JP2001085007A - Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material - Google Patents

Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material

Info

Publication number
JP2001085007A
JP2001085007A JP26012199A JP26012199A JP2001085007A JP 2001085007 A JP2001085007 A JP 2001085007A JP 26012199 A JP26012199 A JP 26012199A JP 26012199 A JP26012199 A JP 26012199A JP 2001085007 A JP2001085007 A JP 2001085007A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26012199A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
和廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26012199A priority Critical patent/JP2001085007A/en
Publication of JP2001085007A publication Critical patent/JP2001085007A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon negative electrode material for a lithium ion secondary battery having a large charging/discharging capacity. SOLUTION: A negative electrode active material is formed from carbon material meeting the condition that the carbon content is 94 wt.% or more and oxygen content is 5 wt.% or less, the d002 value obtained through X-ray diffraction is 0.38-0.45 nm, and that Vpore according to the following expression is 5-30; Vpore=(1-ρa/ρHe)×100, where ρa is the density measured by using water or ethanol as medium, and ρHe is the density measured by using helium gas as medium. With this carbon material, a secondary battery having a large discharging capacity can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高容量のリチウムイ
オン二次電池の負極に関するものである。
The present invention relates to a negative electrode for a high capacity lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、リチウムを用いた有機電解質二次
電池は高エネルギー密度を有し、機器の小型化や軽量化
に大きな役割を演じている。しかしながら機器のいっそ
うの小型化、軽量化の要求が強く、より高容量の二次電
池が求められている。
2. Description of the Related Art In recent years, an organic electrolyte secondary battery using lithium has a high energy density and plays a major role in reducing the size and weight of equipment. However, there is a strong demand for further miniaturization and weight reduction of devices, and a higher capacity secondary battery is required.

【0003】現在のリチウムイオン二次電池は通常、炭
素質材料を負極に、リチウム含有化合物を正極に使用
し、正極と負極の間でリチウムイオンを移動させること
により充放電を行う。リチウムイオン二次電池の特性は
負極材料の特性に大きく依存しており、黒鉛のような高
結晶性の炭素を使用すると出力電圧がほぼ一定で充放電
の可逆性に優れた電池となる。しかしC6Liの理論容量以
上の充電は困難であるといわれている。
[0003] Current lithium ion secondary batteries generally use a carbonaceous material for a negative electrode and a lithium-containing compound for a positive electrode, and perform charging and discharging by moving lithium ions between the positive electrode and the negative electrode. The characteristics of a lithium ion secondary battery greatly depend on the characteristics of a negative electrode material. If highly crystalline carbon such as graphite is used, the output voltage is almost constant and the battery has excellent charge / discharge reversibility. However, it is said that charging beyond the theoretical capacity of C 6 Li is difficult.

【0004】一方、層状構造の未発達な炭素を用いる
と、C6Liの理論容量以上の充電が可能となるが、初回の
充放電効率の小さな材料しか開発されていない。そこで
石炭または石油系ピッチ、熱硬化性樹脂、炭素繊維など
を原料とした炭素負極材料の開発が試みられている。
On the other hand, if undeveloped carbon having a layered structure is used, charging exceeding the theoretical capacity of C 6 Li is possible, but only a material having a small initial charge / discharge efficiency has been developed. Therefore, development of a carbon anode material using coal or petroleum pitch, thermosetting resin, carbon fiber, or the like as a raw material has been attempted.

