discharged, so that the ratio of the number of carbon atoms having sp 2 hybrid orbits to the total number of carbon atoms is Csp 2 and the total carbon atoms The current ratio so that the atomic ratio Csp 3 / Csp 2 is in the range of 0 <Csp 3 / Csp 2 ≦ 0.25, where Csp 3 is the ratio of the number of carbon atoms having sp 3 hybrid orbitals to the number. Forming an active material film made of an amorphous carbon film on the body.

本発明は、電池特性をより向上することができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、一般的に、負極活物質である非晶質炭素は、黒鉛負極に比して充放電時の電位形状に傾きがあり、その作動電位がリチウム金属析出電位から離れている。このため大型用途で黒鉛負極よりも安全性が高く、大電流の充放電を行いやすい負極活物質と考えられる。一方、黒鉛負極に対して、その充放電効率や耐久性能などが十分であるとはいえなかった。本発明では、非晶質炭素膜中のsp2混成軌道をもつ炭素の原子割合Csp2と、sp3混成軌道をもつ炭素の原子割合Csp3との原子比Csp3/Csp2を好適な範囲とするものである(0<Csp3/Csp2≦0.25)。この点について、例えば、非晶質炭素膜中のsp2混成軌道をもつ炭素の原子割合Csp2が多くなるとπ電子の非局在化が促進され高い導電性を示すと考えられる。また、非晶質炭素膜中のsp3混成軌道をもつ炭素の原子割合Csp3が多くなると、sp2混成軌道をもつ炭素により形成される炭素層の間隔がより広がると考えられる。このように、原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25の範囲では、高い導電性と共にリチウムイオン伝導パスが膜内に不足なく確保されるため、優れた充放電効率を示すと共に、優れた充放電耐久特性となると推察される。また、非晶質炭素であることから、黒鉛に比して充放電時の電位形状に傾きがあり、その作動電位がリチウム金属析出電位から離れており、負荷特性がより良好であると推察される。 The present invention can further improve battery characteristics. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, in general, amorphous carbon, which is a negative electrode active material, has a gradient in potential shape during charge / discharge compared to a graphite negative electrode, and its operating potential is far from the lithium metal deposition potential. For this reason, it is considered to be a negative electrode active material that is safer than graphite negative electrodes in large applications and that can easily charge and discharge a large current. On the other hand, it could not be said that the charge / discharge efficiency and durability performance of the graphite negative electrode were sufficient. In the present invention, the atomic ratio Csp 3 / Csp 2 between the atomic ratio Csp 2 of carbon having sp 2 hybrid orbital and the atomic ratio Csp 3 of carbon having sp 3 hybrid orbital in the amorphous carbon film is preferably in the preferred range. (0 <Csp 3 / Csp 2 ≦ 0.25). In this regard, for example, it is considered that delocalization of π electrons is promoted and high conductivity is exhibited when the atomic ratio Csp 2 of carbon having sp 2 hybrid orbits in the amorphous carbon film is increased. In addition, when the atomic ratio Csp 3 of carbon having sp 3 hybrid orbits in the amorphous carbon film increases, it is considered that the distance between carbon layers formed by carbon having sp 2 hybrid orbitals is further increased. In this way, when the atomic ratio Csp 3 / Csp 2 is in the range of 0 <Csp 3 / Csp 2 ≦ 0.25, the lithium ion conduction path is ensured in the film without deficiency, so that excellent chargeability is achieved. It is presumed that the discharge efficiency is exhibited and the charge / discharge durability characteristics are excellent. In addition, since it is amorphous carbon, the potential shape at the time of charging and discharging is inclined compared to graphite, and its operating potential is far from the lithium metal deposition potential, and it is assumed that the load characteristics are better. The

コイン型電池10の構成の概略の一例を示す構成図。1 is a configuration diagram showing an example of a schematic configuration of a coin-type battery 10. 化学蒸着装置30の構成の概略の一例を示す構成図。The block diagram which shows an example of the outline of a structure of the chemical vapor deposition apparatus. 非晶質炭素膜の13C−NMRスペクトルの一例。An example of the 13C-NMR spectrum of an amorphous carbon film. 非晶質炭素膜(実験例1)のX線回折測定結果。The X-ray-diffraction measurement result of an amorphous carbon film (Experimental example 1). 実験例1の充放電曲線。The charge / discharge curve of Experimental Example 1. 実験例7の充放電曲線。The charge / discharge curve of Experimental Example 7. 実験例1の負荷特性試験の放電曲線。The discharge curve of the load characteristic test of Experimental example 1. 実験例6の負荷特性試験の放電曲線。The discharge curve of the load characteristic test of Experimental example 6.

次に、本発明を実施する形態について図面を用いて説明する。図1は、本発明の一実施形態であるコイン型電池10の構成の概略の一例を示す構成図である。図2は、化学蒸着装置30の構成の概略の一例を示す構成図である。本発明のリチウム二次電池は、本発明のリチウム二次電池用負極と、正極活物質を有する正極と、正極と負極との間に介在しリチウムイオンを伝導するイオン伝導媒体と、を備えている。図1に示す、本発明のリチウム二次電池としてのコイン型電池10は、カップ形状の電池ケース11と、この電池ケース11の内部に設けられた正極12と、正極12に対してセパレータ14を介して対向する位置に設けられた負極20と、支持塩を含むイオン伝導媒体としての非水電解液17と、絶縁材により形成されたガスケット15と、電池ケース11の開口部に配設されガスケット15を介して電池ケース11を密封する封口板16と、を備えている。ここでは、負極20は、本発明のリチウム二次電池用負極であり、導電性を有する集電体22と、この集電体22上に蒸着して形成された非晶質炭素膜よりなる活物質膜24とを備えている。   Next, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a schematic configuration of a coin-type battery 10 according to an embodiment of the present invention. FIG. 2 is a configuration diagram illustrating an example of a schematic configuration of the chemical vapor deposition apparatus 30. A lithium secondary battery of the present invention includes the negative electrode for a lithium secondary battery of the present invention, a positive electrode having a positive electrode active material, and an ion conductive medium that is interposed between the positive electrode and the negative electrode and conducts lithium ions. Yes. A coin-type battery 10 as a lithium secondary battery of the present invention shown in FIG. 1 includes a cup-shaped battery case 11, a positive electrode 12 provided inside the battery case 11, and a separator 14 with respect to the positive electrode 12. A non-aqueous electrolyte 17 as an ion conducting medium containing a supporting salt, a gasket 15 formed of an insulating material, and a gasket disposed in an opening of the battery case 11. And a sealing plate 16 for sealing the battery case 11 via 15. Here, the negative electrode 20 is a negative electrode for a lithium secondary battery according to the present invention, and is an active current comprising a conductive current collector 22 and an amorphous carbon film formed by vapor deposition on the current collector 22. And a material film 24.

本発明のリチウム二次電池用負極は、集電体と、この集電体上に蒸着膜として形成され全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25を満たす非晶質炭素膜よりなる活物質膜と、を備えている。このリチウム二次電池用負極では、集電体上に活物質膜が蒸着膜として形成されている。即ち、活物質膜は、集電体上に結着材成分を含まずに形成されている。例えば、集電体上に負極活物質を塗工した塗工電極や、集電体上に負極活物質を圧着した圧着電極などに比して結着材などの他の成分を添加することなく電極を形成可能であることから、活物質膜の純度をより高めることが可能であり、より電池特性を向上することができる。また、活物質膜は、非晶質炭素膜よりなるため、例えば、黒鉛に比して充放電時の電位形状に傾きがあり、その作動電位がリチウム金属析出電位から離れているため、黒鉛に比して、安全性が高く負荷特性がより良好である。なお、この活物質膜は、純度を考慮すると、非晶質炭素膜のみからなることが好ましいが、非晶質炭素膜以外の材料が含まれていてもよい。また、この非晶質炭素膜は、層状構造を有しているものとしてもよい。 The negative electrode for a lithium secondary battery of the present invention is to a current collector, and Csp 2 the ratio of the number of atoms of carbon having sp 2 hybrid orbital for the number of atoms of the total carbon formed as a deposited film on the current collector on the body all Amorphous carbon in which the atomic ratio Csp 3 / Csp 2 satisfies 0 <Csp 3 / Csp 2 ≦ 0.25 when the ratio of the number of carbon atoms having sp 3 hybrid orbits to the number of carbon atoms is Csp 3 And an active material film made of a film. In this negative electrode for a lithium secondary battery, an active material film is formed as a deposited film on a current collector. That is, the active material film is formed on the current collector without containing the binder component. For example, without adding other components such as a binder as compared with a coated electrode in which a negative electrode active material is coated on a current collector or a crimped electrode in which a negative electrode active material is pressure-bonded on a current collector. Since the electrode can be formed, the purity of the active material film can be further increased, and the battery characteristics can be further improved. In addition, since the active material film is made of an amorphous carbon film, for example, the potential shape at the time of charging / discharging is inclined as compared with graphite, and the operating potential is away from the lithium metal deposition potential. In comparison, the safety is high and the load characteristics are better. Note that this active material film is preferably made of only an amorphous carbon film in consideration of purity, but may contain materials other than the amorphous carbon film. The amorphous carbon film may have a layered structure.

