WO2020256115A1 - Current collector for power storage device electrode, manufacturing method thereof, and power storage device - Google Patents

Current collector for power storage device electrode, manufacturing method thereof, and power storage device Download PDF

Info

Publication number
WO2020256115A1
WO2020256115A1 PCT/JP2020/024169 JP2020024169W WO2020256115A1 WO 2020256115 A1 WO2020256115 A1 WO 2020256115A1 JP 2020024169 W JP2020024169 W JP 2020024169W WO 2020256115 A1 WO2020256115 A1 WO 2020256115A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
storage device
power storage
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2020/024169
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 小林
Original Assignee
Tpr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社 filed Critical Tpr株式会社
Priority to CN202080045979.8A priority Critical patent/CN114008827B/en
Priority to JP2021526925A priority patent/JP7181400B2/en
Publication of WO2020256115A1 publication Critical patent/WO2020256115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector for a power storage device electrode, a method for manufacturing the current collector for the power storage device electrode, and a power storage device using the current collector for the power storage device electrode.
  • Electric double layer capacitors see, for example, Patent Document 1
  • secondary batteries are known as techniques for storing electric energy.
  • Electric double layer capacitors EDLCs: Electric double-layer capacitors
  • EDLCs Electric double-layer capacitors
  • the electric double layer capacitor has a problem that the energy density (volume energy density) is lower than that of the secondary battery.
  • an electric double layer capacitor As a technique for improving the capacitance of an electric double layer capacitor, a technique for increasing the specific surface area of activated carbon constituting the electrode of the electric double layer capacitor is known.
  • activated carbons have a specific surface area of 1000 m 2 / g to 2500 m 2 / g.
  • an organic electrolytic solution in which a quaternary ammonium salt is dissolved in an organic solvent, an aqueous electrolytic solution such as sulfuric acid, or the like is used as the electrolytic solution. Since the organic electrolyte has a wide usable voltage range, the applied voltage can be increased and the energy density can be improved.
  • a lithium ion capacitor is known as a capacitor in which the applied voltage is improved by utilizing the principle of an electric double layer capacitor.
  • a lithium ion capacitor is a capacitor that uses graphite or carbon that can intercalate and deintercalate lithium ions for the negative electrode and activated carbon that is equivalent to the electrode material of an electric double layer capacitor that can absorb and desorb electrolyte ions for the positive electrode. ing.
  • the positive electrode and the negative electrode which uses the same activated carbon as the electrode material of the electric double layer capacitor, and which uses a metal oxide or a conductive polymer as the electrode at which the Faraday reaction occurs on the other electrode, It is called a hybrid capacitor.
  • the negative electrode is made of graphite, hard carbon, soft carbon, etc., which are the negative electrode materials of the lithium ion secondary battery, and the inside of the graphite, hard carbon, soft carbon, etc.
  • a lithium ion capacitor is characterized in that the applied voltage is larger than that of a general electric double layer capacitor, that is, one in which both electrodes are composed of activated carbon.
  • hard carbon and soft carbon have a lower capacity per volume of the electrode than graphite, and the voltage is also lower than that of graphite (becomes a noble potential). Therefore, there is a problem that the energy density of the lithium ion capacitor becomes low.
  • Patent Document 2 describes the following.
  • a capacitor with a new concept that uses graphite as the positive electrode active material does not cause decomposition of the electrolytic solution even at a charging voltage of 3.5 V, and has a higher voltage than the conventional electric double layer capacitor that uses activated carbon as the positive electrode active material.
  • the energy density can be increased by about 2 to 3 times as compared with the conventional electric double layer capacitor.
  • the cycle characteristics, low temperature characteristics, and output characteristics are also equal to or better than those of conventional electric double layer capacitors.
  • the specific surface area of graphite is several hundredths of the specific surface area of activated carbon, and this difference in electrolytic solution decomposition action is due to this large difference in specific surface area.
  • a new concept capacitor that uses graphite as the positive electrode active material has insufficient durability, which has hindered its practical application.
  • high temperature durability can be improved to a practical level by a technique of using an aluminum material coated with an amorphous carbon film as a current collector (see Patent Document 3).
  • the capacitor of this new concept is a capacitor that uses a reaction of inserting and removing electrolyte ions between layers of graphite on the positive electrode, and is not strictly an electric double layer capacitor, but in Patent Document 3, it is electric in a broad sense. It is called a double layer capacitor.
  • a power storage device using a reaction of inserting and desorbing lithium ions between layers of lithium titanate by using a metal oxide such as lithium titanate or lithium-containing niobium oxide as the negative electrode active material instead of activated carbon.
  • a metal oxide such as lithium titanate or lithium-containing niobium oxide
  • the electrolyte anion and the lithium cation contained in the electrolyte move toward the positive electrode or the negative electrode in opposite directions, so that they are called a dual ion battery (DIB). It is expected that the DIB has excellent output characteristics and life as compared with a lithium ion secondary battery that moves only lithium ions, and it is not necessary to impose restrictions on the SOC (charge state: state of charge).
  • the hybrid capacitor and the dual ion battery which are the above-mentioned two types of power storage devices, can improve the energy density several times or more as compared with the conventional electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • hybrid capacitors and dual ion batteries also have high output characteristics like EDLC.
  • the present invention has been made in view of the above circumstances, and focuses on a current collector used for an electrode of a power storage device such as a hybrid capacitor or a dual ion battery (a current collector for a power storage device electrode), and collects electricity for a power storage device electrode.
  • the ratio of sp 2- bonded carbon to the total amount of sp 2- bonded carbon and sp 3- bonded carbon is 0.35 or more.
  • the current collector for the power storage device electrode is a current collector for the positive electrode of the hybrid capacitor or a current collector for the positive electrode of the dual ion battery.
  • the current collector for the electrode of the power storage device is a current collector for the negative electrode of the hybrid capacitor or a current collector for the negative electrode of the dual ion battery.
  • Electrode. [4] A film forming process for forming an amorphous carbon film on an aluminum material, and A method for manufacturing a current collector for a power storage device electrode, which comprises a heat treatment step of heat-treating an amorphous carbon film at a temperature of 400 ° C. or higher. [5] The method for manufacturing a current collector for a power storage device electrode according to [4], wherein a heat treatment step is performed after the film forming step.
  • the positive electrode contains a positive electrode active material
  • the negative electrode contains a negative electrode active material.
  • the positive electrode active material contains graphite and
  • the current collector on the positive electrode side is the current collector for the power storage device electrode according to any one of [1] and [6].
  • the power storage device according to [7], wherein graphite contains rhombohedral crystals.
  • the negative electrode active material includes one selected from the group consisting of activated carbon, graphite, hard carbon, soft carbon, and lithium titanate.
  • the current collector on the negative electrode side is one selected from the group consisting of the current collector for the power storage device electrode described in [1] and [7], etched aluminum, and an aluminum material [7] or [8]. ] The power storage device described in.
  • the output can be further increased, the high energy density is maintained, and the output characteristics are excellent.
  • a power storage device can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing an electrode current collector of a power storage device having excellent output characteristics and an electrode current collector of a power storage device having excellent output characteristics.
  • the current collector for a power storage device electrode of the present invention includes an aluminum material and an amorphous carbon film formed on the aluminum material.
  • the ratio of sp 2- bonded carbon to the total amount of sp 2- bonded carbon and sp 3- bonded carbon (referred to as "sp 2 / (sp 3 + sp 2 ) ratio") is 0.35 or more. It is characterized by.
  • the sp 2 / (sp 3 + sp 2 ) ratio was measured by the X-ray Absorption Fine Structure (XAFS: X-ray Absorption Fine Structure) method. The XAFS method will be described in detail later.
  • a conductive carbon layer may be formed between the amorphous carbon film and the positive electrode active material, or between the amorphous carbon film and the negative electrode active material.
  • the current collector for the electrode of the power storage device of the present invention can be particularly effective, it can be used for a hybrid capacitor positive electrode containing graphite as a positive electrode active material, or a dual ion battery positive current collector containing graphite as a positive electrode active material. It is preferably used on the body. Further, the current collector for the electrode of the power storage device of the present invention can be used for the current collector for the negative electrode of the hybrid capacitor, or can be used for the current collector for the negative electrode of the dual ion battery.
  • the “hybrid capacitor” of the present invention uses the principle of an electric double layer of adsorption and desorption of the cation of the electrolyte for the negative electrode, and inserts and desorbs the electrolyte anion into graphite for the positive electrode (intercalation-deinter). It is a power storage device that uses the principle of cullation). For example, activated carbon is used for the negative electrode and graphite is used for the positive electrode.
  • the “dual ion battery” of the present invention uses the principle of inserting and desorbing lithium ions into the negative electrode (intercalation-deintercalation), and the positive electrode also inserts and desorbs the electrolyte anion into graphite (intercalation). It is a power storage device that uses the principle of curation-deintercalation).
  • Both the “hybrid capacitor” and the “dual ion battery” are storage devices in which the anions and cations of the electrolyte are inserted or adsorbed into the positive electrode and the negative electrode during charging, and desorbed or released during discharge. This is different from the principle that lithium ions move in the positive electrode during charging and discharging as in a lithium ion battery. More specifically, in a lithium ion battery, lithium ions in the positive electrode are moved to the negative electrode (lithium ion insertion reaction) and discharged (lithium ion desorption reaction) during charging.
  • the current collector for the electrode of the power storage device of the present invention is preferably obtained by the manufacturing method described later.
  • Aluminum material As the aluminum material as the base material, an aluminum material generally used for current collector applications can be used.
  • the shape of the aluminum material can be a foil, a sheet, a film, a mesh, or the like.
  • Aluminum foil can be preferably used as the current collector. Further, in addition to a plain aluminum material, etched aluminum described later may be used.
  • the thickness when the aluminum material is a foil, sheet or film is not particularly limited, but if the size of the cell itself is the same, the thinner the aluminum material, the more active material can be enclosed in the cell case, but the strength is reduced. Therefore, select an appropriate thickness.
  • the actual thickness is preferably 10 ⁇ m to 40 ⁇ m, more preferably 15 ⁇ m to 30 ⁇ m. If the thickness is less than 10 ⁇ m, the aluminum material may be broken or cracked during the step of roughening the surface of the aluminum material or another manufacturing process.
  • Etched aluminum may be used as the aluminum material. Etched aluminum is roughened by etching.
  • etching a method of immersing in an acid solution such as hydrochloric acid (chemical etching) or electrolysis (electrochemical etching) using aluminum as an anode in an acid solution such as hydrochloric acid is generally used.
  • electrochemical etching the etching shape differs depending on the current waveform during electrolysis, the composition of the solution, the temperature, and the like, so it can be selected from the viewpoint of the performance of the power storage device.
  • the aluminum material either one having a passivation layer on the surface or one having no passivation layer can be used.
  • a passivation film which is a natural oxide film is formed on the surface of the aluminum material
  • an amorphous carbon film layer may be provided on the natural oxide film, or the natural oxide film may be provided, for example, argon sputtering. It may be provided after being removed by.
  • the natural oxide film on the aluminum material is a passivation film and has the advantage that it is not easily eroded by the electrolytic solution, but it leads to an increase in the resistance of the current collector, so from the viewpoint of reducing the resistance of the current collector. , It is preferable that there is no natural oxide film.
  • amorphous carbon film is an amorphous (amorphous structure) carbon film or a hydrogenated carbon film. It usually contains sp 2- bonded carbon and sp 3- bonded carbon in a constant ratio.
  • the amorphous carbon film (hereinafter referred to as “the amorphous carbon film of the present invention”) used in the current collector for the power storage device electrode of the present invention is sp 2 bonded to the total amount of sp 2 bonded carbon and sp 3 bonded carbon.
  • the carbon ratio also referred to as sp 2 / (sp 3 + sp 2 ) ratio) is 0.35 or more.
  • the (sp 2 / (sp 3 + sp 2 )) ratio was measured by the X-ray absorption fine structure (XAFS) method.
  • the sp 2 / (sp 3 + sp 2 ) ratio is preferably 0.40 or more. Further, from the viewpoint that higher conductivity can be obtained while maintaining high chemical resistance, and the higher the sp 2 ratio, the softer the material and the better the adhesion to the active material layer, sp 2 / (sp)
  • the 3 + sp 2 ) ratio is preferably 0.6 or less, more preferably 0.5 or less.
  • the current collector using the current collector for the electrode of the power storage device having the amorphous carbon film of the present invention (hereinafter referred to as "the current collector for the electrode of the power storage device of the present invention") outputs while maintaining a high energy density.
  • the characteristics can be improved.
  • a current collector using the current collector for the electrode of the power storage device of the present invention as a positive current collector made of a graphite active material is suitable because the output characteristics can be further improved while maintaining a high energy density. Is.
  • each element has a property of strongly absorbing X-rays having an energy corresponding to the binding energy of inner-shell electrons.
  • the portion of the substance in which the X-ray absorption coefficient greatly increases is referred to as an absorption end, and the X-ray energy corresponding to this absorption end is referred to as the X-ray absorption edge energy.
  • Each element has different binding energies of inner-shell electrons, and when irradiated with X-rays having a higher energy, the absorption coefficient of X-rays increases with the emission of inner-shell electrons.
  • XAFS vibration X-ray absorption fine structure reflecting the environment and structure around the element.
  • the local structure around the element of interest can be known.
  • the position of the absorption edge shifts due to the change in the electronic state of the element, and the valence of the element of interest can be known by comparing the absorption edges.
  • the transmission method is a method of directly measuring the amount of X-ray absorption by measuring the X-ray intensity before and after the sample when the sample is irradiated with X-rays.
  • the fluorescence yield method is a method of measuring fluorescent X-rays emitted from atoms that are excited by absorbing X-rays when the sample is irradiated with X-rays. With either method, the local structure and valence of the target element can be analyzed and similar results can be obtained.
  • XAFS is an X-ray absorption fine structure near the absorption edge that appears in the region of about 50 eV from the absorption edge (NEXAFS: Near Edge X-ray Absorption Fine Structure, or XANES: X-ray Absorption Near Edge Energy, More than that). It is divided into the wide-area X-ray absorption microstructure (EXAFS: Extended X-ray Absorption Fine Structure) that appears.
  • EXAFS Extended X-ray Absorption Fine Structure
  • the peak of NEXAFS appearing in the region in the range of about 50 eV from the absorption edge corresponds to the energy of transition of the inner shell electron to the empty orbital unoccupied orbital, and the spectral structure depends on the valence and coordination structure of the element of interest. I take the.
  • NEXAFS diamond-like carbon
  • FIG. 1 shows a carbon atom K-end NEXAFS spectrum of a general DLC film. Since the ionization energy of carbon is 295 eV, photoelectrons generated by direct photoionization are included in the energy higher than this energy. The portion shown as Direct ionization in FIG. 1 includes photoelectrons, normal Auger electrons which are subsequent reactions thereof, and secondary electrons emitted by them. The broad peaks present at 290 to 310 eV reflect Auger electrons derived from the C1s-> ⁇ * resonant Auger electron emission process and secondary electrons emitted thereby.
  • the peak observed near 285.4 eV reflects Auger electrons derived from the 1s ⁇ ⁇ * resonance Auger electron emission process and secondary electrons emitted due to it.
  • the sp 2 / (sp 2 + sp 3 ) ratio can be determined with high accuracy by observing at a distance of 1s ⁇ ⁇ *.
  • the ratio (I ⁇ * / I all ) of the integrated value (I all ) of the absorption intensity in the defined region and the peak area (I ⁇ * ) of 1s ⁇ ⁇ * is calculated, and the sp 2 composition is 100%.
  • the sp 2 / (sp 2 + sp 3 ) ratio is determined in comparison with I ⁇ * / I all of HOPG. Detailed measurement methods and analysis methods are described in Examples.
  • the amorphous carbon film of the present invention having an sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more is, for example, a diamond-like carbon (DLC) film, a carbon hard film, an amorphous carbon (a-C) film, or hydrogen.
  • DLC diamond-like carbon
  • a-C amorphous carbon
  • AC modified amorphous carbon
  • a diamond-like carbon (DLC) film is preferable.
  • Diamond-like carbon is a material having an amorphous structure in which both diamond bonds (sp 3 ) and graphite bonds (sp 2 ) are mixed, and has high chemical resistance.
  • the amorphous carbon film of the present invention having an sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more measured by the XAFS method is preferably a DLC film having a developed graphite structure.
  • boron or nitrogen can be doped in order to increase conductivity.
  • the thickness of the amorphous carbon film is preferably 60 nm or more and 300 nm or less. If the thickness of the amorphous carbon film is less than 60 nm, the thickness of the amorphous carbon film is too thin and the coating effect of the amorphous carbon film becomes small, and corrosion of the current collector in the constant current constant voltage continuous charging test cannot be sufficiently suppressed. If the thickness of the amorphous carbon film exceeds 300 nm and is too thick, the amorphous carbon film becomes a resistor and the resistance between the amorphous carbon film and the active material layer increases. Therefore, an appropriate thickness is appropriately selected.
  • the thickness of the amorphous carbon film is more preferably 80 nm or more and 300 nm or less, and further preferably 120 nm or more and 300 nm or less.
  • the current collector of the power storage device has an amorphous carbon film on the surface of the aluminum material, it prevents the aluminum material from coming into contact with the electrolytic solution and causes corrosion of the current collector by the electrolytic solution. Can be prevented. Further, since it is the amorphous carbon film of the present invention in which the sp 2 / (sp 3 + sp 2 ) ratio measured by the X-ray absorption fine structure (XAFS) method is 0.35 or more, it has a certain conductivity. The output characteristics are improved while maintaining high energy density.
  • XAFS X-ray absorption fine structure
  • the amorphous carbon film of the present invention is preferably obtained by the production method described later.
  • those obtained by the production method described below having a heat treatment temperature of 400 ° C. or higher, preferably 500 ° C. or higher are preferable.
  • an aluminum foil having a DLC film for example, an aluminum foil having a DLC film (hereinafter referred to as "DLC coated Al foil"), it is amorphous.
  • DLC coated Al foil an aluminum foil having a DLC film
  • the carbon film (DLC film) is formed by the roll-to-roll method, there is a problem that wrinkles are likely to occur if the heat treatment step of raising the temperature while forming the film is performed.
  • the amorphous carbon film (DLC film which has not been heat-treated) obtained in the film forming step is 400 ° C. or higher, preferably 500 ° C. or higher.
  • a production method in which heat treatment is performed in the above is more preferable. This is because the amorphous carbon film (DLC film after heat treatment) of the present invention obtained by this production method has a sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more.
  • the current collector for the electrode of the power storage device has a conductive carbon layer between the amorphous carbon film and the positive electrode active material, or between the amorphous carbon film and the negative electrode active material. Is preferably formed.
  • the thickness of the conductive carbon layer is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less, because it is exposed to a lower electrode potential for a longer time than the activated carbon negative electrode used in a conventional power storage device. This is because if the thickness exceeds 5 ⁇ m, the energy density becomes small when it becomes a cell or an electrode.
  • the material of the conductive carbon layer may be any kind as long as it is carbon having high conductivity, but it is preferable that graphite is contained as carbon having high conductivity, and more preferably graphite alone.
  • the particle size of the material of the conductive carbon layer is preferably 1/10 or less of the size of graphite or the like as an active material. This is because if the particle size is within this range, the contact property at the interface where the conductive carbon layer and the active material layer are in contact is increased, and the interface (contact) resistance can be reduced.
  • the particle size of the carbon material of the conductive carbon layer is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the contact resistance between the amorphous carbon film covering the current collector and the positive electrode active material or the amorphous carbon film and the negative electrode active material is reduced, and the discharge rate is increased.
  • the output characteristics can be improved and the high temperature durability can be improved.
  • a binder is added together with a solvent to make a paint, and the coating is applied onto a DLC-coated aluminum foil.
  • a coating method screen printing, gravure printing, a comma coater (registered trademark), a spin coater, or the like can be used.
  • the binder cellulose, acrylic, polyvinyl alcohol, thermoplastic resin, rubber, or organic resin can be used. Polyethylene or polypropylene can be used as the thermoplastic resin, SBR (styrene-butadiene rubber) or EPDM can be used as the rubber, and phenol resin or polyimide resin can be used as the organic resin.
  • the conductive carbon layer preferably has few gaps between particles and low contact resistance.
  • solvents for dissolving the binder for forming the conductive carbon layer there are two types of solvents for dissolving the binder for forming the conductive carbon layer, an aqueous solution and an organic solvent. If the binder for forming the electrode active material layer is one that dissolves in an organic solvent, it is preferable to use a binder that dissolves in an aqueous solution for the conductive carbon layer. On the contrary, when the binder for forming the electrode active material layer is an aqueous solution, it is preferable to use a binder that dissolves in an organic solvent for the conductive carbon layer. This is because when the same type of solvent is used for the electrode active material layer and the conductive carbon layer, the binder of the conductive carbon layer tends to dissolve and become non-uniform when the electrode active material layer is applied.
  • the method for producing a current collector for a power storage device electrode of the present invention includes a film forming step of forming an amorphous carbon film on an aluminum material and a heat treatment step of heat-treating the amorphous carbon film at a temperature of 400 ° C. or higher. It is characterized by including.
  • the order of the film forming step and the heat treatment step may be arbitrary. For example, a manufacturing method in which a film forming step and a heat treatment step proceed at the same time (sometimes referred to as a direct film forming method), or a manufacturing method in which a heat treatment step is performed after the film forming step (post-heat treatment film forming).
  • the treatment temperature in the heat treatment step is preferably 300 ° C. or higher, preferably 600 ° C. or lower, and more preferably 500 ° C. or lower. It is preferable to raise the heating temperature because the sp 2 / (sp 3 + sp 2 ) ratio becomes higher and the resistance becomes smaller.
  • the melting point of aluminum as a base material is 660 ° C. The closer to the melting point, the easier it is for the aluminum material to soften, the aluminum material becomes wrinkled, and the base material loses its flatness. Therefore, the temperature at which wrinkles are unlikely to occur becomes the upper limit.
  • the upper limit temperature when another metal or aluminum alloy is used as the base material is different, and the upper limit temperature is the temperature at which wrinkles do not occur on the base material below the respective melting points.
  • a manufacturing method in which the film forming process and the heat treatment process proceed at the same time is a method in which an amorphous carbon film is formed on an aluminum material and the temperature of the aluminum material is increased to 400 ° C. or higher in the same atmosphere. This is a heat treatment method.
  • a manufacturing method in which a heat treatment step is performed after a film forming step is an aluminum material in which an amorphous carbon film is formed on an aluminum material and then an amorphous carbon film is formed.
  • the atmosphere of the heat treatment may be, for example, an atmosphere in which the raw material gas is not supplied, preferably an argon atmosphere.
  • the processing temperature in the film forming step is preferably less than 200 ° C., more preferably 100 ° C. or lower, and even more preferably 50 ° C. or lower. Most preferably room temperature.
  • the post-heat treatment film forming method is preferable as the method for manufacturing the current collector for the electrode of the power storage device of the present invention.
  • the current collector for the electrode of the power storage device of the present invention such as the DLC coated Al foil
  • the roll-to-roll method there is a problem that wrinkles are likely to occur when the direct film forming method is used.
  • a method for forming the amorphous carbon film As a method for forming the amorphous carbon film, a known method such as a plasma CVD method using a hydrocarbon gas, a sputtering vapor deposition method, an ion plating method, or a vacuum arc vapor deposition method can be used. A plasma CVD method using a hydrocarbon gas is preferable.
  • the amorphous carbon film preferably has enough conductivity to function as a current collector.
  • the thickness of the amorphous carbon film is controlled by the energy injected into the aluminum material, specifically, the applied voltage, the applied time, and the temperature. can do.
  • the amorphous carbon film of the present invention for example, DLC coated Al foil
  • the XAFS method can be used.
  • the measured sp 2 / (sp 3 + sp 2 ) ratio is 0.35 or more.
  • An amorphous carbon film (DLC film) having a developed graphite structure can be obtained.
  • wrinkles are likely to occur when the film forming temperature is raised. There is a problem.
  • the unheated amorphous carbon film (DLC coated Al foil) has a sp 2 / (sp 3 + sp 2 ) ratio of 0.29 or less, and when applied to electrodes for hybrid capacitors and dual ion batteries, The interfacial resistance between the current collector and the active material layer may increase, and the output characteristics may deteriorate.
  • the amorphous carbon film (DLC-coated Al foil) was heat-treated at 400 ° C. or higher in an inert atmosphere. It was found that the sp 2 / (sp 3 + sp 2 ) ratio could be 0.35 or more by doing so. This was sp 2 / (sp 3 + sp 2 ) equal to or higher than that in the case of the direct film forming method in which the film was directly formed at 400 ° C. or higher.
  • the output characteristics can be further improved.
  • the wrinkles of the foil which was a problem in the direct film formation by the roll-to-roll method, can be prevented by the post-heat treatment of the present invention.
  • This is due to the fact that the temperature of the Al foil rises due to the energy of the plasma in addition to the film formation temperature (atmospheric temperature at the time of film formation) in the direct film formation by the roll-to-roll method, which is affected by the temperature exceeding the atmospheric temperature. It was.
  • the post-heat treatment film forming method of the present invention since only the ambient temperature is applied to the film-formed foil, the occurrence of wrinkles can be suppressed.
  • the power storage device has a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the power storage device of the present invention is preferably a hybrid capacitor or a dual ion battery.
  • Hybrid capacitor (Hybrid capacitor)
  • a hybrid capacitor according to an embodiment of the power storage device of the present invention will be described in detail.
  • the above-mentioned current collector for the power storage device electrode of the present invention is at least one of the current collector on the negative electrode side and the current collector on the positive electrode side of the hybrid capacitor of the present embodiment.
  • the positive electrode contains graphite
  • the positive electrode used in the hybrid capacitor of the present embodiment includes a current collector (current collector on the positive electrode side) and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer contains a positive electrode active material, a binder, and a conductive material.
  • the positive electrode active material layer is formed by applying a paste-like positive electrode material containing a positive electrode active material, a binder, and an required amount of a conductive material on the current collector on the positive electrode side, and drying the layer. be able to.
  • the positive electrode active material used in the hybrid capacitor of the present embodiment contains graphite.
  • the graphite either artificial graphite or natural graphite can be used.
  • natural graphite scaly and earth-like graphite are known.
  • Natural graphite is obtained by crushing the mined raw ore and repeating beneficiation called flotation.
  • artificial graphite is produced, for example, through a graphitization step of calcining a carbon material at a high temperature. More specifically, for example, the raw material coke is molded by adding a binder such as pitch, heated to around 1300 ° C.
  • the primary fired product is impregnated with the pitch resin, and the temperature is further increased to 3000 ° C. It is obtained by secondary firing at a near high temperature. Further, those in which the surface of graphite particles is coated with carbon can also be used.
  • the crystal structure of graphite is roughly divided into hexagonal crystals with a layered structure consisting of ABAB and rhombohedral crystals with a layered structure consisting of ABCABC. Depending on the conditions, these structures may be in a single state or in a mixed state, but any crystal structure or a mixed state can be used.
  • the graphite of KS-6 (trade name) manufactured by Imerys GC Japan Co., Ltd. used in the examples described later has a rhombohedral crystal ratio of 26%, and is an artificial graphite manufactured by Osaka Gas Chemical Co., Ltd.
  • Carbon microbeads (MCMB) have a ratio of graphite crystals of 0%.
  • the graphite used in other embodiments of the present invention has a different capacitance expression mechanism from the activated carbon used in the conventional EDLC.
  • activated carbon taking advantage of its large specific surface area, electrolyte ions are adsorbed and desorbed on the surface of the activated carbon to develop capacitance.
  • the capacitance is developed by inserting and desorbing (intercalation-deintercalation) an anion which is an electrolyte ion between the layers. From such a difference, the electricity storage device using graphite according to the present embodiment was called an electric double layer capacitor in a broad sense in Patent Document 3, but can be called a hybrid capacitor and has an electric double layer. It is distinguished from EDLC using activated carbon.
  • the current collector on the positive electrode side used in the hybrid capacitor of the present embodiment it is preferable to use an aluminum material coated with an amorphous carbon film which is an aluminum material having improved corrosion resistance, and the current collector for the storage device electrode of the present invention. It is more preferable to use an electric body. Further, it is preferable that the current collector on the positive electrode side has a conductive carbon layer formed between the amorphous carbon film and the positive electrode active material.
  • the negative electrode used in the hybrid capacitor of the present embodiment includes a current collector (current collector on the negative electrode side) and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer contains a negative electrode active material, a binder, and a conductive material.
  • the negative electrode active material layer is formed by applying a paste-like negative electrode material containing a negative electrode active material, a binder, and an required amount of a conductive material on the current collector on the negative electrode side, and drying the negative electrode material. be able to.
  • the negative electrode active material used in the hybrid capacitor of the present embodiment is a carbonaceous material capable of adsorbing and desorbing cations, which are electrolyte ions, in order to obtain a power storage device having a high withstand voltage.
  • a material capable of absorbing and desorbing a cation which is an electrolyte ion can be used, and for example, a carbonaceous material selected from the group consisting of activated carbon, graphite, hard carbon, and soft carbon can be used. ..
  • the current collector on the negative electrode side used in the hybrid capacitor of the present embodiment a known one can be used, but aluminum in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material.
  • a material selected from the group consisting of a material, an aluminum material coated with an amorphous carbon film, etched aluminum, and an aluminum material can be used.
  • An aluminum material in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material or an aluminum material coated with the amorphous carbon film is preferable. These aluminum materials are aluminum materials having improved corrosion resistance.
  • the current collector for the power storage device electrode of the present invention can be used, and the high temperature durability performance can be improved when the hybrid capacitor is operated at a high voltage.
  • the hybrid capacitor of the present embodiment uses an aluminum material in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material or an aluminum material coated with the amorphous carbon film, the above-mentioned It is preferable to use the current collector for the storage device electrode of the present invention.
  • the electrodes used in the hybrid capacitor of this embodiment preferably further contain a binder.
  • a binder for example, fluororesin, rubber, acrylic resin, olephine resin, carboxymethyl cellulose (CMC) resin, and natural polymer can be used.
  • fluororesin include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • rubber examples include fluororubber, ethylene propylene diene rubber, and styrene butadiene rubber.
  • natural polymers include gelatin, chitosan and alginic acid. One of these binders may be used alone, or two or more of these binders may be used in combination.
  • the conductive material used in the hybrid capacitor of the present embodiment is not particularly limited as long as it improves the conductivity of the negative electrode active material layer or the positive electrode active material layer, and a known conductive material can be used.
  • a known conductive material can be used.
  • carbon black and carbon fiber can be used.
  • Examples of carbon fibers include carbon nanotubes (CNT) and VGCF®.
  • the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • One of these conductive materials may be used alone, or two or more of them may be used in combination.
  • an organic electrolytic solution using an organic solvent can be used.
  • electrolyte ions it is not limited to the organic electrolyte.
  • a gel may be used.
  • the electrolyte contains electrolyte ions that can be attached to and detached from the electrode. It is preferable that the electrolyte ion has an ion diameter as small as possible.
  • ammonium salts, phosphonium salts, ionic liquids, lithium salts and the like can be used.
  • ammonium salt tetraethylammonium (TEA) salt, triethylammonium (TEMA) salt and the like can be used.
  • TEA tetraethylammonium
  • TMA triethylammonium
  • phosphonium salt a spiro compound having two five-membered rings or the like can be used.
  • the type of ionic liquid is not particularly limited, but a material having a viscosity as low as possible and a high conductivity (conductivity) is preferable from the viewpoint of facilitating the movement of electrolyte ions.
  • the cation constituting the ionic liquid include imidazolium ion and pyridinium ion.
  • the imidazolium ion include 1-ethyl-3-methylimidazolium (EMIm) ion and 1-methyl-1-propylpyrrolidinium (1-methyl-1-propylpyrrolidinium).
  • EMIm 1-ethyl-3-methylimidazolium
  • MPPi 1-methyl-1-propylpyrrolidinium
  • the lithium salt lithium tetrafluorobolate LiBF 4 , lithium hexafluorophosphate LiPF 6, or the like can be used.
  • Examples of the pyridinium ion include 1-ethylpyridinium ion, 1-butylpyridinium ion and the like.
  • Examples of anions constituting the ionic liquid include BF 4 ion, PF 6 ion, [(CF 3 SO 2 ) 2 N] ion, FSI (bis (fluorosulfonyl) imide, bis (fluorosulfonyl) imide) ion, and TFSI (bis Examples thereof include trifluoromethylsulfonyl) imide and bis (trifluoromethyl sulphonyl) ion.
  • acetonitrile, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfone, ethyl isopropyl sulfone, ethyl carbonate, fluoroethylene carbonate, ⁇ -butyrolactone, sulfolane, N, N-dimethylformamide, dimethyl sulfoxide and the like are used. Can be done.
  • One of these solvents may be used alone, or two or more of these solvents may be used in combination.
  • the separator used in the hybrid capacitor of the present embodiment includes a cellulosic paper-like separator, a glass fiber separator, and a microporous polyethylene or polypropylene film for the purpose of preventing a short circuit between the positive electrode and the negative electrode and ensuring the electrolyte liquid retention property. Etc. are suitable.
  • the aluminum material coated with the amorphous carbon film of the present invention (the current collector for the electrode of the power storage device of the present invention) is used to collect current on the positive side containing graphite. Used as a body.
  • the hybrid capacitor of the present embodiment aims to increase the output, maintain a high energy density, and improve the output characteristics.
  • the aluminum material coated with the amorphous carbon film of the present invention (the current collector for the storage device electrode of the present invention) is used on the negative side. Used as a current collector.
  • the hybrid capacitor of the other embodiment related to the hybrid capacitor of the present embodiment has further improved output characteristics while maintaining high energy density by further increasing the output.
  • the aluminum material coated with the amorphous carbon film of the present invention (the current collector for the power storage device electrode of the present invention) is preferably used as an electrode current collector for a hybrid capacitor having a positive electrode containing graphite. Further, the aluminum material coated with the amorphous carbon film of the present invention (current collector for the electrode of the power storage device of the present invention) can also be used as a current collector for the electrode of the power storage device such as EDLC.
  • a dual ion battery which is another embodiment of the power storage device of the present invention, includes a positive electrode including a positive electrode side current collector and a positive electrode active material layer formed on the positive electrode side current collector, and a negative electrode side current collector. It has a negative electrode including a negative electrode active material layer formed on the negative electrode.
  • the positive electrode active material contains graphite, and the negative electrode active material contains a metal oxide that can occlude and release cations.
  • the current collector on the positive electrode side and the current collector on the negative electrode side are made of an aluminum material coated with an amorphous carbon film.
  • the dual ion battery will be described in detail as another embodiment of the power storage device of the present invention, but the configuration common to the above-mentioned hybrid capacitor will be omitted.
  • the negative electrode is changed from the activated carbon negative electrode of the conventional power storage device to the lithium-containing metal oxide or the lithium-free metal oxide of the dual ion battery of the present embodiment (hereinafter, simply referred to as “MO X ”).
  • MO X lithium-containing metal oxide or the lithium-free metal oxide of the dual ion battery of the present embodiment
  • the charge / discharge capacity of the negative electrode increased.
  • the lithium-containing metal oxide include lithium titanate.
  • the problem that the activated carbon of the negative electrode became the rate-determining factor in the conventional power storage device and hindered the improvement of the energy density was solved. Theoretically, the energy density could be increased by making the capacity of graphite of the positive electrode more usable, but this time, the problem of lowering the cycle life characteristic appeared.
  • the cause of this problem is that when MO X such as lithium titanate is used for the negative electrode, the electrode potential when activated charcoal is used decreases and changes diagonally and linearly, whereas the potential of MO X such as lithium titanate decreases. The curve becomes flat. Therefore, the potential curve of the case of using the MO X and lithium titanate as a negative electrode, than the potential curve of the activated carbon, time of exposure in a more lower potential becomes longer. As a result, the current collector on the negative electrode side of the dual ion battery of the present embodiment is more easily dissolved than the current collector on the negative electrode side of the conventional power storage device. As a result, the high temperature durability performance is deteriorated, and the charge / discharge cycle life characteristics are deteriorated.
  • the dissolution of the current collector can be suppressed by using the current collector having improved corrosion resistance of the present embodiment as the current collector on the negative electrode side. That is, the energy density of the cell could be improved by using a negative electrode active material having a charge / discharge capacity larger than that of activated carbon, but the effect of melting the current collector on the negative electrode side became apparent.
  • the problem can be solved by applying the current collector having improved corrosion resistance of the present embodiment.
  • the above-mentioned current collector for the power storage device electrode of the present invention is at least one of the current collector on the negative electrode side and the current collector on the positive electrode side of the dual ion battery of the present embodiment.
  • the positive electrode contains graphite
  • the negative electrode used in the dual ion battery of the present embodiment includes a current collector (current collector on the negative electrode side) and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer contains a negative electrode active material, a binder, and a conductive material.
  • the negative electrode active material layer is formed by applying a paste-like negative electrode material containing a negative electrode active material, a binder, and an required amount of a conductive material on the current collector on the negative electrode side, and drying the negative electrode material. be able to.
  • the negative electrode active material of the dual ion battery of the present embodiment contains a metal oxide capable of occluding and releasing a cation which is an electrolyte ion contained in an electrolytic solution described later. That is, any material that can reversibly insert and remove cations can be used.
  • the cation for example, alkali metal ions such as Li, Na and K, alkaline earth metal ions such as Mg and Ca and the like can be used.
  • an example using lithium will be illustrated.
  • a metal oxide capable of inserting and removing lithium can be used. More specifically, a metal oxide containing lithium or a metal oxide not containing lithium can be used.
  • the metal of the metal oxide capable of inserting and removing lithium groups 4, 5, and 6 of the 4, 5, and 6 periods of the periodic table can be used.
  • transition metals such as titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum (Mo).
  • the lithium-containing metal oxide include Li 4 Ti 5 O 12 , which is a lithium-containing titanium oxide, LiNbO 2 , which is a lithium-containing niobium oxide, and Li 1.1 V 0.9, which is a lithium-containing vanadium oxide. O 2 and the like can be used.
  • the lithium-free metal oxide for example, TiO 2 , NbO 2 , V 2 O 5, or the like can be used.
  • the capacity of the negative electrode active material per unit weight is preferably higher than the capacity of the positive electrode active material (graphite) described later per unit weight.
  • the theoretical capacity of graphite used for the positive electrode is 372 mAh / g.
  • the capacity of the graphite positive electrode of the present invention for inserting and desorbing a larger anion than that of lithium ion is preferably 50 mAh / g to 100 mAh / g from the viewpoint of cycle life and the degree of expansion of the graphite positive electrode.
  • the theoretical capacities of the active material used for the negative electrode are as follows.
  • Li 4 Ti 5 O 12 is 175 mAh / g
  • LiNbO 2 is 203 mAh / g
  • Li 1.1 V 0.9 O 2 is 313 mAh / g
  • TiO 2 is 335 mAh / g
  • NbO 2 is 214 mAh / g
  • V 2 O 5 is 147 mAh / g.
  • the negative electrode using these negative electrode active materials can be charged and discharged to near the theoretical capacity. Therefore, the practical capacity of the negative electrode active material is larger than the practical capacity of the graphite positive electrode (50 mAh / g to 100 mAh / g).
  • the positive electrode active material of the present invention is graphite having a practical capacity of 50 mAh / g to 100 mAh / g, and the negative electrode active material of the present invention is preferably higher than the practical capacity of the graphite positive electrode.
  • the positive electrode active material of the present invention is more preferably graphite having a practical capacity of 50 mAh / g to 100 mAh / g.
  • the negative electrode active material of the present invention is at least one selected from the group consisting of Li 4 Ti 5 O 12 , LiNbO 2 , Li 1.1 V 0.9 O 2 , TiO 2 , NbO 2 , and V 2 O 5. Is more preferable.
  • the positive electrode active material of the present invention is graphite having a practical capacity of 50 mAh / g to 100 mAh / g, and the negative electrode active material of the present invention is more preferably Li 4 Ti 5 O 12 .
  • the current collector on the negative electrode side used in the dual ion battery of the present embodiment it is preferable to use an aluminum material coated with an amorphous carbon film.
  • the aluminum material coated with the amorphous carbon film is an aluminum material having improved corrosion resistance.
  • the current collector on the negative electrode side further has a conductive carbon layer formed between the amorphous carbon film and the negative electrode active material.
  • the positive electrode used in the dual ion battery of the present embodiment includes a current collector (current collector on the positive electrode side) and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer contains a positive electrode active material, a binder, and a conductive material.
  • the positive electrode active material layer is formed by applying a paste-like positive electrode material containing a positive electrode active material, a binder, and an required amount of a conductive material on the current collector on the positive electrode side, and drying the layer. be able to.
  • the positive electrode active material used in the dual ion battery of the present embodiment contains graphite, which is a carbonaceous material capable of inserting and removing anions, which are electrolyte ions, in order to obtain a dual ion battery having a high withstand voltage.
  • the details of graphite are as described in [Positive electrode active material] of the hybrid capacitor which is the power storage device of one embodiment of the present invention described above.
  • the current collector on the positive electrode side used in the dual ion battery of the present embodiment it is preferable to use an aluminum material coated with an amorphous carbon film, similarly to the current collector on the negative electrode side.
  • the aluminum material coated with the amorphous carbon film is an aluminum material having improved corrosion resistance.
  • the current collector on the positive electrode side has a conductive carbon film formed between the amorphous carbon film and the positive electrode active material, similarly to the current collector on the negative electrode side.
  • the negative electrode or positive electrode used in the dual ion battery of the present embodiment preferably further contains a binder.
  • a binder a binder of the same type as the power storage device (hybrid capacitor) according to the embodiment of the present invention can be used.
  • the conductive material used in the dual ion battery of the present embodiment is not particularly limited as long as it improves the conductivity of the negative electrode active material layer or the positive electrode active material layer, and a known conductive material can be used.
  • a device of the same type as the power storage device (hybrid capacitor) according to the embodiment of the present invention described above can be used.
  • an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent can be used.
  • the electrolyte contains electrolyte ions that can be inserted and removed from the electrode.
  • a lithium salt or the like can be used.
  • the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate; and chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate.
  • One of these organic solvents may be used alone, or two or more of them may be mixed and used.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2, and the like.
  • an additive may be used in the electrolytic solution in order to improve high temperature durability performance, charge / discharge cycle characteristics, input / output characteristics, and the like.
  • DLC-coated aluminum foil (sometimes referred to as "DLC-coated aluminum foil” or “DLC-coated Al foil”) is on the positive electrode side. It is a current collector and a current collector on the negative electrode side, and corresponds to an aluminum material coated with an amorphous carbon film.
  • the manufacturing method of the DLC coated aluminum foil is as follows. The natural oxide film on the surface of the aluminum foil was removed by argon sputtering on an aluminum foil having a purity of 99.99% (manufactured by UACJ Co., Ltd., thickness 20 ⁇ m).
  • a discharge plasma was generated in a mixed gas of methane, acetylene and nitrogen in the vicinity of the surface of the aluminum foil, and a negative bias voltage was applied to the aluminum material to form a DLC film.
  • the DLC-coated Al foil formed at an atmospheric temperature of 25 ° C. at the time of film formation was transferred to an argon atmosphere furnace, and the temperature was raised to 500 ° C., which is the heat treatment temperature, under an argon flow (500 mL / min). Then, after holding at this temperature for 1 hour, it was naturally cooled to room temperature to produce a DLC coated Al foil (A).
  • the thickness of the DLC film on the aluminum foil coated (coated) with DLC was measured using a stylus type surface shape measuring instrument DektakXT manufactured by Bruker Co., Ltd. and found to be 150 nm.
  • the sp 2 / (sp 3 + sp 2 ) ratio was 0.43. The results are shown in Table 1.
  • ⁇ Evaluation method XAFS method>
  • the NEXAFS analysis was performed at the Ritsumeikan University SR Center BL-2 ultra-soft X-ray spectroscopic line, and the spectrum was acquired by the total electron yield method (TEY: Total Electron Yield) by measuring the sample current.
  • the measured NEXAFS spectrum is CK-edge (260-345 eV).
  • the slit size was 25 ⁇ 25 ⁇ m
  • the angle of incidence of X-rays on the sample was 90 °
  • the spectrum integration time was 30 minutes each.
  • the energy axis calibration was performed using the literature values of a standard sample, highly oriented pyrolytic graphite (HOPG).
  • HOPG highly oriented pyrolytic graphite
  • the sp 2 / (sp 3 + sp 2 ) ratio was calculated based on the HOPG spectrum measured on the same day.
  • the DLC-coated Al foil (F) was produced by the same method as in Production Example 1 except that the DLC-coated Al foil formed at an atmospheric temperature of 25 ° C. was not heat-treated and was naturally cooled to room temperature. .. With respect to the obtained DLC-coated Al foil, the ratio of sp 2 / (sp 3 + sp 2 ) was measured by the same method as in Production Example 1. The results are shown in Table 1.
  • Example 1 Manufacturing of hybrid capacitors (Example 1) (1) Preparation of paste for power storage device electrode Graphite manufactured by Imeris GC Japan Co., Ltd. (trade name: KS-6, average particle size 6 ⁇ m), acetylene black (conductive material), polyvinylidene fluoride (organic solvent) as positive electrode active material The system binder) was weighed so that the weight percent concentration (wt%) ratio was 80:10:10. They were dissolved and mixed with N-methylpyrrolidone (organic solvent) to prepare a positive electrode paste of this example.
  • KS-6 average particle size 6 ⁇ m
  • acetylene black conductive material
  • organic solvent organic solvent
  • activated carbon YP-50F manufactured by Kuraray Co., Ltd. acetylene black (conductive material), carboxymethyl cellulose (aqueous solution binder 1), and polyacrylic acid (aqueous solution binder 2) are 85 wt%: 5 wt%: Weighed so that the ratio was 5 wt%: 5 wt%. Then, they were dissolved and mixed with pure water to prepare the negative electrode paste of this example.
  • the obtained positive electrode was punched into a disk shape having a diameter of 16 mm and the obtained negative electrode having a diameter of 14 mm, and vacuum dried at 150 ° C. for 24 hours. After that, it was moved to the argon glove box.
  • the dried positive electrode and negative electrode were laminated via a paper separator (trade name: TF4540) manufactured by Nippon Kodoshi Paper Industry Co., Ltd.
  • a 2032 type coin cell which is a hybrid capacitor of the example, was produced.
  • the obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
  • Example 2 The positive electrode of Example 2 was produced in the same manner as in Example 1 except that the DLC-coated Al foil (E) obtained in Production Example 5 was used. Further, a hybrid capacitor was produced by the same method as in Example 1 except that the positive electrode of Example 2 was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
  • Comparative Example 1 The positive electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that the DLC-coated Al foil (F) obtained in Production Example 6 was used. Further, a hybrid capacitor was produced by the same method as in Example 1 except that this positive electrode was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
  • Example 2 (Comparative Examples 2 to 4) The same method as in Example 1 was used except that the DLC-coated Al foil (B), the DLC-coated Al foil (C), and the DLC-coated Al foil (D) obtained in Production Examples 2 to 4 were used. Positive electrodes of Comparative Examples 2 to 4 were prepared. Further, a hybrid capacitor was produced by the same method as in Example 1 except that this positive electrode was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
  • “Manufacturing dual-ion batteries” (Example 3) ⁇ Manufacturing of negative electrode> Lithium titanate (Li 4 Ti 5 O 12 , LTO), acetylene black (conductive material), and vinylidene polyfluoride (organic solvent-based binder) obtained in Synthesis 1 as the negative electrode active material are used in a weight percent concentration (wt%). Weighed so that the ratio was 80:10:10.
  • the negative electrode paste obtained by dissolving and mixing these with N-methylpyrrolidone (organic solvent) was applied onto plain Al (manufactured by UACJ Foil Corporation, thickness 20 ⁇ m) using a doctor blade. Then, it was dried, and the negative electrode of this Example was obtained. When the thickness of the negative electrode was measured using a micrometer, it was 48 ⁇ m.
  • a 2032 type coin cell which is a dual ion battery of this example, was produced by the same method as in Example 1 except that 3-LiPF 6 / EMC was used as the electrolytic solution using the prepared negative electrode of this example. ..
  • the obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
  • Example 4 A coin cell was produced in the same manner as in Example 3 except that the DLC-coated Al foil (A) obtained in Production Example 1 was used as the current collector on the negative electrode side.
  • the obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
  • Comparative Example 5 A coin cell was produced by the same method as in Example 3 except that the same positive electrode as in Comparative Example 1 was used.
  • the obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
  • the final discharge voltage of the hybrid capacitors of Examples 1 to 4 and Comparative Examples 1 to 4 is 0 V
  • the final discharge voltage of the dual ion batteries of Examples 5 and 6 and Comparative Example 5 is 2 V.
  • I went there.
  • the ratio of the discharge capacity at 14 mA / cm 2 to the discharge capacity when the charge / discharge test was performed at a current density of 0.2 mA / cm 2 obtained as a result was calculated to obtain the discharge rate.
  • the results are shown in Tables 2 and 3.
  • Table 2 the results of the discharge rate characteristics of Examples 1 and 2 and Comparative Examples 2 and 3 show standardized values with the discharge rate value of Comparative Example 1 as 100.
  • a continuous charging test (constant current constant voltage continuous charging test) was performed in a constant temperature bath at 60 ° C. at a current density of 0.2 mA / cm 2 and a voltage of 3.5 V. Specifically, during charging, charging is stopped at a predetermined time, the cell is moved to a constant temperature bath at 25 ° C., and then the current density is 0.2 mA / cm 2 and the voltage is 3.5 V in the same manner as above. Current constant voltage charging was performed. Then, discharge was performed to a predetermined end voltage with a discharge current value of a current density of 0.2 mA / cm 2 . The discharge capacity was obtained by performing this charge / discharge test 5 times.
  • the final discharge voltage in the case of the hybrid capacitor was 0 V
  • the final discharge voltage in the case of the dual ion battery was 2 V.
  • the mixture was returned to a constant temperature bath at 60 ° C. and the continuous charging test was restarted, and the test was carried out until the total continuous charging test time reached 2000 hours.
  • the discharge capacity at that time was measured.
  • the discharge capacity improvement rate is compared with the charge time when the discharge capacity maintenance rate after the constant current constant voltage continuous charge test is 80% or less of the discharge capacity before the start of the constant current constant voltage continuous charge test. It is a value standardized with the time at which the life reached in the target comparative example as 100.
  • Examples 1 and 2 using the current collector for the power storage device electrode of the present invention obtained excellent discharge rate characteristics and discharge capacity improvement rates as compared with Comparative Examples 1 to 4.
  • Examples 3 and 4 using the current collector for the power storage device electrode of the present invention obtained excellent discharge rate characteristics and discharge capacity improvement rate as compared with Comparative Example 5.
  • the DLC coated Al foil (A), the DLC coated Al foil (E), the DLC coated Al foil (F), and the DLC coated Al foil (G) formed at a temperature of 400 ° C. or higher were sp 2 / measured by the XAFS method.
  • the ratio (sp 3 + sp 2 ) was 0.35 or more. Therefore, it was a DLC film having a developed graphite structure.
  • the power storage device of Example 2 since the sp 2 / (sp 3 + sp 2 ) ratio of the DLC coated Al foil (A) obtained at a processing temperature of 500 ° C. or higher is 0.40 or more, the power storage device of Example 2 is stored. It was found that it showed even better characteristics than the device.
  • Example 4 both the current collector on the negative electrode side and the current collector on the positive electrode side use the current collector for the electrode of the power storage device of the present invention (DLC coated Al foil (A).
  • Example 3 uses the current collector on the positive electrode side. Only the current collector The current collector for the electrode of the power storage device of the present invention (DLC-coated Al foil (A) is used.
  • Example 4 has the same discharge rate characteristics as Example 3, but the discharge capacity. The improvement rate was further improved. It was found that the current collector for the power storage device electrode of the present invention is effective even when applied to the negative electrode.