【0005】例えば、特開平3-245458号公報にはホウ素
を0.1〜0.2wt%含有する炭素材を負極材とする方法が、
特開平6-119923号公報にはグラファイト結晶部と非晶質
部とを有する炭素材にリチウムイオンを注入して負極材
とする方法が、特開平6-333559号公報には気相成長炭素
繊維にカーボンブラックを1〜30wt%含有させた組成物
を負極材とする方法が開示されている。しかしながら、
いずれにおいても十分な充放電容量を有する負極材は開
発されていない。
For example, JP-A-3-245458 discloses a method of using a carbon material containing 0.1 to 0.2 wt% of boron as a negative electrode material.
JP-A-6-119923 discloses a method of injecting lithium ions into a carbon material having a graphite crystal part and an amorphous part to form a negative electrode material, and JP-A-6-333559 discloses a vapor-grown carbon fiber. Discloses a method of using a composition containing 1 to 30% by weight of carbon black as a negative electrode material. However,
In any case, a negative electrode material having a sufficient charge / discharge capacity has not been developed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたもので、大きな充放電容量を
有するリチウムイオン二次電池用炭素負極材を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a carbon anode material for a lithium ion secondary battery having a large charge / discharge capacity.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を下記
の条件を満たす炭素を負極活物質に用いることにより解
決する。 (1)炭素含有率が94wt%以上で、かつ酸素含有率が5wt%以
下。 (2)X線回折により得られるd002の値が0.38nm以上、0.4
5nm以下。 (3)下記の数式により得られるVporeが5以上、30以
下。
The present invention solves the above-mentioned problems by using carbon satisfying the following conditions as a negative electrode active material. (1) The carbon content is 94 wt% or more and the oxygen content is 5 wt% or less. (2) The value of d002 obtained by X-ray diffraction is 0.38 nm or more, 0.4
5 nm or less. (3) V pore obtained by the following formula is 5 or more and 30 or less.

【0008】[0008]

【数2】 (Equation 2)

【0009】ただしρa水またはエタノールを媒体とし
て測定した密度、ρHeはヘリウムガスを媒体として測定
した密度。
Where ρ a is the density measured using water or ethanol as a medium, and ρ He is the density measured using helium gas as a medium.

【0010】また、上記炭素はフェノール性水酸基を有
する樹脂を不活性雰囲気中または真空中800℃以上、140
0℃以下熱処理することにより得ることができるもので
ある。
[0010] The carbon may be a resin having a phenolic hydroxyl group in an inert atmosphere or in a vacuum at 800 ° C or higher, 140 ° C or higher.
It can be obtained by heat treatment at 0 ° C. or lower.

【0011】[0011]

【発明の実施の形態】本発明は請求項1記載のように下
記の条件を満たす炭素を負極活物質に用いる事を特徴と
している。 (1)炭素含有率が94wt%以上で、かつ酸素含有率が5wt%以
下。 (2)X線回折により得られるd002の値が0.38nm以上買うt
0.45nm以下。 (3)下記の数式により得られるVporeが5以上かつ30以
下。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that carbon satisfying the following conditions is used as a negative electrode active material. (1) The carbon content is 94 wt% or more and the oxygen content is 5 wt% or less. (2) The value of d002 obtained by X-ray diffraction is 0.38 nm or more.
0.45 nm or less. (3) V pore obtained by the following formula is 5 or more and 30 or less.

【0012】[0012]

【数3】 (Equation 3)

【0013】ただしρa水またはエタノールを媒体とし
て測定した密度、ρHeはヘリウムガスを媒体として測定
した密度。炭素の状態の把握には結晶構造、細孔構造、
表面構造に分けるとわかりやすい。本発明者らは実験を
重ねた結果、上記の炭素構造を把握し、リチウム吸蔵に
最も適した構造として上記3項目を見出すにいたった。
Where ρ a is the density measured using water or ethanol as a medium, and ρ He is the density measured using helium gas as a medium. Crystal structure, pore structure,
It is easy to understand if it is divided into surface structures. As a result of repeated experiments, the present inventors have grasped the above carbon structure, and have come to find the above three items as a structure most suitable for lithium occlusion.

【0014】まず1項目めは表面構造に関するものであ
る。炭素表面および結晶子端面には表面官能基と呼ばれ
る含酸素基の存在が知られている。この酸素基は不可逆
容量および放電電位がリチウムの平衡電位と比較して高
い方へシフトする原因と考えられている。本発明ではこ
の官能基に由来する酸素の量が5wt%以下であることが必
要である。
The first item relates to the surface structure. It is known that an oxygen-containing group called a surface functional group exists on the carbon surface and the crystal face. This oxygen group is considered to cause the irreversible capacity and the discharge potential to shift higher than the equilibrium potential of lithium. In the present invention, the amount of oxygen derived from this functional group needs to be 5 wt% or less.