本発明のリチウム二次電池用負極において、集電体は、例えば、銅、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金などのほか、接着性、導電性及び耐還元性向上の目的で、例えば銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものも用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状としては、例えば、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   In the negative electrode for a lithium secondary battery of the present invention, the current collector is, for example, copper, nickel, stainless steel, titanium, aluminum, baked carbon, conductive polymer, conductive glass, Al—Cd alloy, or the like. For example, the surface of copper or the like treated with carbon, nickel, titanium, silver, or the like can be used for the purpose of improving the conductivity, conductivity, and reduction resistance. For these, the surface can be oxidized. Examples of the shape of the current collector include a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded shape, a lath body, a porous body, a foamed body, and a formed body of fiber groups. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池用負極において、活物質膜(非晶質炭素膜)は、原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25を満たす。原子比Csp3/Csp2が値0を超えると、sp2混成軌道をもつ炭素により形成される炭素層の間隔がより広がり、リチウムイオン伝導パスが膜内に不足なく確保されるため、優れた充放電効率及び充放電耐久特性を示すと推察される。また、原子比Csp3/Csp2が0.25以下では、非晶質炭素膜中のsp2混成軌道をもつ炭素の原子割合Csp2が多くなり、π電子の非局在化が促進され高い導電性を示すと推察される。この原子比Csp3/Csp2は、0.04≦Csp3/Csp2≦0.235の範囲がより好ましく、0.04≦Csp3/Csp2≦0.05の範囲が更に好ましい。同様に、原子割合Csp2は、80at%以上100at%未満の範囲であることが好ましく、82at%以上96at%以下の範囲であることが好ましく、95at%以上96at%以下の範囲であることが更に好ましい。原子割合Csp3は、4at%以上20at%未満の範囲であることが好ましく、4at%以上18at%以下の範囲であることが好ましく、4at%以上5at%以下の範囲であることが更に好ましい。なお、「全炭素の原子数に対するsp2混成軌道をもつ炭素の原子割合Csp2」や、「全炭素の原子数に対するsp3混成軌道をもつ炭素の原子割合Csp3」とは、sp2混成軌道をもつ炭素の原子数とsp3混成軌道をもつ炭素の原子数との合計を全炭素の原子数としたときの、全体に対する割合をいうものとする。また、各混成軌道をもつ炭素の原子数は、固体NMRで定量性のあるマジックアングルスピニングを行う高出力デカップリング法(HD−MAS−NMR)を用いて測定した値をいうものとする。 In the negative electrode for a lithium secondary battery of the present invention, the atomic ratio Csp 3 / Csp 2 of the active material film (amorphous carbon film) satisfies 0 <Csp 3 / Csp 2 ≦ 0.25. When the atomic ratio Csp 3 / Csp 2 exceeds the value 0, the distance between the carbon layers formed by the carbon having sp 2 hybrid orbitals is further increased, and the lithium ion conduction path is ensured without deficiency in the film. It is inferred to show charge / discharge efficiency and charge / discharge durability characteristics. When the atomic ratio Csp 3 / Csp 2 is 0.25 or less, the atomic ratio Csp 2 of carbon having sp 2 hybrid orbitals in the amorphous carbon film increases, and the delocalization of π electrons is promoted and is high. It is presumed to show conductivity. The atomic ratio Csp 3 / Csp 2 is more preferably in the range of 0.04 ≦ Csp 3 / Csp 2 ≦ 0.235, and further preferably in the range of 0.04 ≦ Csp 3 / Csp 2 ≦ 0.05. Similarly, the atomic ratio Csp 2 is preferably in the range of 80 at% or more and less than 100 at%, preferably in the range of 82 at% or more and 96 at% or less, and more preferably in the range of 95 at% or more and 96 at% or less. preferable. The atomic ratio Csp 3 is preferably in the range of 4 at% to less than 20 at%, preferably in the range of 4 at% to 18 at%, and more preferably in the range of 4 at% to 5 at%. Note that “the atomic ratio Csp 2 of carbon having sp 2 hybrid orbits with respect to the total number of carbon atoms” and “atomic ratio Csp 3 of carbon having sp 3 hybridizing orbits with respect to the total number of carbon atoms” are sp 2 hybrids. The ratio of the total number of carbon atoms with orbital and the total number of carbon atoms with sp 3 hybridized orbital is the total number of carbon atoms. In addition, the number of carbon atoms having each hybrid orbital is a value measured using a high-power decoupling method (HD-MAS-NMR) in which solid angle NMR performs quantitative magic angle spinning.

本発明のリチウム二次電池用負極において、活物質膜は、窒素を20at%以下含むものとするのが好ましい。窒素原子は非晶質炭素膜中でn型ドナーとして働き、ドナー準位に束縛されていた電子を効果的に伝導帯へと励起することから、窒素原子を含むものとすると、非晶質炭素膜の導電性がさらに高くなり、好ましい。一方、窒素含有量が20at%を上回ると、C≡N結合(三重結合)の形成により分子の終端化が促進されるため、窒素含有量は20at%以下であることが好ましい。また、窒素含有量は10at%以下であることがより好ましく、5at%以下であることが更に好ましい。ここで、窒素の含有割合at%は、炭素(C)と窒素(N)と水素(H)との全体の原子数に対する割合をいうものとする。また、炭素(C)と窒素(N)の原子数は、ラザフォード後方散乱法(RBS)により定量することができる。この炭素(C)と窒素(N)の原子数は、例えば、電子プローブ微小部分析法(EPMA)、X線光電子分光法(XPS)、オージェ電子分光法(AES)によっても測定することができる。また、水素(H)の原子数は、弾性反跳粒子検出法(ERDA)により定量することができる。   In the negative electrode for a lithium secondary battery of the present invention, the active material film preferably contains 20 at% or less of nitrogen. Nitrogen atoms act as n-type donors in the amorphous carbon film and effectively excite the electrons bound to the donor level to the conduction band. The conductivity is further increased, which is preferable. On the other hand, when the nitrogen content exceeds 20 at%, the termination of molecules is promoted by the formation of C≡N bonds (triple bonds), and therefore the nitrogen content is preferably 20 at% or less. Further, the nitrogen content is more preferably 10 at% or less, and further preferably 5 at% or less. Here, the nitrogen content ratio at% refers to the ratio of carbon (C), nitrogen (N), and hydrogen (H) to the total number of atoms. The number of atoms of carbon (C) and nitrogen (N) can be quantified by Rutherford backscattering method (RBS). The number of atoms of carbon (C) and nitrogen (N) can be measured by, for example, electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES). . The number of atoms of hydrogen (H) can be quantified by elastic recoil detection method (ERDA).

本発明のリチウム二次電池用負極において、活物質膜は、水素を15at%以下含むものとするのが好ましい。非晶質炭素膜中の水素含有量を低減することにより、C−H結合(σ結合)による分子の終端化が抑制されることから、π電子が増加し、高い導電性を示すものと推察される。負極活物質として非水電解液中で充放電させる場合には、特に水素含有量が15at%を超えると含有水素が不可逆反応の要因となることがあり、負荷特性、充放電耐久特性が悪化してしまうと考えられる。また、炭素材料を非水電解液中で使用した場合、リチウム基準1Vを下回る低電位領域で表面被膜を形成し、これが電池特性に大きな影響を及ぼすことが知られている。非晶質炭素膜中に含まれる水素量、窒素量が表面被膜の性質に影響を及ぼすと考えられ、なかでも水素量を15at%以下、窒素量を20at%以下とすることにより耐久性能、負荷特性に適した被膜になるものと思われる。上記理由から水素量は15at%以下がより好ましく、10at%以下であることが更に好ましい。また、水素量は1at%以上が好ましく、5at%以上であることがより好ましい。水素量が1at%以上では、相対的にsp3混成軌道をもつ炭素の原子割合Csp3が多くなり、sp2混成軌道をもつ炭素により形成される炭素層の間隔がより広がるため好ましい。 In the negative electrode for a lithium secondary battery of the present invention, the active material film preferably contains 15 at% or less of hydrogen. By reducing the hydrogen content in the amorphous carbon film, molecular termination due to C—H bonds (σ bonds) is suppressed, and it is assumed that π electrons increase and show high conductivity. Is done. When charging / discharging as a negative electrode active material in a non-aqueous electrolyte, particularly when the hydrogen content exceeds 15 at%, the hydrogen content may cause an irreversible reaction, and the load characteristics and charge / discharge durability characteristics deteriorate. It is thought that. Further, it is known that when a carbon material is used in a non-aqueous electrolyte, a surface film is formed in a low potential region below 1 V of lithium reference, and this greatly affects battery characteristics. It is considered that the amount of hydrogen and nitrogen contained in the amorphous carbon film affect the properties of the surface coating, and in particular, durability performance and load by making the amount of hydrogen 15 at% or less and the amount of nitrogen 20 at% or less. It seems that the film is suitable for the characteristics. For the above reason, the hydrogen amount is more preferably 15 at% or less, and further preferably 10 at% or less. Further, the amount of hydrogen is preferably 1 at% or more, and more preferably 5 at% or more. A hydrogen amount of 1 at% or more is preferable because the atomic ratio Csp 3 of carbon having sp 3 hybrid orbitals is relatively increased and the distance between carbon layers formed by carbon having sp 2 hybrid orbitals is further increased.

