JP2012216330A - Electrode material for nonaqueous secondary battery - Google Patents

Electrode material for nonaqueous secondary battery Download PDF

Info

Publication number
JP2012216330A
JP2012216330A JP2011079463A JP2011079463A JP2012216330A JP 2012216330 A JP2012216330 A JP 2012216330A JP 2011079463 A JP2011079463 A JP 2011079463A JP 2011079463 A JP2011079463 A JP 2011079463A JP 2012216330 A JP2012216330 A JP 2012216330A
Authority
JP
Japan
Prior art keywords
nitrogen
containing carbon
negative electrode
carbon compound
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011079463A
Other languages
Japanese (ja)
Inventor
Shigeru Mashita
茂 真下
Omurzak Uulu Emil
ウル エミル オムルザク
Yoshiaki Yasuda
佳明 安田
Hideji Iwasaki
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kumamoto University NUC
Original Assignee
Kuraray Co Ltd
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Kumamoto University NUC filed Critical Kuraray Co Ltd
Priority to JP2011079463A priority Critical patent/JP2012216330A/en
Publication of JP2012216330A publication Critical patent/JP2012216330A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode carbon material for a nonaqueous secondary battery, capable of being simply and effectively supplied and having high lithium ion occlusion performance.SOLUTION: The negative electrode material for a nonaqueous secondary battery includes a nitrogen-containing carbon compound containing 1 mass% or more and 20 mass% or less of nitrogen and having a graphite structure where a spacing on the d002 face measured by means of a powder X-ray diffraction method is 3.40 Å or more and 4.00 Å or less.

Description

本発明は、リチウムイオン二次電池の負極材料用途に適した非水系二次電池用電極材料に関する。   The present invention relates to an electrode material for a non-aqueous secondary battery suitable for use as a negative electrode material for a lithium ion secondary battery.

非水系二次電池用負極材料として黒鉛を用いたリチウムイオン二次電池については、すでに数多くの特許文献に開示されている(例えば、特許文献1参照)。リチウムイオン二次電池の負極材料として黒鉛を用いる場合、リチウムイオンが黒鉛の層間に最大限取り込まれたと仮定したときの負極材料の組成(LiC6)から求められるリチウムイオン二次電池の理論上の最大容量は、372Ah/kg(炭素ベース)であるとされている。市販されているリチウムイオン二次電池の容量はかかる理論上の最大容量に近く、今後も黒鉛を負極材料としてリチウムイオン二次電池の開発を続ける限り、現在達成されている放電容量を大幅に改善することは困難と考えられる。 Lithium ion secondary batteries using graphite as a negative electrode material for non-aqueous secondary batteries have already been disclosed in many patent documents (see, for example, Patent Document 1). When graphite is used as the negative electrode material of a lithium ion secondary battery, the theoretical value of the lithium ion secondary battery obtained from the composition of the negative electrode material (LiC 6 ) assuming that lithium ions are maximally taken in between the graphite layers. The maximum capacity is said to be 372Ah / kg (carbon base). The capacity of commercially available lithium ion secondary batteries is close to the theoretical maximum capacity, and as long as we continue to develop lithium ion secondary batteries using graphite as a negative electrode material, the current achieved discharge capacity will be greatly improved. It seems difficult to do.

一方、リチウムイオン二次電池を電源とする携帯電子機器類、ハイブリッド自動車、電気自動車の普及や機能向上に伴い、リチウムイオン二次電池の性能向上が求められている。このような高容量のリチウムイオン二次電池を提供するためには、黒鉛よりも優れたリチウムイオン吸蔵性能を有する新たな負極材料を開発する必要がある。   On the other hand, with the spread and improvement of functions of portable electronic devices, hybrid vehicles, and electric vehicles that use a lithium ion secondary battery as a power source, improvement in performance of lithium ion secondary batteries is required. In order to provide such a high-capacity lithium ion secondary battery, it is necessary to develop a new negative electrode material having lithium ion storage performance superior to that of graphite.

上記課題を解決するために、これまでに様々な負極材料が提案されている。例えば、黒鉛の表面に難黒鉛化性炭素(ハードカーボン)による多孔性のコーティングが形成されている複合炭素材料(特許文献2参照)、木炭のような植物由来炭化物を1200℃程度の高温下に加熱して得られる炭素材料(特許文献3参照)、石油系もしくは石炭系ピッチから調製された多孔性ピッチ、または椰子殻などの植物繊維を1500℃程度で熱処理することで炭化して得られる炭素材料(特許文献4参照)などが挙げられる。   In order to solve the above problems, various negative electrode materials have been proposed so far. For example, a composite carbon material (see Patent Document 2) in which a porous coating of non-graphitizable carbon (hard carbon) is formed on the surface of graphite, plant-derived carbide such as charcoal at a high temperature of about 1200 ° C. Carbon obtained by heating carbon material obtained by heating (refer to Patent Document 3), porous pitch prepared from petroleum-based or coal-based pitch, or plant fiber such as coconut shell by heat treatment at about 1500 ° C. The material (refer patent document 4) etc. are mentioned.

特開昭57−208079号公報JP-A-57-208079 特開平8−298114号公報JP-A-8-298114 特開2008−251445号公報JP 2008-251445 A 特開平8−64207号公報JP-A-8-64207

特許文献2の複合炭素材料をリチウムイオン二次電池の負極材料として使用した場合、該複合炭素材料の表面に存在する多孔性の難黒鉛化性炭素が劣化し、性能が低下するという問題がある。また、特許文献3および4に挙げられた炭素材料を製造するためには、高温処理のために特殊な装置を必要とする上に、多くのエネルギーを消費するという問題もある。   When the composite carbon material of Patent Document 2 is used as a negative electrode material for a lithium ion secondary battery, there is a problem that the porous non-graphitizable carbon existing on the surface of the composite carbon material is deteriorated and performance is lowered. . In addition, in order to produce the carbon materials listed in Patent Documents 3 and 4, there is a problem that a special apparatus is required for high-temperature processing and a lot of energy is consumed.