【0015】結晶構造の方は微細な黒鉛構造がランダム
に配向した難黒鉛化性炭素が細孔を作りやすいという点
から望ましいが、これを示すのが2項目めであり、本発
明においてはd002の値が0.38nm以上、0.45nm以下である
ことが望ましい。
The crystal structure is desirable from the viewpoint that non-graphitizable carbon in which a fine graphite structure is randomly oriented tends to form pores. However, this is the second item. It is desirable that the value be 0.38 nm or more and 0.45 nm or less.

【0016】さらに本発明において重要なのは細孔構造
をあらわす3項目めのVporeが5以上、30以下という点で
ある。細孔を評価する手法はいろいろと検討されてお
り、例えば特開平9-25883号公報で示されているよう
に、酸素、エタン、イソブタンといった分子の吸着量か
らDubinin-Astakhovの式を用いて解析する手法がある。
しかしこのような手法では吸着量の測定に困難が伴い、
炭素の細孔を正確に把握できない。
Further, what is important in the present invention is that the third item, V pore, which represents the pore structure, is 5 or more and 30 or less. Various methods for evaluating pores have been studied.For example, as shown in JP-A-9-25883, analysis using the Dubinin-Astakhov equation based on the adsorption amount of molecules such as oxygen, ethane, and isobutane There is a technique to do.
However, such a method involves difficulty in measuring the amount of adsorption,
The pores of carbon cannot be accurately grasped.

【0017】そこで本発明ではヘリウムガスを媒体とす
る密度と水またはエタノールを媒体とする密度からリチ
ウム吸蔵に関わる細孔を把握する。ヘリウムなどのガス
を媒体とする密度の測定方法は定容積膨張法として知ら
れ、液体分子では入りえなかった試料の微細孔の中まで
ガス分子が入り込むため、真密度の測定に適している。
とくにヘリウムガスを用いた場合には1nm以下の細孔ま
で入り込むことができる。一方、水またはエタノールを
用いた密度測定法は液侵法として知られている。この手
法ではおおむね2nmまでの細孔に入り込むといわれてい
る。
Therefore, in the present invention, pores related to lithium occlusion are grasped from the density using helium gas as a medium and the density using water or ethanol as a medium. A method for measuring the density using a gas such as helium as a medium is known as a constant volume expansion method, and is suitable for measuring the true density because gas molecules enter into fine pores of a sample that cannot be entered by liquid molecules.
In particular, when helium gas is used, it can penetrate into pores of 1 nm or less. On the other hand, a density measurement method using water or ethanol is known as a liquid immersion method. It is said that this technique penetrates into pores up to approximately 2 nm.

【0018】本発明では2つの手法による密度からV
pore=(1-ρaHe)X 100により求めたVporeが5以
上、30以下であることが望ましい。5よりも小さい場合
には2nm以下の細孔が少ないことを示すためにリチウム
の吸蔵量が小さくなる。Vporeの値が大きいほど2nm以下
の細孔が多いことを示すが、この値の上限はグラファイ
トとガラス状炭素の密度から計算すると35程度であり、
実用的な炭素では30が限界である。
In the present invention, V is calculated from the density obtained by the two methods.
pore = (1-ρ a / ρ He) X 100 by the determined Vpore is 5 or more, it is desirable that 30 or less. When it is smaller than 5, it indicates that there are few pores of 2 nm or less, so that the amount of occluded lithium is small. A larger value of Vpore indicates that there are more pores of 2 nm or less, but the upper limit of this value is about 35 when calculated from the density of graphite and glassy carbon,
For practical carbon, 30 is the limit.

【0019】炭素の原料が窒素原子を含む場合には熱処
理温度が低いと十分な脱離が起こらない。窒素はリチウ
ムと反応しやすいため本発明では請求項2記載のように
炭素中の窒素含有量が3wt%以下である炭素を用いる。
When the carbon source contains nitrogen atoms, sufficient desorption does not occur if the heat treatment temperature is low. Since nitrogen easily reacts with lithium, carbon having a nitrogen content of 3 wt% or less is used in the present invention.

