WO2013108516A1 - Electrode element and method for producing same - Google Patents

Electrode element and method for producing same Download PDF

Info

Publication number
WO2013108516A1
WO2013108516A1 PCT/JP2012/081947 JP2012081947W WO2013108516A1 WO 2013108516 A1 WO2013108516 A1 WO 2013108516A1 JP 2012081947 W JP2012081947 W JP 2012081947W WO 2013108516 A1 WO2013108516 A1 WO 2013108516A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
carbon film
current collector
binder
electrode body
Prior art date
Application number
PCT/JP2012/081947
Other languages
French (fr)
Japanese (ja)
Inventor
元 長谷川
健吾 芳賀
博紀 久保
橋本 裕一
敬介 大森
崇 伊関
和之 中西
康弘 小澤
Original Assignee
トヨタ自動車株式会社
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社豊田中央研究所 filed Critical トヨタ自動車株式会社
Priority to JP2013554208A priority Critical patent/JP5806335B2/en
Publication of WO2013108516A1 publication Critical patent/WO2013108516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode body used for a solid battery or the like and a manufacturing method thereof.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween.
  • the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • solid electrolyte layer a layer containing a solid electrolyte
  • Patent Document 1 discloses that a positive electrode active material and a solid electrolyte are formed on a positive electrode of an all-solid battery having a positive electrode and a negative electrode formed in a film shape on at least a part of a current collector. And a conductive material such as acetylene black, carbon black and carbon nanotube, or a conductive polymer such as polyaniline, polyacetylene and polypyrrole is disclosed.
  • Patent Document 2 discloses a positive electrode in which a positive electrode active material layer in which a first binder is contained in an active material is formed on the surface of a positive electrode current collector, and a first bond on the surface of the negative electrode current collector.
  • a positive electrode current collector and a positive electrode in a lithium ion polymer secondary battery comprising a negative electrode on which a negative electrode active material layer in which a second binder that is the same as or different from the adhesive is contained in an active material is formed, and an electrolyte
  • a technique is disclosed that includes both conductive materials, and the third binder is a polymer compound obtained by modifying the first binder or the second binder with a modifying substance.
  • Patent Document 3 discloses an amorphous carbon film in which delocalization of ⁇ electrons is promoted and a method for forming the amorphous carbon film, and this amorphous carbon film can be used as a separator for a fuel cell. It is explained to some extent.
  • the positive electrode is formed on the surface of the current collector without interposing an adhesive layer that improves the adhesion between the current collector and the positive electrode at the interface between the current collector and the positive electrode.
  • the interface between the current collector and the positive electrode tends to be peeled off during processing such as slit formation or winding, and as a result, there has been a problem that the performance of the solid battery is likely to deteriorate.
  • Patent Document 3 does not have a specific description assuming that an amorphous carbon film is used for a solid battery, and it has been difficult to specify a suitable usage mode in the solid battery from Patent Document 3. .
  • Japanese Patent Application Laid-Open No. H10-228688 describes that the presence of a binder inhibits the ion conduction path, but if the binder is not used during actual battery production, problems such as cracking and peeling occur, which is not realistic. For this reason, it is necessary for production to use a binder and to secure an adhesive force with the current collector.
  • Patent Document 3 has a description about corrosion resistance and wear, but there is no description about adhesiveness.
  • a fuel cell may have adhesion with a sheet-like member, but it is sufficient that only adhesion can be secured.
  • a small amount of binder is used to maintain the performance while maintaining the adhesion between the particles of several ⁇ m and the current collector / mixture interface. We must secure power.
  • an object of the present invention is to provide an electrode body and a method for manufacturing the same, which can improve the adhesive force between the current collector and the electrode layer.
  • a conductive carbon film (conductive amorphous carbon film; the same applies hereinafter) in which at least N atoms having an unshared electron pair are modified on the film surface.
  • the adhesion between the current collector and the electrode layer can be improved by forming the electrode layer so that the conductive carbon film is disposed between the current collector and the electrode layer. I knew that it would be possible.
  • the present inventors use a binder containing polyvinylidene fluoride (hereinafter sometimes referred to as “PVdF”) as a binder contained in the electrode layer, whereby adhesion between the current collector and the electrode layer is achieved. It was also found that it becomes easier to improve the power.
  • PVdF polyvinylidene fluoride
  • a first aspect of the present invention includes a current collector and an electrode layer connected to the current collector, the electrode layer containing at least an active material and a binder, and at least a non-shared electron on the film surface
  • a conductive carbon film in which N atoms having a pair are modified is an electrode body formed on the surface of the current collector on the electrode layer side.
  • the “electrode layer” means a positive electrode layer or Refers to the negative electrode layer.
  • the “active material” means a positive electrode active material when the electrode layer is a positive electrode layer, and a negative electrode active material when the electrode layer is a negative electrode layer.
  • the “N atom having an unshared electron pair” refers to an N (nitrogen) atom having an unshared electron pair.
  • the conductive carbon film in which at least the N atom having an unshared electron pair is modified on the film surface means that the N (nitrogen) atom having an unshared electron pair is C ( A state in which it is bonded to a (carbon) atom.
  • the bonded N atom and C atom (CN bond) can be confirmed by, for example, X-ray photoelectron spectroscopy (XPS analysis).
  • a second aspect of the present invention includes a current collector and an electrode layer connected to the current collector, and the electrode layer contains at least an active material and a binder and is formed by vapor deposition.
  • the carbon film is an electrode body disposed on the surface of the current collector on the electrode layer side.
  • the “evaporation method” includes a known chemical vapor deposition (CVD) method and physical vapor deposition (PVD) method in addition to a plasma CVD method, an ion plating method, and a sputtering method.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the conductive carbon film is modified with N atoms having unshared electron pairs at least on the film surface.
  • the binder preferably has polarity.
  • the binder contained in the electrode layer has polarity, it becomes easy to increase the adhesive force between the current collector and the electrode layer.
  • the electrode layer may contain at least an active material, a binder, and a solid electrolyte. Even if the electrode layer contains a solid electrolyte, it is possible to increase the adhesive force between the current collector and the electrode layer.
  • the binder contains polyvinylidene fluoride (PVdF).
  • PVdF polyvinylidene fluoride
  • the current collector By forming a conductive carbon film modified with at least N atoms having unshared electron pairs on the surface of the current collector, and forming an electrode layer on the surface of the conductive carbon film, the current collector It becomes possible to increase the adhesive force between the electrode layer and the electrode layer.
  • N atoms having unshared electron pairs on at least the surface of the conductive carbon film in the carbon film forming step it becomes easy to manufacture the electrode body in which the adhesive force of a collector and an electrode layer was improved.
  • the binder preferably has polarity. By setting it as this form, it becomes easy to raise the adhesive force of a collector and an electrode layer.
  • the electrode layer forming step includes at least an active material, a binder, and a solid electrolyte on the surface of the formed conductive carbon film. It may be a step of forming an electrode layer. Even in such a form, it is possible to increase the adhesive force between the current collector and the electrode layer.
  • PVdF polyvinylidene fluoride
  • an electrode body capable of improving the adhesive force between the current collector and the electrode layer can be provided.
  • an electrode body manufacturing method capable of manufacturing an electrode body capable of improving the adhesive force between the current collector and the electrode layer can do.
  • 1 is a cross-sectional view illustrating an electrode body 1. It is a figure explaining a conductive carbon film and a polar binder. It is a figure explaining an electroconductive carbon film and a nonpolar binder. 1 is a cross-sectional view illustrating a solid battery 10. It is a figure explaining the manufacturing method of an electrode body.
  • Electrode Body FIG. 1 is a cross-sectional view illustrating an electrode body 1 of the present invention.
  • the electrode body 1 includes a current collector 1a, a conductive carbon film 1b formed on the surface of the current collector 1a, and a positive electrode formed on the surface of the conductive carbon film 1b.
  • Layer 1c In the conductive carbon film 1b, at least the surface on the positive electrode layer 1c side is modified with N atoms having unshared electron pairs.
  • the positive electrode layer 1c contains a positive electrode active material, a solid electrolyte, and a binder having polarity (polar binder).
  • FIG. 2A is a diagram illustrating a conductive carbon film and a polar binder
  • FIG. 2B is a diagram illustrating a conductive carbon film and a nonpolar binder.
  • the surface of the conductive carbon film 1b is modified with N atoms (N atom peripheral sites ⁇ ⁇ ) having unshared electron pairs
  • the positive electrode layer 1c contains a polar binder. Therefore, in the electrode body 1, N atoms (N atom peripheral site ⁇ ⁇ ) having an unshared electron pair present on the surface of the conductive carbon film 1 b attract each other and the + charge part ( ⁇ + region) of the binder, and As shown in FIG.
  • the electrode body which can improve the adhesive force of a collector and an electrode layer can be provided.
  • FIG. 3 is a cross-sectional view illustrating the solid battery 10 including the electrode body 1.
  • the solid battery 10 includes an electrode body 1, a solid electrolyte layer 2 disposed on the surface of the positive electrode layer 1 c, a negative electrode layer 3 disposed on the surface of the solid electrolyte layer 2, and a negative electrode layer Current collector 4 connected to 3. Since the solid battery 10 includes the electrode body 1 with improved adhesion between the current collector 1a and the positive electrode layer 1c, the contact resistance at the interface between the current collector 1a and the positive electrode layer 1c can be reduced. become. Therefore, by adopting a configuration in which the electrode body 1 of the present invention is provided, it is possible to provide the solid state battery 10 with improved cycle performance.
  • a known metal that can be used as a current collector of a lithium ion secondary battery can be used as the current collector 1a.
  • a metal a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.
  • the conductive carbon film 1b may be any conductive carbon film in which N atoms having unshared electron pairs on at least the film surface are modified.
  • the conductive carbon film 1b has unshared electron pairs not only on the film surface but also in the film. N atoms may be present.
  • Such a conductive carbon film 1b is produced by using, for example, a known chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method (vapor deposition method) in addition to a plasma CVD method, an ion plating method, or a sputtering method. be able to.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the film surface has dangling bonds (unbonded hands).
  • a conductive carbon film 1b in which N atoms having unshared electron pairs are modified on the film surface can be produced by introducing a gas containing N 2 .
  • a source gas containing N atoms for example, pyridine
  • N atoms having unshared electron pairs exist not only in the film surface but also in the film.
  • a conductive carbon film 1b can be produced.
  • the conductive carbon film 1b is preferably in a form in which N atoms having unshared electron pairs exist not only in the film surface but also in the film.
  • the thickness of the conductive carbon film 1b is not particularly limited, and can be, for example, several tens of nm (about 30 nm to 40 nm).
  • the well-known active material which can be contained in the positive electrode layer of a lithium ion secondary battery can be suitably used for the positive electrode layer 1c.
  • positive electrode active materials include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (x is 0 ⁇ x ⁇ 0.4)), lithium manganate (LiMn 2 O 4 ), Li 1 + x Mn 2 ⁇ xy M y O 4 (M is selected from the group consisting of Al, Mg, Co, Fe, Ni, Zn) And at least one kind of the above-described elements, and 0 ⁇ x ⁇ 0.2 and 0 ⁇ y ⁇ 0.3.
  • the shape of the positive electrode active material can be, for example, particulate or thin film.
  • the average particle size (D50) of the positive electrode active material is, for example, preferably from 1 nm to 100 ⁇ m, and more preferably from 10 nm to 30 ⁇ m.
  • the content of the positive electrode active material in the positive electrode layer 1c is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
  • the positive electrode active material of the positive electrode layer 1c is an ion conductive oxide. It is preferably coated.
  • the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers).
  • Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like.
  • the lithium ion conductive oxide may be a complex oxide.
  • any combination of the above lithium ion conductive oxides can be employed.
  • Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned.
  • the ion conductive oxide when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good.
  • the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).
  • the well-known solid electrolyte which can be contained in the positive electrode layer of a lithium ion secondary battery can be suitably used for the positive electrode layer 1c.
  • solid electrolytes include oxide-based amorphous solid electrolytes such as Li 2 O—B 2 O 3 —P 2 O 5 and Li 2 O—SiO 2 , Li 2 S—SiS 2 , LiI—Li 2.
  • Sulfuration such as S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 S—P 2 O 5 , LiI-Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5
  • crystalline oxides such as Li 3.6 Si 0.6 P 0.4 O 4 , oxynitrides, and the like.
  • a known binder that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used for the positive electrode layer 1c.
  • a binder include amine-modified hydrogenated butadiene rubber (ABR), butylene rubber (BR), polyvinylidene fluoride (PVdF), and styrene butadiene rubber (SBR).
  • ABR amine-modified hydrogenated butadiene rubber
  • BR butylene rubber
  • PVdF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • the positive electrode layer 1c may contain a conductive material that improves conductivity.
  • the conductive material that can be contained in the positive electrode layer 1c include carbon materials such as vapor-grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), and carbon nanofiber (CNF).
  • AB acetylene black
  • KB ketjen black
  • CNT carbon nanotube
  • CNF carbon nanofiber
  • a metal material that can withstand the environment during use of the lithium ion secondary battery can be exemplified.
  • the positive electrode layer 1c may contain a known thickener.
  • the positive electrode layer 1c When the positive electrode layer 1c is produced using the slurry-like composition prepared by dispersing the positive electrode active material, the solid electrolyte, and the binder in a liquid, the positive electrode active material, the solid electrolyte, the binder, and the like are dispersed.
  • the liquid heptane and the like can be exemplified, and a nonpolar solvent can be preferably used.
  • the thickness of the positive electrode layer 1c is, for example, preferably from 0.1 ⁇ m to 1 mm, and more preferably from 1 ⁇ m to 100 ⁇ m.
  • the positive electrode layer 1c is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing a positive electrode layer can be about 400 MPa.
  • the solid electrolyte contained in the solid electrolyte layer 2 a known solid electrolyte that can be used in a solid battery can be appropriately used.
  • a known solid electrolyte include the solid electrolyte that can be contained in the positive electrode layer 1c.
  • the solid electrolyte layer 2 can contain a binder for binding the solid electrolytes from the viewpoint of developing plasticity. As such a binder, the said binder etc. which can be contained in the positive electrode layer 1c can be illustrated.