本発明のリチウム二次電池用負極において、活物質膜は、X線回折測定での2θが20°以上25°以下の範囲に現れるブロードな回折ピークから算出される炭素層の層間距離dが、0.35nm<d≦0.51nmの範囲にあることが好ましく、0.35nm<d<0.45nmの範囲にあることがより好ましく、0.37nm<d<0.41nmの範囲にあることが更に好ましい。Cu管球でX線回折測定を行ったとき、角度2θが20°以上25°以下の範囲に現れるブロードな回折ピークは、六方晶系で規定される黒鉛骨格の(002)面に相当し、ブラッグの式によってその平均面間隔を算出可能である。この平均面間隔は、層構造をもつ黒鉛の層間距離dに相当し、黒鉛の場合は0.34nmとなることが知られている。非晶質炭素膜の層間距離dが0.51nm以下では、面間隔が狭くなることにより面間でのπ電子の相互作用が増大し導電性がより向上する。一方、黒鉛と同等の層間距離dが0.34nmでは負極活物質として黒鉛の特性が出てしまい、作動電位がリチウム基準0.1V付近まで低下してしまうため好ましくない。このため、層間距離dが0.35nmを上回り、0.51nm以下の条件のとき、更には0.45nmを下回る条件のときに、導電性とリチウムイオン伝導性の両方の観点から最適化され、優れた負荷特性、充放電耐久特性となると推察される。   In the negative electrode for a lithium secondary battery of the present invention, the active material film has a carbon layer interlayer distance d calculated from a broad diffraction peak appearing in the range of 2θ of 20 ° to 25 ° in X-ray diffraction measurement. It is preferably in the range of 0.35 nm <d ≦ 0.51 nm, more preferably in the range of 0.35 nm <d <0.45 nm, and in the range of 0.37 nm <d <0.41 nm. Further preferred. When X-ray diffraction measurement is performed with a Cu tube, the broad diffraction peak that appears in the range where the angle 2θ is 20 ° or more and 25 ° or less corresponds to the (002) plane of the graphite skeleton defined by the hexagonal system, The average surface distance can be calculated by the Bragg equation. This average interplanar spacing corresponds to the interlayer distance d of graphite having a layer structure, and is known to be 0.34 nm in the case of graphite. When the interlayer distance d of the amorphous carbon film is 0.51 nm or less, the interaction between π electrons between the surfaces increases and the conductivity is further improved due to the decrease in the surface spacing. On the other hand, if the interlayer distance d equivalent to graphite is 0.34 nm, the characteristics of graphite as the negative electrode active material will appear, and the operating potential will be lowered to near lithium reference 0.1 V, which is not preferable. For this reason, when the interlayer distance d exceeds 0.35 nm and is 0.51 nm or less, and further below 0.45 nm, it is optimized from the viewpoint of both conductivity and lithium ion conductivity. It is assumed that excellent load characteristics and charge / discharge durability characteristics can be obtained.

次に、リチウム二次電池用負極の製造方法について説明する。本発明のリチウム二次電池用負極の製造方法は、sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとsp3混成軌道をもつ炭素を含む炭素環式化合物ガスとのうち少なくとも一方を含む原料ガスを、集電体を配置した反応容器内に導入して放電することにより、全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25の範囲となるように集電体上に非晶質炭素膜よりなる活物質膜を形成する工程、を含むものである。この工程では、窒素及び炭素を含む炭素環式化合物ガスと窒素ガスとのうち少なくとも一方を更に含む原料ガスを反応容器に導入し、窒素を20at%以下含む活物質膜を形成することが好ましい。こうすれば、より高い充放電効率及び充放電耐久特性とすることができる。なお、リチウム二次電池用負極の製造方法では、上述したリチウム二次電池用負極の態様となる工程を適宜加えるものとしてもよい。 Next, the manufacturing method of the negative electrode for lithium secondary batteries is demonstrated. The method for producing a negative electrode for a lithium secondary battery of the present invention includes at least one of a carbocyclic compound gas containing carbon having sp 2 hybrid orbital and a carbocyclic compound gas containing carbon having sp 3 hybrid orbital. By introducing the source gas into a reaction vessel in which a current collector is arranged and discharging, the ratio of the number of carbon atoms having sp 2 hybrid orbits to the total number of carbon atoms is Csp 2 and the total number of carbon atoms is sp 3 atomic ratio Csp 3 / Csp 2 when the ratio of the number of atoms of carbon bearing the hybrid orbital was Csp 3 is, 0 <Csp 3 / Csp in on the current collector such that the range of 2 ≦ 0.25 Forming an active material film made of an amorphous carbon film. In this step, it is preferable that a raw material gas further containing at least one of carbocyclic compound gas containing nitrogen and carbon and nitrogen gas is introduced into the reaction vessel to form an active material film containing 20 at% or less of nitrogen. By so doing, higher charge / discharge efficiency and charge / discharge durability characteristics can be obtained. In addition, in the manufacturing method of the negative electrode for lithium secondary batteries, you may add suitably the process used as the aspect of the negative electrode for lithium secondary batteries mentioned above.

リチウム二次電池用負極において、非晶質炭素膜は、プラズマCVD法、イオンプレーティング法、スパッタリング法など、既に公知のCVD法、PVD法により形成することができる。スパッタリング法に代表されるように、PVD法では成膜に指向性があることから、装置内に複数のターゲットを配置したり、成膜対象となる基材を回転させたりすることを要するなど、成膜装置の構造が複雑化し、高価になる。一方、プラズマCVD法は、反応ガスにより成膜するため、基材の形状に関わらず均一に成膜することができ、また、成膜装置の構造も単純で安価であり、好ましい。プラズマCVD法には、たとえば、高周波放電を利用する高周波プラズマCVD法、マイクロ波放電を利用するマイクロ波プラズマCVD、直流放電を利用する直流プラズマCVD法がある。なかでも、直流プラズマCVD法が好適である。直流プラズマCVD法によれば、成膜装置を真空炉と直流電源とから構成すればよく、様々な形状の基材に対して容易に成膜できる。また、反応ガス濃度を高くして、成膜圧力を100Pa以上としても、安定した放電が得られる。以下、プラズマCVD法を用いた好適な態様として、本発明の非晶質炭素膜の形成方法を説明する。   In the negative electrode for a lithium secondary battery, the amorphous carbon film can be formed by a known CVD method or PVD method such as a plasma CVD method, an ion plating method, or a sputtering method. As represented by the sputtering method, since the PVD method has directivity in film formation, it is necessary to arrange a plurality of targets in the apparatus, or to rotate the substrate to be formed, etc. The structure of the film forming apparatus becomes complicated and expensive. On the other hand, since the plasma CVD method uses a reactive gas to form a film, it can form a film uniformly regardless of the shape of the substrate, and the structure of the film forming apparatus is simple and inexpensive, which is preferable. Examples of the plasma CVD method include a high frequency plasma CVD method using high frequency discharge, a microwave plasma CVD method using microwave discharge, and a direct current plasma CVD method using direct current discharge. Of these, the DC plasma CVD method is suitable. According to the direct current plasma CVD method, the film forming apparatus may be composed of a vacuum furnace and a direct current power source, and film formation can be easily performed on substrates having various shapes. Further, even when the reaction gas concentration is increased and the film forming pressure is set to 100 Pa or more, stable discharge can be obtained. Hereinafter, the amorphous carbon film forming method of the present invention will be described as a preferred embodiment using the plasma CVD method.

化学蒸着装置30は、図2に示すように、直流電圧を印加して処理対象31(集電体)の表面に非晶質炭素膜を成膜する直流プラズマCVD成膜装置として構成されている。この化学蒸着装置30は、処理対象31を内包した処理空間32aを密閉可能なチャンバー32と、導電性を有し処理対象31を載置する基台34と、チャンバー32内部の処理空間32aへ成膜処理に用いる原料ガスを導入するガス導入管36と、処理空間32aを減圧するガス排気管38と、基台34を介して処理対象31へ直流電圧を印加する印加装置40と、を備えている。ガス導入管36は、バルブ42を介してガスボンベ44が接続されている。このガスボンベ44からガス導入管36を介して処理空間32aへ原料ガスを導入可能となっている。ガス排気管38は、バルブ46を介してロータリーポンプ48及び拡散ポンプ49などの減圧装置50が接続されている。この減圧装置50によりガス排気管38を介して処理空間32aを減圧可能となっている。この化学蒸着装置30では、直流電圧を印加して成膜するため、比較的大面積の活物質膜を作製することができる。   As shown in FIG. 2, the chemical vapor deposition apparatus 30 is configured as a DC plasma CVD film forming apparatus that applies a DC voltage to form an amorphous carbon film on the surface of a processing target 31 (current collector). . The chemical vapor deposition apparatus 30 includes a chamber 32 capable of sealing a processing space 32 a containing a processing target 31, a base 34 on which the processing target 31 has conductivity and a processing space 32 a inside the chamber 32. A gas introduction pipe 36 for introducing a raw material gas used for film treatment, a gas exhaust pipe 38 for depressurizing the processing space 32a, and an application device 40 for applying a DC voltage to the process target 31 via the base 34. Yes. A gas cylinder 44 is connected to the gas introduction pipe 36 via a valve 42. The source gas can be introduced from the gas cylinder 44 into the processing space 32a through the gas introduction pipe 36. The gas exhaust pipe 38 is connected to a decompression device 50 such as a rotary pump 48 and a diffusion pump 49 via a valve 46. The decompression device 50 can decompress the processing space 32 a through the gas exhaust pipe 38. Since this chemical vapor deposition apparatus 30 forms a film by applying a DC voltage, it is possible to produce an active material film having a relatively large area.

この化学蒸着装置30を用いて、処理対象31としての集電体の表面へ非晶質炭素膜を成膜する。まず、基台34の上に処理対象31を配置し、チャンバー32を密閉し、減圧装置50を作動させて処理空間32aのガスを排気する。処理対象31に非晶質炭素膜を形成する際には、はじめに、ガス導入管36から窒素ガスなどをチャンバー32内に導入するものとしてもよい。次に、印加装置40により、チャンバー32の内側に設けた導電性を有する陽極板と基台34との間に直流電圧を印加すると、放電が開始する。このとき、直流電圧を印加し、イオン衝撃により処理対象31の温度を所定の成膜温度まで昇温させるものとしてもよい。この成膜温度は、例えば、300℃以上700℃以下の範囲とするのが好ましく、450℃以上650℃以下の範囲とするのがより好ましく、500℃以上600℃以下の範囲とするのが更に好ましい。成膜温度が300℃以上700℃以下の範囲では、膜の剥離を抑制したり、粒状化の発生を抑制しやすく、好適である。   Using this chemical vapor deposition apparatus 30, an amorphous carbon film is formed on the surface of the current collector as the processing object 31. First, the processing target 31 is placed on the base 34, the chamber 32 is sealed, and the decompression device 50 is operated to exhaust the gas in the processing space 32a. When forming an amorphous carbon film on the processing object 31, first, nitrogen gas or the like may be introduced into the chamber 32 from the gas introduction pipe 36. Next, when a DC voltage is applied between the base plate 34 and the conductive anode plate provided inside the chamber 32 by the applying device 40, discharge starts. At this time, a DC voltage may be applied, and the temperature of the process target 31 may be raised to a predetermined film formation temperature by ion bombardment. The film forming temperature is preferably in the range of 300 ° C. to 700 ° C., more preferably in the range of 450 ° C. to 650 ° C., and further in the range of 500 ° C. to 600 ° C. preferable. When the film forming temperature is in the range of 300 ° C. or higher and 700 ° C. or lower, it is preferable because it is easy to suppress peeling of the film or to prevent occurrence of granulation.