【0020】上記のような炭素はピッチ、ポリイミド、
ポリアミドなど、一般に焼成により炭素が得られる原料
であれば作製することができるが、本発明では請求項3
記載のように、フェノール性水酸基を有する樹脂を熱処
理することにより得られたものであることが望ましい。
その際の熱処理は、請求項4記載のように不活性雰囲気
中または真空中で800℃以上、1400℃以下で行われるこ
とが望ましい。この温度よりも低い場合には炭素化が十
分に進まず、炭素以外の元素の残存が多い。このために
電気伝導度が不十分であり、1nm程度の細孔の発達も十
分ではない。一方1400℃よりも高いと炭素の再配列が進
み、細孔はできるものの閉鎖されたものになるためにリ
チウムの進入が不可能となり望ましくない。
The carbon as described above is pitch, polyimide,
In general, any raw material, such as polyamide, from which carbon can be obtained by firing can be prepared.
As described, it is desirable that the resin is obtained by heat-treating a resin having a phenolic hydroxyl group.
The heat treatment at this time is desirably performed at 800 ° C. or more and 1400 ° C. or less in an inert atmosphere or vacuum as described in claim 4. When the temperature is lower than this temperature, carbonization does not proceed sufficiently, and elements other than carbon remain much. For this reason, the electric conductivity is insufficient, and the development of pores of about 1 nm is also insufficient. On the other hand, if the temperature is higher than 1400 ° C., rearrangement of carbon proceeds, and although pores are formed, the pores are closed.

【0021】以上のようにして得られた炭素を電極とし
て利用する場合には適当なバインダーと混合して導電性
箔上に塗布することが望ましい。導電性箔としてはいろ
いろなものを用いることが可能であるが、なかでもリチ
ウムの平衡電位付近で電気化学的に不活性な銅箔または
シート状グラファイトであることが望ましい。とくにシ
ート状グラファイトはそれ自身も活物質として利用でき
るので特に望ましい。
When the carbon obtained as described above is used as an electrode, it is desirable to mix the carbon with an appropriate binder and apply it on a conductive foil. Various conductive foils can be used. Among them, a copper foil or a sheet-like graphite which is electrochemically inactive near the equilibrium potential of lithium is preferable. In particular, sheet graphite is particularly desirable because it can itself be used as an active material.

【0022】このようにして得られた電極はリチウムイ
オン二次電池の負極として最適である。
The electrode thus obtained is most suitable as a negative electrode of a lithium ion secondary battery.

【0023】[0023]

【実施例】以下に具体的な発明実施の形態で説明する
が、もちろん本発明はこれらの限定されるものではな
い。また以下の実施例では本来負極として用いる本発明
の炭素材料を正極として用い、負極として金属リチウム
を用いる。これはリチウムイオンの供給源として金属リ
チウムを用いることにより炭素材料へのリチウムの挿入
と脱離を単純化し、より明白に本発明の炭素材料の特性
を証明することを意図したものである。そして、本発明
の実施例における構成が本来の目的であるリチウムイオ
ン電池における負極としての有用性が証明されることは
当業者には明白である。
EXAMPLES The present invention will be described below with reference to specific embodiments, but the present invention is of course not limited thereto. In the following examples, the carbon material of the present invention which is originally used as a negative electrode is used as a positive electrode, and metallic lithium is used as a negative electrode. This is intended to simplify the insertion and desorption of lithium into the carbon material by using metallic lithium as a source of lithium ions, and to more clearly prove the properties of the carbon material of the present invention. It is apparent to those skilled in the art that the configuration of the embodiment of the present invention proves usefulness as a negative electrode in a lithium ion battery, which is the original purpose.

【0024】実施例における各種の測定は以下の手法に
より行った。
Various measurements in the examples were performed by the following methods.

【0025】(充放電特性)炭素粉末3gを、ポリフッ
化ビニリデンをN-メチルヒ゜ロリト゛ンに10wt%溶解したバインダ
ー3gに混合し、厚さ20μmの銅箔上に塗布、乾燥して
電極板を得た。またエチレンカーボネートと炭酸ジエチ
ルを1:1の体積比で混合した有機溶媒にLiPF6を1mol
/l溶解して電解液を作製した。炭素電極と対極として金
属リチウムを用い、両者の間に電解液を多孔質ポリプロ
ピレンに含侵させたものをはさみ込み、これらを2016タ
イプのコインケース内に入れ、プレス封口を行なって評
価用のコイン電池を作製した。
(Charge / Discharge Characteristics) 3 g of carbon powder was mixed with 3 g of a binder obtained by dissolving 10% by weight of polyvinylidene fluoride in N-methylhydroxylidine, coated on a copper foil having a thickness of 20 μm, and dried to obtain an electrode plate. . In addition, 1 mol of LiPF 6 was added to an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
/ l was dissolved to prepare an electrolytic solution. Using lithium metal as a carbon electrode and a counter electrode, insert a porous polypropylene impregnated electrolyte solution between the two, insert these into a 2016 type coin case, press seal and perform a coin for evaluation. A battery was manufactured.