Abstract

A current collector for a power storage device electrode that increases output and excels in output characteristics while maintaining a high energy density, a method for manufacturing the current collector for a power storage device electrode, and a power storage device having the current collector for a power storage device electrode are provided. The current collector for a power storage device electrode according to the present invention includes an aluminum material and an amorphous carbon coating film formed on the aluminum material. The ratio of sp2 bonded carbons to the total amount of sp2 bonded carbons and sp3 bonded carbons in the amorphous carbon coating film (sp2/(sp3 + sp2)) is 0.35 or more. The ratio (sp2/(sp3 + sp2)) was measured by an X-ray absorption fine structure (XAFS) method.

Description

蓄電デバイス電極用集電体、その製造方法、及び蓄電デバイスCurrent collector for electrode of power storage device, its manufacturing method, and power storage device
 本発明は、蓄電デバイス電極用集電体、その蓄電デバイス電極用集電体の製造方法、及びその蓄電デバイス電極用集電体を用いた蓄電デバイスに関する。
 本願は、2019年6月19日に、日本国に出願された特願2019-113900号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a current collector for a power storage device electrode, a method for manufacturing the current collector for the power storage device electrode, and a power storage device using the current collector for the power storage device electrode.
The present application claims priority based on Japanese Patent Application No. 2019-113900 filed in Japan on June 19, 2019, the contents of which are incorporated herein by reference.
 従来、電気エネルギーを貯蔵する技術として、電気二重層キャパシタ(例えば、特許文献1参照)や二次電池が知られている。電気二重層キャパシタ(EDLC:Electric double-layer capacitor)は、寿命、安全性、出力密度が二次電池よりも格段に優れている。しかしながら、電気二重層キャパシタは、二次電池に比べてエネルギー密度(体積エネルギー密度)が低いという課題がある。 Conventionally, electric double layer capacitors (see, for example, Patent Document 1) and secondary batteries are known as techniques for storing electric energy. Electric double layer capacitors (EDLCs: Electric double-layer capacitors) are significantly superior to secondary batteries in terms of life, safety, and output density. However, the electric double layer capacitor has a problem that the energy density (volume energy density) is lower than that of the secondary battery.
 ここで、電気二重層キャパシタに蓄積されるエネルギー(E)は、キャパシタの静電容量(C)と印加電圧(V)を用いてE=1/2×C×Vと表され、エネルギーは静電容量と印加電圧の二乗とに比例する。従って、電気二重層キャパシタのエネルギー密度を改善するために、電気二重層キャパシタの静電容量や印加電圧を向上する技術が提案されている。 Here, the energy (E) stored in the electric double layer capacitor is expressed as E = 1/2 × C × V 2 using the capacitance (C) of the capacitor and the applied voltage (V), and the energy is It is proportional to the capacitance and the square of the applied voltage. Therefore, in order to improve the energy density of the electric double layer capacitor, a technique for improving the capacitance and the applied voltage of the electric double layer capacitor has been proposed.
 電気二重層キャパシタの静電容量を向上する技術としては、電気二重層キャパシタの電極を構成する活性炭の比表面積を増大させる技術が知られている。現在、知られている活性炭は、比表面積が1000m/g~2500m/gである。このような活性炭を電極に用いた電気二重層キャパシタでは、電解液として第四級アンモニウム塩を有機溶媒に溶解させた有機電解液や、硫酸等の水溶液電解液等が用いられている。
 有機電解液は使用できる電圧範囲が広いため、印加電圧を高めることができ、エネルギー密度を向上することができる。
As a technique for improving the capacitance of an electric double layer capacitor, a technique for increasing the specific surface area of activated carbon constituting the electrode of the electric double layer capacitor is known. Currently known activated carbons have a specific surface area of 1000 m 2 / g to 2500 m 2 / g. In the electric double layer capacitor using such activated carbon as an electrode, an organic electrolytic solution in which a quaternary ammonium salt is dissolved in an organic solvent, an aqueous electrolytic solution such as sulfuric acid, or the like is used as the electrolytic solution.
Since the organic electrolyte has a wide usable voltage range, the applied voltage can be increased and the energy density can be improved.
 電気二重層キャパシタの原理を利用して印加電圧を向上させたキャパシタとして、リチウムイオンキャパシタが知られている。負極にリチウムイオンをインターカレート、ディインターカレートできる黒鉛あるいは炭素を用い、正極に電解質イオンを吸脱着できる電気二重層キャパシタの電極材と同等の活性炭を用いるものは、リチウムイオンキャパシタと呼ばれている。また、正極あるいは負極のいずれか一方に電気二重層キャパシタの電極材と同等の活性炭を用い、もう一方の電極にファラデー反応が起こる電極として、金属酸化物、導電性高分子を用いるものについては、ハイブリッドキャパシタと呼ばれている。リチウムイオンキャパシタは、電気二重層キャパシタを構成する電極のうち、負極がリチウムイオン二次電池の負極材料である黒鉛やハードカーボン、ソフトカーボン等で構成され、その黒鉛やハードカーボン、ソフトカーボン内にリチウムイオンが挿入された電極である。リチウムイオンキャパシタは、一般的な電気二重層キャパシタ、すなわち、両極が活性炭で構成されるものよりも印加電圧が大きくなるという特徴がある。 A lithium ion capacitor is known as a capacitor in which the applied voltage is improved by utilizing the principle of an electric double layer capacitor. A lithium ion capacitor is a capacitor that uses graphite or carbon that can intercalate and deintercalate lithium ions for the negative electrode and activated carbon that is equivalent to the electrode material of an electric double layer capacitor that can absorb and desorb electrolyte ions for the positive electrode. ing. For one of the positive electrode and the negative electrode, which uses the same activated carbon as the electrode material of the electric double layer capacitor, and which uses a metal oxide or a conductive polymer as the electrode at which the Faraday reaction occurs on the other electrode, It is called a hybrid capacitor. In the lithium ion capacitor, among the electrodes constituting the electric double layer capacitor, the negative electrode is made of graphite, hard carbon, soft carbon, etc., which are the negative electrode materials of the lithium ion secondary battery, and the inside of the graphite, hard carbon, soft carbon, etc. An electrode into which lithium ions are inserted. A lithium ion capacitor is characterized in that the applied voltage is larger than that of a general electric double layer capacitor, that is, one in which both electrodes are composed of activated carbon.
 しかし、電極に黒鉛を用いた場合、電解液の溶媒として知られる、プロピレンカーボネートを用いることができないという課題がある。電極に黒鉛を用いた場合、プロピレンカーボネートが電気分解して、黒鉛の表面にプロピレンカーボネートの分解生成物が付着し、リチウムイオンの可逆性が低下するためである。プロピレンカーボネートは、低温でも動作可能な溶媒である。プロピレンカーボネートを電気二重層キャパシタに適用した場合、その電気二重層キャパシタは-40℃でも作動することができる。そこで、リチウムイオンキャパシタでは、プロピレンカーボネートが分解し難いハードカーボンやソフトカーボンが電極材料に用いられている。しかし、ハードカーボンやソフトカーボンは、黒鉛に比べて電極の体積当たりの容量が低く、電圧も黒鉛に比べて低くなる(貴な電位になる)。そのため、リチウムイオンキャパシタのエネルギー密度が低くなる等の課題がある。 However, when graphite is used for the electrode, there is a problem that propylene carbonate, which is known as a solvent for the electrolytic solution, cannot be used. This is because when graphite is used for the electrode, propylene carbonate is electrolyzed and the decomposition product of propylene carbonate adheres to the surface of graphite, which reduces the reversibility of lithium ions. Propylene carbonate is a solvent that can operate even at low temperatures. When propylene carbonate is applied to an electric double layer capacitor, the electric double layer capacitor can also operate at −40 ° C. Therefore, in lithium ion capacitors, hard carbon and soft carbon, which are difficult to decompose propylene carbonate, are used as electrode materials. However, hard carbon and soft carbon have a lower capacity per volume of the electrode than graphite, and the voltage is also lower than that of graphite (becomes a noble potential). Therefore, there is a problem that the energy density of the lithium ion capacitor becomes low.
 新しい概念のキャパシタとして、活性炭の代わりに黒鉛を正極活物質に用いて黒鉛の層間に電解質イオンを挿入脱離する反応を利用したキャパシタが開発された(例えば、特許文献2参照)。特許文献2には、以下のことが記載されている。正極活物質に活性炭を用いる従来の電気二重層キャパシタでは正極に2.5Vを超える電圧を印加すると電解液の分解が生じてガスが発生する。これに対して、正極活物質に黒鉛を用いる新しい概念のキャパシタでは3.5Vの充電電圧でも電解液の分解を招来せず、正極活物質に活性炭を用いる従来の電気二重層キャパシタよりも高い電圧で動作できる。この技術を用いると、従来の電気二重層キャパシタに比べてエネルギー密度を2~3倍程度高めることができる。サイクル特性や低温特性、出力特性に関しても従来の電気二重層キャパシタと同等以上となる。黒鉛の比表面積は活性炭の比表面積の数百分の1であり、この電解液分解作用の違いはこの大きな比表面積の違いに起因する。 As a new concept capacitor, a capacitor using graphite as the positive electrode active material instead of activated carbon and using a reaction of inserting and removing electrolyte ions between the layers of graphite has been developed (see, for example, Patent Document 2). Patent Document 2 describes the following. In a conventional electric double layer capacitor that uses activated carbon as the positive electrode active material, when a voltage exceeding 2.5 V is applied to the positive electrode, the electrolytic solution is decomposed and gas is generated. On the other hand, a capacitor with a new concept that uses graphite as the positive electrode active material does not cause decomposition of the electrolytic solution even at a charging voltage of 3.5 V, and has a higher voltage than the conventional electric double layer capacitor that uses activated carbon as the positive electrode active material. Can work with. By using this technique, the energy density can be increased by about 2 to 3 times as compared with the conventional electric double layer capacitor. The cycle characteristics, low temperature characteristics, and output characteristics are also equal to or better than those of conventional electric double layer capacitors. The specific surface area of graphite is several hundredths of the specific surface area of activated carbon, and this difference in electrolytic solution decomposition action is due to this large difference in specific surface area.
 黒鉛を正極活物質に用いる新しい概念のキャパシタでは、耐久性が十分ではないため、実用化が阻まれていた。しかし、非晶質炭素被膜で被覆されたアルミニウム材を集電体に用いる技術(特許文献3参照)により、高温耐久性能を実用化レベルまで改善できることが分かっている。なお、この新しい概念のキャパシタは、正極に黒鉛の層間に電解質イオンを挿入脱離する反応を用いたキャパシタであり、厳密には電気二重層キャパシタではないが、特許文献3では広義の意味で電気二重層キャパシタと呼んでいる。 A new concept capacitor that uses graphite as the positive electrode active material has insufficient durability, which has hindered its practical application. However, it has been found that high temperature durability can be improved to a practical level by a technique of using an aluminum material coated with an amorphous carbon film as a current collector (see Patent Document 3). The capacitor of this new concept is a capacitor that uses a reaction of inserting and removing electrolyte ions between layers of graphite on the positive electrode, and is not strictly an electric double layer capacitor, but in Patent Document 3, it is electric in a broad sense. It is called a double layer capacitor.
 さらに、負極においても活性炭の代わりにチタン酸リチウムやリチウム含有ニオブ酸化物などの金属酸化物を負極活物質に用いてチタン酸リチウムの層間にリチウムイオンを挿入脱離する反応を利用した蓄電デバイスが提案された(例えば、特許文献2と4参照)。充放電において、電解質に含まれている電解質アニオンとリチウムカチオンは、それぞれ反対方向で正極又は負極に向かって移動するので、デュアルイオンバッテリ(DIB)と呼ばれている。DIBは、リチウムイオンのみ移動するリチウムイオン二次電池に比べて出力特性と寿命が優れ、SOC(充電状態:state of charge)に制約を設ける必要がないものと期待されている。 Further, in the negative electrode as well, a power storage device using a reaction of inserting and desorbing lithium ions between layers of lithium titanate by using a metal oxide such as lithium titanate or lithium-containing niobium oxide as the negative electrode active material instead of activated carbon. Proposed (see, eg, Patent Documents 2 and 4). In charging and discharging, the electrolyte anion and the lithium cation contained in the electrolyte move toward the positive electrode or the negative electrode in opposite directions, so that they are called a dual ion battery (DIB). It is expected that the DIB has excellent output characteristics and life as compared with a lithium ion secondary battery that moves only lithium ions, and it is not necessary to impose restrictions on the SOC (charge state: state of charge).
特開2011-046584号公報Japanese Unexamined Patent Publication No. 2011-046584 特開2010-040180号公報Japanese Unexamined Patent Publication No. 2010-040180 特許第6167243号公報Japanese Patent No. 6167243 特許第4465492号公報Japanese Patent No. 4465492
 前述の2種類の蓄電デバイスである、ハイブリッドキャパシタ及びデュアルイオンバッテリは従来の電気二重層キャパシタ(EDLC)に比べてエネルギー密度を数倍以上向上できる。一方EDLCの大きな特徴である高出力特性に関して、ハイブリッドキャパシタ及びデュアルイオンバッテリもEDLC同様に高い出力特性を有する。しかし、さらなる高出力化を目指す課題がある。
 本発明は上記事情に鑑みてなされたものであり、ハイブリッドキャパシタやデュアルイオンバッテリなどの蓄電デバイスの電極に用いる集電体(蓄電デバイス電極用集電体)に着目し、蓄電デバイス電極用集電体に含まれている非晶質炭素被膜を高度化することで、さらなる高出力化を図り、高エネルギー密度を維持しつつ、出力特性が優れた蓄電デバイスを提供することを目的とする。また、本発明は、出力特性が優れた蓄電デバイスの電極用集電体、出力特性が優れた蓄電デバイスの電極用集電体の製造方法を提供することを目的とする。
The hybrid capacitor and the dual ion battery, which are the above-mentioned two types of power storage devices, can improve the energy density several times or more as compared with the conventional electric double layer capacitor (EDLC). On the other hand, regarding the high output characteristics, which is a major feature of EDLC, hybrid capacitors and dual ion batteries also have high output characteristics like EDLC. However, there is a problem aiming at further high output.
The present invention has been made in view of the above circumstances, and focuses on a current collector used for an electrode of a power storage device such as a hybrid capacitor or a dual ion battery (a current collector for a power storage device electrode), and collects electricity for a power storage device electrode. It is an object of the present invention to provide a power storage device having excellent output characteristics while maintaining a high energy density by further increasing the output by enhancing the amorphous carbon film contained in the body. Another object of the present invention is to provide a method for manufacturing an electrode current collector for a power storage device having excellent output characteristics and an electrode current collector for a power storage device having excellent output characteristics.
 上記課題を解決するため、以下の手段を提供する。
[1] アルミニウム材と、アルミニウム材に形成された非晶質炭素被膜と、を含む蓄電デバイス電極用集電体であって、
 非晶質炭素被膜において、sp結合炭素及びsp結合炭素の総量に対するsp結合炭素の比率(sp/(sp+sp))は0.35以上であって、
 比率(sp/(sp+sp))は、X線吸収微細構造(XAFS)法で測定したものであることを特徴とする蓄電デバイス電極用集電体。
[2] 蓄電デバイス電極用集電体はハイブリッドキャパシタ正極用集電体又はデュアルイオンバッテリ正極用集電体であって、
 ハイブリッドキャパシタ正極又はデュアルイオンバッテリ正極は、正極活物質として黒鉛を含む[1]に記載の蓄電デバイス電極用集電体。
[3] 蓄電デバイス電極用集電体はハイブリッドキャパシタ負極用集電体又はデュアルイオンバッテリ負極用集電体であって、
 ハイブリッドキャパシタ負極又はデュアルイオンバッテリ負極は、負極活物質として活性炭、黒鉛、ハードカーボン、ソフトカーボン、及びチタン酸リチウムからなる群から選択された1種を含む[1]に記載の蓄電デバイス電極用集電体。
[4] アルミニウム材に非晶質炭素被膜を形成する成膜工程と、
 非晶質炭素被膜を400℃以上の温度で加熱処理する加熱処理工程と
を含むことを特徴とする蓄電デバイス電極用集電体の製造方法。
[5] 成膜工程の後に、加熱処理工程を行う[4]に記載の蓄電デバイス電極用集電体の製造方法。
[6] アルミニウム材と、アルミニウム材に形成された非晶質炭素被膜と、を含む蓄電デバイス電極用集電体であって、
 非晶質炭素被膜が[4]又は[5]に記載の製造方法で得られたものであることを特徴とする蓄電デバイス電極用集電体。
[7] 少なくとも正極、負極、及び電解質から構成される蓄電デバイスであって、
 正極は正極活物質を含み、かつ、負極は負極活物質を含み、
 正極活物質は、黒鉛を含み、
 正極側の集電体は[1]又は[6]の何れかに記載の蓄電デバイス電極用集電体であり、
 非晶質炭素被膜の厚みが60nm以上、300nm以下であることを特徴とする蓄電デバイス。
[8] 黒鉛は菱面体晶を含む[7]に記載の蓄電デバイス。
[9] 負極活物質は、活性炭、黒鉛、ハードカーボン、及びソフトカーボン、チタン酸リチウムからなる群から選択された1種を含み、
 負極側の集電体は[1]及び[7]に記載の蓄電デバイス電極用集電体、エッチドアルミニウム、及び、アルミニウム材からなる群から選択された1種である[7]又は[8]に記載の蓄電デバイス。
The following means are provided to solve the above problems.
[1] A current collector for a power storage device electrode containing an aluminum material and an amorphous carbon film formed on the aluminum material.
In the amorphous carbon film, the ratio of sp 2- bonded carbon to the total amount of sp 2- bonded carbon and sp 3- bonded carbon (sp 2 / (sp 3 + sp 2 )) is 0.35 or more.
A current collector for a power storage device electrode, characterized in that the ratio (sp 2 / (sp 3 + sp 2 )) is measured by the X-ray absorption fine structure (XAFS) method.
[2] The current collector for the power storage device electrode is a current collector for the positive electrode of the hybrid capacitor or a current collector for the positive electrode of the dual ion battery.
The current collector for a power storage device electrode according to [1], wherein the hybrid capacitor positive electrode or the dual ion battery positive electrode contains graphite as a positive electrode active material.
[3] The current collector for the electrode of the power storage device is a current collector for the negative electrode of the hybrid capacitor or a current collector for the negative electrode of the dual ion battery.
The collection for a power storage device electrode according to [1], wherein the hybrid capacitor negative electrode or the dual ion battery negative electrode includes one selected from the group consisting of activated carbon, graphite, hard carbon, soft carbon, and lithium titanate as the negative electrode active material. Electrode.
[4] A film forming process for forming an amorphous carbon film on an aluminum material, and
A method for manufacturing a current collector for a power storage device electrode, which comprises a heat treatment step of heat-treating an amorphous carbon film at a temperature of 400 ° C. or higher.
[5] The method for manufacturing a current collector for a power storage device electrode according to [4], wherein a heat treatment step is performed after the film forming step.
[6] A current collector for a power storage device electrode containing an aluminum material and an amorphous carbon film formed on the aluminum material.
A current collector for a power storage device electrode, wherein the amorphous carbon film is obtained by the production method according to [4] or [5].
[7] A power storage device composed of at least a positive electrode, a negative electrode, and an electrolyte.
The positive electrode contains a positive electrode active material, and the negative electrode contains a negative electrode active material.
The positive electrode active material contains graphite and
The current collector on the positive electrode side is the current collector for the power storage device electrode according to any one of [1] and [6].
A power storage device characterized in that the thickness of the amorphous carbon film is 60 nm or more and 300 nm or less.
[8] The power storage device according to [7], wherein graphite contains rhombohedral crystals.
[9] The negative electrode active material includes one selected from the group consisting of activated carbon, graphite, hard carbon, soft carbon, and lithium titanate.
The current collector on the negative electrode side is one selected from the group consisting of the current collector for the power storage device electrode described in [1] and [7], etched aluminum, and an aluminum material [7] or [8]. ] The power storage device described in.
 本発明によれば、蓄電デバイス電極用集電体に含まれている非晶質炭素被膜を高度化することにより、さらなる高出力化を図り、高エネルギー密度を維持しつつ、出力特性が優れた蓄電デバイスを提供することができる。また、本発明によれば、出力特性が優れた蓄電デバイスの電極用集電体、出力特性が優れた蓄電デバイスの電極用集電体の製造方法を提供することができる。 According to the present invention, by improving the amorphous carbon film contained in the current collector for the electrode of the power storage device, the output can be further increased, the high energy density is maintained, and the output characteristics are excellent. A power storage device can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing an electrode current collector of a power storage device having excellent output characteristics and an electrode current collector of a power storage device having excellent output characteristics.
XAFS測定法を説明するためのNEXAFSスペクトルである。It is a NEXAFS spectrum for explaining the XAFS measurement method.
 以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified without changing the gist thereof.
(蓄電デバイス電極用集電体)
 本発明の蓄電デバイス電極用集電体は、アルミニウム材と前記アルミニウム材に形成された非晶質炭素被膜とを含む。前記非晶質炭素被膜において、sp結合炭素及びsp結合炭素の総量に対するsp結合炭素の比率(「sp/(sp+sp)比率」をいう)が0.35以上であることを特徴とする。なお、前記sp/(sp+sp)比率は、X線吸収微細構造(XAFS:X-ray Absorption Fine Structure)法で測定したものである。XAFS法については後で詳細に説明する。また、非晶質炭素被膜と正極活物質との間、もしくは非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されていてもよい。
 本発明の蓄電デバイス電極用集電体は、特に効果を発揮できるため、正極活物質として黒鉛を含むハイブリッドキャパシタ正極に用いられること、あるいは、正極活物質として黒鉛を含むデュアルイオンバッテリ正極用集電体に用いられることが好ましい。また、本発明の蓄電デバイス電極用集電体は、ハイブリッドキャパシタ負極用集電体に用いられること、あるいはデュアルイオンバッテリ負極用集電体に用いられることができる。
(Current collector for storage device electrode)
The current collector for a power storage device electrode of the present invention includes an aluminum material and an amorphous carbon film formed on the aluminum material. In the amorphous carbon film, the ratio of sp 2- bonded carbon to the total amount of sp 2- bonded carbon and sp 3- bonded carbon (referred to as "sp 2 / (sp 3 + sp 2 ) ratio") is 0.35 or more. It is characterized by. The sp 2 / (sp 3 + sp 2 ) ratio was measured by the X-ray Absorption Fine Structure (XAFS: X-ray Absorption Fine Structure) method. The XAFS method will be described in detail later. Further, a conductive carbon layer may be formed between the amorphous carbon film and the positive electrode active material, or between the amorphous carbon film and the negative electrode active material.
Since the current collector for the electrode of the power storage device of the present invention can be particularly effective, it can be used for a hybrid capacitor positive electrode containing graphite as a positive electrode active material, or a dual ion battery positive current collector containing graphite as a positive electrode active material. It is preferably used on the body. Further, the current collector for the electrode of the power storage device of the present invention can be used for the current collector for the negative electrode of the hybrid capacitor, or can be used for the current collector for the negative electrode of the dual ion battery.
 ここで、本発明の「ハイブリッドキャパシタ」とは、負極には電解質のカチオンの吸脱着という電気二重層の原理を用い、正極には黒鉛への電解質アニオンの挿入脱離(インターカレーション-ディインターカレーション)の原理を用いた蓄電デバイスである。例えば、負極に活性炭、正極に黒鉛を用いたものが挙げられる。 Here, the "hybrid capacitor" of the present invention uses the principle of an electric double layer of adsorption and desorption of the cation of the electrolyte for the negative electrode, and inserts and desorbs the electrolyte anion into graphite for the positive electrode (intercalation-deinter). It is a power storage device that uses the principle of cullation). For example, activated carbon is used for the negative electrode and graphite is used for the positive electrode.
 ここで、本発明の「デュアルイオンバッテリ」とは、負極にリチウムイオンを挿入脱離(インターカレーション-ディインターカレーション)させる原理を用い、正極も黒鉛への電解質アニオンの挿入脱離(インターカレーション-ディインターカレーション)させる原理を用いた蓄電デバイスである。「ハイブリッドキャパシタ」も「デュアルイオンバッテリ」も、電解質のアニオンとカチオンが、充電時には正極及び負極へ挿入あるいは吸着し、放電時には脱離あるいは放出される蓄電デバイスである。これは、リチウムイオン電池のように正極中にリチウムイオンが充放電中に移動する原理とは異なるものである。より具体的には、リチウムイオン電池は充電時に正極中のリチウムイオンが負極へ移動(リチウムイオン挿入反応)され、放電(リチウムイオン脱離反応)されるものである。 Here, the "dual ion battery" of the present invention uses the principle of inserting and desorbing lithium ions into the negative electrode (intercalation-deintercalation), and the positive electrode also inserts and desorbs the electrolyte anion into graphite (intercalation). It is a power storage device that uses the principle of curation-deintercalation). Both the "hybrid capacitor" and the "dual ion battery" are storage devices in which the anions and cations of the electrolyte are inserted or adsorbed into the positive electrode and the negative electrode during charging, and desorbed or released during discharge. This is different from the principle that lithium ions move in the positive electrode during charging and discharging as in a lithium ion battery. More specifically, in a lithium ion battery, lithium ions in the positive electrode are moved to the negative electrode (lithium ion insertion reaction) and discharged (lithium ion desorption reaction) during charging.