続いて、化学蒸着装置30において、ガス導入管36から、原料ガスを処理空間32aへ導入する。原料ガスは、sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとsp3混成軌道をもつ炭素を含む炭素環式化合物ガスとのうち少なくとも一方を含むものである。sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとしては、例えばベンゼン、ナフタレンなどの芳香族化合物のほか、トルエン、キシレンなどが挙げられる。また、sp3混成軌道をもつ炭素を含む炭素環式化合物ガスとしては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキセンなどが挙げられる。また、原料ガスは、窒素及び炭素を含む炭素環式化合物ガス及び窒素ガスのうち少なくとも一方を更に含むものとするのが好ましい。こうすれば、非晶質炭素膜に窒素を導入することができる。窒素及び炭素を含む炭素環式化合物ガスとしては、ピリジン、ピラジン、ピロール、イミダゾール及びピラゾールなどの含窒素複素環式化合物のほか、アニリン、アゾベンゼンなど芳香族化合物に含窒素官能基が接続されたものなどが挙げられる。例えば、窒素及び炭素を含む炭素環式化合物ガスと窒素ガスとのうち少なくとも一方を更に含む原料ガスをチャンバー32に導入し、窒素を20at%以下含む活物質膜を形成するものとしてもよい。こうすれば、電池特性を更に向上することができる。この原料ガスには、不活性ガスを含むものとしてもよい。この不活性ガスとしては、例えば、ArやHeなどの希ガス類とすることができる。その後、チャンバー32の内側に設けた陽極板と基台34との間に直流電圧を印加すると、放電が開始し、処理対象31の表面に非晶質炭素膜が形成される。 Subsequently, in the chemical vapor deposition apparatus 30, the source gas is introduced from the gas introduction pipe 36 into the processing space 32 a. The source gas contains at least one of a carbocyclic compound gas containing carbon having sp 2 hybrid orbitals and a carbocyclic compound gas containing carbon having sp 3 hybrid orbitals. Examples of the carbocyclic compound gas containing carbon having an sp 2 hybrid orbital include toluene, xylene and the like in addition to aromatic compounds such as benzene and naphthalene. Examples of the carbocyclic compound gas containing carbon having sp 3 hybrid orbitals include toluene, xylene, ethylbenzene, cyclohexene, and the like. The source gas preferably further contains at least one of a carbocyclic compound gas containing nitrogen and carbon and a nitrogen gas. In this way, nitrogen can be introduced into the amorphous carbon film. The carbocyclic compound gas containing nitrogen and carbon includes nitrogen-containing heterocyclic compounds such as pyridine, pyrazine, pyrrole, imidazole and pyrazole, as well as nitrogen-containing functional groups connected to aromatic compounds such as aniline and azobenzene. Etc. For example, a raw material gas further containing at least one of a carbocyclic compound gas containing nitrogen and carbon and a nitrogen gas may be introduced into the chamber 32 to form an active material film containing 20 at% or less of nitrogen. If it carries out like this, a battery characteristic can be improved further. This source gas may contain an inert gas. As the inert gas, for example, a rare gas such as Ar or He can be used. Thereafter, when a DC voltage is applied between the anode plate provided inside the chamber 32 and the base 34, discharge starts and an amorphous carbon film is formed on the surface of the processing object 31.

このリチウム二次電池用負極の製造方法において、原料ガス全体の流量は、例えば5sccm以上80sccm未満とすることができ、20sccm以上60sccm以下とするのがより好ましい。ここで、この流量(sccm)は、標準温度を25℃としたときのcc/min値をいうものとする。このうち、炭素環式化合物ガス及び炭素環式化合物ガスの流量は、5sccm以上50sccm以下とするのが好ましく、10sccm以上20sccm以下とするのがより好ましい。また、非晶質炭素膜に窒素を導入する際に供給する窒素ガスの流量は、5sccm以上50sccm以下とするのが好ましく、10sccm以上20sccm以下とするのがより好ましい。また、不活性ガスの流量は、5sccm以上50sccm以下とするのが好ましく、10sccm以上20sccm以下とするのがより好ましい。なお、不活性ガスの流量は、炭素環式化合物ガス及び炭素環式化合物ガスの流量の2倍程度とすることが好ましい。このような流量で成膜処理を行うと、より好ましい非晶質炭素膜を成膜することができる。このような製造方法によって、非晶質炭素膜を形成することができるのである。   In this method for manufacturing a negative electrode for a lithium secondary battery, the flow rate of the entire raw material gas can be, for example, 5 sccm or more and less than 80 sccm, and more preferably 20 sccm or more and 60 sccm or less. Here, the flow rate (sccm) refers to a cc / min value when the standard temperature is 25 ° C. Among these, the flow rates of the carbocyclic compound gas and the carbocyclic compound gas are preferably 5 sccm or more and 50 sccm or less, and more preferably 10 sccm or more and 20 sccm or less. The flow rate of nitrogen gas supplied when nitrogen is introduced into the amorphous carbon film is preferably 5 sccm or more and 50 sccm or less, and more preferably 10 sccm or more and 20 sccm or less. The flow rate of the inert gas is preferably 5 sccm or more and 50 sccm or less, and more preferably 10 sccm or more and 20 sccm or less. The flow rate of the inert gas is preferably about twice the flow rates of the carbocyclic compound gas and the carbocyclic compound gas. When film formation is performed at such a flow rate, a more preferable amorphous carbon film can be formed. An amorphous carbon film can be formed by such a manufacturing method.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-x)MnO2(0<x<1など、以下同じ)、Li(1-x)Mn24などのリチウムマンガン複合酸化物、Li(1-x)CoO2などのリチウムコバルト複合酸化物、Li(1-x)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、負極と同様の構成を利用することができる。 The positive electrode of the lithium secondary battery of the present invention is, for example, a mixture of a positive electrode active material, a conductive material, and a binder, and an appropriate solvent is added to form a paste-like positive electrode material, which is applied to the surface of the current collector. It may be dried and compressed to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 (0 <x <1, etc., the same shall apply hereinafter), Li (1-x) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-x) CoO 2 , lithium nickel composite oxide such as Li (1-x) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, graphite such as natural graphite (scale-like graphite, scale-like graphite) or artificial graphite, acetylene black, carbon black, What mixed 1 type (s) or 2 or more types, such as ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersing agent, a thickener, etc. may be added to water, and an active material may be slurried with latex, such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. About the shape of an electrical power collector, the structure similar to a negative electrode can be utilized.

本発明のリチウム二次電池のイオン伝導媒体としては、支持塩を含む非水系電解液や非水系ゲル電解液などを用いることができる。非水電解液の溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、
テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の誘電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。
As the ion conduction medium of the lithium secondary battery of the present invention, a non-aqueous electrolyte solution containing a supporting salt, a non-aqueous gel electrolyte solution, or the like can be used. Examples of the solvent for the nonaqueous electrolytic solution include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Specifically, as carbonates, cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t -Chain carbonates such as butyl carbonate, di-i-propyl carbonate, t-butyl-i-propyl carbonate, cyclic esters such as γ-butyllactone and γ-valerolactone, methyl formate, methyl acetate, ethyl acetate, Chain esters such as methyl butyrate, ethers such as dimethoxyethane, ethoxymethoxyethane and diethoxyethane, nitriles such as acetonitrile and benzonitrile,
Examples include furans such as tetrahydrofuran and methyltetrahydrofuran, sulfolanes such as sulfolane and tetramethylsulfolane, and dioxolanes such as 1,3-dioxolane and methyldioxolane. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. The cyclic carbonates are considered to have a relatively high relative dielectric constant and increase the dielectric constant of the electrolytic solution, and the chain carbonates are considered to suppress the viscosity of the electrolytic solution.

本発明のリチウム二次電池に含まれている支持塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この電解質塩は、非水電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。電解質塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、5mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。 The supporting salt contained in the lithium secondary battery of the present invention is, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Examples include LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. This electrolyte salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 5 mol / L or less, and more preferably 0.5 mol / L or more and 2 mol / L or less. When the concentration of the electrolyte salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 5 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte.

また、液状のイオン伝導媒体の代わりに、固体のイオン伝導性ポリマーをイオン伝導媒体として用いることもできる。イオン伝導性ポリマーとしては、例えば、アクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデンなどのポリマーと支持塩とで構成されるポリマーゲルを用いることができる。更に、イオン伝導性ポリマーと非水系電解液とを組み合わせて用いることもできる。また、イオン伝導媒体としては、イオン伝導性ポリマーのほか、無機固体電解質あるいは有機ポリマー電解質と無機固体電解質の混合材料、若しくは有機バインダーによって結着された無機固体粉末などを利用することができる。   Further, instead of the liquid ion conducting medium, a solid ion conducting polymer may be used as the ion conducting medium. As the ion conductive polymer, for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and a supporting salt can be used. Further, an ion conductive polymer and a non-aqueous electrolyte can be used in combination. In addition to the ion conductive polymer, an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, an inorganic solid powder bound by an organic binder, or the like can be used as the ion conductive medium.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc.