【0026】このようにして得られた電池について、0.
2mAの定電流で電位が0Vになるまで充電を行い、さらに0
Vの電位を保って電流が10mAとなった時点で充電を終了
した。つぎに0.2mAの定電流で電位が1.5Vになるまで放
電を行なった。
With respect to the battery obtained in this way, 0.1%
Charge at a constant current of 2 mA until the potential becomes 0 V, and
The charging was terminated when the current reached 10 mA while maintaining the potential of V. Next, discharging was performed at a constant current of 0.2 mA until the potential became 1.5 V.

【0027】銅箔上の活物質の密度は以下のようにして
求めた。電極板を直径12.5mmに打ち抜き、厚さおよび重
量の測定をおこなった。次に銅箔そのものを10枚打ち抜
き、重量および厚さを測定して平均値を求めた。打ち抜
かれた電極板の重量から銅箔の1枚あたり重量の平均値
を差し引き、活物質の重量とした。つぎに電極板の厚さ
から銅箔1枚あたりの厚さの平均を差し引いたうえで活
物質の体積を求めた。活物質の重量と体積より銅箔上の
活物質密度とした。
The density of the active material on the copper foil was determined as follows. The electrode plate was punched to a diameter of 12.5 mm, and the thickness and weight were measured. Next, 10 sheets of the copper foil itself were punched out, the weight and the thickness were measured, and the average value was obtained. The average value of the weight per copper foil was subtracted from the weight of the punched electrode plate to obtain the weight of the active material. Next, the volume of the active material was determined by subtracting the average of the thickness per copper foil from the thickness of the electrode plate. The active material density on the copper foil was determined from the weight and volume of the active material.

【0028】(X線回折)d002は次のようにして求め
た。まず通常のX線回折装置(理学電機製ロータフレッ
クスRU−200B)を用いて測定した。次に得られた
回折図に対してSomneverlt-Visser'sの方法によりバッ
クグランドを除去した。このようにして得られた回折図
の(002)ピークよりブラッグの式を用いてd002を求
めた。
(X-ray diffraction) d002 was obtained as follows. First, the measurement was performed using a normal X-ray diffractometer (Rotorflex RU-200B manufactured by Rigaku Denki). Next, the background was removed from the obtained diffractogram by the method of Somneverlt-Visser's. D002 was obtained from the (002) peak of the diffraction pattern obtained in this manner using Bragg's equation.

【0029】(元素分析)炭素材料中の元素の割合は燃
焼法によるCHNアナライザーにより炭素、水素、窒素の
割合を求め、残りを酸素の割合とした。なおこの方法に
よる検出限界は0.1wt%である。
(Elemental analysis) As for the ratio of the elements in the carbon material, the ratios of carbon, hydrogen and nitrogen were determined by a CHN analyzer by a combustion method, and the rest was regarded as the ratio of oxygen. The detection limit by this method is 0.1 wt%.

【0030】(密度)Heガスによる密度の測定は乾式
自動密度計(アキュピック1330、島津製作所製)により
求めた。一方、液侵法による密度は界面活性剤(ツイー
ン20)を0.1wt%混合したイオン交換水を用いて求め
た。なお界面活性剤が密度に及ぼす影響は0.001g/cm3
あった。
(Density) The density was measured with a He gas by a dry automatic densitometer (Acupic 1330, manufactured by Shimadzu Corporation). On the other hand, the density by the liquid immersion method was determined using ion-exchanged water in which 0.1 wt% of a surfactant (Tween 20) was mixed. The effect of the surfactant on the density was 0.001 g / cm 3 .