 本発明の蓄電デバイス電極用集電体は、後述の製造方法で得られたものであることが好ましい。 The current collector for the electrode of the power storage device of the present invention is preferably obtained by the manufacturing method described later.
<アルミニウム材>
 基材であるアルミニウム材としては、一般的に集電体用途で使用されるアルミニウム材を用いることができる。
 アルミニウム材の形状としては、箔、シート、フィルム、メッシュなどの形態をとることができる。集電体としては、アルミニウム箔を好適に用いることができる。
 また、アルミニウム材としてプレーンなものの他、後述するエッチドアルミニウムを用いてもよい。
<Aluminum material>
As the aluminum material as the base material, an aluminum material generally used for current collector applications can be used.
The shape of the aluminum material can be a foil, a sheet, a film, a mesh, or the like. Aluminum foil can be preferably used as the current collector.
Further, in addition to a plain aluminum material, etched aluminum described later may be used.
 アルミニウム材が箔、シートまたはフィルムである場合の厚みについては、特に限定されないが、セル自体のサイズが同じ場合、薄いほどセルケースに入れる活物質を多く封入できるというメリットはあるが、強度が低下するため、適正な厚みを選択する。実際の厚みとしては、10μm~40μmが好ましく、15μm~30μmがより好ましい。厚みが10μm未満の場合、アルミニウム材の表面を粗面化する工程、または、他の製造工程中において、アルミニウム材の破断または亀裂を生じるおそれがある。 The thickness when the aluminum material is a foil, sheet or film is not particularly limited, but if the size of the cell itself is the same, the thinner the aluminum material, the more active material can be enclosed in the cell case, but the strength is reduced. Therefore, select an appropriate thickness. The actual thickness is preferably 10 μm to 40 μm, more preferably 15 μm to 30 μm. If the thickness is less than 10 μm, the aluminum material may be broken or cracked during the step of roughening the surface of the aluminum material or another manufacturing process.
 アルミニウム材として、エッチドアルミニウムを用いてもよい。
 エッチドアルミニウムは、エッチングによって粗面化処理されたものである。エッチングは一般的に塩酸等の酸溶液に浸漬(化学エッチング)したり、塩酸等の酸溶液中でアルミニウムを陽極として電解(電気化学エッチング)する方法等が用いられる。電気化学エッチングでは、電解の際の電流波形、溶液の組成、温度等によりエッチング形状が異なるので、蓄電デバイス性能の観点で選択できる。
Etched aluminum may be used as the aluminum material.
Etched aluminum is roughened by etching. For etching, a method of immersing in an acid solution such as hydrochloric acid (chemical etching) or electrolysis (electrochemical etching) using aluminum as an anode in an acid solution such as hydrochloric acid is generally used. In electrochemical etching, the etching shape differs depending on the current waveform during electrolysis, the composition of the solution, the temperature, and the like, so it can be selected from the viewpoint of the performance of the power storage device.
 アルミニウム材は、表面に不動態層を備えているもの、備えていないもののいずれも用いることができる。アルミニウム材は、その表面に自然酸化膜である不動態膜が形成されている場合、非晶質炭素被膜層をこの自然酸化膜の上に設けてもよいし、自然酸化膜を例えば、アルゴンスパッタリングにより除去した後に設けてもよい。
 アルミニウム材上の自然酸化膜は不動態膜であり、それ自体、電解液に浸食されにくいという利点がある一方、集電体の抵抗の増大につながるため、集電体の抵抗の低減の観点では、自然酸化膜がない方が好ましい。
As the aluminum material, either one having a passivation layer on the surface or one having no passivation layer can be used. When a passivation film which is a natural oxide film is formed on the surface of the aluminum material, an amorphous carbon film layer may be provided on the natural oxide film, or the natural oxide film may be provided, for example, argon sputtering. It may be provided after being removed by.
The natural oxide film on the aluminum material is a passivation film and has the advantage that it is not easily eroded by the electrolytic solution, but it leads to an increase in the resistance of the current collector, so from the viewpoint of reducing the resistance of the current collector. , It is preferable that there is no natural oxide film.
<非晶質炭素被膜>
 本明細書において、用語としての「非晶質炭素被膜」とは、非晶質(アモルファス構造)の炭素膜または水素化炭素膜である。通常、sp結合炭素及びsp結合炭素を一定の比率で含む。本発明の蓄電デバイス電極用集電体に用いる非晶質炭素被膜(今後、「本発明の非晶質炭素被膜」をいう)は、sp結合炭素及びsp結合炭素の総量に対するsp結合炭素の比率(sp/(sp+sp)比率とも呼ぶ)が0.35以上であることを特徴とする。なお、(sp/(sp+sp))比率は、X線吸収微細構造(XAFS)法で測定したものである。sp/(sp+sp)比率が0.40以上であることが好ましい。
 また、高い耐薬品性を維持しつつ、より高い導電性を得ることができ、さらにsp比率が高い方が柔らかくなり活物質層との密着性が高まる等の観点から、sp/(sp+sp)比率は、0.6以下であることが好ましく、0.5以下であることがより好ましい。
 本発明の非晶質炭素被膜を有する蓄電デバイス電極用集電体(今後、「本発明の蓄電デバイス電極用集電体」をいう)を用いる蓄電デバイスは、高エネルギー密度を維持しつつ、出力特性を向上させることができる。特に、黒鉛活物質からなる正極の集電体として、本発明の蓄電デバイス電極用集電体を用いる蓄電デバイスは、高エネルギー密度を維持しつつ、出力特性をさらに向上させることができるため、好適である。
<Amorphous carbon film>
In the present specification, the term "amorphous carbon film" is an amorphous (amorphous structure) carbon film or a hydrogenated carbon film. It usually contains sp 2- bonded carbon and sp 3- bonded carbon in a constant ratio. The amorphous carbon film (hereinafter referred to as “the amorphous carbon film of the present invention”) used in the current collector for the power storage device electrode of the present invention is sp 2 bonded to the total amount of sp 2 bonded carbon and sp 3 bonded carbon. The carbon ratio (also referred to as sp 2 / (sp 3 + sp 2 ) ratio) is 0.35 or more. The (sp 2 / (sp 3 + sp 2 )) ratio was measured by the X-ray absorption fine structure (XAFS) method. The sp 2 / (sp 3 + sp 2 ) ratio is preferably 0.40 or more.
Further, from the viewpoint that higher conductivity can be obtained while maintaining high chemical resistance, and the higher the sp 2 ratio, the softer the material and the better the adhesion to the active material layer, sp 2 / (sp) The 3 + sp 2 ) ratio is preferably 0.6 or less, more preferably 0.5 or less.
The current collector using the current collector for the electrode of the power storage device having the amorphous carbon film of the present invention (hereinafter referred to as "the current collector for the electrode of the power storage device of the present invention") outputs while maintaining a high energy density. The characteristics can be improved. In particular, a current collector using the current collector for the electrode of the power storage device of the present invention as a positive current collector made of a graphite active material is suitable because the output characteristics can be further improved while maintaining a high energy density. Is.
 ここで、XAFS法について説明する。
 一般的に、各元素は、内殻電子の結合エネルギーに相当するエネルギーのX線を強く吸収するという性質を持っている。ここで、物質においてX線の吸収係数が大きく上昇する部分を吸収端といい、この吸収端に相当するX線のエネルギーをX線吸収端エネルギーという。各元素は異なる内殻電子の結合エネルギーを持ち、それより大きいエネルギーを持つX線が照射されると、内殻電子の放出にともないX線の吸収係数が上昇する。そのため、ある元素についてX線吸収スペクトルを測定し、吸収端を観測することで、その元素の周囲の環境・構造を反映したX線吸収微細構造(XAFS振動)の情報が得られる。このXAFS振動を解析することにより着目する元素の周囲の局所構造を知ることができる。さらに、元素の電子状態の変化により吸収端の位置がシフトすることが知られており、吸収端を比較することで着目する元素の価数を知ることができる。XAFS法を用いて、上記で説明したような試料中の平均的なX線吸収スペクトルを得るための測定方法は、透過法と蛍光収量法とがある。透過法は、試料にX線を照射した際に、試料の前後のX線強度を計測して直接X線吸収量を測定する方法である。蛍光収量法は、試料にX線を照射した際に、X線を吸収して励起した原子から放出される蛍光X線を測定する方法である。どちらの方法を用いても、対象元素の局所構造や価数を解析して同様の結果を得ることができる。
Here, the XAFS method will be described.
In general, each element has a property of strongly absorbing X-rays having an energy corresponding to the binding energy of inner-shell electrons. Here, the portion of the substance in which the X-ray absorption coefficient greatly increases is referred to as an absorption end, and the X-ray energy corresponding to this absorption end is referred to as the X-ray absorption edge energy. Each element has different binding energies of inner-shell electrons, and when irradiated with X-rays having a higher energy, the absorption coefficient of X-rays increases with the emission of inner-shell electrons. Therefore, by measuring the X-ray absorption spectrum of a certain element and observing the absorption edge, information on the X-ray absorption fine structure (XAFS vibration) reflecting the environment and structure around the element can be obtained. By analyzing this XAFS vibration, the local structure around the element of interest can be known. Further, it is known that the position of the absorption edge shifts due to the change in the electronic state of the element, and the valence of the element of interest can be known by comparing the absorption edges. There are a transmission method and a fluorescence yield method as a measurement method for obtaining an average X-ray absorption spectrum in a sample as described above by using the XAFS method. The transmission method is a method of directly measuring the amount of X-ray absorption by measuring the X-ray intensity before and after the sample when the sample is irradiated with X-rays. The fluorescence yield method is a method of measuring fluorescent X-rays emitted from atoms that are excited by absorbing X-rays when the sample is irradiated with X-rays. With either method, the local structure and valence of the target element can be analyzed and similar results can be obtained.
 XAFSは、吸収端から50eV程度の領域に現れる吸収端近傍X線吸収微細構造(NEXAFS:Near Edge X-ray Absorption Fine Structure、またはXANES:X-ray Absorption Near Edge Structure)と、それ以上のエネルギーで現れる広域X線吸収微細構造(EXAFS: Extended X-ray Absorption Fine Structure)に分けられる。一方、吸収端から50eVくらいの範囲にある領域で現れるNEXAFSのピークは内殻電子が空軌道非占有軌道に遷移するエネルギーに対応し、着目元素の価数や配位構造等に依存したスペクトル構造を取る。このように空軌道への励起を観測できるのがNEXAFSの特徴である。本出願のXAFS測定法は、後述するように高い精度でダイヤモンドライクカーボン(DLC)膜のsp2/(sp+sp)比率を決定できるため、NEXAFSを用いる。 XAFS is an X-ray absorption fine structure near the absorption edge that appears in the region of about 50 eV from the absorption edge (NEXAFS: Near Edge X-ray Absorption Fine Structure, or XANES: X-ray Absorption Near Edge Energy, More than that). It is divided into the wide-area X-ray absorption microstructure (EXAFS: Extended X-ray Absorption Fine Structure) that appears. On the other hand, the peak of NEXAFS appearing in the region in the range of about 50 eV from the absorption edge corresponds to the energy of transition of the inner shell electron to the empty orbital unoccupied orbital, and the spectral structure depends on the valence and coordination structure of the element of interest. I take the. It is a feature of NEXAFS that the excitation to the empty orbit can be observed in this way. In the XAFS measurement method of the present application, NEXAFS is used because the sp 2 / (sp 2 + sp 3 ) ratio of the diamond-like carbon (DLC) film can be determined with high accuracy as described later.
 図1に一般的なDLC膜の炭素原子K端NEXAFSスペクトルを示す。炭素のイオン化エネルギーは295eVであるので、このエネルギーより高いエネルギーでは直接光イオン化で生じた光電子が含まれる。図1のDirect ionizationと示した部分には光電子とその後続反応である正常オージェ電子、及びそれらに起因して放出される2次電子が含まれる。290~310eVに存在するブロードなピークはC1s->σ共鳴オージェ電子放出過程に由来するオージェ電子及びそれに起因して放出される2次電子を反映している。285.4eV付近に観測されるピークは1s→π*共鳴オージェ電子放出過程に由来するオージェ電子及びそれに起因して放出される2次電子を反映している。NEXAFS測定法において、1s→π*離して観測することで、sp/(sp+sp)比率を高い精度で決定できる。実際には定めた領域の吸収強度の積分値(Iall)と1s→π*のピーク面積(Iπ*)の比(Iπ*/Iallを算出し、sp組成が100%であるHOPGのIπ*/Iallと比較してsp/(sp+sp)比率を決定する。詳細な測定方法及び解析方法については実施例に記載する。 FIG. 1 shows a carbon atom K-end NEXAFS spectrum of a general DLC film. Since the ionization energy of carbon is 295 eV, photoelectrons generated by direct photoionization are included in the energy higher than this energy. The portion shown as Direct ionization in FIG. 1 includes photoelectrons, normal Auger electrons which are subsequent reactions thereof, and secondary electrons emitted by them. The broad peaks present at 290 to 310 eV reflect Auger electrons derived from the C1s-> σ * resonant Auger electron emission process and secondary electrons emitted thereby. The peak observed near 285.4 eV reflects Auger electrons derived from the 1s → π * resonance Auger electron emission process and secondary electrons emitted due to it. In the NEXAFS measurement method, the sp 2 / (sp 2 + sp 3 ) ratio can be determined with high accuracy by observing at a distance of 1s → π *. Actually, the ratio (I π * / I all ) of the integrated value (I all ) of the absorption intensity in the defined region and the peak area (I π * ) of 1s → π * is calculated, and the sp 2 composition is 100%. The sp 2 / (sp 2 + sp 3 ) ratio is determined in comparison with I π * / I all of HOPG. Detailed measurement methods and analysis methods are described in Examples.
 sp/(sp+sp)比率が0.35以上の本発明の非晶質炭素被膜は、例えば、ダイヤモンドライクカーボン(DLC)膜、カーボン硬質膜、アモルファスカーボン(a-C)膜、水素化アモルファスカーボン(a-C:H)膜等を含む。 The amorphous carbon film of the present invention having an sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more is, for example, a diamond-like carbon (DLC) film, a carbon hard film, an amorphous carbon (a-C) film, or hydrogen. Includes a modified amorphous carbon (AC: H) film and the like.
 例示した非晶質炭素被膜の材料のうち、ダイヤモンドライクカーボン(DLC)膜であることが好ましい。ダイヤモンドライクカーボンは、ダイヤモンド結合(sp)とグラファイト結合(sp)の両方が混在したアモルファス構造を有する材料であり、高い耐薬品性を有する。XAFS法で測定したsp/(sp+sp)比率が0.35以上である本発明の非晶質炭素被膜は、黒鉛構造が発達したDLC膜であることが好ましい。
 また、集電体の被膜に用いるには導電性を高めるため、ホウ素や窒素をドーピングすることができる。
Among the materials of the amorphous carbon film exemplified, a diamond-like carbon (DLC) film is preferable. Diamond-like carbon is a material having an amorphous structure in which both diamond bonds (sp 3 ) and graphite bonds (sp 2 ) are mixed, and has high chemical resistance. The amorphous carbon film of the present invention having an sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more measured by the XAFS method is preferably a DLC film having a developed graphite structure.
Further, for use in a coating of a current collector, boron or nitrogen can be doped in order to increase conductivity.
 非晶質炭素被膜の厚みは60nm以上、300nm以下であることが好ましい。非晶質炭素被膜の厚みは、60nm未満であると薄すぎて非晶質炭素被膜の被覆効果が小さくなり、定電流定電圧連続充電試験での集電体の腐食を十分抑制できない。また、非晶質炭素被膜の厚みは、300nmを超えて厚すぎると非晶質炭素被膜が抵抗体となって活物質層との間の抵抗が高くなるので、適正な厚みを適宜選択する。非晶質炭素被膜の厚みは80nm以上、300nm以下であればより好ましく、120nm以上、300nm以下であればさらに好ましい。 The thickness of the amorphous carbon film is preferably 60 nm or more and 300 nm or less. If the thickness of the amorphous carbon film is less than 60 nm, the thickness of the amorphous carbon film is too thin and the coating effect of the amorphous carbon film becomes small, and corrosion of the current collector in the constant current constant voltage continuous charging test cannot be sufficiently suppressed. If the thickness of the amorphous carbon film exceeds 300 nm and is too thick, the amorphous carbon film becomes a resistor and the resistance between the amorphous carbon film and the active material layer increases. Therefore, an appropriate thickness is appropriately selected. The thickness of the amorphous carbon film is more preferably 80 nm or more and 300 nm or less, and further preferably 120 nm or more and 300 nm or less.
 本発明の一実施形態の蓄電デバイスの集電体はアルミニウム材の表面に非晶質炭素被膜を有するので、アルミニウム材が電解液に接することを阻止して、電解液による集電体の腐食を防止することができる。また、X線吸収微細構造(XAFS)法で測定したsp/(sp+sp)比率が0.35以上である本発明の非晶質炭素被膜であるため、一定の導電性を有し、高エネルギー密度を維持しつつ、出力特性が向上される。 Since the current collector of the power storage device according to the embodiment of the present invention has an amorphous carbon film on the surface of the aluminum material, it prevents the aluminum material from coming into contact with the electrolytic solution and causes corrosion of the current collector by the electrolytic solution. Can be prevented. Further, since it is the amorphous carbon film of the present invention in which the sp 2 / (sp 3 + sp 2 ) ratio measured by the X-ray absorption fine structure (XAFS) method is 0.35 or more, it has a certain conductivity. The output characteristics are improved while maintaining high energy density.
 本発明の非晶質炭素被膜は、後述の製造方法で得られたものが好ましい。例えば、加熱処理温度が400℃以上、好ましく500℃以上である後述の製造方法で得られたものが好ましい。また、本発明の非晶質炭素被膜を含む蓄電デバイス電極用集電体、例えば、DLC膜を有するアルミニウム箔(今後、「DLCコートAl箔」をいう)の量産化の観点より、非晶質炭素被膜(DLC膜)をロールツーロール法で行う場合、成膜しながら温度を高くする加熱処理工程を行うと、皺が生じやすくなる課題がある。そこで、鋭意検討した結果、例えば、室温などで成膜工程の後に、成膜工程で得られた非晶質炭素被膜(未加熱処理のDLC膜)に対して、400℃以上、好ましく500℃以上で加熱処理を行う製造方法がより好ましい。この製造方法で得られた本発明の非晶質炭素被膜(加熱処理後のDLC膜)は、sp/(sp+sp)比率が0.35以上となるためである。 The amorphous carbon film of the present invention is preferably obtained by the production method described later. For example, those obtained by the production method described below having a heat treatment temperature of 400 ° C. or higher, preferably 500 ° C. or higher are preferable. Further, from the viewpoint of mass production of a current collector for a power storage device electrode containing an amorphous carbon film of the present invention, for example, an aluminum foil having a DLC film (hereinafter referred to as "DLC coated Al foil"), it is amorphous. When the carbon film (DLC film) is formed by the roll-to-roll method, there is a problem that wrinkles are likely to occur if the heat treatment step of raising the temperature while forming the film is performed. Therefore, as a result of diligent studies, for example, after the film forming step at room temperature or the like, the amorphous carbon film (DLC film which has not been heat-treated) obtained in the film forming step is 400 ° C. or higher, preferably 500 ° C. or higher. A production method in which heat treatment is performed in the above is more preferable. This is because the amorphous carbon film (DLC film after heat treatment) of the present invention obtained by this production method has a sp 2 / (sp 3 + sp 2 ) ratio of 0.35 or more.
<導電性炭素層>
 本発明の一実施形態の蓄電デバイス電極用集電体は、非晶質炭素被膜と正極活物質との間、もしくは非晶質炭素被膜と負極活物質との間に、さらに、導電性炭素層が形成されていることが好ましい。例えば従来の蓄電デバイスで用いられる活性炭負極に比べて、より卑な電極電位に長くさらされるので、導電性炭素層の厚みは5μm以下であれば好ましく、3μm以下であればより好ましい。厚みが5μmを超えると、セルや電極になったとき、エネルギー密度が小さくなるからである。導電性炭素層の材料としては、導電性が高い炭素ならば種類を問わないが、導電性が高い炭素として黒鉛が含まれていることが好ましく、黒鉛のみであればより好ましい。
<Conductive carbon layer>
The current collector for the electrode of the power storage device according to the embodiment of the present invention has a conductive carbon layer between the amorphous carbon film and the positive electrode active material, or between the amorphous carbon film and the negative electrode active material. Is preferably formed. For example, the thickness of the conductive carbon layer is preferably 5 μm or less, and more preferably 3 μm or less, because it is exposed to a lower electrode potential for a longer time than the activated carbon negative electrode used in a conventional power storage device. This is because if the thickness exceeds 5 μm, the energy density becomes small when it becomes a cell or an electrode. The material of the conductive carbon layer may be any kind as long as it is carbon having high conductivity, but it is preferable that graphite is contained as carbon having high conductivity, and more preferably graphite alone.
 導電性炭素層の材料の粒径は、活物質である黒鉛等の大きさに比べて1/10以下であることが好ましい。これは、粒径がこの範囲にあれば、導電性炭素層と活物質層が接する界面での接触性が高くなり、界面(接触)抵抗を低減できるからである。具体的には導電性炭素層の炭素材料の粒径が、1μm以下であれば好ましく、0.5μm以下であればより好ましい。
 導電性炭素層を備えることにより、非晶質炭素被膜にピンホールがある場合でも、そのピンホールを封孔して、アルミニウム材が電解液に接することを阻止して、電解液による集電体の腐食を防止することができる。
 また、導電性炭素層を備えることにより、集電体を被覆する非晶質炭素被膜と正極活物質、又は非晶質炭素被膜と負極活物質との接触抵抗を低減し、放電率を高め、出力特性を高めるとともに高温耐久性を高めることができる。
The particle size of the material of the conductive carbon layer is preferably 1/10 or less of the size of graphite or the like as an active material. This is because if the particle size is within this range, the contact property at the interface where the conductive carbon layer and the active material layer are in contact is increased, and the interface (contact) resistance can be reduced. Specifically, the particle size of the carbon material of the conductive carbon layer is preferably 1 μm or less, and more preferably 0.5 μm or less.
By providing the conductive carbon layer, even if there are pinholes in the amorphous carbon film, the pinholes are sealed to prevent the aluminum material from coming into contact with the electrolytic solution, and the current collector by the electrolytic solution is provided. Corrosion can be prevented.
Further, by providing the conductive carbon layer, the contact resistance between the amorphous carbon film covering the current collector and the positive electrode active material or the amorphous carbon film and the negative electrode active material is reduced, and the discharge rate is increased. The output characteristics can be improved and the high temperature durability can be improved.
 また、導電性炭素層を形成する際、溶媒と共にバインダーを加えて塗料化し、DLCコーティングしたアルミニウム箔上に塗布する。塗布方法としては、スクリーン印刷、グラビア印刷、コンマコーター(登録商標)、スピンコーター等を用いることができる。バインダーとしては、セルロース、アクリル、ポリビニルアルコール、熱可塑性樹脂、ゴム、有機樹脂を用いることができる。熱可塑性樹脂としてはポリエチレンやポリプロピレン、ゴムとしてはSBR(スチレンーブタジエンラバー)やEPDM、有機樹脂としてはフェノール樹脂やポリイミド樹脂等を用いることができる。 Also, when forming a conductive carbon layer, a binder is added together with a solvent to make a paint, and the coating is applied onto a DLC-coated aluminum foil. As a coating method, screen printing, gravure printing, a comma coater (registered trademark), a spin coater, or the like can be used. As the binder, cellulose, acrylic, polyvinyl alcohol, thermoplastic resin, rubber, or organic resin can be used. Polyethylene or polypropylene can be used as the thermoplastic resin, SBR (styrene-butadiene rubber) or EPDM can be used as the rubber, and phenol resin or polyimide resin can be used as the organic resin.
 導電性炭素層は、粒子間の隙間が少なく、接触抵抗が低い方が好ましい。また、上記の導電性炭素層を形成するためのバインダーを溶かすための溶剤としては、水溶液と有機溶剤の2種類がある。電極活物質層を形成するためのバインダーが有機溶剤に溶解するものであれば、導電性炭素層には水溶液に溶解するバインダーを用いるのが好ましい。逆に電極活物質層を形成するためのバインダーが水溶液の場合は導電性炭素層には有機溶剤に溶解するバインダーを用いるのが好ましい。これは同種の溶剤を電極活物質層と導電性炭素層に用いると、電極活物質層を塗布する際に導電性炭素層のバインダーが溶けやすく、不均一になりやすいからである。 The conductive carbon layer preferably has few gaps between particles and low contact resistance. Further, there are two types of solvents for dissolving the binder for forming the conductive carbon layer, an aqueous solution and an organic solvent. If the binder for forming the electrode active material layer is one that dissolves in an organic solvent, it is preferable to use a binder that dissolves in an aqueous solution for the conductive carbon layer. On the contrary, when the binder for forming the electrode active material layer is an aqueous solution, it is preferable to use a binder that dissolves in an organic solvent for the conductive carbon layer. This is because when the same type of solvent is used for the electrode active material layer and the conductive carbon layer, the binder of the conductive carbon layer tends to dissolve and become non-uniform when the electrode active material layer is applied.
(蓄電デバイス電極用集電体の製造方法)