  • the solid electrolyte layer 2 can be formed from the viewpoint of preventing excessive aggregation of the solid electrolyte and enabling the formation of the solid electrolyte layer 2 having a uniformly dispersed solid electrolyte.
  • the binder to be contained is preferably 5% by mass or less.
  • the liquid for dispersing the solid electrolyte or the like examples thereof include heptane and the like, and a nonpolar solvent can be preferably used.
  • the content of the solid electrolyte material in the solid electrolyte layer 2 is mass%, for example, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the solid electrolyte layer 2 varies greatly depending on the configuration of the battery. For example, the thickness is preferably 0.1 ⁇ m or more and 1 mm or less, and more preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the well-known negative electrode active material which can occlude-release metal ion can be used suitably.
  • a negative electrode active material include a carbon active material, an oxide active material, and a metal active material.
  • the carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO.
  • the metal active material include In, Al, Si, and Sn.
  • a lithium-containing metal active material may be used as the negative electrode active material.
  • the lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.
  • the shape of the negative electrode active material may be, for example, a particle shape or a thin film shape.
  • the average particle diameter (D50) of the negative electrode active material is, for example, preferably from 1 nm to 100 ⁇ m, and more preferably from 10 nm to 30 ⁇ m.
  • the content of the negative electrode active material in the negative electrode layer 3 is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
  • the negative electrode layer 3 can contain the above solid electrolyte that can be contained in the positive electrode layer 1c.
  • the negative electrode layer 3 may contain a binder for binding the negative electrode active material and the solid electrolyte and a conductive material for improving conductivity.
  • the binder and conductive material that can be contained in the negative electrode layer 3 include the binder and conductive material that can be contained in the positive electrode layer 1c.
  • the liquid for dispersing the negative electrode active material or the like is as follows: A heptane etc. can be illustrated and a nonpolar solvent can be used preferably.
  • the thickness of the negative electrode layer 3 is, for example, preferably from 0.1 ⁇ m to 1 mm, and more preferably from 1 ⁇ m to 100 ⁇ m.
  • the negative electrode layer 3 is preferably manufactured through a pressing process.
  • the pressure when pressing the negative electrode layer is preferably 200 MPa or more, more preferably about 400 MPa.
  • the mass ratio of the positive electrode layer 1c and the negative electrode layer 3 is not particularly limited, but from the viewpoint of sufficiently accepting ions moving between the positive electrode layer 1c and the negative electrode layer 3, the negative electrode layer 3 It is preferable to increase the capacity of the positive electrode layer 1c.
  • the current collector 4 may be a known metal that can be used as a current collector of a lithium ion secondary battery.
  • a metal a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.
  • the solid battery 10 is used in a state of being housed in an exterior body.
  • an exterior body examples include a resin laminate film, a film obtained by vapor-depositing a metal on a resin laminate film, a metal case, and the like.
  • FIG. 4 is a flowchart for explaining the electrode body manufacturing method of the present invention.
  • the electrode body manufacturing method of the present invention will be described below with reference to FIGS. 1 to 4 as appropriate.
  • the manufacturing method of the electrode body of this invention has a carbon film formation process (S1) and an electrode layer formation process (S2).
  • the carbon film forming step (hereinafter sometimes referred to as “S1”) is a step of forming, on the surface of the current collector, a conductive carbon film in which N atoms having unshared electron pairs are modified at least on the film surface. It is.
  • S1 can be, for example, a step of forming the conductive carbon film 1b on the surface of the current collector 1a.
  • the form of S1 is not particularly limited as long as the conductive carbon film 1b can be formed on the surface of the current collector 1a.
  • S1 can be a step of forming the conductive carbon film 1b on the surface of the current collector 1a by using, for example, a plasma CVD method.
  • the conductive carbon film 1b is formed using a raw material gas not containing N atoms (for example, toluene), for example, after evacuation, the raw material gas is flowed together with the argon gas, and 2000 to 3000 V is applied between the electrodes. After applying a voltage to form a conductive carbon film on the surface of the current collector 1a, a conductive carbon in which N atoms having unshared electron pairs are modified on the film surface by introducing a gas containing N 2 The film 1b can be produced.
  • a raw material gas not containing N atoms for example, toluene
  • a conductive carbon film is produced using a source gas containing N atoms (for example, pyridine), for example, after evacuation, the source gas is flowed together with nitrogen gas, and 2000 to By forming a conductive carbon film on the surface of the current collector 1a by applying a voltage of 3000 V, conductive carbon in a form in which N atoms having unshared electron pairs exist not only on the film surface but also in the film.
  • the film 1b can be produced.
  • the conductive carbon film 1b thus produced is a carbon film having high conductivity, high hardness, and high density.
  • the electrode layer forming step (hereinafter sometimes referred to as “S2”) is a step of forming an electrode layer containing at least an active material and a binder on the surface of the conductive carbon film formed in S1.
  • S2 can be a step of forming the positive electrode layer 1c on the surface of the conductive carbon film 1b formed on the surface of the current collector 1a, for example.
  • the method for forming the positive electrode layer 1c on the surface of the conductive carbon film 1b is not particularly limited.
  • a positive electrode active material whose surface is coated with an ion conductive oxide, a solid electrolyte, a conductive material, and a polar binder (For example, amine-modified hydrogenated butadiene rubber (ABR)) is put in a heptane solution and stirred to prepare a slurry-like positive electrode composition, and this slurry-like positive electrode composition is formed on the surface of the conductive carbon film 1b.
  • the positive electrode layer 1c can be formed through the coating process.
  • the electrode body 1 that can be manufactured through S1 and S2 has improved adhesion between the current collector 1a and the electrode layer (positive electrode layer 1c). Therefore, according to this invention, the manufacturing method of an electrode body which can manufacture the electrode body which can improve the adhesive force of a collector and an electrode layer can be provided.
  • the electrode body of the present invention is not limited to this mode.
  • the electrode body of the present invention may be in a form using a nonpolar binder for the electrode layer.
  • a nonpolar binder is used for the electrode layer, as shown in FIG. 2B, the adhesive force between the conductive carbon film and the binder tends to be lower than when a polar binder is used. Therefore, in the present invention, it is preferable to use a polar binder in the electrode layer from the viewpoint of easily improving the adhesive force between the current collector and the electrode layer.
  • the electrode body 1 in which the positive electrode layer 1c is formed on the surface of the conductive carbon film 1b in which at least the N atom having an unshared electron pair is modified on the film surface and the electrode body 1
  • the electrode body of the present invention is not limited to this form.
  • the electrode body of the present invention has a form in which a negative electrode layer containing at least a negative electrode active material and a binder is formed on the surface of a conductive carbon film 1b in which N atoms having unshared electron pairs are modified on at least the film surface. May be. Even in such a form, it is possible to improve the adhesive force between the current collector and the negative electrode layer.
  • the solid battery 10 including the electrode body 1 has been described.
  • the solid battery including the electrode body of the present invention is not limited to this form.
  • the solid battery comprising the electrode body of the present invention has at least the surface of the conductive carbon film of the current collector in which the conductive carbon film in which atoms having unshared electron pairs are modified is formed on the film surface.
  • this electrode body may be referred to as a “negative electrode body”.
  • the electrode body of the present invention is exemplified as being used in a lithium ion secondary battery, but the present invention is not limited to this form.
  • the electrode body of the present invention can be configured to be used in a battery in which ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions.
  • the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
  • Example 1> Production of electrode body ⁇ Example 1> -Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of an Al substrate (Al foil) using a plasma CVD film forming apparatus.
  • an Al base material was installed in a plasma CVD film forming apparatus, the chamber was sealed, and the gas in the chamber was exhausted by a rotary pump and a diffusion pump connected to a gas outlet pipe. After exhausting to about 1 ⁇ 10 ⁇ 3 Pa, Ar gas was introduced at 120 sccm ( ⁇ 0.203 Pa ⁇ m 3 / s) from the gas introduction tube, and the gas pressure was adjusted to 11 Pa.
  • a heptane solution containing tributylamine and 5% by mass of a binder amine-modified hydrogenated butadiene rubber (ABR)
  • ABR amine-modified hydrogenated butadiene rubber
  • a positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 with an average particle diameter of 4 ⁇ m
  • a sulfide solid electrolyte Li 2 SP—P 2 S 5 glass containing 30% by mass of LiI) Ceramic
  • a conductive additive vapor-grown carbon fiber
  • the slurry-like positive electrode composition was prepared by shaking for 3 minutes with the shaker, the above-mentioned surface was formed on the surface of the Al substrate by a blade method using an applicator with a gap of 325 ⁇ m.
  • a slurry-like positive electrode composition was applied to the surface of the conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying for 30 minutes on a hot plate at 100 ° C., thereby forming a positive electrode layer on the surface of the conductive amorphous carbon film.
  • Got the body is performed at room temperature for 1 hour, followed by drying for 30 minutes on a hot plate at 100 ° C.
  • Example 2 Conductive carbon film forming reaction gas in pyridine gas, the carrier gas N 2 gas, respectively changed, except that further changing the film forming temperature, in the same manner as in Example 1, conductive amorphous carbon film was formed on the surface of an Al substrate.
  • the positive electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 2, and the electrode body of this invention was obtained.
  • Example 3 Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of an Al base material in the same manner as in Example 2 except that the film formation temperature and the film formation time were changed.
  • the positive electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 3, and the electrode body of this invention was obtained.
  • Conductive carbon film N 2 gas flow is formed carrier gas, deposition temperature, and to change the film formation time, further, in addition to changing the substrate to Cu Seimotozai (Cu foil), the In the same manner as in Example 2, a conductive amorphous carbon film was formed on the surface of the Cu substrate.
  • a heptane solution containing tributylamine and 5% by mass of a binder (amine-modified hydrogenated butadiene rubber (ABR)) was mixed with a mass ratio of heptane and tributylamine of 82:18. I put it to be.
  • the heptane solution in the container was divided into two polypropylene containers by the same amount.
  • a negative electrode active material natural graphite carbon having an average particle size of 10 ⁇ m, manufactured by Mitsubishi Chemical Corporation
  • a sulfide solid electrolyte Li 2 SP—S 2 S 5 glass ceramic containing 30% by mass of LiI
  • the solution was placed in a separate container, and stirred for 30 seconds with an ultrasonic dispersion apparatus (manufactured by SMT Co., Ltd., UH-50). Next, the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1). After the slurry-like negative electrode composition was produced by further shaking for 5 minutes with the above shaker, the above-mentioned formed on the surface of the Cu substrate by the blade method using an applicator with a gap of 325 ⁇ m A slurry-like negative electrode composition was applied to the surface of the conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying on a hot plate at 100 ° C. for 30 minutes, thereby forming a negative electrode layer on the surface of the conductive amorphous carbon film. Got the body.
  • Example 5 -Formation of conductive carbon film
  • a conductive amorphous carbon film was formed on the surface of an Al substrate.
  • a positive electrode layer was formed on the surface of the conductive amorphous carbon film of Example 5 by the same method as in Example 1 except that the binder was changed to butylene rubber (BR), and the electrode body of the present invention Got.
  • BR butylene rubber
  • Example 6> Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 4 except that the film formation temperature was changed.
  • the mixture was stirred for 30 seconds with an ultrasonic dispersion device (manufactured by SMT Co., Ltd., UH-50).
  • the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
  • a butyl butyrate solution having an amount that is half the total binder amount was added to the container after shaking, and the mixture was further stirred for 30 seconds with the above ultrasonic dispersing apparatus.
  • the surface of the Cu substrate was applied by a blade method using an applicator having a gap of 325 ⁇ m.
  • a slurry-like negative electrode composition was applied to the surface of the formed conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying on a hot plate at 100 ° C. for 30 minutes, thereby forming a negative electrode layer on the surface of the conductive amorphous carbon film.
  • Got the body is performed at room temperature for 1 hour, followed by drying on a hot plate at 100 ° C. for 30 minutes, thereby forming a negative electrode layer on the surface of the conductive amorphous carbon film.
  • Example 7 Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 6 except that the film formation temperature and the film formation time were changed.
  • Example 8> Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 6 except that the film formation temperature and the film formation time were changed.
  • Table 1 shows electrode body manufacturing conditions of Examples 1 to 5 and Comparative Examples 1 to 4.
  • Table 2 shows electrode body manufacturing conditions of Examples 6 to 8 and Comparative Examples 5 to 6.
  • the electrode body according to Comparative Example 1 in which a positive electrode layer containing a polar binder is formed on a current collector having a carbon film having no CN bond has an adhesive force.
  • the contact resistance was 25.7m ⁇ ⁇ cm 2.
  • a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a positive electrode containing a polar binder on the surface of the conductive amorphous carbon film
  • the electrode bodies according to Example 1, Example 2, and Example 3 in which the layers were formed all had a larger adhesive force than the electrode body according to Comparative Example 1, and the contact resistance was higher than that of the electrode body according to Comparative Example 1. was also small.
  • the electrode body according to Comparative Example 2 in which the positive electrode layer containing a nonpolar binder was formed on the current collector having no CN bond had an adhesive strength of 1 a .1N / cm 2, the contact resistance was 45.0m ⁇ ⁇ cm 2.
  • a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a nonpolar binder is included on the surface of the conductive amorphous carbon film.
  • the electrode body according to Example 5 in which the positive electrode layer was formed had a larger adhesive force than the electrode body according to Comparative Example 2, and the contact resistance was smaller than that of the electrode body according to Comparative Example 2.
  • the electrode body according to Comparative Example 3 in which a negative electrode layer containing a polar binder was formed on a current collector having a carbon film having no CN bond was bonded to Electrode according to Comparative Example 4 in which a negative electrode layer containing a polar binder is formed on a current collector having a force of 0.4 N / cm 2 , a contact resistance of 40.8 m ⁇ ⁇ cm 2 , and having no CN bond
  • the body had an adhesive strength of 0.7 N / cm 2 and a contact resistance of 10.8 m ⁇ ⁇ cm 2 .
  • a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a negative electrode containing a polar binder on the surface of the conductive amorphous carbon film
  • the electrode body according to Example 4 in which the layer was formed had a larger adhesive force than the electrode bodies according to Comparative Example 3 and Comparative Example 4, and the contact resistance was smaller than that of the electrode bodies according to Comparative Example 3 and Comparative Example 4.