したがって、本発明の目的は、簡便かつ効率的に製造可能な、高容量の非水系二次電池用負極材料を提供することにある。   Accordingly, an object of the present invention is to provide a high-capacity negative electrode material for a non-aqueous secondary battery that can be easily and efficiently manufactured.

本発明者らは、含窒素有機化合物を含む有機液体媒体中に炭素電極を配置し、炭素電極間にプラズマ放電を発生させたところ、グラファイト構造中に窒素が炭素と置換されるように取り込まれている新規な含窒素炭素化合物が生成し、かかる含窒素炭素化合物が、優れたリチウムイオン吸蔵能力および放出能力を有することを見出し、本発明を完成した。   The inventors of the present invention arranged a carbon electrode in an organic liquid medium containing a nitrogen-containing organic compound and generated a plasma discharge between the carbon electrodes. As a result, nitrogen was incorporated into the graphite structure so as to be substituted for carbon. The present inventors have found that a novel nitrogen-containing carbon compound is produced, and that the nitrogen-containing carbon compound has excellent lithium ion storage ability and release ability, and thus completed the present invention.

すなわち本発明は、
[1]1質量%以上20質量%以下の窒素を含有し、粉末X線回折法により測定されるd002面の間隔が3.40Å以上4.00Å以下であるグラファイト構造を有する含窒素炭素化合物を含む非水系二次電池用負極材料;および
[2]ラマン分光スペクトルのラマンシフト波数の1200〜1600cm−1の範囲に少なくとも3つピークを有する含窒素炭素化合物を含む [1]に記載の非水系二次電池用負極材料;
を提供する。
That is, the present invention
[1] A nitrogen-containing carbon compound having a graphite structure containing 1% by mass to 20% by mass of nitrogen and having a d002 plane interval of 3.40 mm to 4.00 mm measured by a powder X-ray diffraction method. A negative electrode material for a non-aqueous secondary battery, and [2] a nitrogen-containing carbon compound having at least three peaks in the range of 1200 to 1600 cm −1 of the Raman shift wave number of the Raman spectrum. Negative electrode material for secondary battery;
I will provide a.

本発明によれば、簡便かつ効率的に製造でき、優れたリチウムイオン吸蔵性能及び放出性能を有する高容量の非水系二次電池用負極炭素材料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high capacity | capacitance negative electrode carbon material for non-aqueous secondary batteries which can be manufactured simply and efficiently, and has the outstanding lithium ion occlusion performance and discharge | release performance can be provided.

実施例1で得られた含窒素炭素化合物のラマン分光スペクトルである。2 is a Raman spectrum of the nitrogen-containing carbon compound obtained in Example 1. 実施例1で得られた含窒素炭素化合物の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained in Example 1. FIG. 実施例2で得られた含窒素炭素化合物のラマン分光スペクトルである。3 is a Raman spectrum of the nitrogen-containing carbon compound obtained in Example 2. 実施例2で得られた含窒素炭素化合物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained in Example 2. FIG. 実施例3で得られた含窒素炭素化合物のラマン分光スペクトルである。4 is a Raman spectrum of the nitrogen-containing carbon compound obtained in Example 3. 実施例3で得られた含窒素炭素化合物の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the nitrogen-containing carbon compound obtained in Example 3. FIG.

本発明の非水系二次電池用負極材料を構成する含窒素炭素化合物は、含窒素有機化合物を含有する有機液体媒体中で、炭素電極間にプラズマ放電する方法で製造できる。   The nitrogen-containing carbon compound constituting the negative electrode material for a non-aqueous secondary battery of the present invention can be produced by a method of performing plasma discharge between carbon electrodes in an organic liquid medium containing a nitrogen-containing organic compound.

かかる製造方法で用いる有機液体媒体は、前記含窒素有機化合物が液体である場合はかかる含窒素有機化合物をそのまま用いることができる。かかる含窒素有機化合物としては、ピリジン、キノリン、イソキノリン、メチルピリジン、ルチジン、アミノピリジン、ピロールなどの含窒素芳香族化合物;アニリン、モノメチルアニリン、モノエチルアニリン、ジメチルアニリン、ジエチルアニリンなどの芳香族アミン;ピペリジン、ピロリジンなどの含窒素環式化合物;トリメチルアミン、トリエチルアミン、トリブチルアミン、ジエチルアミン、ジブチルアミンなどの脂肪族アミン類;エタノールアミン、N−メチルエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコールなどが挙げられる。これらの中でも、安定性および生成物である含窒素炭素化合物のグラファイト構造の成長の容易性の観点から、含窒素芳香族化合物、芳香族アミンが好ましい。これらは単独で使用しても、複数を混合して使用しても構わない。   When the nitrogen-containing organic compound is a liquid, the organic liquid medium used in the production method can be used as it is. Examples of such nitrogen-containing organic compounds include nitrogen-containing aromatic compounds such as pyridine, quinoline, isoquinoline, methylpyridine, lutidine, aminopyridine, and pyrrole; aromatic amines such as aniline, monomethylaniline, monoethylaniline, dimethylaniline, and diethylaniline. Nitrogen-containing cyclic compounds such as piperidine and pyrrolidine; aliphatic amines such as trimethylamine, triethylamine, tributylamine, diethylamine and dibutylamine; amino alcohols such as ethanolamine, N-methylethanolamine, diethanolamine and triethanolamine; Can be mentioned. Among these, a nitrogen-containing aromatic compound and an aromatic amine are preferable from the viewpoints of stability and the ease of growth of the graphite structure of the product nitrogen-containing carbon compound. These may be used alone or in combination.