 本発明の蓄電デバイス電極用集電体の製造方法は、アルミニウム材に非晶質炭素被膜を形成する成膜工程と、非晶質炭素被膜を400℃以上の温度で加熱処理する加熱処理工程とを含むことを特徴とする。成膜工程及び加熱処理工程の順序は任意であってもよい。例えば、成膜工程と加熱処理工程とが同時に進行する製造方法(直接成膜法ともいうことがある。)、あるいは、成膜工程の後に、加熱処理工程を行う製造方法(後加熱処理成膜法ともいうことがある。)のいずれも可能である。加熱処理工程の処理温度は、300℃以上が好ましく、また、600℃以下であることが好ましく、500℃以下であることがより好ましい。加熱温度を高くする方がsp/(sp+sp)比率が高くなり、抵抗が小さくなるので好ましい。一方、基材のアルミニウムの融点は660℃である。融点に近づくほどアルミニウム材が軟化し易くなり、アルミニウム材に皺が入り、基材の平坦性がなくなるので、皺が入りにくい温度が上限値となる。なお、他の金属やアルミニウム合金を基材として用いた場合の上限温度は異なり、各々の融点以下で基材の皺が発生しない温度が上限温度となる。
(Manufacturing method of current collector for power storage device electrode)
The method for producing a current collector for a power storage device electrode of the present invention includes a film forming step of forming an amorphous carbon film on an aluminum material and a heat treatment step of heat-treating the amorphous carbon film at a temperature of 400 ° C. or higher. It is characterized by including. The order of the film forming step and the heat treatment step may be arbitrary. For example, a manufacturing method in which a film forming step and a heat treatment step proceed at the same time (sometimes referred to as a direct film forming method), or a manufacturing method in which a heat treatment step is performed after the film forming step (post-heat treatment film forming). It may also be called a law.) Any of these is possible. The treatment temperature in the heat treatment step is preferably 300 ° C. or higher, preferably 600 ° C. or lower, and more preferably 500 ° C. or lower. It is preferable to raise the heating temperature because the sp 2 / (sp 3 + sp 2 ) ratio becomes higher and the resistance becomes smaller. On the other hand, the melting point of aluminum as a base material is 660 ° C. The closer to the melting point, the easier it is for the aluminum material to soften, the aluminum material becomes wrinkled, and the base material loses its flatness. Therefore, the temperature at which wrinkles are unlikely to occur becomes the upper limit. The upper limit temperature when another metal or aluminum alloy is used as the base material is different, and the upper limit temperature is the temperature at which wrinkles do not occur on the base material below the respective melting points.
 成膜工程と加熱処理工程とが同時に進行する製造方法(直接成膜法)とは、アルミニウム材に非晶質炭素被膜を形成しながら、同じ雰囲気において、例えば、アルミニウム材などを400℃以上に加熱処理する方法である。 A manufacturing method in which the film forming process and the heat treatment process proceed at the same time (direct film forming method) is a method in which an amorphous carbon film is formed on an aluminum material and the temperature of the aluminum material is increased to 400 ° C. or higher in the same atmosphere. This is a heat treatment method.
 成膜工程の後に、加熱処理工程を行う製造方法(後加熱処理成膜法)とは、アルミニウム材に非晶質炭素被膜を形成してから、非晶質炭素被膜が形成されているアルミニウム材などを400℃以上に加熱処理する方法である。加熱処理の雰囲気は、例えば、原料ガスを供給しない雰囲気、好ましくアルゴン雰囲気であってもよい。成膜工程で得られた非晶質炭素被膜を有するアルミニウム材を、成膜工程と異なる別の容器において、例えば、窒素、アルゴンなどの雰囲気で400℃以上に加熱処理する方法である。その際、成膜工程の処理温度は、200℃未満であることが好ましく、100℃以下であることがより好ましく、50℃以下であることがさらに好ましい。室温であることがもっとも好ましい。 A manufacturing method in which a heat treatment step is performed after a film forming step (post-heat treatment film forming method) is an aluminum material in which an amorphous carbon film is formed on an aluminum material and then an amorphous carbon film is formed. This is a method of heat-treating or the like to 400 ° C. or higher. The atmosphere of the heat treatment may be, for example, an atmosphere in which the raw material gas is not supplied, preferably an argon atmosphere. This is a method in which an aluminum material having an amorphous carbon film obtained in a film forming step is heat-treated at 400 ° C. or higher in an atmosphere different from that in the film forming step, for example, in an atmosphere of nitrogen or argon. At that time, the processing temperature in the film forming step is preferably less than 200 ° C., more preferably 100 ° C. or lower, and even more preferably 50 ° C. or lower. Most preferably room temperature.
 本発明の蓄電デバイス電極用集電体の製造方法としては、量産化の観点から、上記後加熱処理成膜法が好ましい。例えば、DLCコートAl箔などの本発明の蓄電デバイス電極用集電体をロールツーロール法で行う場合、上記直接成膜法を用いると、皺が生じやすくなる問題があるからである。 From the viewpoint of mass production, the post-heat treatment film forming method is preferable as the method for manufacturing the current collector for the electrode of the power storage device of the present invention. For example, when the current collector for the electrode of the power storage device of the present invention such as the DLC coated Al foil is carried out by the roll-to-roll method, there is a problem that wrinkles are likely to occur when the direct film forming method is used.
 非晶質炭素被膜の成膜方法としては、炭化水素系ガスを用いたプラズマCVD法、スパッタ蒸着法、イオンプレーティング法、真空アーク蒸着法等の公知の方法を用いることができる。炭化水素系ガスを用いたプラズマCVD法が好ましい。なお、非晶質炭素被膜は、集電体として機能する程度の導電性を有することが好ましい。
 炭化水素系ガスを用いたプラズマCVD法によって非晶質炭素被膜を成膜した場合、非晶質炭素被膜の厚みはアルミニウム材へ注入するエネルギー、具体的には印加電圧、印加時間、温度で制御することができる。
As a method for forming the amorphous carbon film, a known method such as a plasma CVD method using a hydrocarbon gas, a sputtering vapor deposition method, an ion plating method, or a vacuum arc vapor deposition method can be used. A plasma CVD method using a hydrocarbon gas is preferable. The amorphous carbon film preferably has enough conductivity to function as a current collector.
When an amorphous carbon film is formed by the plasma CVD method using a hydrocarbon gas, the thickness of the amorphous carbon film is controlled by the energy injected into the aluminum material, specifically, the applied voltage, the applied time, and the temperature. can do.
 より具体的には、本発明の蓄電デバイス電極用集電体において、400℃以上の温度で成膜した本発明の非晶質炭素被膜(例えば、DLCコートAl箔)を用いると、XAFS法で測定したsp/(sp+sp)比率が0.35以上になる。黒鉛構造が発達した非晶質炭素被膜(DLC膜)が得られる。また、非晶質炭素被膜(DLCコートAl箔)の量産化の観点より、非晶質炭素被膜(DLCコートAl箔)をロールツーロール法で行う場合、成膜温度を高くすると皺が生じやすくなる課題がある。一方、室温成膜の場合は皺の発生を抑制できるが黒鉛構造が発達しにくい課題があった。その未加熱処理の非晶質炭素被膜(DLCコートAl箔)は、sp/(sp+sp)比率が0.29以下であり、ハイブリッドキャパシタ及びデュアルイオンバッテリ用の電極へ適用した場合、集電体と活物質層の界面抵抗が高くなり、出力特性が低下する恐れがある。そこで、鋭意検討した結果、前述の後加熱処理成膜法において、室温成膜した後、非晶質炭素被膜(DLCコートAl箔)に対して、不活性雰囲気下で400℃以上の加熱処理を行うことで、sp/(sp+sp)比率が0.35以上にできることを見出した。これは400℃以上で成膜を直接行った直接成膜法の場合と同等以上のsp/(sp+sp)であった。得られる非晶質炭素被膜(DLCコートAl箔)を黒鉛からなる正極の集電体として用いることで、出力特性をさらに向上させることができる。 More specifically, in the current collector for the electrode of the power storage device of the present invention, when the amorphous carbon film of the present invention (for example, DLC coated Al foil) formed at a temperature of 400 ° C. or higher is used, the XAFS method can be used. The measured sp 2 / (sp 3 + sp 2 ) ratio is 0.35 or more. An amorphous carbon film (DLC film) having a developed graphite structure can be obtained. Further, from the viewpoint of mass production of the amorphous carbon film (DLC coated Al foil), when the amorphous carbon film (DLC coated Al foil) is performed by the roll-to-roll method, wrinkles are likely to occur when the film forming temperature is raised. There is a problem. On the other hand, in the case of room temperature film formation, the occurrence of wrinkles can be suppressed, but there is a problem that the graphite structure is difficult to develop. The unheated amorphous carbon film (DLC coated Al foil) has a sp 2 / (sp 3 + sp 2 ) ratio of 0.29 or less, and when applied to electrodes for hybrid capacitors and dual ion batteries, The interfacial resistance between the current collector and the active material layer may increase, and the output characteristics may deteriorate. Therefore, as a result of diligent studies, in the above-mentioned post-heat treatment film forming method, after the film was formed at room temperature, the amorphous carbon film (DLC-coated Al foil) was heat-treated at 400 ° C. or higher in an inert atmosphere. It was found that the sp 2 / (sp 3 + sp 2 ) ratio could be 0.35 or more by doing so. This was sp 2 / (sp 3 + sp 2 ) equal to or higher than that in the case of the direct film forming method in which the film was directly formed at 400 ° C. or higher. By using the obtained amorphous carbon film (DLC coated Al foil) as a current collector for a positive electrode made of graphite, the output characteristics can be further improved.
 ロールツーロール法で直接成膜の際に課題であった箔の皺に関しても、本発明の後加熱処理によって防止することができる。これは、ロールツーロール法で直接成膜では成膜温度(成膜時の雰囲気温度)に加えて、プラズマによるエネルギーによってAl箔の温度が高くなることで雰囲気温度以上になることによる影響があった。しかし、本発明の後加熱処理成膜法では、成膜した箔に対して雰囲気温度だけしかかからないので皺の発生を抑制できる。 The wrinkles of the foil, which was a problem in the direct film formation by the roll-to-roll method, can be prevented by the post-heat treatment of the present invention. This is due to the fact that the temperature of the Al foil rises due to the energy of the plasma in addition to the film formation temperature (atmospheric temperature at the time of film formation) in the direct film formation by the roll-to-roll method, which is affected by the temperature exceeding the atmospheric temperature. It was. However, in the post-heat treatment film forming method of the present invention, since only the ambient temperature is applied to the film-formed foil, the occurrence of wrinkles can be suppressed.
(蓄電デバイス)
 本発明の一実施形態に係る蓄電デバイスは、正極と負極とセパレータと電解質とを有する。
 本発明の蓄電デバイスはハイブリッドキャパシタ又はデュアルイオンバッテリであることが好ましい。
(Power storage device)
The power storage device according to an embodiment of the present invention has a positive electrode, a negative electrode, a separator, and an electrolyte.
The power storage device of the present invention is preferably a hybrid capacitor or a dual ion battery.
(ハイブリッドキャパシタ)
 以下、本発明の蓄電デバイスの一実施形態であるハイブリッドキャパシタを詳細に説明する。
(Hybrid capacitor)
Hereinafter, a hybrid capacitor according to an embodiment of the power storage device of the present invention will be described in detail.
 本実施形態のハイブリッドキャパシタの負極側の集電体、正極側の集電体の少なくとも1つは、前述の本発明の蓄電デバイス電極用集電体を用いることが好ましい。正極が黒鉛を含む場合、少なくとも正極側の集電体は、前述の本発明の蓄電デバイス電極用集電体を用いるが好ましい。負極側の集電体及び正極側の集電体のいずれも、前述の本発明の蓄電デバイス電極用集電体を用いることがより好ましい。 It is preferable to use the above-mentioned current collector for the power storage device electrode of the present invention as at least one of the current collector on the negative electrode side and the current collector on the positive electrode side of the hybrid capacitor of the present embodiment. When the positive electrode contains graphite, it is preferable to use the above-mentioned current collector for the power storage device electrode of the present invention as the current collector on the positive electrode side at least. It is more preferable to use the above-mentioned current collector for the power storage device electrode of the present invention for both the current collector on the negative electrode side and the current collector on the positive electrode side.
<正極>
 本実施形態のハイブリッドキャパシタで用いる正極は、集電体(正極側の集電体)とその上に形成されている正極活物質層を含む。正極活物質層は、正極活物質とバインダーと導電材とを含む。
 正極活物質層は主に、正極活物質、バインダー、及び、必要に応じた量の導電材を含むペースト状の正極材料を、正極側の集電体上に塗布し、乾燥して、形成することができる。
<Positive electrode>
The positive electrode used in the hybrid capacitor of the present embodiment includes a current collector (current collector on the positive electrode side) and a positive electrode active material layer formed on the current collector. The positive electrode active material layer contains a positive electrode active material, a binder, and a conductive material.
The positive electrode active material layer is formed by applying a paste-like positive electrode material containing a positive electrode active material, a binder, and an required amount of a conductive material on the current collector on the positive electrode side, and drying the layer. be able to.
[正極活物質]
 本実施形態のハイブリッドキャパシタで用いる正極活物質は、黒鉛を含むものである。黒鉛としては、人造黒鉛、天然黒鉛のいずれも用いることができる。また、天然黒鉛としては鱗片状のものと土状のものが知られている。天然黒鉛は、採掘した原鉱石を粉砕し、浮遊選鉱と呼ばれる選鉱を繰り返すことによって得られる。また、人造黒鉛は例えば、高温度によって炭素材料を焼成する黒鉛化工程を経て製造されるものである。より具体的には例えば、原料のコークスにピッチなどの結合剤を加えて成形し、1300℃付近まで加熱することで一次焼成し、次に一次焼成品をピッチ樹脂に含浸させ、さらに3000℃に近い高温で二次焼成することで得られる。また、黒鉛粒子表面を炭素でコーティングしているものも用いることができる。
[Positive electrode active material]
The positive electrode active material used in the hybrid capacitor of the present embodiment contains graphite. As the graphite, either artificial graphite or natural graphite can be used. Further, as natural graphite, scaly and earth-like graphite are known. Natural graphite is obtained by crushing the mined raw ore and repeating beneficiation called flotation. Further, artificial graphite is produced, for example, through a graphitization step of calcining a carbon material at a high temperature. More specifically, for example, the raw material coke is molded by adding a binder such as pitch, heated to around 1300 ° C. for primary firing, then the primary fired product is impregnated with the pitch resin, and the temperature is further increased to 3000 ° C. It is obtained by secondary firing at a near high temperature. Further, those in which the surface of graphite particles is coated with carbon can also be used.
 黒鉛の結晶構造は大きく分けて、ABABからなる層構造の六方晶と、ABCABCからなる層構造の菱面体晶がある。これらは条件によってそれらの構造単独、あるいは混合状態になるが、いずれの結晶構造のものも混合状態のものも用いることができる。例えば、後述する実施例で用いたイメリス・ジーシー・ジャパン株式会社製KS-6(商品名)の黒鉛は菱面体晶の比率が26%であり、大阪ガスケミカル株式会社製の人造黒鉛であるメソカーボンマイクロビーズ(MCMB)は菱面体晶の比率0%である。 The crystal structure of graphite is roughly divided into hexagonal crystals with a layered structure consisting of ABAB and rhombohedral crystals with a layered structure consisting of ABCABC. Depending on the conditions, these structures may be in a single state or in a mixed state, but any crystal structure or a mixed state can be used. For example, the graphite of KS-6 (trade name) manufactured by Imerys GC Japan Co., Ltd. used in the examples described later has a rhombohedral crystal ratio of 26%, and is an artificial graphite manufactured by Osaka Gas Chemical Co., Ltd. Carbon microbeads (MCMB) have a ratio of graphite crystals of 0%.
 本発明の他の実施形態で用いている黒鉛は、従来のEDLCで用いられている活性炭とは静電容量の発現メカニズムが異なる。活性炭の場合には、比表面積が大きいことを活かし、その表面に電解質イオンが吸脱着することにより、静電容量を発現するものである。これに対して黒鉛の場合は、その層間において、電解質イオンであるアニオンが挿入脱離(インターカレーション-ディインターカレーション)することにより、静電容量を発現するものである。このような違いから、本実施形態に係る黒鉛を用いる蓄電デバイスは、特許文献3においては広義の意味で電気二重層キャパシタと呼んでいたが、ハイブリッドキャパシタと呼ぶことができ、電気二重層を有する活性炭を用いるEDLCと区別されるものである。 The graphite used in other embodiments of the present invention has a different capacitance expression mechanism from the activated carbon used in the conventional EDLC. In the case of activated carbon, taking advantage of its large specific surface area, electrolyte ions are adsorbed and desorbed on the surface of the activated carbon to develop capacitance. On the other hand, in the case of graphite, the capacitance is developed by inserting and desorbing (intercalation-deintercalation) an anion which is an electrolyte ion between the layers. From such a difference, the electricity storage device using graphite according to the present embodiment was called an electric double layer capacitor in a broad sense in Patent Document 3, but can be called a hybrid capacitor and has an electric double layer. It is distinguished from EDLC using activated carbon.
[正極側の集電体]
 本実施形態のハイブリッドキャパシタで用いる正極側の集電体は、耐食性を向上させたアルミニウム材である非晶質炭素被膜で被覆されたアルミニウム材を用いることが好ましく、本発明の蓄電デバイス電極用集電体を用いることがより好ましい。
 正極側の集電体はさらに、非晶質炭素被膜と正極活物質との間に導電性炭素層が形成されていることが好ましい。
[Current collector on the positive electrode side]
As the current collector on the positive electrode side used in the hybrid capacitor of the present embodiment, it is preferable to use an aluminum material coated with an amorphous carbon film which is an aluminum material having improved corrosion resistance, and the current collector for the storage device electrode of the present invention. It is more preferable to use an electric body.
Further, it is preferable that the current collector on the positive electrode side has a conductive carbon layer formed between the amorphous carbon film and the positive electrode active material.
<負極>
 本実施形態のハイブリッドキャパシタで用いる負極は、集電体(負極側の集電体)とその上に形成されている負極活物質層を含む。負極活物質層は、負極活物質とバインダーと導電材とを含む。
 負極活物質層は主に、負極活物質、バインダー、及び、必要に応じた量の導電材を含むペースト状の負極材料を、負極側の集電体上に塗布し、乾燥して、形成することができる。
<Negative electrode>
The negative electrode used in the hybrid capacitor of the present embodiment includes a current collector (current collector on the negative electrode side) and a negative electrode active material layer formed on the current collector. The negative electrode active material layer contains a negative electrode active material, a binder, and a conductive material.
The negative electrode active material layer is formed by applying a paste-like negative electrode material containing a negative electrode active material, a binder, and an required amount of a conductive material on the current collector on the negative electrode side, and drying the negative electrode material. be able to.
[負極活物質]
 本実施形態のハイブリッドキャパシタで用いる負極活物質は、耐電圧が高い蓄電デバイスを得るため、電解質イオンであるカチオンを吸脱着できる炭素質材料である。
 負極活物質としては、電解質イオンであるカチオンを吸脱着できる材料を用いることができ、例えば、活性炭、黒鉛、ハードカーボン、及び、ソフトカーボンからなる群から選択された炭素質材料を用いることができる。
[Negative electrode active material]
The negative electrode active material used in the hybrid capacitor of the present embodiment is a carbonaceous material capable of adsorbing and desorbing cations, which are electrolyte ions, in order to obtain a power storage device having a high withstand voltage.
As the negative electrode active material, a material capable of absorbing and desorbing a cation which is an electrolyte ion can be used, and for example, a carbonaceous material selected from the group consisting of activated carbon, graphite, hard carbon, and soft carbon can be used. ..
[負極側の集電体]
 本実施形態のハイブリッドキャパシタで用いる負極側の集電体としては、公知のものを用いることができるが、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材、非晶質炭素被膜で被覆されたアルミニウム材、エッチドアルミニウム、及び、アルミニウム材からなる群から選択されたものを用いることができる。非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材や非晶質炭素被膜で被覆されたアルミニウム材が好ましい。これらのアルミニウム材は耐食性を向上させたアルミニウム材である。これらのアルミニウム材を用いる場合、本発明の蓄電デバイス電極用集電体を用いることができ、ハイブリッドキャパシタを高電圧で作動させたときに、高温耐久性能を向上できる。
 本実施形態のハイブリッドキャパシタは、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材や非晶質炭素被膜で被覆されたアルミニウム材を用いる場合、前述の本発明の蓄電デバイス電極用集電体を用いることが好ましい。
[Current collector on the negative electrode side]
As the current collector on the negative electrode side used in the hybrid capacitor of the present embodiment, a known one can be used, but aluminum in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material. A material selected from the group consisting of a material, an aluminum material coated with an amorphous carbon film, etched aluminum, and an aluminum material can be used. An aluminum material in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material or an aluminum material coated with the amorphous carbon film is preferable. These aluminum materials are aluminum materials having improved corrosion resistance. When these aluminum materials are used, the current collector for the power storage device electrode of the present invention can be used, and the high temperature durability performance can be improved when the hybrid capacitor is operated at a high voltage.
When the hybrid capacitor of the present embodiment uses an aluminum material in which a conductive carbon layer is formed between the amorphous carbon film and the negative electrode active material or an aluminum material coated with the amorphous carbon film, the above-mentioned It is preferable to use the current collector for the storage device electrode of the present invention.
<バインダー>
 本実施形態のハイブリッドキャパシタで用いる電極は、さらにバインダーを含むことが好ましい。
 バインダーとしては、例えば、フッ素樹脂、ゴム、アクリル系樹脂、オレフイン系樹脂、カルボキシメチルセルロース(CMC)系樹脂、天然高分子を用いることができる。フッ素樹脂の例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)が挙げられる。ゴムの例としては、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエンゴムが挙げられる。天然高分子の例としては、ゼラチン、キトサン、アルギン酸が挙げられる。これらのバインダーは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
<Binder>
The electrodes used in the hybrid capacitor of this embodiment preferably further contain a binder.
As the binder, for example, fluororesin, rubber, acrylic resin, olephine resin, carboxymethyl cellulose (CMC) resin, and natural polymer can be used. Examples of the fluororesin include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Examples of rubber include fluororubber, ethylene propylene diene rubber, and styrene butadiene rubber. Examples of natural polymers include gelatin, chitosan and alginic acid. One of these binders may be used alone, or two or more of these binders may be used in combination.
<導電材>
 本実施形態のハイブリッドキャパシタで用いる導電材は、負極活物質層又は正極活物質層の導電性を良好にするものであれば特に限定されず、公知の導電材を用いることができる。例えば、カーボンブラック、炭素繊維を用いることができる。炭素繊維の例としては、カーボンナノチューブ(CNT)、VGCF(登録商標)が挙げられる。カーボンナノチューブは、単層カーボンナノチューブであってもよいし、多層カーボンナノチューブであってもよい。これらの導電材は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
<Conductive material>
The conductive material used in the hybrid capacitor of the present embodiment is not particularly limited as long as it improves the conductivity of the negative electrode active material layer or the positive electrode active material layer, and a known conductive material can be used. For example, carbon black and carbon fiber can be used. Examples of carbon fibers include carbon nanotubes (CNT) and VGCF®. The carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes. One of these conductive materials may be used alone, or two or more of them may be used in combination.
<電解液>
 本実施形態のハイブリッドキャパシタで用いる電解質としては、例えば有機溶媒を用いた有機電解液を用いることができる。電解質イオンを含んでいれば、有機電解液に限らない。また、例えばゲルでもよい。電解液は、電極に吸脱着可能な電解質イオンを含む。電解質イオンは、そのイオン径ができるだけ小さいものの方が好ましい。具体的には、アンモニウム塩やホスホニウム塩、あるいはイオン液体、リチウム塩等を用いることができる。
<Electrolytic solution>
As the electrolyte used in the hybrid capacitor of the present embodiment, for example, an organic electrolytic solution using an organic solvent can be used. As long as it contains electrolyte ions, it is not limited to the organic electrolyte. Further, for example, a gel may be used. The electrolyte contains electrolyte ions that can be attached to and detached from the electrode. It is preferable that the electrolyte ion has an ion diameter as small as possible. Specifically, ammonium salts, phosphonium salts, ionic liquids, lithium salts and the like can be used.
 アンモニウム塩としては、テトラエチルアンモニウム(TEA)塩、トリエチルアンモニウム(TEMA)塩等を用いることができる。また、ホスホニウム塩としては、二つの五員環を持つスピロ化合物等を用いることができる。 As the ammonium salt, tetraethylammonium (TEA) salt, triethylammonium (TEMA) salt and the like can be used. Further, as the phosphonium salt, a spiro compound having two five-membered rings or the like can be used.