  • the adhesive force between the current collector and the electrode layer can be improved, and the resistance can be reduced.
  • the electrode bodies according to Example 1, Example 2, and Example 3 in which the positive electrode layer containing the polar binder was formed formed the positive electrode layer containing the nonpolar binder.
  • the adhesive strength was larger than that of the electrode body according to Example 5. Therefore, the adhesive force between the current collector and the electrode layer could be further increased by using the polar binder.
  • the electrode body according to Comparative Example 1 in which the positive electrode layer containing the polar binder was formed had a larger adhesive force of 3.9 N / cm 2 than the electrode body according to Comparative Example 2 in which the positive electrode layer containing the nonpolar binder was formed. It was.
  • the electrode body according to Example 2 in which the positive electrode layer containing the polar binder was formed had a larger adhesive force of 9.1 N / cm 2 than the electrode body according to Example 5 in which the positive electrode layer containing the nonpolar binder was formed. It was.
  • a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and an electrode layer containing a polar binder is formed on the surface of the conductive amorphous carbon film. It has been found that the effect of improving the adhesion strength between the current collector and the electrode layer can be easily enhanced by forming.
  • the electrode body according to Comparative Example 5 in which the negative electrode layer containing PVdF was formed on the Cu foil having no CN bond had an adhesive strength of 2.7 N / cm 2, and the contact resistance was 10.8m ⁇ ⁇ cm 2.
  • the electrode body according to Comparative Example 6 in which the negative electrode layer containing PVdF was formed on the Cu foil having the carbon film having no CN bond had an adhesive force of 1.2 N / cm 2 and a contact resistance. was 40.8 m ⁇ ⁇ cm 2 .
  • a conductive amorphous carbon film in which at least N atoms having unshared electron pairs are modified on the film surface is formed on the surface of the current collector (Cu base material), and the surface of the conductive amorphous carbon film is formed.
  • the electrode bodies according to Examples 6 to 8 in which the negative electrode layer containing PVdF was formed had a greater adhesive force than the electrode bodies according to Comparative Example 5 and Comparative Example 6.
  • the electrode body according to Example 6 had a contact resistance of 2.6 m ⁇ ⁇ cm 2
  • the electrode body according to Example 7 had a contact resistance of 3.3 m ⁇ ⁇ cm 2 . . That is, the electrode body according to Example 6 and the electrode body according to Example 7 were smaller in contact resistance than the electrode body according to Comparative Example 5 and the electrode body according to Comparative Example 6.
  • a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector (Cu base material).
  • the electrode body according to Example 4 in which the negative electrode layer containing ABR was formed on the surface of the conductive amorphous carbon film had an adhesive force of 1.4 N / cm 2 .
  • at least the conductive amorphous carbon film in which the N atom having an unshared electron pair is modified on the film surface is formed on the surface of the current collector (Cu base material).
  • the electrode bodies according to Examples 6 to 8 in which the negative electrode layer containing PVdF was formed on the surface of the conductive amorphous carbon film had adhesive strengths of 11.5 N / cm 2 and 13.9 N / cm 2. 17.4 N / cm 2 . Therefore, by forming an electrode layer using a binder containing PVdF on a current collector in which a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified on at least the film surface is formed on the surface. It was confirmed that the adhesion between the electrode layer and the current collector can be easily increased.
  • Electrode body 1a ... Current collector 1b .
  • Conductive carbon film 1c ...
  • Positive electrode layer (electrode layer) 2 ...
  • Solid electrolyte layer 3 ...
  • Negative electrode layer 4 ...
  • Current collector 10 ... Solid battery

Abstract

The principal purpose of the present invention is to provide an electrode element and a method for producing same, whereby the adhesive power of the current collector and the electrode layer may be improved. This method for producing an electrode element includes: a step in which a conductive carbon film in which modified N atoms having unshared electron pairs have been modified, on at least on the film surface thereof, is formed on the surface of a current collector of the electrode element; and a step of forming an electrode layer containing at least an active material and a binder, on the surface of the conductive carbon film thusly formed, to obtain an electrode element having a current collector and an electrode layer contacting the current collector, the electrode layer containing at least an active material and a binder, and a conductive carbon film in which modified N atoms having unshared electron pairs have been modified, on at least on the film surface thereof, being formed on the surface of the current collector on the electrode layer side thereof.

Description

電極体及びその製造方法Electrode body and manufacturing method thereof
 本発明は、固体電池等に用いられる電極体及びその製造方法に関する。 The present invention relates to an electrode body used for a solid battery or the like and a manufacturing method thereof.
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。 Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられ、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)の開発が進められている。 A lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween. Examples of the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known. When a liquid electrolyte (hereinafter referred to as “electrolytic solution”) is used, the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, when a solid electrolyte that is flame retardant (hereinafter referred to as “solid electrolyte”) is used, the above system can be simplified. Therefore, development of a lithium ion secondary battery (hereinafter referred to as “solid battery”) in a form provided with a layer containing a solid electrolyte (hereinafter referred to as “solid electrolyte layer”) is in progress.
 このようなリチウムイオン二次電池に関する技術として、例えば特許文献1には、集電体の少なくとも一部に膜状に形成した正極及び負極を有する全固体電池の正極に、正極活物質及び固体電解質と、アセチレンブラック、カーボンブラック、カーボンナノチューブのような導電性物質又はポリアニリン、ポリアセチレン、ポリピロールのような導電性高分子と、を含む形態が開示されている。また、特許文献2には、正極集電体の表面に第1結着剤が活物質中に含まれてなる正極活物質層が形成された正極と、負極集電体の表面に第1結着剤と同一又は異なる第2結着剤が活物質中に含まれてなる負極活物質層が形成された負極と、電解質とを備えたリチウムイオンポリマー二次電池において、正極集電体と正極活物質層との間に第1密着層を有し、負極集電体と負極活物質層との間に第2密着層を有し、第1及び第2密着層が第3結着剤と導電性物質の双方をそれぞれ含み、第3結着剤が、第1結着剤又は第2結着剤を変性物質により変性させた高分子化合物である技術が開示されている。このほか、特許文献3には、π電子の非局在化が促進された非晶質炭素膜及びその形成方法が開示されており、この非晶質炭素膜は燃料電池のセパレータとして使用可能である旨、説明されている。 As a technique related to such a lithium ion secondary battery, for example, Patent Document 1 discloses that a positive electrode active material and a solid electrolyte are formed on a positive electrode of an all-solid battery having a positive electrode and a negative electrode formed in a film shape on at least a part of a current collector. And a conductive material such as acetylene black, carbon black and carbon nanotube, or a conductive polymer such as polyaniline, polyacetylene and polypyrrole is disclosed. Patent Document 2 discloses a positive electrode in which a positive electrode active material layer in which a first binder is contained in an active material is formed on the surface of a positive electrode current collector, and a first bond on the surface of the negative electrode current collector. A positive electrode current collector and a positive electrode in a lithium ion polymer secondary battery comprising a negative electrode on which a negative electrode active material layer in which a second binder that is the same as or different from the adhesive is contained in an active material is formed, and an electrolyte A first adhesive layer between the active material layer, a second adhesive layer between the negative electrode current collector and the negative electrode active material layer, the first and second adhesive layers being a third binder; A technique is disclosed that includes both conductive materials, and the third binder is a polymer compound obtained by modifying the first binder or the second binder with a modifying substance. In addition, Patent Document 3 discloses an amorphous carbon film in which delocalization of π electrons is promoted and a method for forming the amorphous carbon film, and this amorphous carbon film can be used as a separator for a fuel cell. It is explained to some extent.
特開2008-103284号公報JP 2008-103284 A 特開2002-304997号公報JP 2002-304997 A 特開2008-4540号公報JP 2008-4540 A
 特許文献1に開示されている技術のように、集電体と正極との界面に、集電体と正極との密着性を向上させる密着層を介在させることなく、集電体の表面に正極を形成すると、スリット形成や捲回等の加工時に集電体と正極との界面が剥離しやすく、その結果、固体電池の性能が低下しやすいという問題があった。この問題を解決するために、集電体と正極との界面に密着層を介在させることが考えられるが、特許文献2に開示されている密着層を、固体電池の正極又は負極(以下において、これらをまとめて「電極層」ということがある。)と集電体との間に設けても、集電体と電極層との接着力は向上させ難かった。一方、特許文献3の明細書の段落0051には、非晶質炭素膜を備えた導電性部材を、電池電極などの各種電極材料として用いることができる旨、記載されている。しかしながら、特許文献3には、非晶質炭素膜を固体電池に用いることを想定した具体的な記載がなく、特許文献3から、固体電池における好適な使用態様を特定することは困難であった。
  また、特許文献1には、バインダーが存在するとイオン伝導パスを阻害する旨の記載があるが、実際の電池製造時にバインダーを使用しないと、割れや剥離等の問題が起こるため現実的でない。そのため、バインダーを使用し、集電体との接着力を確保することが、製造上必要である。また、特許文献3には、耐食性や摩耗性に関する記述はあるが接着性に関する記述はない。燃料電池ではシート状の部材との接着を有する可能性があるが、接着のみの確保ができれば良い。しかしながら、本発明者らが検討している硫化物全固体電池では、数μmの粒子間及び集電体/合材界面の接着性を確保しつつ、性能を維持するため、少量のバインダーで接着力を確保しなければならない。
As in the technique disclosed in Patent Document 1, the positive electrode is formed on the surface of the current collector without interposing an adhesive layer that improves the adhesion between the current collector and the positive electrode at the interface between the current collector and the positive electrode. When forming, the interface between the current collector and the positive electrode tends to be peeled off during processing such as slit formation or winding, and as a result, there has been a problem that the performance of the solid battery is likely to deteriorate. In order to solve this problem, it is conceivable to interpose an adhesion layer at the interface between the current collector and the positive electrode, but the adhesion layer disclosed in Patent Document 2 is used as a positive electrode or a negative electrode (hereinafter, These may be collectively referred to as an “electrode layer.”) And the current collector, but it was difficult to improve the adhesive force between the current collector and the electrode layer. On the other hand, paragraph 0051 of the specification of Patent Document 3 describes that a conductive member provided with an amorphous carbon film can be used as various electrode materials such as battery electrodes. However, Patent Document 3 does not have a specific description assuming that an amorphous carbon film is used for a solid battery, and it has been difficult to specify a suitable usage mode in the solid battery from Patent Document 3. .
Japanese Patent Application Laid-Open No. H10-228688 describes that the presence of a binder inhibits the ion conduction path, but if the binder is not used during actual battery production, problems such as cracking and peeling occur, which is not realistic. For this reason, it is necessary for production to use a binder and to secure an adhesive force with the current collector. In addition, Patent Document 3 has a description about corrosion resistance and wear, but there is no description about adhesiveness. A fuel cell may have adhesion with a sheet-like member, but it is sufficient that only adhesion can be secured. However, in the sulfide all solid state battery investigated by the present inventors, a small amount of binder is used to maintain the performance while maintaining the adhesion between the particles of several μm and the current collector / mixture interface. We must secure power.
 そこで本発明は、集電体と電極層との接着力を向上させることが可能な、電極体及びその製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide an electrode body and a method for manufacturing the same, which can improve the adhesive force between the current collector and the electrode layer.
 本発明者らは、鋭意研究の結果、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜(導電性非晶質炭素膜。以下において同じ。)を、集電体の表面に形成し、この導電性カーボン膜が集電体と電極層との間に配置されるように電極層を形成することにより、集電体と電極層との接着力を向上させることが可能になることを知見した。また、本発明者らは、電極層に含有されるバインダーとして、ポリフッ化ビニリデン(以下において、「PVdF」ということがある。)を含むバインダーを用いることにより、集電体と電極層との接着力を向上させやすくなることも知見した。本発明は、これらの知見に基づいて完成させた。 As a result of diligent research, the present inventors have developed a conductive carbon film (conductive amorphous carbon film; the same applies hereinafter) in which at least N atoms having an unshared electron pair are modified on the film surface. The adhesion between the current collector and the electrode layer can be improved by forming the electrode layer so that the conductive carbon film is disposed between the current collector and the electrode layer. I knew that it would be possible. In addition, the present inventors use a binder containing polyvinylidene fluoride (hereinafter sometimes referred to as “PVdF”) as a binder contained in the electrode layer, whereby adhesion between the current collector and the electrode layer is achieved. It was also found that it becomes easier to improve the power. The present invention has been completed based on these findings.
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、集電体と、該集電体に接続された電極層と、を有し、電極層は、少なくとも活物質及びバインダーを含有し、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜が、集電体の、電極層側の表面に形成されている、電極体である。
In order to solve the above problems, the present invention takes the following means. That is,
A first aspect of the present invention includes a current collector and an electrode layer connected to the current collector, the electrode layer containing at least an active material and a binder, and at least a non-shared electron on the film surface A conductive carbon film in which N atoms having a pair are modified is an electrode body formed on the surface of the current collector on the electrode layer side.
 ここに、本発明の第1の態様及び以下に示す本発明の他の態様(以下において、これらをまとめて「本発明」ということがある。)において、「電極層」とは、正極層や負極層をいう。また、本発明において、「活物質」とは、電極層が正極層の場合には正極活物質をいい、電極層が負極層の場合には負極活物質をいう。また、本発明において、「非共有電子対を有するN原子」とは、非共有電子対を有するN(窒素)原子をいう。また、本発明において、「少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜」とは、非共有電子対を有するN(窒素)原子が導電性カーボン膜のC(炭素)原子と結合している状態をいう。結合したN原子及びC原子(C-N結合)は、例えば、X線光電子分光分析(XPS分析)により確認することができる。 Here, in the first aspect of the present invention and other aspects of the present invention described below (hereinafter, these may be collectively referred to as “the present invention”), the “electrode layer” means a positive electrode layer or Refers to the negative electrode layer. In the present invention, the “active material” means a positive electrode active material when the electrode layer is a positive electrode layer, and a negative electrode active material when the electrode layer is a negative electrode layer. In the present invention, the “N atom having an unshared electron pair” refers to an N (nitrogen) atom having an unshared electron pair. In the present invention, “the conductive carbon film in which at least the N atom having an unshared electron pair is modified on the film surface” means that the N (nitrogen) atom having an unshared electron pair is C ( A state in which it is bonded to a (carbon) atom. The bonded N atom and C atom (CN bond) can be confirmed by, for example, X-ray photoelectron spectroscopy (XPS analysis).