【0031】(実施例1)レゾール形フェノール樹脂溶
液を空気中で180℃に昇温後1時間保持することにより硬
化させた。得られた高分子樹脂を遊星ボールミルにて平
均粒径が10μmになるように粉砕を行った。
Example 1 A resol-type phenol resin solution was cured by raising the temperature to 180 ° C. in air and holding for 1 hour. The obtained polymer resin was pulverized by a planetary ball mill so that the average particle diameter became 10 μm.

【0032】このようにして得られた樹脂粉末をアルゴ
ン中、600℃から1600℃までの温度でそれぞれ1時間の
熱処理を行った。測定結果を(表1)に示す。この表の
ように、本発明による炭素がグラファイトをしのぐ高い
リチウム吸蔵能力を示している。
The resin powder thus obtained was subjected to a heat treatment in argon at a temperature from 600 ° C. to 1600 ° C. for 1 hour. The measurement results are shown in (Table 1). As shown in the table, the carbon according to the present invention has a higher lithium storage capacity than graphite.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2)実施例1と同様の手法により得
られた高分子樹脂粉末を得られた炭素粉末を実施例1と
同様の手法により得られた樹脂粉末をアルゴン中、1000
℃で0、1、10、30、100時間の熱処理をそれぞれ行
い、特性の測定を行った。結果を(表2)に示す。この
表のように、本発明による炭素がグラファイトをしのぐ
高いリチウム吸蔵能力を示している。
(Example 2) A carbon powder obtained by a method similar to that of Example 1 was mixed with a polymer powder obtained by a method similar to that of Example 1,
The heat treatment was performed at 0 ° C. for 0, 1, 10, 30, and 100 hours, respectively, and the characteristics were measured. The results are shown in (Table 2). As shown in the table, the carbon according to the present invention has a higher lithium storage capacity than graphite.

【0035】[0035]

【表2】 [Table 2]

【0036】(実施例3)ポリイミド樹脂(ユーピレッ
クス、宇部興産)をアルゴン中、500℃、1時間処理を行
った後に遊星ボールミルにて平均粒径が10μmになるよ
うに粉砕を行った。
Example 3 A polyimide resin (UPILEX, Ube Industries) was treated in argon at 500 ° C. for 1 hour, and then pulverized by a planetary ball mill so as to have an average particle diameter of 10 μm.

【0037】このようにして得られた粉末をアルゴン
中、600℃から1600℃までの温度でそれぞれ1時間の熱
処理を行った。測定結果を(表3)に示す。この表のよ
うに、窒素が3wt%以上存在している場合には放電容量は
小さくなることがわかる。
The thus obtained powder was subjected to a heat treatment in argon at a temperature of 600 ° C. to 1600 ° C. for 1 hour. The measurement results are shown in (Table 3). As shown in the table, when nitrogen is present at 3 wt% or more, the discharge capacity becomes small.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明によれば下記の条件を満たす炭素
を負極活物質に用いることを特徴とする。 (1)炭素含有率が94wt%以上で、かつ酸素含有率が5wt%以
下。 (2)X線回折により得られるd002の値が0.38nm以上、0.4
5nm以下。 (3)下記の数式により得られるVporeが5以上、30以
下。
According to the present invention, carbon satisfying the following conditions is used as a negative electrode active material. (1) The carbon content is 94 wt% or more and the oxygen content is 5 wt% or less. (2) The value of d002 obtained by X-ray diffraction is 0.38 nm or more, 0.4
5 nm or less. (3) V pore obtained by the following formula is 5 or more and 30 or less.

【0040】[0040]

【数4】 (Equation 4)

【0041】ただしρa水またはエタノールを媒体とし
て測定した密度、ρHeはヘリウムガスを媒体として測定
した密度。
Where ρa is the density measured using water or ethanol as a medium, and ρHe is the density measured using helium gas as a medium.