上記製造方法で用いる有機液体媒体は、プラズマ放電を行う温度・圧力下で液体である含窒素有機化合物以外の有機化合物(すなわち窒素を含有しない有機化合物)を含有してもよい。かかる窒素を含有しない有機化合物としては、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、シクロオクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン、ナフタレンなどの芳香族炭化水素;メタノール、エタノール、プロパノールなどのアルコール;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、テトラヒドロピランなどのエーテルが挙げられる。このうち、芳香族炭化水素が好ましい。窒素を含有しない有機化合物は、単独で使用しても、複数を混合して使用しても構わない。含窒素有機化合物と窒素を含有しない有機化合物の混合比率は、特に制限されるものではなく、通常モル比として含窒素化合物:窒素を含有しない有機化合物の比率が1:10〜10000:1の範囲、好ましくは1:1〜1000:1の範囲である。   The organic liquid medium used in the above production method may contain an organic compound other than the nitrogen-containing organic compound that is liquid under the temperature and pressure at which plasma discharge is performed (that is, an organic compound that does not contain nitrogen). Examples of the organic compound not containing nitrogen include aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, and naphthalene; methanol, ethanol, propanol Alcohols such as diethyl ether, dibutyl ether, tetrahydrofuran, and tetrahydropyran. Of these, aromatic hydrocarbons are preferred. Organic compounds that do not contain nitrogen may be used alone or in combination. The mixing ratio of the nitrogen-containing organic compound and the organic compound not containing nitrogen is not particularly limited, and the ratio of the nitrogen-containing compound: the organic compound not containing nitrogen is usually in the range of 1:10 to 10,000: 1 as the molar ratio. , Preferably in the range of 1: 1 to 1000: 1.

上記製造方法では、プラズマ放電のための電極として炭素電極を使用する。電極に用いる炭素材料の種類としては、グラファイト、アモルファスカーボン、グラッシーカーボンのいずれを用いてもよい。正極および負極の各電極の材料には、同一または異なる炭素材料を使用してよい。プラズマ放電の効率およびコストの観点から、グラファイトを用いることが好ましい。   In the above manufacturing method, a carbon electrode is used as an electrode for plasma discharge. As the type of carbon material used for the electrode, any of graphite, amorphous carbon, and glassy carbon may be used. The same or different carbon materials may be used as materials for the positive electrode and the negative electrode. From the viewpoint of plasma discharge efficiency and cost, it is preferable to use graphite.

炭素電極の形状に特に限定はなく、板状、棒状、針状などの形状であってよい。電極のサイズにも特に限定はないが、板状の場合、通常一辺10mm〜1mの長さの平面と0.2mm〜20mmの厚み、棒状の場合、一辺1mm〜30mmの角状の断面または直径1mm〜3mm程度の円形の断面、長さ1mm〜1mの範囲であるのが好ましい。   The shape of the carbon electrode is not particularly limited, and may be a plate shape, a rod shape, a needle shape, or the like. The size of the electrode is also not particularly limited, but in the case of a plate shape, a flat surface with a length of 10 mm to 1 m and a thickness of 0.2 mm to 20 mm, and in the case of a rod shape, a square cross section or diameter of 1 mm to 30 mm on a side. A circular cross section of about 1 mm to 3 mm and a length of 1 mm to 1 m are preferable.

炭素電極の純度は、金属や他の元素を含まないものが好ましく、通常は99.0%以上、より好ましくは99.9%以上の純度のものを用いる。   The purity of the carbon electrode is preferably one containing no metal or other element, and usually one having a purity of 99.0% or more, more preferably 99.9% or more.

上記製造方法において、非水系二次電池用負極材料用途に適した含窒素炭素化合物を生成させるためのプラズマ放電は、炭素電極間に電圧を印加して発生させる。このときの電圧に特に制限はなく、含窒素有機化合物を含有する有機液体媒体中で放電させることが可能な電圧であればよい。通常、10〜800Vの範囲であり、好ましくは20〜500Vの範囲内であり、より好ましくは50〜300Vの範囲内である。過大な電圧を加えると、目的とする含窒素炭素化合物の生成量に対する、エネルギー効率が低くなる傾向となる。他方、電圧が極端に低い場合には、プラズマ放電が安定せず、含窒素炭素化合物の生成効率が低くなるため好ましくない。   In the above production method, plasma discharge for generating a nitrogen-containing carbon compound suitable for use as a negative electrode material for a non-aqueous secondary battery is generated by applying a voltage between the carbon electrodes. There is no restriction | limiting in particular in the voltage at this time, What is necessary is just the voltage which can be made to discharge in the organic liquid medium containing a nitrogen-containing organic compound. Usually, it is the range of 10-800V, Preferably it exists in the range of 20-500V, More preferably, it exists in the range of 50-300V. When an excessive voltage is applied, the energy efficiency tends to decrease with respect to the amount of the target nitrogen-containing carbon compound produced. On the other hand, when the voltage is extremely low, the plasma discharge is not stable and the generation efficiency of the nitrogen-containing carbon compound is lowered, which is not preferable.

プラズマ放電を行う際の電流は含窒素炭素化合物の生成量に関係し、通常、5〜200Aの範囲内であり、好ましくは10〜180Aの範囲内であり、より好ましくは、20〜160Aの範囲内である。電流値が極端に大きいと、目的とする含窒素炭素化合物の生成量に対する、エネルギー効率が低下する傾向となる。電流値が極端に少ないと、含窒素炭素化合物の生産性が低下する。   The current during plasma discharge is related to the amount of nitrogen-containing carbon compound produced, and is usually in the range of 5 to 200 A, preferably in the range of 10 to 180 A, and more preferably in the range of 20 to 160 A. Is within. If the current value is extremely large, the energy efficiency tends to decrease with respect to the amount of the target nitrogen-containing carbon compound produced. When the current value is extremely small, the productivity of the nitrogen-containing carbon compound is lowered.

プラズマ放電時の電流および電圧は、正弦波、矩形波、三角波などいずれの波形を用いてもよい。反応場に放電が迅速かつ均一に発生し、得られる含窒素炭素化合物の構造および組成の均一性が高まることから、矩形波を用いることが好ましい。   As the current and voltage during plasma discharge, any waveform such as a sine wave, a rectangular wave, or a triangular wave may be used. It is preferable to use a rectangular wave because discharge occurs rapidly and uniformly in the reaction field and the uniformity of the structure and composition of the resulting nitrogen-containing carbon compound is enhanced.

電流として、直流電流または交流電流のいずれを用いてもよいが、電流を矩形波とする場合、波形制御の観点から直流電流が好ましい。   Either a direct current or an alternating current may be used as the current, but when the current is a rectangular wave, the direct current is preferable from the viewpoint of waveform control.