 イオン液体としては、その種類は特に問わないが、電解質イオンを移動し易くする観点から、粘度ができる限り低く、また、導電性(導電率)が高い材料が好ましい。イオン液体を構成するカチオンとしては、例えばイミダゾリウムイオン、ピリジニウムイオン等が挙げられる。イミダゾリウムイオンとしては、例えば、1-エチル-3-メチルイミダゾリウム(1-ethyl-3-methylimidazolium)(EMIm)イオン、1-メチル-1-プロピルピロリジニウム(1-methyl-1-propylpyrrolidinium)(MPPy)イオン、1-メチル-1-プロピルピペリジニウム(1-methyl-1-propylpiperidinium)(MPPi)イオン等が挙げられる。また、リチウム塩としては四フッ化ホウ酸リチウムLiBF、六フッ化リン酸リチウムLiPF等を用いることができる。 The type of ionic liquid is not particularly limited, but a material having a viscosity as low as possible and a high conductivity (conductivity) is preferable from the viewpoint of facilitating the movement of electrolyte ions. Examples of the cation constituting the ionic liquid include imidazolium ion and pyridinium ion. Examples of the imidazolium ion include 1-ethyl-3-methylimidazolium (EMIm) ion and 1-methyl-1-propylpyrrolidinium (1-methyl-1-propylpyrrolidinium). Examples thereof include (MPPy) ion, 1-methyl-1-propylpiperidinium (MPPi) ion and the like. Further, as the lithium salt, lithium tetrafluorobolate LiBF 4 , lithium hexafluorophosphate LiPF 6, or the like can be used.
 ピリジニウムイオンとしては、例えば、1-エチルピリジニウム(1-ethylpyridinium)イオン、1-ブチルピリジニウム(1-buthylpyridinium)イオン等が挙げられる。 Examples of the pyridinium ion include 1-ethylpyridinium ion, 1-butylpyridinium ion and the like.
 イオン液体を構成するアニオンとしては、BFイオン、PFイオン、[(CFSON]イオン、FSI(ビス(フルオロスルホニル)イミド、bis(fluorosulfonyl)imide)イオン、TFSI(ビス(トリフルオロメチルスルホニル)イミド、bis(trifluoromethylsulfonyl)imide)イオン等が挙げられる。 Examples of anions constituting the ionic liquid include BF 4 ion, PF 6 ion, [(CF 3 SO 2 ) 2 N] ion, FSI (bis (fluorosulfonyl) imide, bis (fluorosulfonyl) imide) ion, and TFSI (bis Examples thereof include trifluoromethylsulfonyl) imide and bis (trifluoromethyl sulphonyl) ion.
 溶媒としてはアセトニトリルやプロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルスルホン、エチルイソプロピルスルホン、エチルカーボネート、フルオロエチレンカーボネート、γブチロラクトン、スルホラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等を用いることができる。これらの溶媒は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 As the solvent, acetonitrile, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfone, ethyl isopropyl sulfone, ethyl carbonate, fluoroethylene carbonate, γ-butyrolactone, sulfolane, N, N-dimethylformamide, dimethyl sulfoxide and the like are used. Can be done. One of these solvents may be used alone, or two or more of these solvents may be used in combination.
<セパレータ>
 本実施形態のハイブリッドキャパシタで用いるセパレータとしては、正極と負極の短絡防止や電解液保液性の確保等の理由から、セルロース系の紙状セパレータや、ガラス繊維セパレータ、ポリエチレンやポリプロピレンの微多孔膜等が好適である。
<Separator>
The separator used in the hybrid capacitor of the present embodiment includes a cellulosic paper-like separator, a glass fiber separator, and a microporous polyethylene or polypropylene film for the purpose of preventing a short circuit between the positive electrode and the negative electrode and ensuring the electrolyte liquid retention property. Etc. are suitable.
 以上のように、本実施形態のハイブリッドキャパシタは、本発明の非晶質炭素被膜で被覆されたアルミニウム材(本発明の蓄電デバイス電極用集電体)を、黒鉛を含む正極の側の集電体として用いる。このことにより、本実施形態のハイブリッドキャパシタは、高出力化を図り、高エネルギー密度を維持しつつ、出力特性向上を図るものである。
 また、本実施形態のハイブリッドキャパシタに係るその他の実施形態のハイブリッドキャパシタは、本発明の非晶質炭素被膜で被覆されたアルミニウム材(本発明の蓄電デバイス電極用集電体)を、負極側の集電体として用いる。このことにより、本実施形態のハイブリッドキャパシタに係るその他の実施形態のハイブリッドキャパシタは、さらに高出力化を図り、高エネルギー密度を維持しつつ、出力特性をさらに向上したものである。
As described above, in the hybrid capacitor of the present embodiment, the aluminum material coated with the amorphous carbon film of the present invention (the current collector for the electrode of the power storage device of the present invention) is used to collect current on the positive side containing graphite. Used as a body. As a result, the hybrid capacitor of the present embodiment aims to increase the output, maintain a high energy density, and improve the output characteristics.
Further, in the hybrid capacitor of another embodiment according to the hybrid capacitor of the present embodiment, the aluminum material coated with the amorphous carbon film of the present invention (the current collector for the storage device electrode of the present invention) is used on the negative side. Used as a current collector. As a result, the hybrid capacitor of the other embodiment related to the hybrid capacitor of the present embodiment has further improved output characteristics while maintaining high energy density by further increasing the output.
 本発明の非晶質炭素被膜で被覆されたアルミニウム材(本発明の蓄電デバイス電極用集電体)は、黒鉛を含む正極を有するハイブリッドキャパシタの電極用集電体として使用することが好ましい。また、本発明の非晶質炭素被膜で被覆されたアルミニウム材(本発明の蓄電デバイス電極用集電体)は、EDLC等の蓄電デバイスの電極用集電体としても、使用することができる。 The aluminum material coated with the amorphous carbon film of the present invention (the current collector for the power storage device electrode of the present invention) is preferably used as an electrode current collector for a hybrid capacitor having a positive electrode containing graphite. Further, the aluminum material coated with the amorphous carbon film of the present invention (current collector for the electrode of the power storage device of the present invention) can also be used as a current collector for the electrode of the power storage device such as EDLC.
(デュアルイオンバッテリ)
 本発明の蓄電デバイスのその他の実施形態であるデュアルイオンバッテリ(DIB)は、正極側の集電体とその上に形成された正極活物質層とを含む正極と、負極側の集電体とその上に形成された負極活物質層とを含む負極と、を有する。正極活物質は黒鉛を含み、負極活物質はカチオンを吸蔵放出し得る金属酸化物を含む。正極側の集電体及び負極側の集電体は、非晶質炭素被膜で被覆されたアルミニウム材からなる。
(Dual ion battery)
A dual ion battery (DIB), which is another embodiment of the power storage device of the present invention, includes a positive electrode including a positive electrode side current collector and a positive electrode active material layer formed on the positive electrode side current collector, and a negative electrode side current collector. It has a negative electrode including a negative electrode active material layer formed on the negative electrode. The positive electrode active material contains graphite, and the negative electrode active material contains a metal oxide that can occlude and release cations. The current collector on the positive electrode side and the current collector on the negative electrode side are made of an aluminum material coated with an amorphous carbon film.
 以下、本発明の蓄電デバイスのその他の実施形態としてデュアルイオンバッテリを詳細に説明するが、前述のハイブリッドキャパシタと共通する構成については省略する。 Hereinafter, the dual ion battery will be described in detail as another embodiment of the power storage device of the present invention, but the configuration common to the above-mentioned hybrid capacitor will be omitted.
 本実施形態では、負極を従来の蓄電デバイスの活性炭負極から、本実施形態のデュアルイオンバッテリのリチウムを含有する金属酸化物あるいはリチウムを含有しない金属酸化物(以後、単に「MO」とする)としたことによって負極の充放電容量が大きくなった。リチウムを含有する金属酸化物としては、例えば、チタン酸リチウムが挙げられる。従来の蓄電デバイスにおいて負極の活性炭が律速となってエネルギー密度向上を阻んでいた課題を解決した。正極の黒鉛の容量をより使えるようにしたことによって、理論的にはエネルギー密度を高めることができたが、今度は、サイクル寿命特性が低下するという課題が現れた。この課題の原因は、負極にチタン酸リチウムなどのMOを用いると、活性炭を用いた場合の電極電位が斜めに直線状に減少変化するのに比べて、チタン酸リチウムなどのMOの電位曲線が平坦になることである。このため、負極にチタン酸リチウムなどのMOを用いた場合の電位曲線は、活性炭の電位曲線よりも、より卑な電位でさらされる時間が長くなる。これによって、本実施形態のデュアルイオンバッテリの負極側の集電体は、従来の蓄電デバイスの負極側の集電体より溶解し易くなる。この結果、高温耐久性能が低下したり、充放電サイクル寿命特性が低下したりする。この課題に対して、本実施形態の耐食性を高めた集電体を負極側の集電体に用いることで、集電体の溶解を抑制できることを見出した。すなわち、充放電容量が活性炭よりも大きな負極活物質を用いることで、セルのエネルギー密度を向上できたが、負極側の集電体が溶解する影響が顕在化した。本実施形態の耐食性を高めた集電体を適用することでその課題を解決することができる。 In the present embodiment, the negative electrode is changed from the activated carbon negative electrode of the conventional power storage device to the lithium-containing metal oxide or the lithium-free metal oxide of the dual ion battery of the present embodiment (hereinafter, simply referred to as “MO X ”). As a result, the charge / discharge capacity of the negative electrode increased. Examples of the lithium-containing metal oxide include lithium titanate. The problem that the activated carbon of the negative electrode became the rate-determining factor in the conventional power storage device and hindered the improvement of the energy density was solved. Theoretically, the energy density could be increased by making the capacity of graphite of the positive electrode more usable, but this time, the problem of lowering the cycle life characteristic appeared. The cause of this problem is that when MO X such as lithium titanate is used for the negative electrode, the electrode potential when activated charcoal is used decreases and changes diagonally and linearly, whereas the potential of MO X such as lithium titanate decreases. The curve becomes flat. Therefore, the potential curve of the case of using the MO X and lithium titanate as a negative electrode, than the potential curve of the activated carbon, time of exposure in a more lower potential becomes longer. As a result, the current collector on the negative electrode side of the dual ion battery of the present embodiment is more easily dissolved than the current collector on the negative electrode side of the conventional power storage device. As a result, the high temperature durability performance is deteriorated, and the charge / discharge cycle life characteristics are deteriorated. To solve this problem, it has been found that the dissolution of the current collector can be suppressed by using the current collector having improved corrosion resistance of the present embodiment as the current collector on the negative electrode side. That is, the energy density of the cell could be improved by using a negative electrode active material having a charge / discharge capacity larger than that of activated carbon, but the effect of melting the current collector on the negative electrode side became apparent. The problem can be solved by applying the current collector having improved corrosion resistance of the present embodiment.
 本実施形態のデュアルイオンバッテリの負極側の集電体、正極側の集電体の少なくとも1つは、前述の本発明の蓄電デバイス電極用集電体を用いることが好ましい。正極が黒鉛を含む場合、少なくとも正極側の集電体は、前述の本発明の蓄電デバイス電極用集電体を用いることが好ましい。負極側の集電体及び正極側の集電体のいずれも、前述の本発明の蓄電デバイス電極用集電体を用いることがより好ましい。 It is preferable to use the above-mentioned current collector for the power storage device electrode of the present invention as at least one of the current collector on the negative electrode side and the current collector on the positive electrode side of the dual ion battery of the present embodiment. When the positive electrode contains graphite, it is preferable to use the above-mentioned current collector for the power storage device electrode of the present invention as the current collector on the positive electrode side at least. It is more preferable to use the above-mentioned current collector for the power storage device electrode of the present invention for both the current collector on the negative electrode side and the current collector on the positive electrode side.
<負極>
 本実施形態のデュアルイオンバッテリで用いる負極は、集電体(負極側の集電体)とその上に形成されている負極活物質層を含む。負極活物質層は、負極活物質とバインダーと導電材とを含む。
 負極活物質層は主に、負極活物質、バインダー、及び、必要に応じた量の導電材を含むペースト状の負極材料を、負極側の集電体上に塗布し、乾燥して、形成することができる。
<Negative electrode>
The negative electrode used in the dual ion battery of the present embodiment includes a current collector (current collector on the negative electrode side) and a negative electrode active material layer formed on the current collector. The negative electrode active material layer contains a negative electrode active material, a binder, and a conductive material.
The negative electrode active material layer is formed by applying a paste-like negative electrode material containing a negative electrode active material, a binder, and an required amount of a conductive material on the current collector on the negative electrode side, and drying the negative electrode material. be able to.
[負極活物質]
 本実施形態のデュアルイオンバッテリの負極活物質としては、後述する電解液に含まれる電解質イオンであるカチオンを吸蔵放出し得る金属酸化物を含むものである。すなわち、カチオンを可逆的に挿入脱離できる材料であれば用いることができる。カチオンとしては、例えば、Li、Na、K等のアルカリ金属イオン、Mg、Ca等のアルカリ土類金属イオン等を用いることができる。
 ここで、リチウムを用いた例を例示する。例えば、リチウムを挿入脱離できる金属酸化物を用いることができる。より具体的には、リチウムを含有する金属酸化物あるいはリチウムを含有しない金属酸化物を用いることができる。リチウムを挿入脱離できる金属酸化物の金属としては、周期律表の4、5、6周期の4、5、6族を用いることができる。具体的には、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)等の遷移金属を用いることが好ましい。リチウムを含有する金属酸化物としては、例えばリチウム含有チタン酸化物であるLiTi12やリチウム含有ニオブ酸化物であるLiNbO、リチウム含有バナジウム酸化物であるLi1.10.9等を用いることができる。また、リチウムを含有しない金属酸化物としては、例えばTiO、NbO、V等を用いることができる。
[Negative electrode active material]
The negative electrode active material of the dual ion battery of the present embodiment contains a metal oxide capable of occluding and releasing a cation which is an electrolyte ion contained in an electrolytic solution described later. That is, any material that can reversibly insert and remove cations can be used. As the cation, for example, alkali metal ions such as Li, Na and K, alkaline earth metal ions such as Mg and Ca and the like can be used.
Here, an example using lithium will be illustrated. For example, a metal oxide capable of inserting and removing lithium can be used. More specifically, a metal oxide containing lithium or a metal oxide not containing lithium can be used. As the metal of the metal oxide capable of inserting and removing lithium, groups 4, 5, and 6 of the 4, 5, and 6 periods of the periodic table can be used. Specifically, it is preferable to use transition metals such as titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum (Mo). Examples of the lithium-containing metal oxide include Li 4 Ti 5 O 12 , which is a lithium-containing titanium oxide, LiNbO 2 , which is a lithium-containing niobium oxide, and Li 1.1 V 0.9, which is a lithium-containing vanadium oxide. O 2 and the like can be used. Further, as the lithium-free metal oxide, for example, TiO 2 , NbO 2 , V 2 O 5, or the like can be used.
 高温耐久性をより向上させる観点から、負極活物質の単位重量当たりの容量は、後述する正極活物質(黒鉛)の単位重量当たりの容量よりも高いことが好ましい。正極に用いる黒鉛の理論容量は、372mAh/gである。しかし、リチウムイオンに比べて大きなアニオンを挿入脱離する本発明の黒鉛正極の容量は、サイクル寿命や黒鉛正極の膨張度合の観点から50mAh/g~100mAh/gが好ましい。一方、負極に用いる活物質の理論容量は各々次のとおりである。LiTi12は175mAh/g、LiNbOは203mAh/g、Li1.10.9は313mAh/g、TiOは335mAh/g、NbOは214mAh/g、Vは147mAh/gである。これらの負極活物質を用いた負極は上記黒鉛正極とは異なり、理論容量近くまで充放電することができる。したがって、上記負極活物質の実用容量は、上記黒鉛正極の実用容量(50mAh/g~100mAh/g)よりも大きい。すなわち、本発明の正極活物質は、実用容量が50mAh/g~100mAh/gである黒鉛であり、本発明の負極活物質は、その黒鉛正極の実用容量より高いことが好ましい。本発明の正極活物質は、実用容量が50mAh/g~100mAh/gである黒鉛であることがより好ましい。本発明の負極活物質は、LiTi12、LiNbO、Li1.10.9、TiO、NbO、及びVからなる群から選択される少なくとも1種であることがより好ましい。本発明の正極活物質は、実用容量が50mAh/g~100mAh/gである黒鉛であり、本発明の負極活物質は、LiTi12であることがさらに好ましい。 From the viewpoint of further improving the high temperature durability, the capacity of the negative electrode active material per unit weight is preferably higher than the capacity of the positive electrode active material (graphite) described later per unit weight. The theoretical capacity of graphite used for the positive electrode is 372 mAh / g. However, the capacity of the graphite positive electrode of the present invention for inserting and desorbing a larger anion than that of lithium ion is preferably 50 mAh / g to 100 mAh / g from the viewpoint of cycle life and the degree of expansion of the graphite positive electrode. On the other hand, the theoretical capacities of the active material used for the negative electrode are as follows. Li 4 Ti 5 O 12 is 175 mAh / g, LiNbO 2 is 203 mAh / g, Li 1.1 V 0.9 O 2 is 313 mAh / g, TiO 2 is 335 mAh / g, NbO 2 is 214 mAh / g, V 2 O 5 is 147 mAh / g. Unlike the above-mentioned graphite positive electrode, the negative electrode using these negative electrode active materials can be charged and discharged to near the theoretical capacity. Therefore, the practical capacity of the negative electrode active material is larger than the practical capacity of the graphite positive electrode (50 mAh / g to 100 mAh / g). That is, the positive electrode active material of the present invention is graphite having a practical capacity of 50 mAh / g to 100 mAh / g, and the negative electrode active material of the present invention is preferably higher than the practical capacity of the graphite positive electrode. The positive electrode active material of the present invention is more preferably graphite having a practical capacity of 50 mAh / g to 100 mAh / g. The negative electrode active material of the present invention is at least one selected from the group consisting of Li 4 Ti 5 O 12 , LiNbO 2 , Li 1.1 V 0.9 O 2 , TiO 2 , NbO 2 , and V 2 O 5. Is more preferable. The positive electrode active material of the present invention is graphite having a practical capacity of 50 mAh / g to 100 mAh / g, and the negative electrode active material of the present invention is more preferably Li 4 Ti 5 O 12 .
[負極側の集電体]
 本実施形態のデュアルイオンバッテリで用いる負極側の集電体は、非晶質炭素被膜で被覆されたアルミニウム材を用いることが好ましい。この非晶質炭素被膜で被覆されたアルミニウム材は、耐食性を向上させたアルミニウム材である。また、本実施形態のデュアルイオンバッテリで用いる負極側の集電体は、本発明の蓄電デバイス電極用集電体を用いることがより好ましい。
[Current collector on the negative electrode side]
As the current collector on the negative electrode side used in the dual ion battery of the present embodiment, it is preferable to use an aluminum material coated with an amorphous carbon film. The aluminum material coated with the amorphous carbon film is an aluminum material having improved corrosion resistance. Further, it is more preferable to use the current collector for the electrode of the power storage device of the present invention as the current collector on the negative electrode side used in the dual ion battery of the present embodiment.
 負極側の集電体はさらに、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されていることが好ましい。 It is preferable that the current collector on the negative electrode side further has a conductive carbon layer formed between the amorphous carbon film and the negative electrode active material.
<正極>
 本実施形態のデュアルイオンバッテリで用いる正極は、集電体(正極側の集電体)とその上に形成されている正極活物質層を含む。正極活物質層は、正極活物質とバインダーと導電材とを含む。
 正極活物質層は主に、正極活物質、バインダー、及び、必要に応じた量の導電材を含むペースト状の正極材料を、正極側の集電体上に塗布し、乾燥して、形成することができる。
<Positive electrode>
The positive electrode used in the dual ion battery of the present embodiment includes a current collector (current collector on the positive electrode side) and a positive electrode active material layer formed on the current collector. The positive electrode active material layer contains a positive electrode active material, a binder, and a conductive material.
The positive electrode active material layer is formed by applying a paste-like positive electrode material containing a positive electrode active material, a binder, and an required amount of a conductive material on the current collector on the positive electrode side, and drying the layer. be able to.
[正極活物質]
 本実施形態のデュアルイオンバッテリで用いる正極活物質は、耐電圧が高いデュアルイオンバッテリを得るため、電解質イオンであるアニオンを挿入脱離できる炭素質材料である黒鉛を含むものである。
 黒鉛の詳細については、前述の本発明の一実施形態の蓄電デバイスであるハイブリッドキャパシタの[正極活物質]での記載のとおりである。
[Positive electrode active material]
The positive electrode active material used in the dual ion battery of the present embodiment contains graphite, which is a carbonaceous material capable of inserting and removing anions, which are electrolyte ions, in order to obtain a dual ion battery having a high withstand voltage.
The details of graphite are as described in [Positive electrode active material] of the hybrid capacitor which is the power storage device of one embodiment of the present invention described above.
[正極側の集電体]
 本実施形態のデュアルイオンバッテリで用いる正極側の集電体は、上記負極側の集電体と同様に、非晶質炭素被膜で被覆されたアルミニウム材を用いることが好ましい。この非晶質炭素被膜で被覆されたアルミニウム材は、耐食性を向上させたアルミニウム材である。また、本実施形態のデュアルイオンバッテリで用いる正極側の集電体は、本発明の蓄電デバイス電極用集電体を用いることがより好ましい。
 正極側の集電体はさらに、上記負極側の集電体と同様に、非晶質炭素被膜と正極活物質との間に導電性炭素膜が形成されていることが好ましい。
[Current collector on the positive electrode side]
As the current collector on the positive electrode side used in the dual ion battery of the present embodiment, it is preferable to use an aluminum material coated with an amorphous carbon film, similarly to the current collector on the negative electrode side. The aluminum material coated with the amorphous carbon film is an aluminum material having improved corrosion resistance. Further, it is more preferable to use the current collector for the electrode of the power storage device of the present invention as the current collector on the positive electrode side used in the dual ion battery of the present embodiment.
Further, it is preferable that the current collector on the positive electrode side has a conductive carbon film formed between the amorphous carbon film and the positive electrode active material, similarly to the current collector on the negative electrode side.
<バインダー>
 本実施形態のデュアルイオンバッテリで用いる負極又は正極は、さらにバインダーを含むことが好ましい。
 バインダーは、前述の本発明の一実施形態の蓄電デバイス(ハイブリッドキャパシタ)と同様な類型のものを用いることができる。
<Binder>
The negative electrode or positive electrode used in the dual ion battery of the present embodiment preferably further contains a binder.
As the binder, a binder of the same type as the power storage device (hybrid capacitor) according to the embodiment of the present invention can be used.
<導電材>
 本実施形態のデュアルイオンバッテリで用いる導電材は、負極活物質層又は正極活物質層の導電性を良好にするものであれば特に限定されず、公知の導電材を用いることができる。例えば、前述の本発明の一実施形態の蓄電デバイス(ハイブリッドキャパシタ)と同様な類型のものを用いることができる。
<Conductive material>
The conductive material used in the dual ion battery of the present embodiment is not particularly limited as long as it improves the conductivity of the negative electrode active material layer or the positive electrode active material layer, and a known conductive material can be used. For example, a device of the same type as the power storage device (hybrid capacitor) according to the embodiment of the present invention described above can be used.
<電解液>
 本実施形態のデュアルイオンバッテリで用いる電解液としては、例えば、有機溶媒に電解質を溶解した有機電解液を用いることができる。電解液としては、電極に挿入脱離可能な電解質イオンを含む。具体的には、リチウム塩等を用いることができる。
 有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート等が挙げられる。これらの有機溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 リチウム塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等が挙げられる。
 また、高温耐久性能や充放電サイクル特性、入出力特性等を高めるために、電解液に添加剤を用いてもよい。
<Electrolytic solution>
As the electrolytic solution used in the dual ion battery of the present embodiment, for example, an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent can be used. The electrolyte contains electrolyte ions that can be inserted and removed from the electrode. Specifically, a lithium salt or the like can be used.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate; and chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate. One of these organic solvents may be used alone, or two or more of them may be mixed and used.
Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2, and the like.
Further, an additive may be used in the electrolytic solution in order to improve high temperature durability performance, charge / discharge cycle characteristics, input / output characteristics, and the like.
<セパレータ>
 本実施形態のデュアルイオンバッテリで用いるセパレータとしては、前述の本発明の一実施形態の蓄電デバイス(ハイブリッドキャパシタ)と同様な類型のものを用いることができる。
<Separator>