 集電体の表面に、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜を形成し、この導電性カーボン膜を介して集電体と電極層とを接続することにより、集電体と電極層との接着力を高めることが可能になる。 Forming a conductive carbon film modified with N atoms having unshared electron pairs at least on the surface of the current collector, and connecting the current collector and the electrode layer via the conductive carbon film; As a result, the adhesive force between the current collector and the electrode layer can be increased.
 本発明の第2の態様は、集電体と、該集電体に接続された電極層と、を有し、電極層は、少なくとも活物質及びバインダーを含有し、蒸着法により形成した導電性カーボン膜が、集電体の、電極層側の表面に配置されている、電極体である。 A second aspect of the present invention includes a current collector and an electrode layer connected to the current collector, and the electrode layer contains at least an active material and a binder and is formed by vapor deposition. The carbon film is an electrode body disposed on the surface of the current collector on the electrode layer side.
 集電体の表面に、蒸着法により導電性カーボン膜を形成し、この導電性カーボン膜を介して集電体と電極層とを接続することにより、集電体と電極層との接着力を高めることが可能になる。ここに、本発明において、「蒸着法」には、プラズマCVD法やイオンプレーティング法、スパッタリング法のほか、公知の化学蒸着(CVD)法や物理蒸着(PVD)法が含まれる。 By forming a conductive carbon film on the surface of the current collector by vapor deposition and connecting the current collector and the electrode layer through this conductive carbon film, the adhesion between the current collector and the electrode layer is increased. It becomes possible to increase. Here, in the present invention, the “evaporation method” includes a known chemical vapor deposition (CVD) method and physical vapor deposition (PVD) method in addition to a plasma CVD method, an ion plating method, and a sputtering method.
 また、上記本発明の第2の態様において、導電性カーボン膜は、少なくとも膜表面に、非共有電子対を有するN原子が修飾されていることが好ましい。かかる形態とすることにより、集電体と電極層との接着力が高められた電極体を得やすくなる。 In the second aspect of the present invention, it is preferable that the conductive carbon film is modified with N atoms having unshared electron pairs at least on the film surface. By setting it as this form, it becomes easy to obtain the electrode body in which the adhesive force of a collector and an electrode layer was improved.
 また、上記本発明の第1の態様及び上記本発明の第2の態様において、バインダーが極性を有することが好ましい。電極層に含有されるバインダーが極性を有することにより、集電体と電極層との接着力を高めやすくなる。 In the first aspect of the present invention and the second aspect of the present invention, the binder preferably has polarity. When the binder contained in the electrode layer has polarity, it becomes easy to increase the adhesive force between the current collector and the electrode layer.
 また、上記本発明の第1の態様及び上記本発明の第2の態様において、電極層は、少なくとも活物質、バインダー、及び、固体電解質を含有していても良い。電極層に固体電解質が含有されていても、集電体と電極層との接着力を高めることが可能である。 In the first aspect of the present invention and the second aspect of the present invention, the electrode layer may contain at least an active material, a binder, and a solid electrolyte. Even if the electrode layer contains a solid electrolyte, it is possible to increase the adhesive force between the current collector and the electrode layer.
 また、上記本発明の第1の態様及び上記本発明の第2の態様において、バインダーに、ポリフッ化ビニリデン(PVdF)が含まれていることが好ましい。PVdFを含むバインダーを用いることにより、集電体と電極層との接着力を高めやすくなる。 In the first aspect of the present invention and the second aspect of the present invention, it is preferable that the binder contains polyvinylidene fluoride (PVdF). By using the binder containing PVdF, it becomes easy to increase the adhesive force between the current collector and the electrode layer.
 本発明の第3の態様は、集電体の表面に、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜を形成する、カーボン膜形成工程と、形成した導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する電極層を形成する、電極層形成工程と、を有する、電極体の製造方法である。 According to a third aspect of the present invention, there is provided a carbon film forming step of forming a conductive carbon film in which an N atom having an unshared electron pair is modified at least on the surface of the current collector, and the formed conductivity. And an electrode layer forming step of forming an electrode layer containing at least an active material and a binder on the surface of the carbon film.
 集電体の表面に、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜を形成し、この導電性カーボン膜の表面に電極層を形成することにより、集電体と電極層との接着力を高めることが可能になる。 By forming a conductive carbon film modified with at least N atoms having unshared electron pairs on the surface of the current collector, and forming an electrode layer on the surface of the conductive carbon film, the current collector It becomes possible to increase the adhesive force between the electrode layer and the electrode layer.
 本発明の第4の態様は、集電体の表面に、蒸着法により導電性カーボン膜を形成する、カーボン膜形成工程と、形成した導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する電極層を形成する、電極層形成工程と、を有する、電極体の製造方法である。 According to a fourth aspect of the present invention, a carbon film forming step of forming a conductive carbon film on the surface of a current collector by a vapor deposition method, and at least an active material and a binder are included on the surface of the formed conductive carbon film An electrode layer forming step of forming an electrode layer to be manufactured.
 集電体の表面に、蒸着法により導電性カーボン膜を形成し、この導電性カーボン膜の表面に電極層を形成することにより、集電体と電極層との接着力を高めることが可能になる。 By forming a conductive carbon film on the surface of the current collector by vapor deposition and forming an electrode layer on the surface of this conductive carbon film, it is possible to increase the adhesion between the current collector and the electrode layer Become.
 また、上記本発明の第4の態様において、カーボン膜形成工程で、導電性カーボン膜の少なくとも表面に、非共有電子対を有するN原子を修飾させることが好ましい。かかる形態とすることにより、集電体と電極層との接着力が高められた電極体を製造しやすくなる。 In the fourth aspect of the present invention, it is preferable to modify N atoms having unshared electron pairs on at least the surface of the conductive carbon film in the carbon film forming step. By setting it as this form, it becomes easy to manufacture the electrode body in which the adhesive force of a collector and an electrode layer was improved.
 また、上記本発明の第3の態様及び上記本発明の第4の態様において、バインダーが、極性を有することが好ましい。かかる形態とすることにより、集電体と電極層との接着力を高めやすくなる。 In the third aspect of the present invention and the fourth aspect of the present invention, the binder preferably has polarity. By setting it as this form, it becomes easy to raise the adhesive force of a collector and an electrode layer.
 また、上記本発明の第3の態様及び上記本発明の第4の態様において、電極層形成工程が、形成した導電性カーボン膜の表面に、少なくとも活物質、バインダー、及び、固体電解質を含有する電極層を形成する工程であっても良い。かかる形態であっても、集電体と電極層との接着力を高めることが可能である。 In the third aspect of the present invention and the fourth aspect of the present invention, the electrode layer forming step includes at least an active material, a binder, and a solid electrolyte on the surface of the formed conductive carbon film. It may be a step of forming an electrode layer. Even in such a form, it is possible to increase the adhesive force between the current collector and the electrode layer.
 また、上記本発明の第3の態様及び上記本発明の第4の態様において、バインダーとして、ポリフッ化ビニリデン(PVdF)を含むバインダーを用いることが好ましい。PVdFを含むバインダーを用いることにより、集電体と電極層との接着力を高めた電極体を製造しやすくなる。 In the third aspect of the present invention and the fourth aspect of the present invention, it is preferable to use a binder containing polyvinylidene fluoride (PVdF) as the binder. By using a binder containing PVdF, it becomes easy to manufacture an electrode body with enhanced adhesion between the current collector and the electrode layer.
 本発明の第1の態様及び本発明の第2の態様によれば、集電体と電極層との接着力を向上させることが可能な、電極体を提供することができる。 According to the first aspect of the present invention and the second aspect of the present invention, an electrode body capable of improving the adhesive force between the current collector and the electrode layer can be provided.
 本発明の第3の態様及び本発明の第4の態様によれば、集電体と電極層との接着力を向上させ得る電極体を製造することが可能な、電極体の製造方法を提供することができる。 According to the third aspect of the present invention and the fourth aspect of the present invention, an electrode body manufacturing method capable of manufacturing an electrode body capable of improving the adhesive force between the current collector and the electrode layer is provided. can do.
電極体1を説明する断面図である。1 is a cross-sectional view illustrating an electrode body 1. 導電性カーボン膜及び極性バインダーを説明する図である。It is a figure explaining a conductive carbon film and a polar binder. 導電性カーボン膜及び無極性バインダーを説明する図である。It is a figure explaining an electroconductive carbon film and a nonpolar binder. 固体電池10を説明する断面図である。1 is a cross-sectional view illustrating a solid battery 10. 電極体の製造方法を説明する図である。It is a figure explaining the manufacturing method of an electrode body.
 以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。 Hereinafter, the present invention will be described with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.
 1.電極体
  図1は、本発明の電極体1を説明する断面図である。図1に示したように、電極体1は、集電体1aと、該集電体1aの表面に形成された導電性カーボン膜1bと、該導電性カーボン膜1bの表面に形成された正極層1cと、を有している。導電性カーボン膜1bは、少なくとも正極層1c側の表面に、非共有電子対を有するN原子が修飾されている。正極層1cは、正極活物質、固体電解質、及び、極性を有するバインダー(極性バインダー)を含有している。
1. Electrode Body FIG. 1 is a cross-sectional view illustrating an electrode body 1 of the present invention. As shown in FIG. 1, the electrode body 1 includes a current collector 1a, a conductive carbon film 1b formed on the surface of the current collector 1a, and a positive electrode formed on the surface of the conductive carbon film 1b. Layer 1c. In the conductive carbon film 1b, at least the surface on the positive electrode layer 1c side is modified with N atoms having unshared electron pairs. The positive electrode layer 1c contains a positive electrode active material, a solid electrolyte, and a binder having polarity (polar binder).
 図2Aは、導電性カーボン膜及び極性バインダーを説明する図であり、図2Bは、導電性カーボン膜及び無極性バインダーを説明する図である。上述のように、導電性カーボン膜1bの表面には、非共有電子対を有するN原子(N原子周辺部位δ)が修飾されており、正極層1cには極性バインダーが含有されている。そのため、電極体1では、導電性カーボン膜1bの表面に存在する非共有電子対を有するN原子(N原子周辺部位δ)とバインダーの+電荷部(δの領域)とが引き合い、且つ、バインダーの有する-電荷(δの領域)と導電性カーボン膜1b表面の+電荷(δの領域)とがそれぞれ引き合うことにより、図2Aにも示したように、集電体1aと正極層1cとの接着力(結合力)が向上する。したがって、本発明によれば、集電体と電極層との接着力を向上させることが可能な電極体を提供することができる。 FIG. 2A is a diagram illustrating a conductive carbon film and a polar binder, and FIG. 2B is a diagram illustrating a conductive carbon film and a nonpolar binder. As described above, the surface of the conductive carbon film 1b is modified with N atoms (N atom peripheral sites δ ) having unshared electron pairs, and the positive electrode layer 1c contains a polar binder. Therefore, in the electrode body 1, N atoms (N atom peripheral site δ ) having an unshared electron pair present on the surface of the conductive carbon film 1 b attract each other and the + charge part (δ + region) of the binder, and As shown in FIG. 2A, the −charge (δ region) of the binder and the + charge (δ + region) on the surface of the conductive carbon film 1b attract each other. The adhesive force (bonding force) with the layer 1c is improved. Therefore, according to this invention, the electrode body which can improve the adhesive force of a collector and an electrode layer can be provided.
 図3は、電極体1を備える固体電池10を説明する断面図である。図3では、電極体1等を包む外装体等の記載を省略している。図3に示したように、固体電池10は、電極体1と、正極層1cの表面に配置された固体電解質層2と、固体電解質層2の表面に配置された負極層3と、負極層3に接続された集電体4と、を備えている。固体電池10は、集電体1aと正極層1cとの接着力を向上させた電極体1を備えているので、集電体1aと正極層1cとの界面における接触抵抗を低減することが可能になる。したがって、本発明の電極体1が備えられる形態とすることにより、サイクル性能を向上させた固体電池10を提供することが可能になる。 FIG. 3 is a cross-sectional view illustrating the solid battery 10 including the electrode body 1. In FIG. 3, description of the exterior body etc. which wraps the electrode body 1 grade | etc., Is abbreviate | omitted. As shown in FIG. 3, the solid battery 10 includes an electrode body 1, a solid electrolyte layer 2 disposed on the surface of the positive electrode layer 1 c, a negative electrode layer 3 disposed on the surface of the solid electrolyte layer 2, and a negative electrode layer Current collector 4 connected to 3. Since the solid battery 10 includes the electrode body 1 with improved adhesion between the current collector 1a and the positive electrode layer 1c, the contact resistance at the interface between the current collector 1a and the positive electrode layer 1c can be reduced. become. Therefore, by adopting a configuration in which the electrode body 1 of the present invention is provided, it is possible to provide the solid state battery 10 with improved cycle performance.
 電極体1において、集電体1aは、リチウムイオン二次電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。 In the electrode body 1, a known metal that can be used as a current collector of a lithium ion secondary battery can be used as the current collector 1a. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.