プラズマ放電は、パルスプラズマ放電および連続プラズマ放電のいずれでもよい。プラズマ放電の持続時間は特に限定されず、パルスプラズマ放電および連続プラズマ放電のいずれを採用するかによっても異なる。含窒素炭素化合物のグラファイト構造を成長させるには、プラズマ放電持続時間を長く保った方が好ましく、グラファイト構造を小さくするには、プラズマ放電持続時間を短くした方が好ましい。   The plasma discharge may be either pulsed plasma discharge or continuous plasma discharge. The duration of the plasma discharge is not particularly limited, and depends on whether pulse plasma discharge or continuous plasma discharge is employed. In order to grow the graphite structure of the nitrogen-containing carbon compound, it is preferable to keep the plasma discharge duration long. To make the graphite structure small, it is preferable to shorten the plasma discharge duration.

パルスプラズマ放電を行う場合、プラズマ放電持続時間は1μ秒以上であるのが好ましく、プラズマ放電を安定させるためには10μ秒以上であることがより好ましい。パルス休止時間は通常1μ秒〜100m秒の範囲、より好ましくは2μ秒〜50m秒の範囲である。パルス休止時間が長すぎると、得られる含窒素炭素化合物の生成量が減少し、パルス休止時間が短すぎると、得られる含窒素炭素化合物の構造や組成の均一性が低下するため好ましくない。   When performing pulsed plasma discharge, the plasma discharge duration is preferably 1 μsec or more, and more preferably 10 μsec or more in order to stabilize the plasma discharge. The pulse pause time is usually in the range of 1 μsec to 100 msec, more preferably in the range of 2 μsec to 50 msec. If the pulse pause time is too long, the amount of the nitrogen-containing carbon compound obtained is reduced, and if the pulse pause time is too short, the uniformity of the structure and composition of the resulting nitrogen-containing carbon compound is undesirable.

また、連続プラズマ放電を行う場合には、必要に応じて、プラズマ放電持続時間を秒単位、分単位または時間単位で任意に設定できるが、1秒以上が好ましく、1分以下が好ましい。   In the case of performing continuous plasma discharge, the plasma discharge duration can be arbitrarily set in units of seconds, minutes or hours as necessary, but is preferably 1 second or more, and preferably 1 minute or less.

プラズマ放電を発生させる反応装置内の雰囲気は、窒素、アルゴンなどの不活性ガス下であるのが好ましい。また、反応装置内の圧力に制限はないが、通常、大気圧下である。   The atmosphere in the reactor for generating plasma discharge is preferably under an inert gas such as nitrogen or argon. Moreover, although there is no restriction | limiting in the pressure in a reactor, Usually, it is under atmospheric pressure.

プラズマ放電を開始して反応を進行させる温度は、使用する有機液体媒体を構成する化合物の種類・性質・状態に依存するが、通常0〜200℃の範囲、好ましくは5〜160℃の範囲、より好ましくは10〜140℃の範囲である。   The temperature at which the plasma discharge is initiated and the reaction proceeds depends on the type, nature and state of the compound constituting the organic liquid medium to be used, but is usually in the range of 0 to 200 ° C, preferably in the range of 5 to 160 ° C. More preferably, it is the range of 10-140 degreeC.

上記の製造方法で得られる含窒素炭素化合物は、ろ過、有機液体媒体の留去などの方法により、容易に分離・回収できる。   The nitrogen-containing carbon compound obtained by the above production method can be easily separated and recovered by methods such as filtration and evaporation of the organic liquid medium.

上記の製造方法で得られる含窒素炭素化合物の元素分析より求めた窒素含有量は、通常1質量%以上20質量%以下、好ましくは2質量%以上15質量%以下、より好ましくは3質量%以上12質量%以下、さらに好ましくは3.5質量%以上10質量%以下である。   The nitrogen content determined by elemental analysis of the nitrogen-containing carbon compound obtained by the above production method is usually 1% by mass to 20% by mass, preferably 2% by mass to 15% by mass, more preferably 3% by mass or more. It is 12 mass% or less, More preferably, it is 3.5 mass% or more and 10 mass% or less.

炭素材料を構成する水素と炭素のモル比(H/C)は、一般的に炭素材料の炭化の度合いを表わす指標として用いることができる。すなわちH/Cの値が小さいほど炭化が進んでいることを示す。上記の製造方法で得られる含窒素炭素化合物の場合、水素と炭素のモル比(H/C)は0.15以下であることが好ましく、0.14以下であることがより好ましく、0.10以下であることが特に好ましい。H/Cの値が0.15を越えると、非水系二次電池用負極材料に用いた場合、活物質のドープ容量と脱ドープ容量の差として求められる不可逆容量が大きくなり、活物質が無駄に消費されるので望ましくない。   The molar ratio (H / C) of hydrogen and carbon constituting the carbon material can generally be used as an index representing the degree of carbonization of the carbon material. That is, the smaller the value of H / C, the more carbonization proceeds. In the case of the nitrogen-containing carbon compound obtained by the above production method, the molar ratio of hydrogen to carbon (H / C) is preferably 0.15 or less, more preferably 0.14 or less, and 0.10 It is particularly preferred that When the value of H / C exceeds 0.15, when used as a negative electrode material for a non-aqueous secondary battery, the irreversible capacity required as the difference between the doping capacity and the dedoping capacity of the active material increases, and the active material is wasted. It is not desirable because it is consumed.

本発明の非水系二次電池用負極材料を構成する含窒素炭素化合物は、粉末X線回折法により測定される回折強度のピークトップの2θ値から算出されるd002面の間隔が3.40Å以上4.00Å以下、好ましくは3.40Å以上3.90Å以下、より好ましくは3.45Å以上3.80Å以下、さらに好ましくは3.50Å以上3.76Åであるようなグラファイト構造を有することにより特徴づけられる。   The nitrogen-containing carbon compound constituting the negative electrode material for a non-aqueous secondary battery of the present invention has a d002 plane interval of 3.40 mm or more calculated from the 2θ value of the peak top of the diffraction intensity measured by the powder X-ray diffraction method. Characterized by having a graphite structure of 4.00 mm or less, preferably 3.40 mm or more and 3.90 mm or less, more preferably 3.45 mm or more and 3.80 mm or less, and still more preferably 3.50 mm or more and 3.76 mm. It is done.