As the separator used in the dual ion battery of the present embodiment, the same type as the above-mentioned power storage device (hybrid capacitor) of the one embodiment of the present invention can be used.
(製造例1)集電体の製造
 DLCコーティングしたアルミニウム箔からなる集電体の作製
 DLCコーティングしたアルミニウム箔(「DLCコートアルミニウム箔」、「DLCコートAl箔」ということがある)は正極側の集電体及び負極側の集電体であり、非晶質炭素被膜で被覆されたアルミニウム材に相当する。DLCコートアルミニウム箔の製造法は以下のとおりである。純度99.99%のアルミニウム箔(株式会社UACJ製箔製、厚さ20μm)に対して、アルゴンスパッタリングでアルミニウム箔表面の自然酸化膜を除去した。その後、そのアルミニウム箔表面近傍にメタン、アセチレン及び窒素の混合ガス中で放電プラズマを発生させ、アルミニウム材に負のバイアス電圧を印加することによりDLC膜を生成させた。
 成膜時の雰囲気温度を25℃にて成膜したDLCコートAl箔を、アルゴン雰囲気炉に移し、アルゴンフロー(500mL/分)下で加熱処理温度である500℃まで昇温した。その後、この温度で1時間保持した後、室温まで自然冷却させ、DLCコートAl箔(A)を製造した。ここで、DLCをコーティング(被覆)したアルミニウム箔上のDLC膜の厚みを、ブルカー(BRUKER)社製触針式表面形状測定器DektakXTを用いて計測したところ、150nmであった。DLCコートAl箔(A)を後述のXAFS法で測定した結果、sp/(sp+sp)比率は0.43であった。結果を表1に示す。
(Production Example 1) Production of current collector Production of current collector made of DLC-coated aluminum foil The DLC-coated aluminum foil (sometimes referred to as "DLC-coated aluminum foil" or "DLC-coated Al foil") is on the positive electrode side. It is a current collector and a current collector on the negative electrode side, and corresponds to an aluminum material coated with an amorphous carbon film. The manufacturing method of the DLC coated aluminum foil is as follows. The natural oxide film on the surface of the aluminum foil was removed by argon sputtering on an aluminum foil having a purity of 99.99% (manufactured by UACJ Co., Ltd., thickness 20 μm). Then, a discharge plasma was generated in a mixed gas of methane, acetylene and nitrogen in the vicinity of the surface of the aluminum foil, and a negative bias voltage was applied to the aluminum material to form a DLC film.
The DLC-coated Al foil formed at an atmospheric temperature of 25 ° C. at the time of film formation was transferred to an argon atmosphere furnace, and the temperature was raised to 500 ° C., which is the heat treatment temperature, under an argon flow (500 mL / min). Then, after holding at this temperature for 1 hour, it was naturally cooled to room temperature to produce a DLC coated Al foil (A). Here, the thickness of the DLC film on the aluminum foil coated (coated) with DLC was measured using a stylus type surface shape measuring instrument DektakXT manufactured by Bruker Co., Ltd. and found to be 150 nm. As a result of measuring the DLC coated Al foil (A) by the XAFS method described later, the sp 2 / (sp 3 + sp 2 ) ratio was 0.43. The results are shown in Table 1.
<評価方法:XAFS法>
 NEXAFS分析は立命館大SRセンターBL-2超軟X線分光ラインにて実施し、スペクトルは試料電流測定による全電子収量法(TEY:Total Electron Yield)により取得した。測定したNEXAFSスペクトルはC K-edge(260~345eV)である。スリットサイズは25×25μm、試料に対するX線の入射角は90°であり、スペクトルの積算時間を各30分とした。
 エネルギー軸校正は、標準試料である高配向熱分解グラファイト(HOPG:Highly oriented pyrolytic graphite)の文献値で行った。また、同日に測定したHOPGのスペクトルを基準にsp/(sp+sp)比率を算出した。
<Evaluation method: XAFS method>
The NEXAFS analysis was performed at the Ritsumeikan University SR Center BL-2 ultra-soft X-ray spectroscopic line, and the spectrum was acquired by the total electron yield method (TEY: Total Electron Yield) by measuring the sample current. The measured NEXAFS spectrum is CK-edge (260-345 eV). The slit size was 25 × 25 μm, the angle of incidence of X-rays on the sample was 90 °, and the spectrum integration time was 30 minutes each.
The energy axis calibration was performed using the literature values of a standard sample, highly oriented pyrolytic graphite (HOPG). In addition, the sp 2 / (sp 3 + sp 2 ) ratio was calculated based on the HOPG spectrum measured on the same day.
(製造例2~5)
 加熱処理温度がそれぞれ100℃、200℃、300℃、400℃であること以外は、製造例1と同様の後加熱処理方法で、DLCコートAl箔(B)、DLCコートAl箔(C)、DLCコートAl箔(D)、DLCコートAl箔(E)をそれぞれ製造した。得られたDLCコートAl箔に関して、製造例1と同様の方法で、sp/(sp+sp)比率を測定した。結果を表1に示す。
(Manufacturing Examples 2 to 5)
DLC-coated Al foil (B), DLC-coated Al foil (C), by the same post-heat treatment method as in Production Example 1 except that the heat treatment temperatures are 100 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively. A DLC coated Al foil (D) and a DLC coated Al foil (E) were produced, respectively. With respect to the obtained DLC-coated Al foil, the sp 2 / (sp 3 + sp 2 ) ratio was measured in the same manner as in Production Example 1. The results are shown in Table 1.
(製造例6)
 成膜時の雰囲気温度を25℃にて成膜したDLCコートAl箔を加熱処理せず、室温まで自然冷却させた以外は製造例1と同様の方法でDLCコートAl箔(F)を製造した。得られたDLCコートAl箔に関して、製造例1と同様の方法で、sp/(sp+sp)の比率を測定した。結果を表1に示す。
(Manufacturing Example 6)
The DLC-coated Al foil (F) was produced by the same method as in Production Example 1 except that the DLC-coated Al foil formed at an atmospheric temperature of 25 ° C. was not heat-treated and was naturally cooled to room temperature. .. With respect to the obtained DLC-coated Al foil, the ratio of sp 2 / (sp 3 + sp 2 ) was measured by the same method as in Production Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(合成例1)負極活物質の合成
 チタン酸リチウムの合成
 平均粒径が3μmのアナターゼ型酸化チタンと水酸化リチウムをチタンとリチウムの化学量論比が5:4モルになるように秤量した。それらをるつぼに入れ、電気式雰囲気炉に投入した。大気中800℃で5時間焼成して、チタン酸リチウム(LiTi12、LTO)が得られた。
(Synthesis Example 1) Synthesis of negative electrode active material Synthesis of lithium titanate Anatase-type titanium oxide and lithium hydroxide having an average particle size of 3 μm were weighed so that the chemical ratio of titanium to lithium was 5: 4 mol. They were placed in a crucible and placed in an electric atmosphere furnace. Lithium titanate (Li 4 Ti 5 O 12 , LTO) was obtained by firing in the air at 800 ° C. for 5 hours.
「ハイブリッドキャパシタの作製」
(実施例1)
(1)蓄電デバイス電極用ペーストの調製
 正極活物質としてイメリス・ジーシー・ジャパン株式会社製黒鉛(商品名:KS-6、平均粒径6μm)、アセチレンブラック(導電材)、ポリフッ化ビニリデン(有機溶剤系バインダー)を、重量パーセント濃度(wt%)の比率が80:10:10となるように秤量した。それらをN-メチルピロリドン(有機溶剤)で溶解混合し、本実施例の正極用ペーストを調整した。
 負極活物質として株式会社クラレ製活性炭YP-50Fと、アセチレンブラック(導電材)と、カルボキシメチルセルロース(水溶液系バインダー1)と、ポリアクリル酸(水溶液系バインダー2)と、が85wt%:5wt%:5wt%:5wt%の比率になるように秤量した。その後、それらを純水で溶解混合し、本実施例の負極用ペーストを調整した。
"Manufacturing of hybrid capacitors"
(Example 1)
(1) Preparation of paste for power storage device electrode Graphite manufactured by Imeris GC Japan Co., Ltd. (trade name: KS-6, average particle size 6 μm), acetylene black (conductive material), polyvinylidene fluoride (organic solvent) as positive electrode active material The system binder) was weighed so that the weight percent concentration (wt%) ratio was 80:10:10. They were dissolved and mixed with N-methylpyrrolidone (organic solvent) to prepare a positive electrode paste of this example.
As the negative electrode active material, activated carbon YP-50F manufactured by Kuraray Co., Ltd., acetylene black (conductive material), carboxymethyl cellulose (aqueous solution binder 1), and polyacrylic acid (aqueous solution binder 2) are 85 wt%: 5 wt%: Weighed so that the ratio was 5 wt%: 5 wt%. Then, they were dissolved and mixed with pure water to prepare the negative electrode paste of this example.
(2)蓄電デバイス電極の作製
 前記製造例1で得られたDLCコートAl箔(A)を正極側の集電体として用い、卓上コーターを用いて、調製した正極用ペーストをその上に塗布した後、100℃で1時間乾燥し、本実施例の正極を作製した。
 マイクロメーターを用いて正極の厚みを計測したところ、68μmであった。
 日本蓄電器工業株式会社製エッチドアルミニウム箔(厚さ20μm)を負極側の集電体として用い、卓上コーターを用いて、調製した負極用ペーストをその上に塗布した後、100℃で1時間乾燥し、本実施例の負極を作製した。
 マイクロメーターを用いて負極の厚みを計測したところ、88μmであった。
(2) Preparation of Power Storage Device Electrode The DLC-coated Al foil (A) obtained in Production Example 1 was used as a current collector on the positive electrode side, and the prepared positive electrode paste was applied onto the current collector using a desktop coater. After that, it was dried at 100 ° C. for 1 hour to prepare a positive electrode of this example.
When the thickness of the positive electrode was measured using a micrometer, it was 68 μm.
An etched aluminum foil (thickness 20 μm) manufactured by Nippon Denki Kogyo Co., Ltd. is used as a current collector on the negative electrode side, and the prepared negative electrode paste is applied onto the current collector using a desktop coater, and then dried at 100 ° C. for 1 hour. Then, the negative electrode of this example was prepared.
When the thickness of the negative electrode was measured using a micrometer, it was 88 μm.
<コインセル型ハイブリッドキャパシタの作製>
 次に、得られた正極を直径16mm、得られた負極を直径14mmの円板状に打ち抜いたものを150℃で24時間真空乾燥した。その後、アルゴングローブボックスへ移動した。乾燥後の正極と負極を、ニッポン高度紙工業株式会社製紙セパレータ(商品名:TF4540)を介して積層した。電解質に1MのSBP-BF(四フッ化ホウ酸5-アゾニアスピロ[4.4]ノナン)、溶媒にPC(プロピレンカーボネート)を用いた電解液0.1mLを加えて、アルゴングローブボックス中で本実施例のハイブリッドキャパシタである2032型コインセルを作製した。
 得られたハイブリッドキャパシタは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表2に示す。
<Manufacturing of coin cell type hybrid capacitor>
Next, the obtained positive electrode was punched into a disk shape having a diameter of 16 mm and the obtained negative electrode having a diameter of 14 mm, and vacuum dried at 150 ° C. for 24 hours. After that, it was moved to the argon glove box. The dried positive electrode and negative electrode were laminated via a paper separator (trade name: TF4540) manufactured by Nippon Kodoshi Paper Industry Co., Ltd. Add 1 M of SBP-BF 4 (5-azoniaspirotetrafluorate [4.4] nonane) to the electrolyte and 0.1 mL of the electrolyte solution using PC (propylene carbonate) to the solvent, and add the book in an argon glove box. A 2032 type coin cell, which is a hybrid capacitor of the example, was produced.
The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
(実施例2) 
 前記製造例5で得られたDLCコートAl箔(E)を用いたこと以外は、実施例1と同様の方法で、実施例2の正極を作製した。また、実施例2の正極を用いたこと以外は、実施例1と同様の方法でハイブリッドキャパシタを作製した。得られたハイブリッドキャパシタは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表2に示す。
(Example 2)
The positive electrode of Example 2 was produced in the same manner as in Example 1 except that the DLC-coated Al foil (E) obtained in Production Example 5 was used. Further, a hybrid capacitor was produced by the same method as in Example 1 except that the positive electrode of Example 2 was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
(比較例1)
 前記製造例6で得られたDLCコートAl箔(F)を用いたこと以外は、実施例1と同様の方法で、比較例1の正極を作製した。また、この正極を用いたこと以外は、実施例1と同様の方法でハイブリッドキャパシタを作製した。得られたハイブリッドキャパシタは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表2に示す。
(Comparative Example 1)
The positive electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that the DLC-coated Al foil (F) obtained in Production Example 6 was used. Further, a hybrid capacitor was produced by the same method as in Example 1 except that this positive electrode was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
(比較例2~4)
 前記製造例2~4で得られたDLCコートAl箔(B)、DLCコートAl箔(C)、DLCコートAl箔(D)をそれぞれ用いたこと以外は、実施例1と同様の方法で、比較例2~4の正極を作製した。また、この正極を用いたこと以外は、実施例1と同様の方法でハイブリッドキャパシタを作製した。得られたハイブリッドキャパシタは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表2に示す。
(Comparative Examples 2 to 4)
The same method as in Example 1 was used except that the DLC-coated Al foil (B), the DLC-coated Al foil (C), and the DLC-coated Al foil (D) obtained in Production Examples 2 to 4 were used. Positive electrodes of Comparative Examples 2 to 4 were prepared. Further, a hybrid capacitor was produced by the same method as in Example 1 except that this positive electrode was used. The obtained hybrid capacitor was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
「デュアルイオンバッテリの作製」
(実施例3)
<負極の作製>
 負極活物質として合成1で得られたチタン酸リチウム(LiTi12、LTO)、アセチレンブラック(導電材)、ポリフッ化ビニリデン(有機溶剤系バインダー)を、重量パーセント濃度(wt%)の比率が80:10:10となるように秤量した。これらをN-メチルピロリドン(有機溶剤)で溶解混合することで得た負極用ペーストを、プレーンAl(株式会社UACJ製箔製、厚さ20μm)上に、ドクターブレードを用いて塗布した。その後、乾燥させ、本実施例の負極が得られた。マイクロメーターを用いて負極の厚みを計測したところ、48μmであった。
"Manufacturing dual-ion batteries"
(Example 3)
<Manufacturing of negative electrode>
Lithium titanate (Li 4 Ti 5 O 12 , LTO), acetylene black (conductive material), and vinylidene polyfluoride (organic solvent-based binder) obtained in Synthesis 1 as the negative electrode active material are used in a weight percent concentration (wt%). Weighed so that the ratio was 80:10:10. The negative electrode paste obtained by dissolving and mixing these with N-methylpyrrolidone (organic solvent) was applied onto plain Al (manufactured by UACJ Foil Corporation, thickness 20 μm) using a doctor blade. Then, it was dried, and the negative electrode of this Example was obtained. When the thickness of the negative electrode was measured using a micrometer, it was 48 μm.
<コインセル型デュアルイオンバッテリの作製>
 作製した本実施例の負極を用い、電解液として3-LiPF/EMCを用いたこと以外は、実施例1と同様の方法で、本実施例のデュアルイオンバッテリである2032型コインセルを作製した。得られたデュアルイオンバッテリは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表3に示す。
<Manufacturing of coin cell type dual ion battery>
A 2032 type coin cell, which is a dual ion battery of this example, was produced by the same method as in Example 1 except that 3-LiPF 6 / EMC was used as the electrolytic solution using the prepared negative electrode of this example. .. The obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
(実施例4)
 負極側の集電体として製造例1で得られたDLCコートAl箔(A)を用いたこと以外は、実施例3と同様の方法でコインセルを作製した。得られたデュアルイオンバッテリは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表3に示す。
(Example 4)
A coin cell was produced in the same manner as in Example 3 except that the DLC-coated Al foil (A) obtained in Production Example 1 was used as the current collector on the negative electrode side. The obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
(比較例5)
 比較例1と同様な正極を用いたこと以外は、実施例3と同様の方法でコインセルを作製した。得られたデュアルイオンバッテリは、後述の評価方法で放電率特性及び放電容量改善率を評価した。結果を表3に示す。
(Comparative Example 5)
A coin cell was produced by the same method as in Example 3 except that the same positive electrode as in Comparative Example 1 was used. The obtained dual ion battery was evaluated for its discharge rate characteristics and discharge capacity improvement rate by the evaluation method described later. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(試験1)蓄電デバイスの評価
<放電率特性>
 得られたセルについて、株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、0.2mA/cmあるいは14mA/cmの電流密度、3.5Vの電圧で定電流定電圧充電を行なった。その後、電流密度0.2mA/cmの放電電流値で所定の終止電圧まで放電を行なう充放電試験を行なった。ここで、実施例1~4及び比較例1~4のハイブリッドキャパシタの場合の放電の終止電圧は0Vで、実施例5、6及び比較例5のデュアルイオンバッテリの場合の放電の終止電圧は2Vで行った。その結果として得られた0.2mA/cmの電流密度で充放電試験を行なった場合の放電容量に対する14mA/cmでの放電容量の比率を算出し、放電率を得た。その結果を表2と表3に示す。表2においては、実施例1、2及び比較例2、3の放電率特性の結果は、比較例1の放電率の値を100として規格化した値を示す。例えば、比較例1の放電率がXであり、実施例1の放電率がYである場合、比較例1の放電率特性が100となり、実施例1の放電率特性が100Y/Xとなる。表3においては、実施例3、4の放電率特性の結果は、比較例5を100として規格化した値を示す。
(Test 1) Evaluation of power storage device <Discharge rate characteristics>
The obtained cell was subjected to a constant current at a current density of 0.2 mA / cm 2 or 14 mA / cm 2 and a voltage of 3.5 V in a constant temperature bath at 25 ° C. using a charge / discharge test device BTS2004 manufactured by Nagano Co., Ltd. Constant voltage charging was performed. Then, a charge / discharge test was carried out in which a discharge current value of 0.2 mA / cm 2 was used to discharge the battery to a predetermined final voltage. Here, the final discharge voltage of the hybrid capacitors of Examples 1 to 4 and Comparative Examples 1 to 4 is 0 V, and the final discharge voltage of the dual ion batteries of Examples 5 and 6 and Comparative Example 5 is 2 V. I went there. The ratio of the discharge capacity at 14 mA / cm 2 to the discharge capacity when the charge / discharge test was performed at a current density of 0.2 mA / cm 2 obtained as a result was calculated to obtain the discharge rate. The results are shown in Tables 2 and 3. In Table 2, the results of the discharge rate characteristics of Examples 1 and 2 and Comparative Examples 2 and 3 show standardized values with the discharge rate value of Comparative Example 1 as 100. For example, when the discharge rate of Comparative Example 1 is X and the discharge rate of Example 1 is Y, the discharge rate characteristic of Comparative Example 1 is 100, and the discharge rate characteristic of Example 1 is 100 Y / X. In Table 3, the results of the discharge rate characteristics of Examples 3 and 4 show the values standardized with Comparative Example 5 as 100.
(試験2)蓄電デバイスの評価
<放電容量改善率>
 得られたセルについて、株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、0.2mA/cmの電流密度、3.5Vの電圧で定電流定電圧充電を行なった。その後、電流密度0.2mA/cmの放電電流値で所定の終止電圧まで放電を行なう充放電試験を行った。また、定電流定電圧連続充電試験前の放電容量を計測した。ここで、ハイブリッドキャパシタの場合の放電の終止電圧は0Vで、デュアルイオンバッテリの場合の放電の終止電圧は2Vで行った。
 次に充放電試験装置BTS2004を用いて、60℃の恒温槽中で、電流密度0.2mA/cm、電圧3.5Vで連続充電試験(定電流定電圧連続充電試験)を行った。具体的には、充電の途中、所定の時間で充電を止め、セルを25℃の恒温槽に移した後、上記と同様に0.2mA/cmの電流密度、3.5Vの電圧で定電流定電圧充電を行なった。その後、電流密度0.2mA/cmの放電電流値で所定の終止電圧まで放電を行なった。この充放電試験を5回行うことで放電容量を得た。ここで、ハイブリッドキャパシタの場合の放電の終止電圧は0Vで、デュアルイオンバッテリの場合の放電の終止電圧は2Vで行った。その後、60℃の恒温槽に戻して連続充電試験を再開し、連続充電試験時間の総計が2000時間になるまで試験を実施した。その際の放電容量を計測した。
 放電容量改善率とは、定電流定電圧連続充電試験開始前の放電容量に対して、定電流定電圧連続充電試験後の放電容量維持率が80%以下になった充電時間を寿命とし、比較対象の比較例での寿命になった時間を100として規格化した値である。
(Test 2) Evaluation of power storage device <Discharge capacity improvement rate>
The obtained cell is charged with a constant current constant voltage at a current density of 0.2 mA / cm 2 and a voltage of 3.5 V in a constant temperature bath at 25 ° C. using a charge / discharge test device BTS2004 manufactured by Nagano Co., Ltd. It was. Then, a charge / discharge test was carried out in which a discharge current value of 0.2 mA / cm 2 was used to discharge the battery to a predetermined final voltage. In addition, the discharge capacity before the constant current / constant voltage continuous charging test was measured. Here, the final discharge voltage in the case of the hybrid capacitor was 0 V, and the final discharge voltage in the case of the dual ion battery was 2 V.
Next, using the charge / discharge test device BTS2004, a continuous charging test (constant current constant voltage continuous charging test) was performed in a constant temperature bath at 60 ° C. at a current density of 0.2 mA / cm 2 and a voltage of 3.5 V. Specifically, during charging, charging is stopped at a predetermined time, the cell is moved to a constant temperature bath at 25 ° C., and then the current density is 0.2 mA / cm 2 and the voltage is 3.5 V in the same manner as above. Current constant voltage charging was performed. Then, discharge was performed to a predetermined end voltage with a discharge current value of a current density of 0.2 mA / cm 2 . The discharge capacity was obtained by performing this charge / discharge test 5 times. Here, the final discharge voltage in the case of the hybrid capacitor was 0 V, and the final discharge voltage in the case of the dual ion battery was 2 V. Then, the mixture was returned to a constant temperature bath at 60 ° C. and the continuous charging test was restarted, and the test was carried out until the total continuous charging test time reached 2000 hours. The discharge capacity at that time was measured.
The discharge capacity improvement rate is compared with the charge time when the discharge capacity maintenance rate after the constant current constant voltage continuous charge test is 80% or less of the discharge capacity before the start of the constant current constant voltage continuous charge test. It is a value standardized with the time at which the life reached in the target comparative example as 100.
 表2においては、実施例1、2及び比較例2、3の放電容量改善率の結果は、比較例1の放電容量改善率の値を100として規格化した値を示す。表3においては、実施例3、4の放電容量改善率の結果は、比較例5の放電容量改善率を100として規格化した値を示す。 In Table 2, the results of the discharge capacity improvement rates of Examples 1 and 2 and Comparative Examples 2 and 3 show the values standardized with the value of the discharge capacity improvement rate of Comparative Example 1 as 100. In Table 3, the results of the discharge capacity improvement rates of Examples 3 and 4 show the values standardized with the discharge capacity improvement rate of Comparative Example 5 as 100.
 表2に示したとおり、本発明の蓄電デバイス電極用集電体を用いた実施例1、2は、比較例1~4に比べ、優れた放電率特性及び放電容量改善率が得られた。同様に、表3に示したとおり、本発明の蓄電デバイス電極用集電体を用いる実施例3、4は、比較例5に比べ、優れた放電率特性及び放電容量改善率が得られた。400℃以上の温度で成膜したDLCコートAl箔(A)、DLCコートAl箔(E)、DLCコートAl箔(F)、DLCコートAl箔(G)は、XAFS法で測定したsp/(sp+sp)比率が0.35以上を示した。そのため、黒鉛構造が発達したDLC膜であった。そのDLC膜を含む蓄電デバイス電極用集電体を、実施例1~4のハイブリッドキャパシタ及び実施例5、6のデュアルイオンバッテリ用の正極へ適用した場合、集電体と活物質層の界面抵抗が低くなり、出力特性を向上させることができたと考えられる。 As shown in Table 2, Examples 1 and 2 using the current collector for the power storage device electrode of the present invention obtained excellent discharge rate characteristics and discharge capacity improvement rates as compared with Comparative Examples 1 to 4. Similarly, as shown in Table 3, Examples 3 and 4 using the current collector for the power storage device electrode of the present invention obtained excellent discharge rate characteristics and discharge capacity improvement rate as compared with Comparative Example 5. The DLC coated Al foil (A), the DLC coated Al foil (E), the DLC coated Al foil (F), and the DLC coated Al foil (G) formed at a temperature of 400 ° C. or higher were sp 2 / measured by the XAFS method. The ratio (sp 3 + sp 2 ) was 0.35 or more. Therefore, it was a DLC film having a developed graphite structure. When the current collector for the power storage device electrode including the DLC film is applied to the positive electrodes for the hybrid capacitors of Examples 1 to 4 and the dual ion batteries of Examples 5 and 6, the interfacial resistance between the current collector and the active material layer. It is considered that the output characteristics could be improved.
 実施例1の蓄電デバイスは、500℃以上の処理温度で得られたDLCコートAl箔(A)のsp/(sp+sp)比率が0.40以上であるため、実施例2の蓄電デバイスに比べさらに優れた特性を示したことが分かった。 In the power storage device of Example 1, since the sp 2 / (sp 3 + sp 2 ) ratio of the DLC coated Al foil (A) obtained at a processing temperature of 500 ° C. or higher is 0.40 or more, the power storage device of Example 2 is stored. It was found that it showed even better characteristics than the device.
 実施例4は、負極側の集電体と正極側の集電体のいずれも本発明の蓄電デバイス電極用集電体(DLCコートAl箔(A)を用いる。実施例3は、正極側の集電体のみ本発明の蓄電デバイス電極用集電体(DLCコートAl箔(A)を用いる。実施例4は、実施例3と比較し、放電率特性は同程度であったが、放電容量改善率がさらに向上した。本発明の蓄電デバイス電極用集電体は、負極に適用しても、有効であることがわかった。 In Example 4, both the current collector on the negative electrode side and the current collector on the positive electrode side use the current collector for the electrode of the power storage device of the present invention (DLC coated Al foil (A). Example 3 uses the current collector on the positive electrode side. Only the current collector The current collector for the electrode of the power storage device of the present invention (DLC-coated Al foil (A) is used. Example 4 has the same discharge rate characteristics as Example 3, but the discharge capacity. The improvement rate was further improved. It was found that the current collector for the power storage device electrode of the present invention is effective even when applied to the negative electrode.