 また、導電性カーボン膜1bは、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜であれば良く、膜表面のみならず膜中にも、非共有電子対を有するN原子が存在していても良い。このような導電性カーボン膜1bは、例えば、プラズマCVD法やイオンプレーティング法、スパッタリング法のほか、公知の化学蒸着(CVD)法や物理蒸着(PVD)法(蒸着法)を用いて作製することができる。例えば、導電性カーボン膜1bの作製時に、N原子を含まない原料ガス(例えばトルエン等)を用いて導電性カーボン膜を作製する場合には、膜表面にダングリングボンド(未結合手)を有する導電性カーボン膜を形成した後に、Nを含むガスを導入することで、膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜1bを作製することができる。このほか、N原子を含む原料ガス(例えばピリジン等)を用いて導電性カーボン膜を作製する場合には、膜表面のみならず膜中にも非共有電子対を有するN原子が存在する形態の、導電性カーボン膜1bを作製することができる。電極体1において、膜表面に修飾された非共有電子対を有するN原子の数を増大させることによって、集電体1aと正極層1cとの接着力を高めやすい形態にする観点からは、導電性カーボン膜1bを、膜表面のみならず膜中にも非共有電子対を有するN原子が存在する形態とすることが好ましい。本発明において、導電性カーボン膜1bの厚さは特に限定されず、例えば、数十nm(30nm以上40nm以下程度)とすることができる。 The conductive carbon film 1b may be any conductive carbon film in which N atoms having unshared electron pairs on at least the film surface are modified. The conductive carbon film 1b has unshared electron pairs not only on the film surface but also in the film. N atoms may be present. Such a conductive carbon film 1b is produced by using, for example, a known chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method (vapor deposition method) in addition to a plasma CVD method, an ion plating method, or a sputtering method. be able to. For example, when the conductive carbon film 1b is manufactured using a source gas (for example, toluene) that does not contain N atoms, the film surface has dangling bonds (unbonded hands). After the conductive carbon film is formed, a conductive carbon film 1b in which N atoms having unshared electron pairs are modified on the film surface can be produced by introducing a gas containing N 2 . In addition, when a conductive carbon film is produced using a source gas containing N atoms (for example, pyridine), N atoms having unshared electron pairs exist not only in the film surface but also in the film. A conductive carbon film 1b can be produced. From the viewpoint of making the electrode body 1 easier to increase the adhesive force between the current collector 1a and the positive electrode layer 1c by increasing the number of N atoms having a modified unshared electron pair on the film surface, The conductive carbon film 1b is preferably in a form in which N atoms having unshared electron pairs exist not only in the film surface but also in the film. In the present invention, the thickness of the conductive carbon film 1b is not particularly limited, and can be, for example, several tens of nm (about 30 nm to 40 nm).
 また、正極層1cには、リチウムイオン二次電池の正極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)のほか、ニッケル酸リチウム(LiNiO)、Li1+xNi1/3Mn1/3Co1/3(xは0≦x≦0.4である。)、マンガン酸リチウム(LiMn)、Li1+xMn2-x-y(MはAl、Mg、Co、Fe、Ni、Znからなる群より選択される少なくとも一種以上であり、0≦x≦0.2、及び、0≦y≦0.3である。)で表される組成の異種元素置換Li-Mnスピネル、チタン酸リチウム(LiTi12)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)等を例示することができる。 Moreover, the well-known active material which can be contained in the positive electrode layer of a lithium ion secondary battery can be suitably used for the positive electrode layer 1c. Examples of such positive electrode active materials include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (x is 0 ≦ x ≦ 0.4)), lithium manganate (LiMn 2 O 4 ), Li 1 + x Mn 2−xy M y O 4 (M is selected from the group consisting of Al, Mg, Co, Fe, Ni, Zn) And at least one kind of the above-described elements, and 0 ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.3. The heteroelement-substituted Li—Mn spinel, lithium titanate (Li 4 Ti 5 O 12 ), lithium metal phosphate (LiMPO 4 , M = Fe, Mn, Co, Ni) and the like can be exemplified.
 正極活物質の形状は、例えば粒子状や薄膜状等にすることができる。正極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、正極層1cにおける正極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。 The shape of the positive electrode active material can be, for example, particulate or thin film. The average particle size (D50) of the positive electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. Moreover, the content of the positive electrode active material in the positive electrode layer 1c is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
 正極活物質と固体電解質との界面に高抵抗層が形成され難くすることにより、電池抵抗の増加を防止しやすい形態にする観点から、正極層1cの正極活物質は、イオン伝導性酸化物で被覆されていることが好ましい。正極活物質を被覆するリチウムイオン伝導性酸化物としては、例えば、一般式LiAO(Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta又はWであり、x及びyは正の数である。)で表される酸化物を挙げることができる。具体的には、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiWO等を例示することができる。また、リチウムイオン伝導性酸化物は、複合酸化物であっても良い。正極活物質を被覆する複合酸化物としては、上記リチウムイオン伝導性酸化物の任意の組み合わせを採用することができ、例えば、LiSiO-LiBO、LiSiO-LiPO等を挙げることができる。また、正極活物質の表面をイオン伝導性酸化物で被覆する場合、イオン伝導性酸化物は、正極活物質の少なくとも一部を被覆してれば良く、正極活物質の全面を被覆していても良い。また、正極活物質を被覆するイオン伝導性酸化物の厚さは、例えば、0.1nm以上100nm以下であることが好ましく、1nm以上20nm以下であることがより好ましい。なお、イオン伝導性酸化物の厚さは、例えば、透過型電子顕微鏡(TEM)等を用いて測定することができる。 From the viewpoint of making it easy to prevent an increase in battery resistance by making it difficult for a high resistance layer to be formed at the interface between the positive electrode active material and the solid electrolyte, the positive electrode active material of the positive electrode layer 1c is an ion conductive oxide. It is preferably coated. Examples of the lithium ion conductive oxide that coats the positive electrode active material include a general formula Li x AO y (A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W). And x and y are positive numbers). Specifically, Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 Examples include O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like. The lithium ion conductive oxide may be a complex oxide. As the composite oxide covering the positive electrode active material, any combination of the above lithium ion conductive oxides can be employed. For example, Li 4 SiO 4 —Li 3 BO 3 , Li 4 SiO 4 —Li 3 PO 4 etc. can be mentioned. Further, when the surface of the positive electrode active material is coated with an ion conductive oxide, the ion conductive oxide only needs to cover at least a part of the positive electrode active material, and covers the entire surface of the positive electrode active material. Also good. In addition, the thickness of the ion conductive oxide covering the positive electrode active material is, for example, preferably from 0.1 nm to 100 nm, and more preferably from 1 nm to 20 nm. The thickness of the ion conductive oxide can be measured using, for example, a transmission electron microscope (TEM).
 また、正極層1cには、リチウムイオン二次電池の正極層に含有させることが可能な公知の固体電解質を適宜用いることができる。そのような固体電解質としては、LiO-B-P、LiO-SiO等の酸化物系非晶質固体電解質、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P等の硫化物系非晶質固体電解質のほか、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、Li3.6Si0.60.4等の結晶質酸化物・酸窒化物等を例示することができる。 Moreover, the well-known solid electrolyte which can be contained in the positive electrode layer of a lithium ion secondary battery can be suitably used for the positive electrode layer 1c. Examples of such solid electrolytes include oxide-based amorphous solid electrolytes such as Li 2 O—B 2 O 3 —P 2 O 5 and Li 2 O—SiO 2 , Li 2 S—SiS 2 , LiI—Li 2. Sulfuration such as S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 S—P 2 O 5 , LiI-Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 In addition to physical amorphous solid electrolytes, LiI, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w is w <1), crystalline oxides such as Li 3.6 Si 0.6 P 0.4 O 4 , oxynitrides, and the like.
 また、正極層1cには、リチウムイオン二次電池の正極層に含有させることが可能な公知のバインダーを適宜用いることができる。そのようなバインダーとしては、アミン変性水素添加ブタジエンゴム(ABR)、ブチレンゴム(BR)、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム(SBR)等を例示することができる。集電体1aと正極層1cとの接着力を向上させやすい形態にする観点から、これらの中でも、ポリフッ化ビニリデン(PVdF)を含有するバインダーを用いることが好ましい。 In addition, a known binder that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used for the positive electrode layer 1c. Examples of such a binder include amine-modified hydrogenated butadiene rubber (ABR), butylene rubber (BR), polyvinylidene fluoride (PVdF), and styrene butadiene rubber (SBR). Among these, it is preferable to use a binder containing polyvinylidene fluoride (PVdF) from the viewpoint of easily improving the adhesive force between the current collector 1a and the positive electrode layer 1c.
 さらに、正極層1cには、導電性を向上させる導電材が含有されていてもよい。正極層1cに含有させることが可能な導電材としては、気相成長炭素繊維、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料のほか、リチウムイオン二次電池の使用時の環境に耐えることが可能な金属材料を例示することができる。このほか、正極層1cには、公知の増粘剤が含有されていても良い。上記正極活物質、固体電解質、及び、バインダー等を液体に分散して調整したスラリー状の組成物を用いて正極層1cを作製する場合、正極活物質、固体電解質、及び、バインダー等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、正極層1cの厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、電極体1の性能を高めやすくするために、正極層1cはプレスする過程を経て作製されることが好ましい。本発明において、正極層をプレスする際の圧力は400MPa程度とすることができる。 Furthermore, the positive electrode layer 1c may contain a conductive material that improves conductivity. Examples of the conductive material that can be contained in the positive electrode layer 1c include carbon materials such as vapor-grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), and carbon nanofiber (CNF). In addition, a metal material that can withstand the environment during use of the lithium ion secondary battery can be exemplified. In addition, the positive electrode layer 1c may contain a known thickener. When the positive electrode layer 1c is produced using the slurry-like composition prepared by dispersing the positive electrode active material, the solid electrolyte, and the binder in a liquid, the positive electrode active material, the solid electrolyte, the binder, and the like are dispersed. As the liquid, heptane and the like can be exemplified, and a nonpolar solvent can be preferably used. Moreover, the thickness of the positive electrode layer 1c is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make the performance of the electrode body 1 easy to improve, the positive electrode layer 1c is preferably manufactured through a pressing process. In this invention, the pressure at the time of pressing a positive electrode layer can be about 400 MPa.
 また、固体電解質層2に含有させる固体電解質としては、固体電池に使用可能な公知の固体電解質を適宜用いることができる。そのような固体電解質としては、正極層1cに含有させることが可能な上記固体電解質等を例示することができる。このほか、固体電解質層2には、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させることができる。そのようなバインダーとしては、正極層1cに含有させることが可能な上記バインダー等を例示することができる。ただし、高出力化を図りやすくするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する固体電解質層2を形成可能にする等の観点から、固体電解質層2に含有させるバインダーは5質量%以下とすることが好ましい。また、液体に上記固体電解質等を分散して調整したスラリー状の組成物を正極層1cや負極層3等に塗布する過程を経て固体電解質層2を作製する場合、固体電解質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。固体電解質層2における固体電解質材料の含有量は、質量%で、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。固体電解質層2の厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。 Further, as the solid electrolyte contained in the solid electrolyte layer 2, a known solid electrolyte that can be used in a solid battery can be appropriately used. Examples of such a solid electrolyte include the solid electrolyte that can be contained in the positive electrode layer 1c. In addition, the solid electrolyte layer 2 can contain a binder for binding the solid electrolytes from the viewpoint of developing plasticity. As such a binder, the said binder etc. which can be contained in the positive electrode layer 1c can be illustrated. However, in order to facilitate high output, the solid electrolyte layer 2 can be formed from the viewpoint of preventing excessive aggregation of the solid electrolyte and enabling the formation of the solid electrolyte layer 2 having a uniformly dispersed solid electrolyte. The binder to be contained is preferably 5% by mass or less. Further, when the solid electrolyte layer 2 is produced through a process of applying the slurry-like composition prepared by dispersing the solid electrolyte or the like in the liquid to the positive electrode layer 1c or the negative electrode layer 3, the liquid for dispersing the solid electrolyte or the like Examples thereof include heptane and the like, and a nonpolar solvent can be preferably used. The content of the solid electrolyte material in the solid electrolyte layer 2 is mass%, for example, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. The thickness of the solid electrolyte layer 2 varies greatly depending on the configuration of the battery. For example, the thickness is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.
 また、負極層3に含有させる負極活物質としては、金属イオンを吸蔵放出可能な公知の負極活物質を適宜用いることができる。そのような負極活物質としては、例えば、カーボン活物質、酸化物活物質、及び、金属活物質等を挙げることができる。カーボン活物質は、炭素を含有していれば特に限定されず、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、Si、及び、Sn等を挙げることができる。また、負極活物質として、リチウム含有金属活物質を用いても良い。リチウム含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されず、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、Si、及び、Snの少なくとも一種とを含有する合金を挙げることができる。 Moreover, as a negative electrode active material contained in the negative electrode layer 3, the well-known negative electrode active material which can occlude-release metal ion can be used suitably. Examples of such a negative electrode active material include a carbon active material, an oxide active material, and a metal active material. The carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. Examples of the oxide active material include Nb 2 O 5 , Li 4 Ti 5 O 12 , and SiO. Examples of the metal active material include In, Al, Si, and Sn. Further, a lithium-containing metal active material may be used as the negative electrode active material. The lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy. Examples of the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.
 負極活物質の形状は、例えば粒子状、薄膜状等にすることができる。負極活物質の平均粒径(D50)は、例えば1nm以上100μm以下であることが好ましく、10nm以上30μm以下であることがより好ましい。また、負極層3における負極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。 The shape of the negative electrode active material may be, for example, a particle shape or a thin film shape. The average particle diameter (D50) of the negative electrode active material is, for example, preferably from 1 nm to 100 μm, and more preferably from 10 nm to 30 μm. Further, the content of the negative electrode active material in the negative electrode layer 3 is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
 さらに、負極層3には、正極層1cに含有させることが可能な上記固体電解質等を含有させることができる。このほか、負極層3には、負極活物質や固体電解質を結着させるバインダーや導電性を向上させる導電材が含有されていても良い。負極層3に含有させることが可能なバインダーや導電材としては、正極層1cに含有させることが可能な上記バインダーや導電材等を例示することができる。また、液体に上記負極活物質等を分散して調整したスラリー状の組成物を集電体4に塗布する過程を経て負極層3を作製する場合、負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極層3の厚さは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。また、固体電池10の性能を高めやすくするために、負極層3はプレスする過程を経て作製されることが好ましい。本発明において、負極層をプレスする際の圧力は200MPa以上とすることが好ましく、400MPa程度とすることより好ましい。なお、本発明において、正極層1c及び負極層3の質量比は特に限定されないが、正極層1cと負極層3との間を移動するイオンを十分に受け入れられる形態にする観点から、負極層3の容量は正極層1cの容量も多くすることが好ましい。 Further, the negative electrode layer 3 can contain the above solid electrolyte that can be contained in the positive electrode layer 1c. In addition, the negative electrode layer 3 may contain a binder for binding the negative electrode active material and the solid electrolyte and a conductive material for improving conductivity. Examples of the binder and conductive material that can be contained in the negative electrode layer 3 include the binder and conductive material that can be contained in the positive electrode layer 1c. Further, when the negative electrode layer 3 is produced through a process of applying the slurry-like composition prepared by dispersing the negative electrode active material or the like in a liquid to the current collector 4, the liquid for dispersing the negative electrode active material or the like is as follows: A heptane etc. can be illustrated and a nonpolar solvent can be used preferably. Further, the thickness of the negative electrode layer 3 is, for example, preferably from 0.1 μm to 1 mm, and more preferably from 1 μm to 100 μm. Moreover, in order to make it easy to improve the performance of the solid battery 10, the negative electrode layer 3 is preferably manufactured through a pressing process. In the present invention, the pressure when pressing the negative electrode layer is preferably 200 MPa or more, more preferably about 400 MPa. In the present invention, the mass ratio of the positive electrode layer 1c and the negative electrode layer 3 is not particularly limited, but from the viewpoint of sufficiently accepting ions moving between the positive electrode layer 1c and the negative electrode layer 3, the negative electrode layer 3 It is preferable to increase the capacity of the positive electrode layer 1c.