以上詳述した本実施形態のリチウム二次電池によれば、リチウム二次電池用負極において、非晶質炭素膜の原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25の範囲であり、高い導電性と共にリチウムイオン伝導パスが膜内に不足なく確保されるため、優れた充放電効率及び充放電耐久特性を示す。また、非晶質炭素膜中にn型ドナーとして働く窒素原子を20at%以下含むため、ドナー準位に束縛されていた電子を効果的に伝導帯へと励起することから、非晶質炭素膜の導電性をさらに高めることができる。更に、非晶質炭素膜中に水素を15at%以下含むため、水素含有量を低減することにより、C−H結合(σ結合)による分子の終端化が抑制されることから、π電子が増加し、高い導電性を示す。このとき、負極活物質として非水電解液中で充放電させる場合、特に水素含有量が15at%以下では、含有水素が要因で生じる不可逆反応をより抑制することができる。更にまた、非晶質炭素膜の層間距離dが0.35nm<d≦0.45nmの範囲にあるため、層間距離dが好適であり、導電性とリチウムイオン伝導性の両方の観点から最適化され、優れた負荷特性及び充放電耐久特性を示す。そして、負極活物質が非晶質炭素膜よりなる活物質膜であるため、黒鉛負極に比して充放電時の電位形状に傾きがあり、その作動電位がリチウム金属析出電位から離れており、安全性が高く、大電流の充放電を行いやすい。したがって、充放電効率、負荷特性及び充放電耐久性などの電池特性をより向上することができる。 According to the lithium secondary battery of the present embodiment described in detail above, in the negative electrode for a lithium secondary battery, the atomic ratio Csp 3 / Csp 2 of the amorphous carbon film is 0 <Csp 3 / Csp 2 ≦ 0.25. Since the lithium ion conduction path is ensured in the film without deficiency, it has excellent charge / discharge efficiency and charge / discharge durability characteristics. In addition, since the amorphous carbon film contains nitrogen atoms that act as n-type donors in an amount of 20 at% or less, the electrons bound to the donor level are effectively excited to the conduction band. The electrical conductivity of can be further increased. Furthermore, since the amorphous carbon film contains 15 at% or less of hydrogen, the termination of molecules due to C—H bonds (σ bonds) is suppressed by reducing the hydrogen content, so that π electrons increase. And high conductivity. At this time, when charging / discharging in the non-aqueous electrolyte as the negative electrode active material, particularly when the hydrogen content is 15 at% or less, the irreversible reaction caused by the contained hydrogen can be further suppressed. Furthermore, since the interlayer distance d of the amorphous carbon film is in the range of 0.35 nm <d ≦ 0.45 nm, the interlayer distance d is suitable and optimized from the viewpoints of both conductivity and lithium ion conductivity. And exhibits excellent load characteristics and charge / discharge durability characteristics. And since the negative electrode active material is an active material film made of an amorphous carbon film, the potential shape at the time of charging and discharging is inclined as compared with the graphite negative electrode, and its operating potential is away from the lithium metal deposition potential, High safety and easy to charge / discharge large current. Therefore, battery characteristics such as charge / discharge efficiency, load characteristics, and charge / discharge durability can be further improved.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、本発明のリチウム二次電池を具体的に作製した例を実験例として説明する。   Below, the example which produced the lithium secondary battery of this invention concretely is demonstrated as an experiment example.

[実験例1]
(リチウム二次電池用負極の作製)
ステンレスからなる円盤状の集電体(直径16mm)を用い、sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとしてトルエンを用い、プラズマCVD法により非晶質炭素膜の形成を行った。非晶質炭素膜の形成では、直流電圧を印加可能な化学蒸着装置30を用い、sp2混成軌道及びsp3混成軌道をもつ炭素を含む炭素環式化合物ガスとしてトルエンを10sccm(標準温度25℃,以下同じ)、窒素ガスを窒素源として20sccm、不活性ガスとしてのアルゴンガスを20sccm、チャンバーに供給し、成膜温度を600℃として行った、得られたものを、実験例1のリチウム二次電池用負極とした。表1に作製条件を示す。また、この表1には、後述する実験例2〜7の内容も示した。作製した非晶質炭素膜の膜厚は、3μmであった。
[Experimental Example 1]
(Preparation of negative electrode for lithium secondary battery)
An amorphous carbon film was formed by a plasma CVD method using a disc-shaped current collector (diameter: 16 mm) made of stainless steel and toluene as a carbocyclic compound gas containing carbon having sp 2 hybrid orbitals. In the formation of the amorphous carbon film, a chemical vapor deposition apparatus 30 capable of applying a DC voltage is used, and 10 sccm of toluene as a carbocyclic compound gas containing carbon having sp 2 hybrid orbitals and sp 3 hybrid orbitals (standard temperature 25 ° C.). , The same applies hereinafter), 20 sccm using nitrogen gas as the nitrogen source, 20 sccm argon gas as the inert gas, and the film formation temperature of 600 ° C. were obtained. A negative electrode for a secondary battery was obtained. Table 1 shows the manufacturing conditions. Table 1 also shows the contents of Experimental Examples 2 to 7 described later. The film thickness of the produced amorphous carbon film was 3 μm.

Figure 2011258348
Figure 2011258348

[実験例2〜4]
上述した窒素ガスを供給しないものとした以外は実験例1と同様の工程を経て、得られたものを実験例2のリチウム二次電池用負極とした。また、上述した窒素ガスを供給しないものとし、成膜温度を550℃とした以外は実験例1と同様の工程を経て、得られたものを実験例3のリチウム二次電池用負極とした。また、上述したトルエンをsp2混成軌道をもつ炭素を含む炭素環式化合物ガスとしてのベンゼンに代え、成膜温度を400℃とした以外は実験例1と同様の工程を経て、得られたものを実験例4のリチウム二次電池用負極とした。
[Experimental Examples 2 to 4]
A negative electrode for a lithium secondary battery of Experimental Example 2 was obtained through the same steps as in Experimental Example 1 except that the above-described nitrogen gas was not supplied. Further, the above-described nitrogen gas was not supplied, and a film obtained at the temperature of 550 ° C. was subjected to the same steps as in Experimental Example 1, and the obtained product was used as the negative electrode for the lithium secondary battery of Experimental Example 3. In addition, the above-described toluene was replaced with benzene as a carbocyclic compound gas containing carbon having sp 2 hybrid orbitals, and obtained through the same steps as in Experimental Example 1 except that the film formation temperature was 400 ° C. Was used as the negative electrode for a lithium secondary battery of Experimental Example 4.

[実験例5〜7]
また、上述したトルエンに代えて炭素を含むガスとしてメタンを50sccm供給すると共に、窒素ガスを100sccmで供給し、成膜温度を450℃とした以外は実験例1と同様の工程を経て、得られたものを実験例5のリチウム二次電池用負極とした。また、上述したトルエンに代えてベンゼンを10sccm、窒素ガスを供給せず、成膜温度を500℃とした以外は実験例1と同様の工程を経て、得られたものを実験例6のリチウム二次電池用負極とした。また、上述したトルエンに代えて炭素を含むガスとしてメタンを50sccm供給すると共に、窒素ガスを供給せず、アルゴンガスを30sccm供給し、成膜温度を400℃とした以外は実験例1と同様の工程を経て、得られたものを実験例7のリチウム二次電池用負極とした。
[Experimental Examples 5 to 7]
Further, it is obtained through the same steps as in Experimental Example 1 except that 50 sccm of methane is supplied as a gas containing carbon instead of toluene and nitrogen gas is supplied at 100 sccm and the film forming temperature is set to 450 ° C. This was used as the negative electrode for a lithium secondary battery of Experimental Example 5. Further, in place of the above-described toluene, 10 sccm of benzene, nitrogen gas was not supplied, and the film formation temperature was changed to 500 ° C. A negative electrode for a secondary battery was obtained. In addition, 50 sccm of methane was supplied as a gas containing carbon instead of toluene as described above, nitrogen gas was not supplied, argon gas was supplied at 30 sccm, and the film formation temperature was set to 400 ° C. The product obtained through the steps was used as the negative electrode for a lithium secondary battery of Experimental Example 7.

[実験例8]
黒鉛(アルドリッチ製)を実験例8とした。なお、この実験例8は、炭素膜ではなく、黒鉛粒子を測定した参考値である。
[Experimental Example 8]
Graphite (manufactured by Aldrich) was used as Experimental Example 8. This Experimental Example 8 is a reference value obtained by measuring graphite particles, not a carbon film.

(非晶質炭素膜の組成分析)
ナショナルエレクトロスタティクス社製Pelletron3SDHを用い、ERDA−RBS測定により、非晶質炭素膜の組成分析(C,N,H)を行った。得られたスペクトル結果から理論計算値とフィッティングするよう含有元素比(C/N/H比)を計算した。測定条件は、入射イオンを4He++、入射エネルギーを2.3MeV、入射角を75deg、入射ビーム径を2mm、照射量を0.1〜20μCとした。非晶質炭素膜中のCおよびN含有量は、ラザフォード後方散乱法(RBS法)により定量した。RBS測定では、RBS検出器(C,N用)を用い、検出イオンをHeイオン、散乱角を160deg、アパーチャサイズを直径8mm、の条件とし、散乱されたHeイオンのエネルギー及び収量を検出した。また、H含有量は、弾性反跳粒子検出法(ERDA法)により定量した。ERDA測定では、水素前方散乱(HFS)検出器(H用)を用い、検出イオンをHイオン、散乱角を30deg、アパーチャサイズを8mm×2mm、の条件とし、Heにより叩き出されたHのエネルギーを検出した。なお、非晶質炭素膜中のCおよびNの含有量については、電子プローブ微小部分析法(EPMA;島津製作所製EPMA−V6)、X線光電子分光法(XPS;アルバックファイ製ESCA5500)、オージェ電子分光法(AES;アルバックファイ製PHI700)などの測定も行い、上記測定結果が妥当であることを確認した。
(Composition analysis of amorphous carbon film)
Composition analysis (C, N, H) of the amorphous carbon film was performed by ERDA-RBS measurement using Pelletron 3SDH manufactured by National Electrostatistics. The content element ratio (C / N / H ratio) was calculated from the obtained spectrum result so as to fit the theoretical calculation value. Measurement conditions were such that the incident ions were 4 He ++ , the incident energy was 2.3 MeV, the incident angle was 75 deg, the incident beam diameter was 2 mm, and the irradiation amount was 0.1 to 20 μC. The C and N contents in the amorphous carbon film were quantified by Rutherford backscattering method (RBS method). In the RBS measurement, an RBS detector (for C and N) was used, and the energy and yield of the scattered He ions were detected under the conditions that the detected ions were He ions, the scattering angle was 160 deg, and the aperture size was 8 mm in diameter. Moreover, H content was quantified by the elastic recoil particle detection method (ERDA method). In the ERDA measurement, a hydrogen forward scattering (HFS) detector (for H) is used, the detected ions are H ions, the scattering angle is 30 deg, the aperture size is 8 mm × 2 mm, and the H energy struck by He Was detected. Regarding the contents of C and N in the amorphous carbon film, electron probe microanalysis (EPMA; EPMA-V6 manufactured by Shimadzu Corporation), X-ray photoelectron spectroscopy (XPS; ESCA5500 manufactured by ULVAC-PHI), Auger Measurements such as electron spectroscopy (AES; ULVAC-PHI PHI700) were also performed to confirm that the measurement results were valid.