また、本発明の非水系二次電池用負極材料を構成する含窒素炭素化合物のラマン分光スペクトルを測定すると、1200〜1600cm−1の波数領域に少なくとも3つのピークが存在することが確認できる。かかる波数領域に観測されるピークは、含窒素炭化水素化合物の構造を特徴付ける、グラファイト構造と、グラファイト構造に取り込まれている窒素に由来する。 Moreover, when the Raman spectroscopic spectrum of the nitrogen-containing carbon compound which comprises the negative electrode material for non-aqueous secondary batteries of this invention is measured, it can confirm that at least three peaks exist in the wave number area | region of 1200-1600cm- 1 . The peak observed in the wave number region is derived from the graphite structure that characterizes the structure of the nitrogen-containing hydrocarbon compound and the nitrogen incorporated in the graphite structure.

本発明の非水系二次電池用負極材料を構成する含窒素炭素化合物は、グラファイト構造を保持しながら、天然の黒鉛よりも広い層間距離を有するため、層間へのリチウムイオンの吸蔵および放出を容易に繰り返すことが可能である。したがって該含窒素炭素化合物をリチウムイオン二次電池の非水系二次電池用負電極材料とした場合、高いリチウムイオンのドープ量および脱ドープ量が実現できる上、リチウムイオンの付加逆容量は小さくなることから、非水系二次電池用負電極材料に適している。   The nitrogen-containing carbon compound constituting the negative electrode material for non-aqueous secondary batteries of the present invention has a wider interlayer distance than natural graphite while maintaining a graphite structure, so that lithium ions can be easily inserted and removed between the layers. It is possible to repeat. Therefore, when the nitrogen-containing carbon compound is used as a negative electrode material for a non-aqueous secondary battery of a lithium ion secondary battery, a high lithium ion doping amount and dedoping amount can be realized, and the lithium ion additional reverse capacity is reduced. Therefore, it is suitable for the negative electrode material for non-aqueous secondary batteries.

上記してきた含窒素炭素化合物により構成される非水溶媒系二次電池の負極は、例えば、含窒素炭素化合物を、必要に応じて平均粒径約0.01〜10μmの微粒子となるように加工した後、非水溶媒に対して安定な結合剤(例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン等)により、円形あるいは矩形の金属板等からなる導電性の集電材に接着して一定の厚さの層(例えば10〜200μmの層)を形成する等の方法により製造することができる。結合剤は、好ましくは含窒素炭素化合物に対して1〜20質量%の量で添加される。結合剤を含窒素炭素化合物に多量に添加しすぎると、得られる負極の電気抵抗および電池の内部抵抗が大きくなり、電池特性を低下させるので好ましくない。また結合剤の添加量が少なすぎると、含窒素炭素化合物粒子相互及び集電材との結合が不十分となり好ましくない。   The negative electrode of the non-aqueous solvent type secondary battery constituted by the nitrogen-containing carbon compound described above is processed, for example, so that the nitrogen-containing carbon compound becomes fine particles having an average particle diameter of about 0.01 to 10 μm as necessary. After that, it is bonded to a conductive current collector made of a circular or rectangular metal plate by a binder that is stable to a non-aqueous solvent (for example, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, etc.). Can be manufactured by a method such as forming a layer (for example, a layer having a thickness of 10 to 200 μm). The binder is preferably added in an amount of 1 to 20% by mass relative to the nitrogen-containing carbon compound. If the binder is added in a large amount to the nitrogen-containing carbon compound, the electric resistance of the negative electrode obtained and the internal resistance of the battery increase, which is not preferable. Moreover, when there is too little addition amount of a binder, a coupling | bonding with nitrogen-containing carbon compound particle | grains and a collector is insufficient, and it is unpreferable.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
粉末X線回折測定は、リガクRINT-2500VHF(CuKα)を使用して行った。
ラマン分光スペクトルの測定は、顕微レーザラマン分光装置(堀場製作所製LabRAM ARAMIS)を使用して行った
放電用の炭素電極は、株式会社ニラコから入手した炭素ロッド(C Rod C−072621 8mmφ 100mm)を使用した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
The powder X-ray diffraction measurement was performed using Rigaku RINT-2500VHF (CuKα).
The Raman spectrum was measured using a microscopic laser Raman spectrometer (LabRAM ARAMIS manufactured by HORIBA, Ltd.) The carbon electrode for discharge was a carbon rod (C Rod C-0726221 8 mmφ 100 mm) obtained from Niraco Co., Ltd. did.

[実施例1]
ピリジン(和光純薬工業社製、特級試薬)50mlを容量100mlのビーカーに入れ、8mmφの炭素電極と10mm×5mm×2mmの炭素板電極をピリジンに浸漬し、極間距離を1mmとして、各電極を直流電源に接続した。反応器を窒素ボックスに入れ、ボックス内を窒素置換した後、両極間に200Vの電圧を印加し、プラズマ放電時間を250μ秒、休止時間を30m秒にそれぞれ設定して矩形波で60Aの電流を流した。放電回数をオシロスコープと放電カウンターで算出し、10万回のパルスプラズマ放電を行った。反応液をろ過し、100.5mgの含窒素炭素化合物(以下、含窒素炭素化合物(1)と称する)を得た。含窒素炭素化合物(1)の元素分析値は、炭素84.6質量%、水素0.7質量%、窒素6.2質量%であった。
[Example 1]
Place 50 ml of pyridine (made by Wako Pure Chemical Industries, Ltd., special grade reagent) into a beaker with a capacity of 100 ml, immerse an 8 mmφ carbon electrode and a 10 mm × 5 mm × 2 mm carbon plate electrode in pyridine, and set the distance between the electrodes to 1 mm. Was connected to a DC power source. After putting the reactor into a nitrogen box and replacing the inside of the box with nitrogen, a voltage of 200 V was applied between the two electrodes, the plasma discharge time was set to 250 μs, the rest time was set to 30 ms, and a current of 60 A was applied with a rectangular wave. Washed away. The number of discharges was calculated with an oscilloscope and a discharge counter, and 100,000 pulsed plasma discharges were performed. The reaction solution was filtered to obtain 100.5 mg of a nitrogen-containing carbon compound (hereinafter referred to as nitrogen-containing carbon compound (1)). The elemental analysis values of the nitrogen-containing carbon compound (1) were 84.6% by mass of carbon, 0.7% by mass of hydrogen, and 6.2% by mass of nitrogen.