 また、集電体4は、リチウムイオン二次電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。 The current collector 4 may be a known metal that can be used as a current collector of a lithium ion secondary battery. As such a metal, a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.
 本発明において、固体電池10は、外装体に収容した状態で使用される。そのような外装体としては、樹脂製のラミネートフィルム、樹脂製のラミネートフィルムに金属を蒸着させたフィルムや、金属製のケース等を例示することができる。 In the present invention, the solid battery 10 is used in a state of being housed in an exterior body. Examples of such an exterior body include a resin laminate film, a film obtained by vapor-depositing a metal on a resin laminate film, a metal case, and the like.
 2.電極体の製造方法
  図4は、本発明の電極体の製造方法を説明するフロー図である。図1乃至図4を適宜参照しつつ、本発明の電極体の製造方法について、以下に説明する。
  図4に示したように、本発明の電極体の製造方法は、カーボン膜形成工程(S1)と、電極層形成工程(S2)と、を有している。
2. 4. Electrode Body Manufacturing Method FIG. 4 is a flowchart for explaining the electrode body manufacturing method of the present invention. The electrode body manufacturing method of the present invention will be described below with reference to FIGS. 1 to 4 as appropriate.
As shown in FIG. 4, the manufacturing method of the electrode body of this invention has a carbon film formation process (S1) and an electrode layer formation process (S2).
 カーボン膜形成工程(以下において、「S1」ということがある。)は、集電体の表面に、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜を形成する工程である。S1は、例えば、集電体1aの表面に、導電性カーボン膜1bを形成する工程、とすることができる。S1で集電体1aの表面に導電性カーボン膜1bを形成する場合、S1の形態は、集電体1aの表面に導電性カーボン膜1bを形成可能であれば、特に限定されない。S1は、例えば、プラズマCVD法を用いて、集電体1aの表面に、導電性カーボン膜1bを形成する工程、とすることができる。S1において、N原子を含まない原料ガス(例えばトルエン等)を用いて導電性カーボン膜1bを形成する場合には、例えば真空引き後に、アルゴンガスと共に原料ガスを流し、電極間に2000~3000Vの電圧をかけて集電体1aの表面に導電性カーボン膜を成膜した後、Nを含むガスを導入することで、膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜1bを作製することができる。これに対し、S1において、N原子を含む原料ガス(例えばピリジン等)を用いて導電性カーボン膜を作製する場合には、例えば真空引き後に、窒素ガスと共に原料ガスを流し、電極間に2000~3000Vの電圧をかけて集電体1aの表面に導電性カーボン膜を成膜することにより、膜表面のみならず膜中にも非共有電子対を有するN原子が存在する形態の、導電性カーボン膜1bを作製することができる。このようにして作製された導電性カーボン膜1bは、高導電率、高硬度、高密度のカーボン膜である。 The carbon film forming step (hereinafter sometimes referred to as “S1”) is a step of forming, on the surface of the current collector, a conductive carbon film in which N atoms having unshared electron pairs are modified at least on the film surface. It is. S1 can be, for example, a step of forming the conductive carbon film 1b on the surface of the current collector 1a. When the conductive carbon film 1b is formed on the surface of the current collector 1a in S1, the form of S1 is not particularly limited as long as the conductive carbon film 1b can be formed on the surface of the current collector 1a. S1 can be a step of forming the conductive carbon film 1b on the surface of the current collector 1a by using, for example, a plasma CVD method. In S1, when the conductive carbon film 1b is formed using a raw material gas not containing N atoms (for example, toluene), for example, after evacuation, the raw material gas is flowed together with the argon gas, and 2000 to 3000 V is applied between the electrodes. After applying a voltage to form a conductive carbon film on the surface of the current collector 1a, a conductive carbon in which N atoms having unshared electron pairs are modified on the film surface by introducing a gas containing N 2 The film 1b can be produced. On the other hand, in S1, when a conductive carbon film is produced using a source gas containing N atoms (for example, pyridine), for example, after evacuation, the source gas is flowed together with nitrogen gas, and 2000 to By forming a conductive carbon film on the surface of the current collector 1a by applying a voltage of 3000 V, conductive carbon in a form in which N atoms having unshared electron pairs exist not only on the film surface but also in the film. The film 1b can be produced. The conductive carbon film 1b thus produced is a carbon film having high conductivity, high hardness, and high density.
 電極層形成工程(以下において、「S2」ということがある。)は、S1で形成した導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する電極層を形成する工程である。S2は、例えば、集電体1aの表面に形成した導電性カーボン膜1bの表面に、正極層1cを形成する工程、とすることができる。導電性カーボン膜1bの表面に正極層1cを形成する際の方法は特に限定されず、例えば、イオン伝導性酸化物で表面が被覆された正極活物質、固体電解質、導電材、及び、極性バインダー(例えば、アミン変性水素添加ブタジエンゴム(ABR))をヘプタン溶液に入れて攪拌することにより、スラリー状の正極組成物を作製し、このスラリー状の正極組成物を導電性カーボン膜1bの表面に塗工する過程を経て、正極層1cを形成することができる。 The electrode layer forming step (hereinafter sometimes referred to as “S2”) is a step of forming an electrode layer containing at least an active material and a binder on the surface of the conductive carbon film formed in S1. S2 can be a step of forming the positive electrode layer 1c on the surface of the conductive carbon film 1b formed on the surface of the current collector 1a, for example. The method for forming the positive electrode layer 1c on the surface of the conductive carbon film 1b is not particularly limited. For example, a positive electrode active material whose surface is coated with an ion conductive oxide, a solid electrolyte, a conductive material, and a polar binder (For example, amine-modified hydrogenated butadiene rubber (ABR)) is put in a heptane solution and stirred to prepare a slurry-like positive electrode composition, and this slurry-like positive electrode composition is formed on the surface of the conductive carbon film 1b. The positive electrode layer 1c can be formed through the coating process.
 S1及びS2を経て作製可能な電極体1は、上述のように、集電体1aと電極層(正極層1c)との接着力が向上している。したがって、本発明によれば、集電体と電極層との接着力を向上させ得る電極体を製造することが可能な、電極体の製造方法を提供することができる。 As described above, the electrode body 1 that can be manufactured through S1 and S2 has improved adhesion between the current collector 1a and the electrode layer (positive electrode layer 1c). Therefore, according to this invention, the manufacturing method of an electrode body which can manufacture the electrode body which can improve the adhesive force of a collector and an electrode layer can be provided.
 本発明に関する上記説明では、正極層に極性バインダーが含有されている形態を例示したが、本発明の電極体は当該形態に限定されない。本発明の電極体は、電極層に、無極性バインダーを用いる形態とすることも可能である。電極層に無極性バインダーを用いた場合には、図2Bに示したように、導電性カーボン膜とバインダーとの接着力が、極性バインダーを用いた場合よりも低下しやすい。そこで、本発明では、集電体と電極層との接着力を向上させやすい形態にする観点から、電極層に極性バインダーを用いる形態とすることが好ましい。 In the above description related to the present invention, a mode in which a polar binder is contained in the positive electrode layer is exemplified, but the electrode body of the present invention is not limited to this mode. The electrode body of the present invention may be in a form using a nonpolar binder for the electrode layer. When a nonpolar binder is used for the electrode layer, as shown in FIG. 2B, the adhesive force between the conductive carbon film and the binder tends to be lower than when a polar binder is used. Therefore, in the present invention, it is preferable to use a polar binder in the electrode layer from the viewpoint of easily improving the adhesive force between the current collector and the electrode layer.
 また、本発明に関する上記説明では、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜1bの表面に正極層1cが形成された電極体1、及び、当該電極体1を備えた固体電池10を例示したが、本発明の電極体は当該形態に限定されない。本発明の電極体は、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜1bの表面に、少なくとも負極活物質及びバインダーを含有する負極層が形成された形態であっても良い。かかる形態であっても、集電体と負極層との接着力を向上させることが可能になる。 In the above description of the present invention, the electrode body 1 in which the positive electrode layer 1c is formed on the surface of the conductive carbon film 1b in which at least the N atom having an unshared electron pair is modified on the film surface, and the electrode body 1 However, the electrode body of the present invention is not limited to this form. The electrode body of the present invention has a form in which a negative electrode layer containing at least a negative electrode active material and a binder is formed on the surface of a conductive carbon film 1b in which N atoms having unshared electron pairs are modified on at least the film surface. May be. Even in such a form, it is possible to improve the adhesive force between the current collector and the negative electrode layer.
 また、本発明に関する上記説明では、電極体1を備える固体電池10について言及したが、本発明の電極体を備える固体電池は、当該形態に限定されない。本発明の電極体を備える固体電池は、少なくとも膜表面に非共有電子対を有する原子が修飾されている導電性カーボン膜が形成されている集電体の、導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する負極層が形成されている電極体(以下において、この電極体を「負極電極体」ということがある。)を備える形態、とすることも可能である。このほか、負極電極体と、電極体1と、負極電極体及び電極体1の間に配置された固体電解質層と、を備える形態とすることも可能である。 In the above description regarding the present invention, the solid battery 10 including the electrode body 1 has been described. However, the solid battery including the electrode body of the present invention is not limited to this form. The solid battery comprising the electrode body of the present invention has at least the surface of the conductive carbon film of the current collector in which the conductive carbon film in which atoms having unshared electron pairs are modified is formed on the film surface. It is also possible to adopt a form including an electrode body in which a negative electrode layer containing an active material and a binder is formed (hereinafter, this electrode body may be referred to as a “negative electrode body”). In addition, it is also possible to employ a form including a negative electrode body, an electrode body 1, and a solid electrolyte layer disposed between the negative electrode body and the electrode body 1.
 また、本発明に関する上記説明では、本発明の電極体がリチウムイオン二次電池に用いられる形態を例示したが、本発明は当該形態に限定されない。本発明の電極体は、正極層と負極層との間を、リチウムイオン以外のイオンが移動する形態の電池に用いられる形態とすることも可能である。そのようなイオンとしては、ナトリウムイオンやカリウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、固体電解質、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。 In the above description regarding the present invention, the electrode body of the present invention is exemplified as being used in a lithium ion secondary battery, but the present invention is not limited to this form. The electrode body of the present invention can be configured to be used in a battery in which ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions. In the case where ions other than lithium ions move, the positive electrode active material, the solid electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
 以下に、実施例及び比較例を示して本発明についてさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
 (1)電極体の作製
  <実施例1>
  ・導電性カーボン膜の形成
  プラズマCVD成膜装置を用いて、Al製基材(Al箔)の表面に導電性アモルファスカーボン膜を形成した。
  はじめに、プラズマCVD成膜装置内にAl製基材を設置し、チャンバーを密閉して、ガス導出管に接続されたロータリーポンプ及び拡散ポンプにより、チャンバー内のガスを排気した。約1×10-3Paまで排気した後、ガス導入管からArガスを120sccm(≒0.203Pa・m/s)導入し、ガス圧を11Paとした。
  Al製基材(陰極)と陽極板との間に200Vの直流電圧を印加すると、放電が開始された。放電に伴うイオン衝撃により、Al製基材表面の温度を所定の温度まで昇温させた。なお、基材の表面温度の測定は、赤外線放射温度計(株式会社チノー製、IR-CA)により行った。
  次に、ガス導入管から反応ガスとして70sccm(≒0.118Pa・m/s)のトルエンガス及びキャリアガスとして240sccm(≒0.405Pa・m/s)のArガスを導入した。この時の圧力は8Paであった。Al製基材と陽極板との間に3000Vの直流電圧を印加すると、基材の周囲で放電が開始された。このときの基材の表面温度は441℃であった。
  放電開始から2分後に放電を停止した。以上の条件で、Al製基材の表面に導電性アモルファスカーボン膜を形成した。
(1) Production of electrode body <Example 1>
-Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of an Al substrate (Al foil) using a plasma CVD film forming apparatus.
First, an Al base material was installed in a plasma CVD film forming apparatus, the chamber was sealed, and the gas in the chamber was exhausted by a rotary pump and a diffusion pump connected to a gas outlet pipe. After exhausting to about 1 × 10 −3 Pa, Ar gas was introduced at 120 sccm (≈0.203 Pa · m 3 / s) from the gas introduction tube, and the gas pressure was adjusted to 11 Pa.
When a DC voltage of 200 V was applied between the Al substrate (cathode) and the anode plate, discharge was started. The temperature of the Al base material surface was raised to a predetermined temperature by ion bombardment accompanying the discharge. The surface temperature of the substrate was measured with an infrared radiation thermometer (manufactured by Chino Corporation, IR-CA).
Next, 70 sccm (≈0.118 Pa · m 3 / s) of toluene gas as a reaction gas and 240 sccm (≈0.405 Pa · m 3 / s) of Ar gas as a carrier gas were introduced from a gas introduction tube. The pressure at this time was 8 Pa. When a DC voltage of 3000 V was applied between the Al base material and the anode plate, discharge started around the base material. The surface temperature of the base material at this time was 441 ° C.
Discharge was stopped 2 minutes after the start of discharge. Under the above conditions, a conductive amorphous carbon film was formed on the surface of the Al substrate.