(非晶質炭素膜の原子割合Csp2,Csp3の定量)
全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合を原子割合Csp2とし、全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合を原子割合Csp3としたときの、原子割合Csp2及び原子割合Csp3を定量した。原子割合Csp2及び原子割合Csp3の定量法として、多くの有機材料や無機材料などの構造規定において最も定量性の高い核磁気共鳴法(NMR)を採用した。原子割合Csp2及び原子割合Csp3の測定には、固体NMRで定量性のあるマジックアングルスピニングを行う高出力デカップリング法(HD−MAS)を用いた。図3は、非晶質炭素膜の13C−NMRスペクトルの一例である。図3に示すように、130ppm付近、30ppm付近に、それぞれ原子割合Csp2,Csp3に起因するピークが見られる。それぞれのピークとベースラインとにより囲まれる部分の面積比から、原子割合Csp2及び原子割合Csp3の原子比Csp3/Csp2を算出した。
(Quantification of atomic ratios Csp 2 and Csp 3 of amorphous carbon film)
The ratio of the number of carbon atoms having sp 2 hybrid orbits to the total number of carbon atoms is defined as atomic ratio Csp 2, and the ratio of the number of carbon atoms having sp 3 hybridized orbits to the total number of carbon atoms is defined as atomic ratio Csp 3 . The atomic ratio Csp 2 and the atomic ratio Csp 3 were quantified. As a method for determining the atomic ratio Csp 2 and the atomic ratio Csp 3, a nuclear magnetic resonance method (NMR) having the highest quantitativeness was adopted in the structure definition of many organic materials and inorganic materials. For the measurement of the atomic ratio Csp 2 and the atomic ratio Csp 3 , a high-power decoupling method (HD-MAS) that performs magic angle spinning with quantitativeness in solid-state NMR was used. FIG. 3 is an example of a 13C-NMR spectrum of an amorphous carbon film. As shown in FIG. 3, peaks due to atomic ratios Csp 2 and Csp 3 are observed near 130 ppm and 30 ppm, respectively. The atomic ratio Csp 3 / Csp 2 of the atomic ratio Csp 2 and the atomic ratio Csp 3 was calculated from the area ratio of the portion surrounded by each peak and the baseline.

(X線回折測定)
実験例1〜8の非晶質炭素膜のX線回折測定を行った。集電体上に成膜された非晶質炭素膜を粉末状態で採取して作製した粉末試料をXRD装置(リガク製RINT2200)により測定した。測定は、放射線としてCu−Kα線(波長1.54051Å)を使用し、X線の単色化にはグラファイトの単結晶モノクロメーターを用い、印加電圧を40kV、電流30mAに設定して行った。また、測定は、3°/minの走査速度で、2θが2°から80°の角度範囲で行った。
(X-ray diffraction measurement)
X-ray diffraction measurement of the amorphous carbon films of Experimental Examples 1 to 8 was performed. A powder sample prepared by collecting an amorphous carbon film formed on a current collector in a powder state was measured with an XRD apparatus (RINT2200 manufactured by Rigaku). The measurement was performed using Cu-Kα rays (wavelength 1.54051Å) as radiation, using a single crystal monochromator of graphite for monochromatic X-rays, setting the applied voltage to 40 kV and the current 30 mA. Further, the measurement was performed at a scanning speed of 3 ° / min and an angle range of 2θ from 2 ° to 80 °.

(二極式評価セルの作製)
エチレンカーボネートとジエチルカーボネートとを体積比で30:70の割合で混合した非水溶媒に六フッ化リン酸リチウムを1mol/Lになるように添加して非水電解液を作製した。円盤状のステンレス基盤に生成させた実験例1〜7の非晶質炭素膜を形成した電極を用い、それを作用極、リチウム金属箔(厚さ300μm)を対極として、両電極の間に上記非水電解液を含浸させたセパレータ(東燃タピルス)を挟んで二極式評価セルを作製した。
(Preparation of bipolar evaluation cell)
A non-aqueous electrolyte was prepared by adding lithium hexafluorophosphate to a non-aqueous solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 30:70 so as to be 1 mol / L. Using the electrode formed with an amorphous carbon film of Experimental Examples 1 to 7 formed on a disk-shaped stainless steel substrate, using the electrode as a working electrode and a lithium metal foil (thickness 300 μm) as a counter electrode, A bipolar evaluation cell was fabricated with a separator impregnated with a non-aqueous electrolyte (Tonen Tapils) sandwiched between them.

(充放電試験)
上記二極式評価セルを用い、20℃の温度環境下で下限電圧を0V、上限電圧を3.0Vとして充放電試験を行った。非晶質炭素膜の定格容量として任意に250mAh/gを設定し、膜重量に対して250mAh/gを1時間通電可能な電流値を1Cと定義した。0.1Cの電流値で充放電試験を実施したときの充放電操作1回目の還元(充電)容量を還元容量Qred、酸化(放電)容量を酸化容量Qoxiとし、初期充放電時の不可逆容量率Ri(%)を、不可逆容量率Ri(%)=[(Qred−Qoxi)/Qred×100]と定義した。また、この充放電操作を3回繰り返して放電状態にしたものを初期状態とし、20℃の温度環境下、初期状態のセルを0.1Cで充電させ、0.1Cで放電させたときの放電容量Q(0.1C)に対する4Cの放電容量Q(4C)の割合Rr(%)を、負荷特性Rr(%)=[Q(4C)/Q(0.1C)×100]と定義した。また、初期状態のセルの充放電試験を行い、充放電操作1回目の放電容量Q(1st)oxi、10回目の放電容量Q(10th)oxiとを用い、放電容量Q(1st)oxiに対する放電容量Q(10th)oxiの割合を、充放電耐久性Rc(%)=[Q(10th)oxi/Q(1st)oxi×100]と定義し、充放電耐久特性を評価した。
(Charge / discharge test)
Using the above bipolar evaluation cell, a charge / discharge test was conducted under a temperature environment of 20 ° C. with a lower limit voltage of 0 V and an upper limit voltage of 3.0 V. The rated capacity of the amorphous carbon film was arbitrarily set to 250 mAh / g, and the current value capable of energizing 250 mAh / g for 1 hour with respect to the film weight was defined as 1C. An irreversible capacity ratio at the time of initial charge / discharge when the charge / discharge operation at a current value of 0.1 C is defined as a reduction capacity Qred for the first reduction (charge) capacity and an oxidation capacity Qoxy for the oxidation (discharge) capacity. Ri (%) was defined as irreversible capacity ratio Ri (%) = [(Qred−Qoxi) / Qred × 100]. In addition, this charge / discharge operation is repeated three times to obtain a discharge state, and an initial state is obtained. Under a temperature environment of 20 ° C., the cell in the initial state is charged at 0.1 C and discharged at 0.1 C. The ratio Rr (%) of the discharge capacity Q (4C) of 4C to the capacity Q (0.1C) was defined as load characteristics Rr (%) = [Q (4C) / Q (0.1C) × 100]. Further, a charge / discharge test of the cell in the initial state is performed, and the discharge with respect to the discharge capacity Q (1st) oxi is performed using the discharge capacity Q (1st) oxi of the first charge / discharge operation and the discharge capacity Q (10th) oxy of the tenth time. The ratio of the capacity Q (10th) oxy was defined as charge / discharge durability Rc (%) = [Q (10th) oxy / Q (1st) oxy × 100], and the charge / discharge durability characteristics were evaluated.