含窒素炭素化合物(1)のラマン分光スペクトルを測定したところ、図1に示すスペクトルが得られ、1200〜1600cm−1の波数領域に3つのピークが存在することが確認された。図1中、矢印で示したピークのラマンシフト波数は1520cm−1であった。
また、含窒素炭素化合物(1)の粉末X線回折測定の結果、図2に示す回折強度パターンが得られた。回折強度のピークトップの位置(2θ)が、24.8°であり、グラファイトのピーク(2θ=26.5°)より低角側に現れた。上記のピークトップの2θ値から、d002面間隔は3.59Åと算出された。
When the Raman spectrum of the nitrogen-containing carbon compound (1) was measured, the spectrum shown in FIG. 1 was obtained, and it was confirmed that three peaks were present in the wave number region of 1200 to 1600 cm −1 . In FIG. 1, the Raman shift wave number of the peak indicated by the arrow was 1520 cm −1 .
Further, as a result of the powder X-ray diffraction measurement of the nitrogen-containing carbon compound (1), the diffraction intensity pattern shown in FIG. 2 was obtained. The position (2θ) of the peak top of the diffraction intensity was 24.8 °, which appeared on the lower angle side from the peak of graphite (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.59 cm.

[実施例2]
アニリン(和光純薬工業社製、特級試薬)50mlを容量100mlのビーカーに入れ、8mmφの炭素電極と10mm×5mm×2mmの炭素板電極をアニリンに浸漬し、極間距離を1mmとして、各電極を直流電源に接続した。反応器を窒素ボックスに入れ、ボックス内を窒素置換した後、両極間に200Vの電圧を印加し、プラズマ放電時間を250μ秒、休止時間を30m秒にそれぞれ設定して矩形波で60Aの電流を流した。放電回数をオシロスコープと放電カウンターで算出し、10万回の放電を行った。反応液をろ過することで、166.1mgの含窒素炭素化合物(以下、含窒素炭素化合物(2)と称する)を得た。含窒素炭素化合物(2)の元素分析値は、炭素86.9質量%、水素0.5質量%、窒素4.4質量%であった。
[Example 2]
50 ml of aniline (made by Wako Pure Chemical Industries, Ltd., special grade reagent) is put into a beaker with a capacity of 100 ml, an 8 mmφ carbon electrode and a 10 mm × 5 mm × 2 mm carbon plate electrode are immersed in aniline, and the distance between the electrodes is 1 mm. Was connected to a DC power source. After putting the reactor into a nitrogen box and replacing the inside of the box with nitrogen, a voltage of 200 V was applied between the two electrodes, the plasma discharge time was set to 250 μs, the rest time was set to 30 ms, and a current of 60 A was applied with a rectangular wave. Washed away. The number of discharges was calculated with an oscilloscope and a discharge counter, and 100,000 discharges were performed. By filtering the reaction solution, 166.1 mg of nitrogen-containing carbon compound (hereinafter referred to as nitrogen-containing carbon compound (2)) was obtained. The elemental analysis values of the nitrogen-containing carbon compound (2) were carbon 86.9% by mass, hydrogen 0.5% by mass, and nitrogen 4.4% by mass.

含窒素炭素化合物(2)のラマン分光スペクトルを測定したところ、図3に示すスペクトルが得られ、1200〜1600cm−1の波数領域に3つのピークが存在することが確認された。図3中、矢印で示したピークのラマンシフト波数は1515cm−1であった。 When the Raman spectrum of the nitrogen-containing carbon compound (2) was measured, the spectrum shown in FIG. 3 was obtained, and it was confirmed that three peaks were present in the wave number region of 1200 to 1600 cm −1 . In FIG. 3, the Raman shift wave number of the peak indicated by the arrow was 1515 cm −1 .

また、含窒素炭素化合物(2)の粉末X線回折測定の結果、図4に示す回折強度パターンが得られた。回折強度のピークトップは、グラファイトのピーク(2θ=26.5°)より低角側の2θ=24.6°の位置に現れた。上記のピークトップの2θ値から、d002面間隔は3.58Åと算出された。   Further, as a result of the powder X-ray diffraction measurement of the nitrogen-containing carbon compound (2), the diffraction intensity pattern shown in FIG. 4 was obtained. The peak top of the diffraction intensity appeared at a position of 2θ = 24.6 ° lower than the graphite peak (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.58 cm.

[実施例3]
プラズマ放電時間を50μ秒、休止時間を30m秒にそれぞれ設定して、矩形波で60Aの電流を流したこと以外は実施例1と同様に反応操作を行うことで、90.1mgの含窒素炭素化合物(以下、含窒素炭素化合物(3)と称する)を得た。元素分析の結果、炭素86.1質量%、水素0.9質量%、窒素7.8質量%を含有することが判明した。
[Example 3]
90.1 mg of nitrogen-containing carbon was obtained by carrying out the reaction operation in the same manner as in Example 1 except that the plasma discharge time was set to 50 μs and the resting time was set to 30 milliseconds, and a current of 60 A was passed by a rectangular wave. A compound (hereinafter referred to as nitrogen-containing carbon compound (3)) was obtained. As a result of elemental analysis, it was found to contain 86.1% by mass of carbon, 0.9% by mass of hydrogen, and 7.8% by mass of nitrogen.

含窒素炭素化合物(3)のラマン分光スペクトルを測定したところ、図5に示すスペクトルが得られ、1200〜1600cm−1の波数領域に3つのピークが存在することが確認された。図5中、矢印で示したピークのラマンシフト波数は1520cm−1であった。 When the Raman spectrum of the nitrogen-containing carbon compound (3) was measured, the spectrum shown in FIG. 5 was obtained, and it was confirmed that three peaks were present in the wave number region of 1200 to 1600 cm −1 . In FIG. 5, the Raman shift wave number of the peak indicated by the arrow was 1520 cm −1 .