Claims (9)

  1.  アルミニウム材と、
     前記アルミニウム材に形成された非晶質炭素被膜と、
    を含む蓄電デバイス電極用集電体であって、
     前記非晶質炭素被膜において、sp結合炭素及びsp結合炭素の総量に対するsp結合炭素の比率(sp/(sp+sp))は0.35以上であって、
     前記比率(sp/(sp+sp))は、X線吸収微細構造(XAFS)法で測定したものである
     ことを特徴とする蓄電デバイス電極用集電体。
    With aluminum material
    The amorphous carbon film formed on the aluminum material and
    A current collector for the electrode of a power storage device including
    In the amorphous carbon film, the ratio of sp 2- bonded carbon to the total amount of sp 2- bonded carbon and sp 3- bonded carbon (sp 2 / (sp 3 + sp 2 )) is 0.35 or more.
    The current collector for a power storage device electrode, characterized in that the ratio (sp 2 / (sp 3 + sp 2 )) is measured by the X-ray absorption fine structure (XAFS) method.
  2.  前記蓄電デバイス電極用集電体は、ハイブリッドキャパシタ正極用集電体又はデュアルイオンバッテリ正極用集電体であって、
     前記ハイブリッドキャパシタ正極又はデュアルイオンバッテリ正極は、正極活物質として黒鉛を含む
     請求項1に記載の蓄電デバイス電極用集電体。
    The current collector for the storage device electrode is a current collector for a hybrid capacitor positive electrode or a current collector for a dual ion battery positive electrode.
    The current collector for a power storage device electrode according to claim 1, wherein the hybrid capacitor positive electrode or the dual ion battery positive electrode contains graphite as a positive electrode active material.
  3.  前記蓄電デバイス電極用集電体は、ハイブリッドキャパシタ負極用集電体又はデュアルイオンバッテリ負極用集電体であって、
     前記ハイブリッドキャパシタ負極又はデュアルイオンバッテリ負極は、負極活物質として活性炭、黒鉛、ハードカーボン、ソフトカーボン、及びチタン酸リチウムからなる群から選択された1種を含む
     請求項1に記載の蓄電デバイス電極用集電体。
    The current collector for the storage device electrode is a current collector for a hybrid capacitor negative electrode or a current collector for a dual ion battery negative electrode.
    The power storage device electrode according to claim 1, wherein the hybrid capacitor negative electrode or the dual ion battery negative electrode includes one selected from the group consisting of activated carbon, graphite, hard carbon, soft carbon, and lithium titanate as the negative electrode active material. Collector.
  4.  アルミニウム材に非晶質炭素被膜を形成する成膜工程と、
     前記非晶質炭素被膜を400℃以上の温度で加熱処理する加熱処理工程と
    を含む
     ことを特徴とする蓄電デバイス電極用集電体の製造方法。
    A film forming process for forming an amorphous carbon film on an aluminum material,
    A method for manufacturing a current collector for a power storage device electrode, which comprises a heat treatment step of heat-treating the amorphous carbon film at a temperature of 400 ° C. or higher.
  5.  前記成膜工程の後に、前記加熱処理工程を行う
     請求項4に記載の蓄電デバイス電極用集電体の製造方法。
    The method for manufacturing a current collector for a power storage device electrode according to claim 4, wherein the heat treatment step is performed after the film forming step.
  6.  アルミニウム材と、
     前記アルミニウム材に形成された非晶質炭素被膜と、
    を含む蓄電デバイス電極用集電体であって、
     前記非晶質炭素被膜が請求項4又は5に記載の製造方法で得られたものである
     ことを特徴とする蓄電デバイス電極用集電体。
    With aluminum material
    The amorphous carbon film formed on the aluminum material and
    A current collector for the electrode of a power storage device including
    A current collector for a power storage device electrode, wherein the amorphous carbon film is obtained by the production method according to claim 4 or 5.
  7.  少なくとも正極、負極、及び電解質から構成される蓄電デバイスであって、
     前記正極は正極活物質を含み、かつ、前記負極は負極活物質を含み、
     前記正極活物質は、黒鉛を含み、
     正極側の集電体は請求項1又は6に記載の蓄電デバイス電極用集電体である、
     ことを特徴とする蓄電デバイス。
    A power storage device composed of at least a positive electrode, a negative electrode, and an electrolyte.
    The positive electrode contains a positive electrode active material, and the negative electrode contains a negative electrode active material.
    The positive electrode active material contains graphite and contains graphite.
    The current collector on the positive electrode side is the current collector for the power storage device electrode according to claim 1 or 6.
    A power storage device characterized by this.
  8.  前記黒鉛は菱面体晶を含む請求項7に記載の蓄電デバイス。 The power storage device according to claim 7, wherein the graphite contains rhombohedral crystals.
  9.  前記負極活物質は、活性炭、黒鉛、ハードカーボン、及びソフトカーボン、チタン酸リチウムからなる群から選択された1種を含み、
     負極側の集電体は請求項1及び6に記載の蓄電デバイス電極用集電体、エッチドアルミニウム、及び、アルミニウム材からなる群から選択された1種である
     請求項7又は8に記載の蓄電デバイス。
    The negative electrode active material contains one selected from the group consisting of activated carbon, graphite, hard carbon, soft carbon, and lithium titanate.
    The current collector on the negative electrode side is one selected from the group consisting of the current collector for the power storage device electrode according to claims 1 and 6, etched aluminum, and an aluminum material, according to claim 7 or 8. Power storage device.
PCT/JP2020/024169 2019-06-19 2020-06-19 Current collector for power storage device electrode, manufacturing method thereof, and power storage device WO2020256115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080045979.8A CN114008827B (en) 2019-06-19 2020-06-19 Current collector for electrode of power storage device, method for producing same, and power storage device
JP2021526925A JP7181400B2 (en) 2019-06-19 2020-06-19 CURRENT COLLECTOR FOR POWER STORAGE DEVICE ELECTRODE, METHOD FOR MANUFACTURING THE SAME, AND POWER STORAGE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019113900 2019-06-19
JP2019-113900 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020256115A1 true WO2020256115A1 (en) 2020-12-24