 ・正極層の形成
  9mlのポリプロピレン製容器に、トリブチルアミン及び5質量%のバインダー(アミン変性水素添加ブタジエンゴム(ABR))を含むヘプタン溶液を、ヘプタンとトリブチルアミンとの質量比が82:18となるように入れた。
  続いて、正極活物質(平均粒径4μmのLiNi1/3Co1/3Mn1/3)、硫化物固体電解質(30質量%のLiIを含むLiS-P系ガラスセラミック)、及び、導電助剤(気相成長炭素繊維)を上記容器に入れ、超音波分散装置(株式会社エスエムテー製、UH-50)で30秒間に亘って攪拌した。次に、容器を振とう器(柴田科学株式会社製、TTM-1)で3分間に亘って振とうさせ、さらに上記超音波分散装置で30秒間に亘って攪拌した。
  上記振とう器でさらに3分間に亘って振とうしてスラリー状の正極組成物を作製した後、ギャップ325μmのアプリケーターを使用して、ブレード法にて、Al製基材の表面に形成した上記導電性アモルファスカーボン膜の表面に、スラリー状の正極組成物を塗工した。その後、常温で1時間に亘って乾燥させ、続いて、100℃のホットプレート上で30分間に亘って乾燥させることにより、導電性アモルファスカーボン膜の表面に正極層を形成し、本発明の電極体を得た。
-Formation of positive electrode layer In a 9 ml polypropylene container, a heptane solution containing tributylamine and 5% by mass of a binder (amine-modified hydrogenated butadiene rubber (ABR)), and a mass ratio of heptane to tributylamine is 82:18 I put it to be.
Subsequently, a positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 with an average particle diameter of 4 μm), a sulfide solid electrolyte (Li 2 SP—P 2 S 5 glass containing 30% by mass of LiI) Ceramic) and a conductive additive (vapor-grown carbon fiber) were placed in the container, and stirred for 30 seconds with an ultrasonic dispersing device (manufactured by SMT Co., Ltd., UH-50). Next, the container was shaken for 3 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1), and further stirred for 30 seconds with the above ultrasonic dispersing apparatus.
After the slurry-like positive electrode composition was prepared by shaking for 3 minutes with the shaker, the above-mentioned surface was formed on the surface of the Al substrate by a blade method using an applicator with a gap of 325 μm. A slurry-like positive electrode composition was applied to the surface of the conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying for 30 minutes on a hot plate at 100 ° C., thereby forming a positive electrode layer on the surface of the conductive amorphous carbon film. Got the body.
 <実施例2>
  ・導電性カーボン膜の形成
  反応ガスをピリジンガスに、キャリアガスをNガスに、それぞれ変更し、さらに成膜温度を変更したほかは、上記実施例1と同様にして、導電性アモルファスカーボン膜をAl製基材の表面に形成した。
<Example 2>
Conductive carbon film forming reaction gas in pyridine gas, the carrier gas N 2 gas, respectively changed, except that further changing the film forming temperature, in the same manner as in Example 1, conductive amorphous carbon film Was formed on the surface of an Al substrate.
 ・正極層の形成
  上記実施例1と同様の方法で、実施例2の導電性アモルファスカーボン膜の表面に正極層を形成し、本発明の電極体を得た。
-Formation of positive electrode layer By the method similar to the said Example 1, the positive electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 2, and the electrode body of this invention was obtained.
 <実施例3>
  ・導電性カーボン膜の形成
  成膜温度及び成膜時間を変更したほかは、上記実施例2と同様にして、導電性アモルファスカーボン膜をAl製基材の表面に形成した。
<Example 3>
-Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of an Al base material in the same manner as in Example 2 except that the film formation temperature and the film formation time were changed.
 ・正極層の形成
  上記実施例1と同様の方法で、実施例3の導電性アモルファスカーボン膜の表面に正極層を形成し、本発明の電極体を得た。
-Formation of positive electrode layer By the method similar to the said Example 1, the positive electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 3, and the electrode body of this invention was obtained.
 <実施例4>
  ・導電性カーボン膜の形成
  キャリアガスであるNガスの流量、成膜温度、及び、成膜時間を変更し、さらに、基材をCu製基材(Cu箔)に変更したほかは、上記実施例2と同様にして、導電性アモルファスカーボン膜をCu製基材の表面に形成した。
<Example 4>
Conductive carbon film N 2 gas flow is formed carrier gas, deposition temperature, and to change the film formation time, further, in addition to changing the substrate to Cu Seimotozai (Cu foil), the In the same manner as in Example 2, a conductive amorphous carbon film was formed on the surface of the Cu substrate.
 ・負極層の形成
  9mlのポリプロピレン製容器に、トリブチルアミン及び5質量%のバインダー(アミン変性水素添加ブタジエンゴム(ABR))を含むヘプタン溶液を、ヘプタンとトリブチルアミンとの質量比が82:18となるように入れた。そして、容器内のヘプタン溶液を、同量ずつ、2つのポリプロピレン製容器に分けた。
  負極活物質(平均粒径10μmの天然黒鉛系カーボン、三菱化学株式会社製)、及び、硫化物固体電解質(30質量%のLiIを含むLiS-P系ガラスセラミック)を、ヘプタン溶液を取り分けた容器に入れ、超音波分散装置(株式会社エスエムテー製、UH-50)で30秒間に亘って攪拌した。次に、容器を振とう器(柴田科学株式会社製、TTM-1)で30分間に亘って振とうさせた。
  上記振とう器でさらに5分間に亘って振とうしてスラリー状の負極組成物を作製した後、ギャップ325μmのアプリケーターを使用して、ブレード法にて、Cu製基材の表面に形成した上記導電性アモルファスカーボン膜の表面に、スラリー状の負極組成物を塗工した。その後、常温で1時間に亘って乾燥させ、続いて、100℃のホットプレート上で30分間に亘って乾燥させることにより、導電性アモルファスカーボン膜の表面に負極層を形成し、本発明の電極体を得た。
-Formation of negative electrode layer In a 9 ml polypropylene container, a heptane solution containing tributylamine and 5% by mass of a binder (amine-modified hydrogenated butadiene rubber (ABR)) was mixed with a mass ratio of heptane and tributylamine of 82:18. I put it to be. The heptane solution in the container was divided into two polypropylene containers by the same amount.
A negative electrode active material (natural graphite carbon having an average particle size of 10 μm, manufactured by Mitsubishi Chemical Corporation) and a sulfide solid electrolyte (Li 2 SP—S 2 S 5 glass ceramic containing 30% by mass of LiI) were mixed with heptane. The solution was placed in a separate container, and stirred for 30 seconds with an ultrasonic dispersion apparatus (manufactured by SMT Co., Ltd., UH-50). Next, the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
After the slurry-like negative electrode composition was produced by further shaking for 5 minutes with the above shaker, the above-mentioned formed on the surface of the Cu substrate by the blade method using an applicator with a gap of 325 μm A slurry-like negative electrode composition was applied to the surface of the conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying on a hot plate at 100 ° C. for 30 minutes, thereby forming a negative electrode layer on the surface of the conductive amorphous carbon film. Got the body.
 <実施例5>
  ・導電性カーボン膜の形成
  上記実施例2と同様にして、導電性アモルファスカーボン膜をAl製基材の表面に形成した。
<Example 5>
-Formation of conductive carbon film In the same manner as in Example 2, a conductive amorphous carbon film was formed on the surface of an Al substrate.
 ・正極層の形成
  バインダーをブチレンゴム(BR)に変更したほかは、上記実施例1と同様の方法で、実施例5の導電性アモルファスカーボン膜の表面に正極層を形成し、本発明の電極体を得た。
-Formation of positive electrode layer A positive electrode layer was formed on the surface of the conductive amorphous carbon film of Example 5 by the same method as in Example 1 except that the binder was changed to butylene rubber (BR), and the electrode body of the present invention Got.
 <実施例6>
  ・導電性カーボン膜の形成
  成膜温度を変更したほかは、上記実施例4と同様にして、導電性アモルファスカーボン膜をCu製基材の表面に形成した。
<Example 6>
-Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 4 except that the film formation temperature was changed.
 ・負極層の形成
  ポリプロピレン製容器に、5質量%のバインダー(PVdF系バインダー、株式会社クレハ製)を含む酪酸ブチル溶液(以下において、5質量%のPVdF系バインダーを含む酪酸ブチル溶液を「酪酸ブチル溶液」という。)を、総バインダー量の半分の量だけ入れた。
  負極活物質(平均粒径10μmの天然黒鉛系カーボン、三菱化学株式会社製)、及び、硫化物固体電解質(30質量%のLiIを含むLiS-P系ガラスセラミック)を、酪酸ブチル溶液を入れた容器に加え、超音波分散装置(株式会社エスエムテー製、UH-50)で30秒間に亘って攪拌した。次に、容器を振とう器(柴田科学株式会社製、TTM-1)で30分間に亘って振とうさせた。
  続いて、振とうさせた後の容器に、総バインダー量の半分の量の酪酸ブチル溶液を加え、さらに上記超音波分散装置で30秒間に亘って撹拌した。
  続いて、上記振とう器でさらに5分間に亘って振とうしてスラリー状の負極組成物を作製した後、ギャップ325μmのアプリケーターを使用して、ブレード法にて、Cu製基材の表面に形成した上記導電性アモルファスカーボン膜の表面に、スラリー状の負極組成物を塗工した。その後、常温で1時間に亘って乾燥させ、続いて、100℃のホットプレート上で30分間に亘って乾燥させることにより、導電性アモルファスカーボン膜の表面に負極層を形成し、本発明の電極体を得た。
-Formation of negative electrode layer A butyl butyrate solution containing 5% by mass binder (PVdF binder, manufactured by Kureha Co., Ltd.) in a polypropylene container (hereinafter referred to as butyl butyrate solution containing 5% by mass PVdF binder) "Solution") was added in half the total binder amount.
A negative electrode active material (natural graphite carbon having an average particle size of 10 μm, manufactured by Mitsubishi Chemical Corporation) and a sulfide solid electrolyte (Li 2 SP—S 2 S 5 glass ceramic containing 30% by mass of LiI) were added to butyric acid. In addition to the container containing the butyl solution, the mixture was stirred for 30 seconds with an ultrasonic dispersion device (manufactured by SMT Co., Ltd., UH-50). Next, the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
Subsequently, a butyl butyrate solution having an amount that is half the total binder amount was added to the container after shaking, and the mixture was further stirred for 30 seconds with the above ultrasonic dispersing apparatus.
Subsequently, after the slurry was further shaken for 5 minutes with the above shaker to prepare a slurry-like negative electrode composition, the surface of the Cu substrate was applied by a blade method using an applicator having a gap of 325 μm. A slurry-like negative electrode composition was applied to the surface of the formed conductive amorphous carbon film. Thereafter, drying is performed at room temperature for 1 hour, followed by drying on a hot plate at 100 ° C. for 30 minutes, thereby forming a negative electrode layer on the surface of the conductive amorphous carbon film. Got the body.
 <実施例7>
  ・導電性カーボン膜の形成
  成膜温度及び成膜時間を変更したほかは、上記実施例6と同様にして、導電性アモルファスカーボン膜をCu製基材の表面に形成した。
<Example 7>
-Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 6 except that the film formation temperature and the film formation time were changed.
 ・負極層の形成
  上記実施例6と同様の方法で、実施例7の導電性アモルファスカーボン膜の表面に負極層を形成し、本発明の電極体を得た。
-Formation of negative electrode layer By the method similar to the said Example 6, the negative electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 7, and the electrode body of this invention was obtained.
 <実施例8>
  ・導電性カーボン膜の形成
  成膜温度及び成膜時間を変更したほかは、上記実施例6と同様にして、導電性アモルファスカーボン膜をCu製基材の表面に形成した。
<Example 8>
-Formation of conductive carbon film A conductive amorphous carbon film was formed on the surface of a Cu substrate in the same manner as in Example 6 except that the film formation temperature and the film formation time were changed.
 ・負極層の形成
  上記実施例6と同様の方法で、実施例8の導電性アモルファスカーボン膜の表面に負極層を形成し、本発明の電極体を得た。
-Formation of negative electrode layer By the method similar to the said Example 6, the negative electrode layer was formed in the surface of the electroconductive amorphous carbon film of Example 8, and the electrode body of this invention was obtained.
 <比較例1>
  ・集電体
  昭和電工株式会社製のSDX箔(導電性カーボンがコートされたAl箔。「SDX」は昭和電工パッケージング株式会社の登録商標。)を用いた。
  ・正極層の形成
  上記実施例1と同様の方法で、比較例1の集電体の表面に正極層を形成し、電極体を得た。
<Comparative Example 1>
-Current collector SDX foil (Al foil coated with conductive carbon. "SDX" is a registered trademark of Showa Denko Packaging Co., Ltd.) manufactured by Showa Denko Co., Ltd. was used.
-Formation of positive electrode layer By the method similar to the said Example 1, the positive electrode layer was formed in the surface of the electrical power collector of the comparative example 1, and the electrode body was obtained.
 <比較例2>
  ・集電体
  市販のAl箔(日本製箔株式会社製)を用いた。
  ・正極層の形成
  上記実施例5と同様の方法で、比較例2の集電体の表面に正極層を形成し、電極体を得た。
<Comparative example 2>
-Current collector Commercially available Al foil (manufactured by Nippon Foil Co., Ltd.) was used.
-Formation of positive electrode layer By the method similar to the said Example 5, the positive electrode layer was formed in the surface of the electrical power collector of the comparative example 2, and the electrode body was obtained.
 <比較例3>
  ・集電体
  昭和電工株式会社製のカーボン塗工Cu箔を用いた。
  ・負極層の形成
  上記実施例4と同様の方法で、比較例3の集電体の表面に負極層を形成し、電極体を得た。
<Comparative Example 3>
-Current collector A carbon coated Cu foil manufactured by Showa Denko KK was used.
-Formation of negative electrode layer By the method similar to the said Example 4, the negative electrode layer was formed in the surface of the electrical power collector of the comparative example 3, and the electrode body was obtained.
 <比較例4>
  ・集電体
  市販のCu箔(日立電線株式会社製)を用いた。
  ・負極層の形成
  上記実施例4と同様の方法で、比較例4の集電体の表面に負極層を形成し、電極体を得た。
<Comparative Example 4>
-Current collector Commercially available Cu foil (manufactured by Hitachi Cable, Ltd.) was used.