【0042】またこのような炭素材料はフェノール性水
酸基を有する樹脂を原料とし、不活性雰囲気中または真
空中800℃以上、1400℃以下で熱処理を行う事により得
られる。本発明により得られた炭素を用いることによ
り、放電容量の大きな二次電池を製造することが可能で
ある。
Such a carbon material can be obtained by using a resin having a phenolic hydroxyl group as a raw material and performing heat treatment in an inert atmosphere or in a vacuum at a temperature of 800 ° C. or more and 1400 ° C. or less. By using the carbon obtained according to the present invention, a secondary battery having a large discharge capacity can be manufactured.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 CA04 CB03 CB08 CB09 CC02 CC03 5H003 AA02 BA01 BB01 BC01 BD01 BD03 BD05 BD06 5H014 AA01 BB01 EE08 HH01 HH02 HH08 5H029 AJ03 AL06 CJ02 CJ28 DJ16 DJ17 HJ01 HJ08 HJ13 HJ14 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 CA04 CB03 CB08 CB09 CC02 CC03 5H003 AA02 BA01 BB01 BC01 BD01 BD03 BD05 BD06 5H014 AA01 BB01 EE08 HH01 HH02 HH08 5H029 AJ03 AL06 CJ02 CJ28 DJ16 DJ17 HJ01 H08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記の条件を満たす炭素を負極活物質に
用いたことを特徴とするリチウムイオン二次電池用負極
材料。 (1)炭素含有率が94wt%以上で、かつ酸素含有率が5wt%以
下。 (2)X線回折により得られるd002の値が0.38nm以上かつ
0.45nm以下。 (3)下記の式により得られるVporeが5以上かつ30以下。 【数1】 ただしρa水またはエタノールを媒体として測定した密
度、ρHeはヘリウムガスを媒体として測定した密度であ
る。
1. A negative electrode material for a lithium ion secondary battery, wherein carbon satisfying the following conditions is used as a negative electrode active material. (1) The carbon content is 94 wt% or more and the oxygen content is 5 wt% or less. (2) The value of d002 obtained by X-ray diffraction is 0.38 nm or more and
0.45 nm or less. (3) V pore obtained by the following formula is 5 or more and 30 or less. (Equation 1) Where ρ a is the density measured using water or ethanol as a medium, and ρ He is the density measured using helium gas as a medium.
【請求項2】 炭素の窒素含有量が3wt%以下であること
を特徴とする請求項1記載のリチウムイオン二次電池用
負極材料。
2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the nitrogen content of carbon is 3 wt% or less.
【請求項3】 フェノール性水酸基を有する樹脂を熱処
理する工程を含む請求項1記載のリチウムイオン二次電
池用負極材料の製造方法。
3. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, further comprising a step of heat treating the resin having a phenolic hydroxyl group.
【請求項4】 熱処理が、不活性雰囲気中または真空中
において800℃以上かつ1400℃以下で行われることを特
徴とする請求項3記載のリチウムイオン二次電池用負極
材料の製造方法。
4. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 3, wherein the heat treatment is performed at 800 ° C. or higher and 1400 ° C. or lower in an inert atmosphere or in a vacuum.
【請求項5】 請求項1記載のリチウムイオン二次電池
用負極材料を導電性箔上に塗布したものであることを特
徴とするリチウムイオン二次電池用負極。
5. A negative electrode for a lithium ion secondary battery, wherein the negative electrode material for a lithium ion secondary battery according to claim 1 is applied on a conductive foil.
【請求項6】 請求項5記載のリチウムイオン二次電池
用負極を負極に用いたことを特徴とするリチウムイオン
二次電池。
6. A lithium ion secondary battery, wherein the negative electrode for a lithium ion secondary battery according to claim 5 is used as a negative electrode.
JP26012199A 1999-09-14 1999-09-14 Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material Pending JP2001085007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26012199A JP2001085007A (en) 1999-09-14 1999-09-14 Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26012199A JP2001085007A (en) 1999-09-14 1999-09-14 Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material

Publications (1)

Publication Number Publication Date
JP2001085007A true JP2001085007A (en) 2001-03-30

Family

ID=17343590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26012199A Pending JP2001085007A (en) 1999-09-14 1999-09-14 Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material

Country Status (1)