(実験結果)
実験例1〜7のリチウム二次電池用負極及び二極式評価セルの評価結果を表2に示す。表2には、炭素(C)と窒素(N)と水素(H)との原子数の組成割合(at%)、全炭素原子数に対する原子割合Csp2,Csp3の割合(at%)、原子比Csp3/Csp2、層間距離d(nm)、不可逆容量率Ri(%)、負荷特性Rr(%)、充放電耐久性Rc(%)をまとめて示した。また、図4は、非晶質炭素膜(実験例1)のX線回折測定結果であり、図5は、実験例1の充放電曲線であり、図6は、実験例7の充放電曲線であり、図7は、実験例1の負荷特性試験の放電曲線であり、図8は、実験例6の負荷特性試験の放電曲線である。図4に示すように、回折角2θが20°以上25°以下の範囲および42°付近に、六方晶系で規定される黒鉛骨格の(002)面および(101)面に相当する回折ピークが出現した。これらのピークはブロードなハローパターンであったことから、この非晶質炭素膜は、長距離秩序性がなく結晶構造をもたない非晶質の炭素膜であることを確認した。実験例2〜4、7についてもハローパターンが出現し、結晶構造をもたない非晶質の炭素膜であることを確認した。これらのXRDパターンに基づき、黒鉛骨格の(002)面の回折に相当するピークから炭素層の層間距離dを算出した。表2に示すように、層間距離dが0.35nm<d<0.55nmの範囲では、不可逆容量率、負荷特性及び充放電耐久性が良好な結果であり、実験例1〜3における、層間距離dが0.35nm<d<0.45nmの範囲では、更に良好な電池特性を示すことが明らかになった。
(Experimental result)
Table 2 shows the evaluation results of the negative electrodes for lithium secondary batteries and the bipolar evaluation cells of Experimental Examples 1 to 7. Table 2 shows the composition ratio (at%) of the number of atoms of carbon (C), nitrogen (N), and hydrogen (H), the ratio of atomic ratios Csp 2 and Csp 3 to the total number of carbon atoms (at%), The atomic ratio Csp 3 / Csp 2 , interlayer distance d (nm), irreversible capacity ratio Ri (%), load characteristic Rr (%), and charge / discharge durability Rc (%) are shown together. 4 is an X-ray diffraction measurement result of the amorphous carbon film (Experiment 1), FIG. 5 is a charge / discharge curve of Experiment 1, and FIG. 6 is a charge / discharge curve of Experiment 7. 7 is a discharge curve of the load characteristic test of Experimental Example 1, and FIG. 8 is a discharge curve of the load characteristic test of Experimental Example 6. As shown in FIG. 4, diffraction peaks corresponding to the (002) plane and the (101) plane of the graphite skeleton defined by the hexagonal system are present in the range where the diffraction angle 2θ is 20 ° or more and 25 ° or less and in the vicinity of 42 °. Appeared. Since these peaks were broad halo patterns, it was confirmed that this amorphous carbon film was an amorphous carbon film having no long-range order and no crystal structure. Also in Experimental Examples 2 to 4 and 7, a halo pattern appeared, and it was confirmed that the film was an amorphous carbon film having no crystal structure. Based on these XRD patterns, the interlayer distance d of the carbon layer was calculated from the peak corresponding to the diffraction on the (002) plane of the graphite skeleton. As shown in Table 2, when the interlayer distance d is in the range of 0.35 nm <d <0.55 nm, the irreversible capacity ratio, load characteristics, and charge / discharge durability are good. It was revealed that better battery characteristics were exhibited when the distance d was in the range of 0.35 nm <d <0.45 nm.

Figure 2011258348
Figure 2011258348

また、図6に示すように、膜内の水素量が15at%を大きく超える量含み、かつ炭素のCsp2量が80at%を大きく下回る65at%でありCsp3が35at%に相当する実験例7の非晶質炭素膜は、ダイアモンドライクカーボン(硬質炭素)膜の性質を持ち、このような非晶質炭素膜は図6及び表2に示すように充放電挙動を示さなかった。これに対して、実験例1に示した非晶質炭素膜では、図5及び表2に示すように、充放電可能であり、不可逆容量率も良好であった。また、図8に示すように、原子比Csp3/Csp2が0.35を超える実験例6では、負荷特性が低く、表2に示すように、不可逆容量率や充放電耐久性も低いことが明らかとなった。これに対して、実験例1に示した非晶質炭素膜では、図7及び表2に示すように、不可逆容量率、負荷特性及び充放電耐久性がより良好であった。また、表2に示すように、膜内の水素量が15at%以下、窒素量が20at%以下、炭素の原子割合Csp2が80at%以上で原子比Csp3/Csp2が0<Csp3/Csp2≦0.25を満たす実験例1〜4は、不可逆容量率、負荷特性及び充放電耐久性が良好な結果であった。更に、層間距離dが0.35nm<d<0.45nmの範囲では、更に良好な電池特性を示すことが明らかになった。 In addition, as shown in FIG. 6, Experimental Example 7 includes an amount of hydrogen in the film that greatly exceeds 15 at%, and a carbon Csp 2 amount of 65 at% that is significantly less than 80 at%, and Csp 3 corresponds to 35 at%. The amorphous carbon film had the properties of a diamond-like carbon (hard carbon) film, and such an amorphous carbon film did not exhibit charge / discharge behavior as shown in FIG. 6 and Table 2. On the other hand, as shown in FIG. 5 and Table 2, the amorphous carbon film shown in Experimental Example 1 was chargeable / dischargeable, and the irreversible capacity ratio was also good. Further, as shown in FIG. 8, in Experimental Example 6 in which the atomic ratio Csp 3 / Csp 2 exceeds 0.35, the load characteristics are low, and as shown in Table 2, the irreversible capacity ratio and the charge / discharge durability are also low. Became clear. On the other hand, as shown in FIG. 7 and Table 2, the amorphous carbon film shown in Experimental Example 1 had better irreversible capacity ratio, load characteristics, and charge / discharge durability. Further, as shown in Table 2, the amount of hydrogen in the film is 15 at% or less, the amount of nitrogen is 20 at% or less, the atomic ratio Csp 2 of carbon is 80 at% or more, and the atomic ratio Csp 3 / Csp 2 is 0 <Csp 3 / Experimental Examples 1 to 4 satisfying Csp 2 ≦ 0.25 were favorable results in irreversible capacity ratio, load characteristics, and charge / discharge durability. Furthermore, it has been revealed that better battery characteristics are exhibited when the interlayer distance d is in the range of 0.35 nm <d <0.45 nm.

表2に示すように、実験例2は、水素量が7at%と実験例3の膜よりもさらに少なく、かつ炭素の原子割合Csp2が実験例3よりも多い95at%であり、層間距離dが実験例3よりも小さい0.38nmであった。この実験例2の非晶質炭素膜では、実験例3よりもさらに優れた充放電特性を示した。更に、実験例2の膜とほぼ等量の水素量、炭素の原子割合Csp2であり、この膜にさらに窒素が含まれる実験例1では、最も小さな不可逆容量率、最も優れた負荷特性と充放電耐久性を示した。なお、非晶質炭素膜中の水素量、窒素量、原子割合Csp2が条件を満たし、層間距離dのみ大きい実験例4の場合、充放電挙動は比較的良好であるが、実験例1〜3の特性を下回った。また、非晶質炭素膜中の水素量が15at%以下の条件を満たすものの、窒素量が20at%を上回る27at%含む実験例5では、実験例4よりも充放電特性は下回ることがわかった。非晶質炭素膜中の水素量が15at%以下の条件を満たすものの、炭素の原子割合Csp2が80at%を下回る74at%の実験例6の場合は、実験例5と同等の充放電特性であるものの実験例1〜4を下回る特性を示した。 As shown in Table 2, in Experimental Example 2, the hydrogen amount is 7 at%, which is even smaller than the film of Experimental Example 3, and the atomic ratio Csp 2 of carbon is 95 at%, which is higher than that of Experimental Example 3, and the interlayer distance d However, it was 0.38 nm which was smaller than Experimental Example 3. The amorphous carbon film of Experimental Example 2 exhibited charge / discharge characteristics that were even better than Experimental Example 3. Further, the amount of hydrogen and the atomic ratio Csp 2 of carbon are almost equal to those of the membrane of Experimental Example 2. In Experimental Example 1 in which nitrogen is further contained in this membrane, the smallest irreversible capacity ratio, the most excellent load characteristics and charge are obtained. Discharge durability was shown. In the case of Experimental Example 4 in which the amount of hydrogen in the amorphous carbon film, the amount of nitrogen, and the atomic ratio Csp 2 satisfy the conditions and only the interlayer distance d is large, the charge / discharge behavior is relatively good. Less than 3 characteristics. In addition, although the hydrogen amount in the amorphous carbon film satisfies the condition of 15 at% or less, the experimental example 5 including 27 at% of the nitrogen amount exceeding 20 at% has lower charge / discharge characteristics than the experimental example 4. . In the case of Experimental Example 6 in which the atomic ratio Csp 2 of carbon is 74 at% lower than 80 at%, although the hydrogen amount in the amorphous carbon film satisfies the condition of 15 at% or less, the charge / discharge characteristics equivalent to those in Experimental Example 5 are obtained. Some characteristics were lower than those of Experimental Examples 1 to 4.

10 コイン型電池、11 電池ケース、12 正極、14 セパレータ、15 ガスケット、16 封口板、17 非水電解液、20 負極、22 集電体、24 活物質膜、30 化学蒸着装置、31 処理対象、32 チャンバー、32a 処理空間、34 基台、36 ガス導入管、38 ガス排気管、40 印加装置、42 バルブ、44 ガスボンベ、46 バルブ、48 ロータリーポンプ、49 拡散ポンプ、50 減圧装置。 DESCRIPTION OF SYMBOLS 10 Coin type battery, 11 Battery case, 12 Positive electrode, 14 Separator, 15 Gasket, 16 Sealing plate, 17 Non-aqueous electrolyte, 20 Negative electrode, 22 Current collector, 24 Active material film, 30 Chemical vapor deposition apparatus, 31 Process object, 32 chamber, 32a processing space, 34 base, 36 gas introduction pipe, 38 gas exhaust pipe, 40 application device, 42 valve, 44 gas cylinder, 46 valve, 48 rotary pump, 49 diffusion pump, 50 decompression device.