Family

ID=74040498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024169 WO2020256115A1 (en) 2019-06-19 2020-06-19 Current collector for power storage device electrode, manufacturing method thereof, and power storage device

Country Status (3)

Country Link
JP (1) JP7181400B2 (en)
CN (1) CN114008827B (en)
WO (1) WO2020256115A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
JP2014080685A (en) * 2012-09-27 2014-05-08 Toyo Aluminium Kk Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217854A (en) * 1988-02-23 1989-08-31 Sumitomo Electric Ind Ltd Positive electrode material for lithium secondary battery
JP4684727B2 (en) * 2005-04-20 2011-05-18 日本コークス工業株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2007136131A1 (en) * 2006-05-22 2007-11-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Amorphous carbon film, method for forming amorphous carbon film, electroconductive member comprising amorphous carbon film, and separator for fuel battery
JP2008117905A (en) * 2006-11-02 2008-05-22 Gs Yuasa Corporation:Kk Electrochemical capacitor
JP4985209B2 (en) * 2007-08-13 2012-07-25 富士電機株式会社 Thin film solar cell manufacturing equipment
JP5207026B2 (en) * 2007-11-30 2013-06-12 トヨタ自動車株式会社 Battery electrode current collector and battery electrode manufacturing method including the electrode current collector
WO2010004690A1 (en) * 2008-07-09 2010-01-14 日本電気株式会社 Carbon electrode, electrochemical sensor, and carbon electrode manufacturing method
JP2010226100A (en) * 2009-02-25 2010-10-07 Daikin Ind Ltd Electric double layer capacitor
JP2011049126A (en) * 2009-08-28 2011-03-10 Equos Research Co Ltd Anode active material for sodium ion battery, and sodium ion battery in which the same is used
WO2011083585A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
JP2016072177A (en) * 2014-10-01 2016-05-09 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Coated particle for lithium ion secondary battery, positive electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery
JP6438281B2 (en) * 2014-11-28 2018-12-12 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
KR101891063B1 (en) * 2016-06-17 2018-08-22 티피알 가부시키가이샤 Electric double layer capacitor
JP6620331B2 (en) * 2017-07-18 2019-12-18 Tpr株式会社 Hybrid capacitor
WO2019017376A1 (en) * 2017-07-18 2019-01-24 Tpr株式会社 Hybrid capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
JP2014080685A (en) * 2012-09-27 2014-05-08 Toyo Aluminium Kk Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode

Also Published As

Publication number Publication date
JP7181400B2 (en) 2022-11-30
CN114008827A (en) 2022-02-01
CN114008827B (en) 2024-04-09
JPWO2020256115A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
Väli et al. Synthesis and characterization of D-glucose derived nanospheric hard carbon negative electrodes for lithium-and sodium-ion batteries
JP6167243B1 (en) Electric double layer capacitor
WO2007132896A1 (en) Electric storage device and electric storage system
Akbulut et al. Advanced supercapacitor prototype using nanostructured double-sided MnO 2/CNT electrodes on flexible graphite foil
JP6889751B2 (en) Dual ion power storage device
Kato et al. All 2D materials as electrodes for high power hybrid energy storage applications
JP6864033B2 (en) Dual ion battery
JP6782950B2 (en) Capacitors and electrodes for capacitors
WO2002082568A1 (en) Secondary power source and its manufacture method
JP6620330B2 (en) Hybrid capacitor
JP6575891B1 (en) Dual ion battery
WO2020080521A1 (en) Capacitor, and capacitor electrode
WO2020256115A1 (en) Current collector for power storage device electrode, manufacturing method thereof, and power storage device
JP6620331B2 (en) Hybrid capacitor
WO2020262464A1 (en) Hybrid capacitor
JP2009130066A (en) Lithium ion capacitor
US10079116B2 (en) Aluminum-ion capacitor and uses thereof
Naoi Electrochemical Supercapacitors and Hybrid Systems
Patel Investigation on Intercalation Behavior of BCN Compound for Multivalent-Ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827281

Country of ref document: EP

Kind code of ref document: A1