また、含窒素炭素化合物(3)の粉末X線回折測定の結果、図6に示す回折強度パターンが得られた。回折強度のピークトップが、グラファイトのピーク(2θ=26.5°)より低角側の2θ=23.6°の位置に現れた。上記のピークトップの2θ値からd002面間隔は3.76Åと算出された。   Further, as a result of powder X-ray diffraction measurement of the nitrogen-containing carbon compound (3), a diffraction intensity pattern shown in FIG. 6 was obtained. The peak top of the diffraction intensity appeared at a position of 2θ = 23.6 ° lower than the graphite peak (2θ = 26.5 °). From the 2θ value of the peak top, the d002 plane spacing was calculated to be 3.76 mm.

非水系二次電池用負極材料の性能評価
[実施例4]
(1)試験用負極の作製
実施例1で得られた含窒素炭素化合物(1)90質量部に、ポリフッ化ビニリデン5質量部をN−メチル−2−ピロリドン100質量部に溶解させた溶液と、アセチレンブラック5質量部を添加した後、混練してスラリーを作製した。このスラリーを圧延銅箔の上に厚みが150μmになるように塗布し、80℃で1時間乾燥させた後、圧延ロール機を用いて電極厚みが100μmになるように圧延処理を行い、最後に80℃で12時間真空乾燥を行って負極を作製した。
Performance evaluation of negative electrode material for non-aqueous secondary battery [Example 4]
(1) Preparation of test negative electrode A solution obtained by dissolving 5 parts by mass of polyvinylidene fluoride in 100 parts by mass of N-methyl-2-pyrrolidone in 90 parts by mass of the nitrogen-containing carbon compound (1) obtained in Example 1. Then, 5 parts by mass of acetylene black was added, and then kneaded to prepare a slurry. After applying this slurry on the rolled copper foil to a thickness of 150 μm, drying at 80 ° C. for 1 hour, using a rolling roll machine, rolling to an electrode thickness of 100 μm, and finally A negative electrode was prepared by vacuum drying at 80 ° C. for 12 hours.

(2)測定装置
上述の手順で作製された負極のほかに、正極としてリチウム金属、電解液として1MのLiPFを溶解したエチレンカーボネート/ジエチルカーボネート3/7(質量比)溶液、セパレータとして多孔質のポリオレフィンセパレータをぞれぞれ使用して、アルゴン雰囲気下でコイン型セルを作製した。リチウムイオンのドーピングのために、0.5mA/cm2 の電流密度で1時間通電したのち2時間休止する操作を、端子間の平衡電位が5mVに達するまで繰り返し行った。このときに流れた電気量を、使用した負極材料の質量で除した値をドープ容量と定義し、mAh/gの単位で求めた。次に同様にして逆方向に電流を流し負極材料にドープされたリチウムイオンを脱ドープした。すなわち、リチウムイオンの脱ドープのために、0.5mA/cm2 の電流密度で1時間通電したのち2時間休止する操作を繰り返し、端子電圧1.5Vをカットオフ電圧とした。このときに流れた電気量を、使用した負極材料の質量で除した値を脱ドープ容量と定義し、mAh/gの単位で表わした。次いでドープ容量と脱ドープ容量との差を求め、これを不可逆容量とした。脱ドープ容量をドープ容量で除した値に100を乗じて放電効率(%)を求めた。
得られた試験結果を表1に示す。
(2) Measuring apparatus In addition to the negative electrode produced by the above-described procedure, a lithium metal as a positive electrode, an ethylene carbonate / diethyl carbonate 3/7 (mass ratio) solution in which 1M LiPF 6 is dissolved as an electrolyte, and porous as a separator Each of the polyolefin separators was used to produce a coin-type cell under an argon atmosphere. In order to dope lithium ions, the operation of energizing for 1 hour at a current density of 0.5 mA / cm 2 and then resting for 2 hours was repeated until the equilibrium potential between the terminals reached 5 mV. A value obtained by dividing the amount of electricity flowing at this time by the mass of the negative electrode material used was defined as a doping capacity, and was determined in units of mAh / g. Next, in the same manner, a current was passed in the opposite direction to undope lithium ions doped in the negative electrode material. That is, in order to de-dope lithium ions, an operation of energizing for 1 hour at a current density of 0.5 mA / cm 2 and then resting for 2 hours was repeated, and the terminal voltage of 1.5 V was set as a cutoff voltage. The value obtained by dividing the amount of electricity flowing at this time by the mass of the negative electrode material used was defined as the dedope capacity and expressed in units of mAh / g. Next, the difference between the doping capacity and the dedoping capacity was determined, and this was taken as the irreversible capacity. The value obtained by dividing the dedoping capacity by the doping capacity was multiplied by 100 to obtain the discharge efficiency (%).
The test results obtained are shown in Table 1.

[実施例5]
含窒素炭素化合物(1)の代わりに実施例2で調製した含窒素炭素化合物(2)を用いたこと以外は、実施例4と同様に行った。得られた試験結果を表1に示す。
[Example 5]
The same procedure as in Example 4 was performed except that the nitrogen-containing carbon compound (2) prepared in Example 2 was used instead of the nitrogen-containing carbon compound (1). The test results obtained are shown in Table 1.

[実施例6]
含窒素炭素化合物(1)の代わりに実施例3で調製した含窒素炭素化合物(3)を用いたこと以外は、実施例4と同様に行った。得られた試験結果を表1に示す。
[Example 6]
The same procedure as in Example 4 was conducted except that the nitrogen-containing carbon compound (3) prepared in Example 3 was used instead of the nitrogen-containing carbon compound (1). The test results obtained are shown in Table 1.

表1のとおり、実施例4〜6の負極材料のドープ量および脱ドープ量は、リチウムイオン二次電池の理論上の最大容量372Ah/kg(炭素ベース)を上回る値であることが確認された。 As shown in Table 1, it was confirmed that the doping amount and the dedoping amount of the negative electrode materials of Examples 4 to 6 exceeded the theoretical maximum capacity of 372 Ah / kg (carbon base) of the lithium ion secondary battery. .