Claims (7)

集電体と、
該集電体上に蒸着膜として形成され全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25を満たす非晶質炭素膜よりなる活物質膜と、
を備えたリチウム二次電池用負極。
A current collector,
The ratio of the number of carbon atoms formed as a vapor deposition film on the current collector and having sp 2 hybrid orbitals to the total number of carbon atoms is Csp 2, and the number of carbon atoms having sp 3 hybrid orbitals to the total number of carbon atoms is proportions atomic ratio Csp 3 / Csp 2 when the Csp 3, the active material layer made of amorphous carbon film satisfying 0 <Csp 3 / Csp 2 ≦ 0.25,
A negative electrode for a lithium secondary battery comprising:
前記活物質膜は、窒素を20at%以下含む、請求項1に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the active material film contains 20 at% or less of nitrogen. 前記活物質膜は、水素を15at%以下含む、請求項1又は2に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the active material film contains 15 at% or less of hydrogen. 前記活物質膜は、X線回折測定での2θが20°以上25°以下の範囲に現れるブロードな回折ピークから算出される炭素層の層間距離dが、0.35nm<d<0.45nmの範囲にある、請求項1〜3のいずれか1項に記載のリチウム二次電池用負極。   The active material film has an interlayer distance d of 0.35 nm <d <0.45 nm calculated from a broad diffraction peak in which 2θ in an X-ray diffraction measurement is 20 ° or more and 25 ° or less. The negative electrode for a lithium secondary battery according to any one of claims 1 to 3, which is in a range. 請求項1〜4のいずれか1項に記載のリチウム二次電池用負極と、
正極活物質を有する正極と、
前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウム二次電池。
The negative electrode for a lithium secondary battery according to any one of claims 1 to 4,
A positive electrode having a positive electrode active material;
An ion conductive medium interposed between the positive electrode and the negative electrode and conducting lithium ions;
Rechargeable lithium battery.
sp2混成軌道をもつ炭素を含む炭素環式化合物ガスとsp3混成軌道をもつ炭素を含む炭素環式化合物ガスとのうち少なくとも一方を含む原料ガスを、集電体を配置した反応容器内に導入して放電することにより、全炭素の原子数に対するsp2混成軌道をもつ炭素の原子数の割合をCsp2とし全炭素の原子数に対するsp3混成軌道をもつ炭素の原子数の割合をCsp3としたときの原子比Csp3/Csp2が、0<Csp3/Csp2≦0.25の範囲となるように前記集電体上に非晶質炭素膜よりなる活物質膜を形成する工程、を含む、リチウム二次電池用負極の製造方法。 A source gas containing at least one of a carbocyclic compound gas containing carbon having sp 2 hybrid orbital and a carbocyclic compound gas containing carbon having sp 3 hybrid orbital is placed in a reaction vessel in which a current collector is arranged. By introducing and discharging, the ratio of the number of carbon atoms having sp 2 hybrid orbitals to the total number of carbon atoms is Csp 2 and the ratio of the number of carbon atoms having sp 3 hybrid orbits to the total number of carbon atoms is Csp. An active material film made of an amorphous carbon film is formed on the current collector so that the atomic ratio Csp 3 / Csp 2 is 3 in the range of 0 <Csp 3 / Csp 2 ≦ 0.25. The manufacturing method of the negative electrode for lithium secondary batteries including a process. 前記工程では、窒素及び炭素を含む炭素環式化合物ガスと窒素ガスとのうち少なくとも一方を更に含む原料ガスを前記反応容器に導入し、窒素を20at%以下含む前記活物質膜を形成する、請求項6に記載のリチウム二次電池用負極の製造方法。   In the step, a raw material gas further containing at least one of carbocyclic compound gas containing nitrogen and carbon and nitrogen gas is introduced into the reaction vessel to form the active material film containing nitrogen at 20 at% or less. Item 7. A method for producing a negative electrode for a lithium secondary battery according to Item 6.
JP2010130252A 2010-06-07 2010-06-07 Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery Pending JP2011258348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130252A JP2011258348A (en) 2010-06-07 2010-06-07 Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130252A JP2011258348A (en) 2010-06-07 2010-06-07 Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2011258348A true JP2011258348A (en) 2011-12-22

Family

ID=45474319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130252A Pending JP2011258348A (en) 2010-06-07 2010-06-07 Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2011258348A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
WO2013108516A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Electrode element and method for producing same
US20130330617A1 (en) * 2011-02-21 2013-12-12 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
CN109494350A (en) * 2018-11-21 2019-03-19 上海科技大学 A kind of electrode, preparation method and lithium ion battery
US20200095129A1 (en) * 2018-09-24 2020-03-26 Plasma App Ltd. Carbon materials
WO2020134242A1 (en) * 2018-12-29 2020-07-02 湖南晋烨高科股份有限公司 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, battery pack and battery powered vehicle
WO2020256115A1 (en) * 2019-06-19 2020-12-24 Tpr株式会社 Current collector for power storage device electrode, manufacturing method thereof, and power storage device
WO2020262464A1 (en) * 2019-06-24 2020-12-30 Tpr株式会社 Hybrid capacitor
EP3770933A1 (en) * 2016-01-22 2021-01-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2021-09-20 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217854A (en) * 1988-02-23 1989-08-31 Sumitomo Electric Ind Ltd Positive electrode material for lithium secondary battery
JP2004511885A (en) * 2000-10-09 2004-04-15 ザ・ユニバーシティ・オブ・シカゴ Electron emission applications for electrodes and N-type nanocrystalline materials
JP2006302671A (en) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd Cathode material for lithium-ion secondary battery and its manufacturing method as well as lithium-ion secondary battery using same
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2009099228A (en) * 2007-10-18 2009-05-07 Denso Corp Method of adjusting optical bandgap in recording layer, optical recording medium, and method of manufacturing optical recording medium
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217854A (en) * 1988-02-23 1989-08-31 Sumitomo Electric Ind Ltd Positive electrode material for lithium secondary battery
JP2004511885A (en) * 2000-10-09 2004-04-15 ザ・ユニバーシティ・オブ・シカゴ Electron emission applications for electrodes and N-type nanocrystalline materials
JP2006302671A (en) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd Cathode material for lithium-ion secondary battery and its manufacturing method as well as lithium-ion secondary battery using same
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2009099228A (en) * 2007-10-18 2009-05-07 Denso Corp Method of adjusting optical bandgap in recording layer, optical recording medium, and method of manufacturing optical recording medium
WO2010053200A1 (en) * 2008-11-10 2010-05-14 株式会社エクォス・リサーチ Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013063789; 福塚友和 他: 'プラズマCVD法による炭素薄膜の作製とエネルギーデバイスへの展開' 炭素 No.230, 2007, pp.352-361 *
JPN6013063791; Z.G.Lu et al.: 'Electrochemical characterization of diamond like carbon thin films' Diamond & Related Materials Vol.17, 2008, pp.1871-1876 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330617A1 (en) * 2011-02-21 2013-12-12 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
US9418796B2 (en) * 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
WO2013108516A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Electrode element and method for producing same
JPWO2013108516A1 (en) * 2012-01-20 2015-05-11 トヨタ自動車株式会社 Electrode body and manufacturing method thereof
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
EP3770933A1 (en) * 2016-01-22 2021-01-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US20200095129A1 (en) * 2018-09-24 2020-03-26 Plasma App Ltd. Carbon materials
GB2585621B (en) * 2018-09-24 2022-11-16 Plasma App Ltd Carbon materials
GB2585621A (en) * 2018-09-24 2021-01-20 Plasma App Ltd Carbon materials
CN109494350B (en) * 2018-11-21 2021-09-14 上海科技大学 Electrode, preparation method and lithium ion battery
CN109494350A (en) * 2018-11-21 2019-03-19 上海科技大学 A kind of electrode, preparation method and lithium ion battery
KR102620786B1 (en) * 2018-12-29 2024-01-04 후난 진예 하이-테크 컴퍼니 리미티드 Lithium-ion battery cathode material, lithium-ion battery cathode, lithium-ion battery, battery pack and battery power vehicle
KR20210062694A (en) * 2018-12-29 2021-05-31 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery cathode material, lithium ion battery cathode, lithium ion battery, battery pack and battery power car
JP7161045B2 (en) 2018-12-29 2022-10-25 フーナン ジンイェ ハイ-テック カンパニー リミテッド Lithium ion battery negative electrode material and manufacturing method thereof
JP2022505691A (en) * 2018-12-29 2022-01-14 フーナン ジンイェ ハイ-テック カンパニー リミテッド Lithium-ion battery negative material, lithium-ion battery negative, lithium-ion battery, battery pack, and battery-powered vehicle
WO2020134242A1 (en) * 2018-12-29 2020-07-02 湖南晋烨高科股份有限公司 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, battery pack and battery powered vehicle
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
JPWO2020256115A1 (en) * 2019-06-19 2021-10-14 Tpr株式会社 Current collector for electrode of power storage device, its manufacturing method, and power storage device
CN114008827A (en) * 2019-06-19 2022-02-01 帝伯爱尔株式会社 Collector for electrode of electricity storage device, method for producing same, and electricity storage device
JP7181400B2 (en) 2019-06-19 2022-11-30 Tpr株式会社 CURRENT COLLECTOR FOR POWER STORAGE DEVICE ELECTRODE, METHOD FOR MANUFACTURING THE SAME, AND POWER STORAGE DEVICE
WO2020256115A1 (en) * 2019-06-19 2020-12-24 Tpr株式会社 Current collector for power storage device electrode, manufacturing method thereof, and power storage device
CN114008827B (en) * 2019-06-19 2024-04-09 帝伯爱尔株式会社 Current collector for electrode of power storage device, method for producing same, and power storage device
JPWO2020262464A1 (en) * 2019-06-24 2021-11-18 Tpr株式会社 Hybrid capacitor
WO2020262464A1 (en) * 2019-06-24 2020-12-30 Tpr株式会社 Hybrid capacitor
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2021-09-20 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Similar Documents

Publication Publication Date Title
US10991946B2 (en) Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials
JP2011258348A (en) Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
US9548490B2 (en) Anode active material, lithium battery comprising the same, and method of preparing the anode active material
KR101191513B1 (en) Anode active material and battery
EP2472661B1 (en) Secondary battery
EP2472664B1 (en) Secondary battery
JP6353329B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
Wang et al. Improving cyclic stability of lithium cobalt oxide based lithium ion battery at high voltage by using trimethylboroxine as an electrolyte additive
TWI705603B (en) Anode active material, mixed anode active material material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode active material
CN110383540A (en) Negative electrode for lithium secondary battery, its manufacturing method and the lithium secondary battery comprising it
JPWO2017082083A1 (en) Lithium ion secondary battery and manufacturing method thereof
US20160020494A1 (en) Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
US20140227562A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2002237294A (en) Negative electrode for lithium secondary battery
Zhang et al. Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte
JP2012181975A (en) Nonaqueous secondary battery
US20180212235A1 (en) Lithium secondary battery and method for manufacturing same
WO2015025887A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN112018342A (en) Positive electrode active material and secondary battery using same
WO2014007183A1 (en) Lithium ion secondary battery
JP5272810B2 (en) Capacitors
WO2020255489A1 (en) Anode material, anode and battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401