Country Link
JP (1) JP2001085007A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086011A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material precursor, carbon material, negative electrode material for secondary battery using this, and nonaqueous electrolyte secondary battery
JP2007042571A (en) * 2005-06-28 2007-02-15 Hitachi Chem Co Ltd Carbon particle for anode of lithium secondary battery, and carbon anode for lithium secondary battery and lithium secondary battery using the same
JP2011198690A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011198685A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
CN102557009A (en) * 2012-02-29 2012-07-11 北京化工大学 Hierarchical porous structure carbon material for negative electrode of power lithium-ion battery and preparation method of hierarchical porous structure carbon material
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
JP2015122275A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Carbon material for power storage device electrodes, method for manufacturing the same, and power storage device arranged by use thereof
CN105514372A (en) * 2015-12-10 2016-04-20 常州大学 Method for preparing lithium-zinc titanate/carbon nano composite negative electrode material
JP2016152222A (en) * 2015-02-19 2016-08-22 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN106198348A (en) * 2016-07-13 2016-12-07 江苏师范大学 The method measuring catalyst layer for proton exchange film fuel cell porosity

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086011A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material precursor, carbon material, negative electrode material for secondary battery using this, and nonaqueous electrolyte secondary battery
JP2007042571A (en) * 2005-06-28 2007-02-15 Hitachi Chem Co Ltd Carbon particle for anode of lithium secondary battery, and carbon anode for lithium secondary battery and lithium secondary battery using the same
JP2011198690A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011198685A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2012064407A (en) * 2010-09-15 2012-03-29 Sumitomo Bakelite Co Ltd Lithium ion secondary battery carbon material, lithium ion secondary battery anode material, and lithium ion secondary battery
JP2012216330A (en) * 2011-03-31 2012-11-08 Kumamoto Univ Electrode material for nonaqueous secondary battery
CN102557009A (en) * 2012-02-29 2012-07-11 北京化工大学 Hierarchical porous structure carbon material for negative electrode of power lithium-ion battery and preparation method of hierarchical porous structure carbon material
JP2015122275A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Carbon material for power storage device electrodes, method for manufacturing the same, and power storage device arranged by use thereof
JP2016152222A (en) * 2015-02-19 2016-08-22 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105514372A (en) * 2015-12-10 2016-04-20 常州大学 Method for preparing lithium-zinc titanate/carbon nano composite negative electrode material
CN106198348A (en) * 2016-07-13 2016-12-07 江苏师范大学 The method measuring catalyst layer for proton exchange film fuel cell porosity
CN106198348B (en) * 2016-07-13 2019-08-16 江苏师范大学 The method for measuring catalyst layer for proton exchange film fuel cell porosity

Similar Documents

Publication Publication Date Title
Li et al. Enhanced performance of a MnO 2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder
US7651817B2 (en) Process for producing spherical carbon material
Rao et al. Polyacrylonitrile hard carbon as anode of high rate capability for lithium ion batteries
JP2021504918A (en) Negative electrode active material for non-aqueous electrolyte secondary batteries containing silicon oxide composite, and its manufacturing method
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
CN111056555B (en) Lithiated silicon-based composite material, and preparation method and application thereof
JP4096438B2 (en) Secondary power supply
CN113437257A (en) Lithium metal negative pole piece, electrochemical device and electronic equipment
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
Lim et al. Hard Carbon‐coated Natural Graphite Electrodes for High‐Energy and Power Lithium‐Ion Capacitors
JP2001085007A (en) Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material
Qiu et al. Facile synthesis and electrochemical performances of secondary carbon-coated LiFePO 4-C composite for Li-ion capacitors based on neutral aqueous electrolytes
CN115394999A (en) Negative electrode active material, electrochemical device, and electronic device
JP4308571B2 (en) Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
KR101814063B1 (en) Carbon composite production method for a lithium-ion battery anode using tofu
JP6832607B2 (en) Power storage device and its charging method and manufacturing method
JP4234356B2 (en) Method for producing negative electrode material
KR101948804B1 (en) Graphite anode with improved lithium pre-doping speed and lithium ion capacitor employing the same
JP2000306609A (en) Secondary power supply
KR20170133736A (en) Anode active material, and lithium ion battery or capacitor comprising the same, and the preparation method thereof
JP2000036325A (en) Secondary power supply
CN109309228B (en) Positive electrode active material, preparation method, positive electrode and high-specific-energy power battery
JP4170006B2 (en) Carbon material and negative electrode material for secondary battery using the same
JP2004327211A (en) Non-aqueous electrolyte lithium secondary battery, and lithium secondary battery
JPH07147158A (en) Negative electrode for lithium secondary battery