本発明は、従来よりも優れたリチウムイオンの吸蔵能力及び放出能力を有する二次電池用負極材料を、簡便な方法で製造でき、非水系二次電池の製造に有用である。   INDUSTRIAL APPLICATION This invention can manufacture the negative electrode material for secondary batteries which has the occlusion capacity | capacitance and discharge | release capability of lithium ion superior from the past by a simple method, and is useful for manufacture of a non-aqueous secondary battery.

Claims (2)

1質量%以上20質量%以下の窒素を含有し、粉末X線回折法により測定されるd002面の間隔が3.40Å以上4.00Å以下であるグラファイト構造を有する含窒素炭素化合物を含む非水系二次電池用負極材料。   A non-aqueous system containing a nitrogen-containing carbon compound having a graphite structure that contains 1% by mass or more and 20% by mass or less of nitrogen and has a d002 plane interval of 3.40 mm or more and 4.00 mm or less as measured by a powder X-ray diffraction method Negative electrode material for secondary batteries. ラマン分光スペクトルのラマンシフト波数の1200〜1600cm−1の範囲に少なくとも3つピークを有する含窒素炭素化合物を含む請求項1に記載の非水系二次電池用負極材料。 2. The negative electrode material for a non-aqueous secondary battery according to claim 1, comprising a nitrogen-containing carbon compound having at least three peaks in the range of 1200 to 1600 cm −1 of the Raman shift wave number of the Raman spectrum.
JP2011079463A 2011-03-31 2011-03-31 Electrode material for nonaqueous secondary battery Pending JP2012216330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079463A JP2012216330A (en) 2011-03-31 2011-03-31 Electrode material for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079463A JP2012216330A (en) 2011-03-31 2011-03-31 Electrode material for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2012216330A true JP2012216330A (en) 2012-11-08

Family

ID=47268952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079463A Pending JP2012216330A (en) 2011-03-31 2011-03-31 Electrode material for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2012216330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256115A1 (en) * 2019-06-19 2021-10-14 Tpr株式会社 Current collector for electrode of power storage device, its manufacturing method, and power storage device
JP7411952B2 (en) 2019-10-02 2024-01-12 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
JP7414233B2 (en) 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315859A (en) * 1995-05-22 1996-11-29 Unitika Ltd Nonaqueous lithium secondary battery
JP2001080914A (en) * 1999-09-10 2001-03-27 Sony Corp Carbon material and its production as well as nonaqueous electrolytic battery and its production
JP2001085007A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material
WO2007043311A1 (en) * 2005-09-30 2007-04-19 Asahi Kasei Chemicals Corporation Nitrogenous carbon material and process for producing the same
JP2009200014A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Secondary battery, and carbon material and electrode therefor
JP2010254506A (en) * 2009-04-23 2010-11-11 Kumamoto Univ Method for producing nanodiamond
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
WO2012121031A1 (en) * 2011-03-04 2012-09-13 国立大学法人 熊本大学 Nitrogen-containing carbon compound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315859A (en) * 1995-05-22 1996-11-29 Unitika Ltd Nonaqueous lithium secondary battery
JP2001080914A (en) * 1999-09-10 2001-03-27 Sony Corp Carbon material and its production as well as nonaqueous electrolytic battery and its production
JP2001085007A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material
WO2007043311A1 (en) * 2005-09-30 2007-04-19 Asahi Kasei Chemicals Corporation Nitrogenous carbon material and process for producing the same
JP2009200014A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Secondary battery, and carbon material and electrode therefor
JP2010254506A (en) * 2009-04-23 2010-11-11 Kumamoto Univ Method for producing nanodiamond
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery
WO2012121031A1 (en) * 2011-03-04 2012-09-13 国立大学法人 熊本大学 Nitrogen-containing carbon compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020256115A1 (en) * 2019-06-19 2021-10-14 Tpr株式会社 Current collector for electrode of power storage device, its manufacturing method, and power storage device
JP7181400B2 (en) 2019-06-19 2022-11-30 Tpr株式会社 CURRENT COLLECTOR FOR POWER STORAGE DEVICE ELECTRODE, METHOD FOR MANUFACTURING THE SAME, AND POWER STORAGE DEVICE
JP7411952B2 (en) 2019-10-02 2024-01-12 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
JP7414233B2 (en) 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device

Similar Documents

Publication Publication Date Title
US20230094444A1 (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
KR101586816B1 (en) Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
Yu et al. Controlled synthesis of hierarchical Co x Mn 3− x O 4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries
KR101771279B1 (en) Method for lithium predoping, method for producing electrodes, and electric energy storage device using these methods
JP6086246B2 (en) COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, ELECTRODE MATERIAL FOR SECONDARY BATTERY, AND SECONDARY BATTERY
JPH06243867A (en) Nonaqueous secondary battery
KR20120080199A (en) Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
CN107078286B (en) Negative electrode composition for electricity storage device, negative electrode comprising same, electricity storage device, and method for producing negative electrode for electricity storage device
JP6358493B2 (en) Composite particle, method for producing the same, electrode material for secondary battery, and secondary battery
JP2012212561A (en) Negative electrode material for lithium ion secondary battery
JP2019021620A (en) Anode active material and battery
KR20160076060A (en) Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
KR102308691B1 (en) Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same
US10084183B2 (en) Silicon oxide-carbon composite and method of manufacturing the same
Choi et al. SnO 2-graphene nanocomposite free-standing film as anode in lithium-ion batteries
JP2016048628A (en) Silicon material-carbon layer-cationic polymer layer complex
JP2012216330A (en) Electrode material for nonaqueous secondary battery
Li et al. LiNi0. 5Mn1. 5O4 porous micro-cubes synthesized by a facile oxalic acid co-precipitation method as cathode materials for lithium-Ion batteries
JP6186568B2 (en) One-dimensional nanostructure for electrochemical device electrode material, manufacturing method by electrospinning method
US20090269274A1 (en) Production method of layered crystal material
Feng et al. Nonstoichiometric Li1±x Ni0. 5Mn1. 5O4 with different structures and electrochemical properties
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US8470206B2 (en) Method of producing anode material
JP7243406B2 (en) Electrolyte and lithium ion secondary battery
JP6315258B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141001