-Formation of negative electrode layer By the method similar to the said Example 4, the negative electrode layer was formed in the surface of the electrical power collector of the comparative example 4, and the electrode body was obtained.
 <比較例5>
  ・集電体
  市販のCu箔(日立電線株式会社製)を用いた。
  ・負極層の形成
  上記実施例6と同様の方法で、比較例5の集電体の表面に負極層を形成し、電極体を得た。
<Comparative Example 5>
-Current collector Commercially available Cu foil (manufactured by Hitachi Cable, Ltd.) was used.
-Formation of negative electrode layer By the method similar to the said Example 6, the negative electrode layer was formed in the surface of the electrical power collector of the comparative example 5, and the electrode body was obtained.
 <比較例6>
  ・集電体
  昭和電工株式会社製のカーボン塗工Cu箔(CDX)を用いた。
  ・負極層の形成
  上記実施例6と同様の方法で、比較例6の集電体の表面に負極層を形成し、電極体を得た。
<Comparative Example 6>
-Current collector Carbon coated Cu foil (CDX) manufactured by Showa Denko KK was used.
-Formation of negative electrode layer By the method similar to the said Example 6, the negative electrode layer was formed in the surface of the electrical power collector of the comparative example 6, and the electrode body was obtained.
 実施例1乃至実施例5、及び、比較例1乃至比較例4の電極体作製条件を、表1に示す。また、実施例6乃至実施例8、及び、比較例5乃至比較例6の電極体作製条件を、表2に示す。 Table 1 shows electrode body manufacturing conditions of Examples 1 to 5 and Comparative Examples 1 to 4. Table 2 shows electrode body manufacturing conditions of Examples 6 to 8 and Comparative Examples 5 to 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (2)接着力評価
  直径11.28mmの打ち抜き治具を用いて、実施例1乃至実施例8の電極体、及び、比較例1乃至比較例6の電極体をそれぞれ打ち抜き、直径8mmの両面テープを用いて垂直引張試験を実施した。装置は、アイコーエンジニアリング株式会社製の縦横兼用型電動スタンド(MODEL-2257)にデジタルプッシュプルゲージ(MODEL:RX-5)を使用した。引張速度は約40mm/minとし、5回の平均値を接着力とした。実施例1乃至実施例5の電極体、及び、比較例1乃至比較例4の電極体の接着力の評価結果を表3に、実施例6乃至実施例8の電極体、及び、比較例5乃至比較例6の電極体の接着力の評価結果を表4に、それぞれ示す。
(2) Adhesive strength evaluation Using a punching jig with a diameter of 11.28 mm, the electrode bodies of Examples 1 to 8 and the electrode bodies of Comparative Examples 1 to 6 were each punched, and a double-sided tape with a diameter of 8 mm A vertical tensile test was performed using As a device, a digital push-pull gauge (MODEL: RX-5) was used in a vertical and horizontal motorized stand (MODEL-2257) manufactured by Aiko Engineering Co., Ltd. The tensile speed was about 40 mm / min, and the average value of 5 times was defined as the adhesive strength. The evaluation results of the adhesive strength of the electrode bodies of Examples 1 to 5 and the electrode bodies of Comparative Examples 1 to 4 are shown in Table 3, the electrode bodies of Examples 6 to 8 and Comparative Example 5 Thru | or the evaluation result of the adhesive force of the electrode body of the comparative example 6 is shown in Table 4, respectively.
 (3)接触抵抗評価
  実施例1乃至実施例7の電極体、及び、比較例1乃至比較例6の電極体を、それぞれ面積10.8cmの大きさに切断し、切断したそれぞれの電極体と燃料電池のガス拡散層用カーボン不織布とを重ね、1MPaの圧力をかけた状態で、電極体とカーボン不織布との間に1Aの電流を流し、その時の電圧から接触抵抗を算出した。接触抵抗の評価結果を表3及び表4に示す。
(3) Contact resistance evaluation The electrode bodies of Examples 1 to 7 and the electrode bodies of Comparative Examples 1 to 6 were each cut to a size of 10.8 cm 2 , and each cut electrode body The carbon nonwoven fabric for the gas diffusion layer of the fuel cell was overlapped, and a current of 1 A was passed between the electrode body and the carbon nonwoven fabric under a pressure of 1 MPa, and the contact resistance was calculated from the voltage at that time. The evaluation results of contact resistance are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表3に示したように、C-N結合を有していないカーボン膜を有する集電体に、極性バインダーを含む正極層を形成した比較例1にかかる電極体は、接着力が5.0N/cmであり、接触抵抗が25.7mΩ・cmであった。これに対し、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体の表面に形成し、この導電性アモルファスカーボン膜の表面に極性バインダーを含む正極層を形成した実施例1、実施例2、及び、実施例3にかかる電極体は、何れも接着力が比較例1にかかる電極体よりも大きく、接触抵抗が比較例1にかかる電極体よりも小さかった。 As shown in Tables 1 and 3, the electrode body according to Comparative Example 1 in which a positive electrode layer containing a polar binder is formed on a current collector having a carbon film having no CN bond has an adhesive force. was 5.0 N / cm 2, the contact resistance was 25.7mΩ · cm 2. In contrast, a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a positive electrode containing a polar binder on the surface of the conductive amorphous carbon film The electrode bodies according to Example 1, Example 2, and Example 3 in which the layers were formed all had a larger adhesive force than the electrode body according to Comparative Example 1, and the contact resistance was higher than that of the electrode body according to Comparative Example 1. Was also small.
 また、表1及び表3に示したように、C-N結合を有していない集電体に、無極性バインダーを含む正極層を形成した比較例2にかかる電極体は、接着力が1.1N/cmであり、接触抵抗が45.0mΩ・cmであった。これに対し、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体の表面に形成し、この導電性アモルファスカーボン膜の表面に無極性バインダーを含む正極層を形成した実施例5にかかる電極体は、接着力が比較例2にかかる電極体よりも大きく、接触抵抗が比較例2にかかる電極体よりも小さかった。 Further, as shown in Tables 1 and 3, the electrode body according to Comparative Example 2 in which the positive electrode layer containing a nonpolar binder was formed on the current collector having no CN bond had an adhesive strength of 1 a .1N / cm 2, the contact resistance was 45.0mΩ · cm 2. In contrast, a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a nonpolar binder is included on the surface of the conductive amorphous carbon film. The electrode body according to Example 5 in which the positive electrode layer was formed had a larger adhesive force than the electrode body according to Comparative Example 2, and the contact resistance was smaller than that of the electrode body according to Comparative Example 2.
 また、表1及び表3に示したように、C-N結合を有していないカーボン膜を有する集電体に、極性バインダーを含む負極層を形成した比較例3にかかる電極体は、接着力が0.4N/cm、接触抵抗が40.8mΩ・cmであり、C-N結合を有していない集電体に、極性バインダーを含む負極層を形成した比較例4にかかる電極体は、接着力が0.7N/cm、接触抵抗が10.8mΩ・cmであった。これに対し、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体の表面に形成し、この導電性アモルファスカーボン膜の表面に極性バインダーを含む負極層を形成した実施例4にかかる電極体は、接着力が比較例3及び比較例4にかかる電極体よりも大きく、接触抵抗が比較例3及び比較例4にかかる電極体よりも小さかった。 Further, as shown in Tables 1 and 3, the electrode body according to Comparative Example 3 in which a negative electrode layer containing a polar binder was formed on a current collector having a carbon film having no CN bond was bonded to Electrode according to Comparative Example 4 in which a negative electrode layer containing a polar binder is formed on a current collector having a force of 0.4 N / cm 2 , a contact resistance of 40.8 mΩ · cm 2 , and having no CN bond The body had an adhesive strength of 0.7 N / cm 2 and a contact resistance of 10.8 mΩ · cm 2 . On the other hand, a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and a negative electrode containing a polar binder on the surface of the conductive amorphous carbon film The electrode body according to Example 4 in which the layer was formed had a larger adhesive force than the electrode bodies according to Comparative Example 3 and Comparative Example 4, and the contact resistance was smaller than that of the electrode bodies according to Comparative Example 3 and Comparative Example 4.
 以上より、本発明によれば、集電体と電極層との接着力を向上することができ、抵抗を低減することができた。 As described above, according to the present invention, the adhesive force between the current collector and the electrode layer can be improved, and the resistance can be reduced.
 また、表1及び表3に示したように、極性バインダーを含む正極層を形成した実施例1、実施例2、及び、実施例3にかかる電極体は、無極性バインダーを含む正極層を形成した実施例5にかかる電極体よりも接着力が大きかった。したがって、極性バインダーを用いることにより、集電体と電極層との接着力をより一層高めることができた。 As shown in Tables 1 and 3, the electrode bodies according to Example 1, Example 2, and Example 3 in which the positive electrode layer containing the polar binder was formed formed the positive electrode layer containing the nonpolar binder. The adhesive strength was larger than that of the electrode body according to Example 5. Therefore, the adhesive force between the current collector and the electrode layer could be further increased by using the polar binder.
 また、極性バインダーを含む正極層を形成した比較例1にかかる電極体は、無極性バインダーを含む正極層を形成した比較例2にかかる電極体よりも、接着力が3.9N/cm大きかった。一方、極性バインダーを含む正極層を形成した実施例2にかかる電極体は、無極性バインダーを含む正極層を形成した実施例5にかかる電極体よりも、接着力が9.1N/cm大きかった。したがって、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体の表面に形成し、この導電性アモルファスカーボン膜の表面に極性バインダーを含む電極層を形成することにより、集電体と電極層との接着力向上効果を高めやすくなることが分かった。 Further, the electrode body according to Comparative Example 1 in which the positive electrode layer containing the polar binder was formed had a larger adhesive force of 3.9 N / cm 2 than the electrode body according to Comparative Example 2 in which the positive electrode layer containing the nonpolar binder was formed. It was. On the other hand, the electrode body according to Example 2 in which the positive electrode layer containing the polar binder was formed had a larger adhesive force of 9.1 N / cm 2 than the electrode body according to Example 5 in which the positive electrode layer containing the nonpolar binder was formed. It was. Therefore, a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector, and an electrode layer containing a polar binder is formed on the surface of the conductive amorphous carbon film. It has been found that the effect of improving the adhesion strength between the current collector and the electrode layer can be easily enhanced by forming.
 また、表2及び表4に示したように、C-N結合を有していないCu箔に、PVdFを含む負極層を形成した比較例5にかかる電極体は、接着力が2.7N/cmであり、接触抵抗が10.8mΩ・cmであった。また、C-N結合を有していないカーボン膜を有するCu箔に、PVdFを含む負極層を形成した比較例6にかかる電極体は、接着力が1.2N/cmであり、接触抵抗が40.8mΩ・cmであった。これに対し、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体(Cu製基材)の表面に形成し、この導電性アモルファスカーボン膜の表面にPVdFを含む負極層を形成した実施例6乃至実施例8にかかる電極体は、接着力が、比較例5や比較例6にかかる電極体よりも大きかった。そして、表4に示したように、実施例6にかかる電極体は接触抵抗が2.6mΩ・cmであり、実施例7にかかる電極体は接触抵抗が3.3mΩ・cmであった。すなわち、実施例6にかかる電極体及び実施例7にかかる電極体は、接触抵抗が比較例5にかかる電極体及び比較例6にかかる電極体よりも小さかった。 Further, as shown in Tables 2 and 4, the electrode body according to Comparative Example 5 in which the negative electrode layer containing PVdF was formed on the Cu foil having no CN bond had an adhesive strength of 2.7 N / cm 2, and the contact resistance was 10.8mΩ · cm 2. In addition, the electrode body according to Comparative Example 6 in which the negative electrode layer containing PVdF was formed on the Cu foil having the carbon film having no CN bond had an adhesive force of 1.2 N / cm 2 and a contact resistance. Was 40.8 mΩ · cm 2 . On the other hand, a conductive amorphous carbon film in which at least N atoms having unshared electron pairs are modified on the film surface is formed on the surface of the current collector (Cu base material), and the surface of the conductive amorphous carbon film is formed. The electrode bodies according to Examples 6 to 8 in which the negative electrode layer containing PVdF was formed had a greater adhesive force than the electrode bodies according to Comparative Example 5 and Comparative Example 6. As shown in Table 4, the electrode body according to Example 6 had a contact resistance of 2.6 mΩ · cm 2 , and the electrode body according to Example 7 had a contact resistance of 3.3 mΩ · cm 2 . . That is, the electrode body according to Example 6 and the electrode body according to Example 7 were smaller in contact resistance than the electrode body according to Comparative Example 5 and the electrode body according to Comparative Example 6.
 また、表1及び表3に示したように、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体(Cu製基材)の表面に形成し、この導電性アモルファスカーボン膜の表面にABRを含む負極層を形成した実施例4にかかる電極体は、接着力が1.4N/cmであった。これに対し、表2及び表4に示したように、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜を集電体(Cu製基材)の表面に形成し、この導電性アモルファスカーボン膜の表面にPVdFを含む負極層を形成した実施例6乃至実施例8にかかる電極体は、接着力が、11.5N/cm、13.9N/cm、17.4N/cmであった。したがって、少なくとも膜表面に非共有電子対を有するN原子が修飾されている導電性アモルファスカーボン膜が表面に形成されている集電体に、PVdFを含むバインダーを用いた電極層を形成することにより、電極層と集電体との接着力を高めやすくなることが確認された。 In addition, as shown in Tables 1 and 3, a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified at least on the film surface is formed on the surface of the current collector (Cu base material). The electrode body according to Example 4 in which the negative electrode layer containing ABR was formed on the surface of the conductive amorphous carbon film had an adhesive force of 1.4 N / cm 2 . On the other hand, as shown in Table 2 and Table 4, at least the conductive amorphous carbon film in which the N atom having an unshared electron pair is modified on the film surface is formed on the surface of the current collector (Cu base material). The electrode bodies according to Examples 6 to 8 in which the negative electrode layer containing PVdF was formed on the surface of the conductive amorphous carbon film had adhesive strengths of 11.5 N / cm 2 and 13.9 N / cm 2. 17.4 N / cm 2 . Therefore, by forming an electrode layer using a binder containing PVdF on a current collector in which a conductive amorphous carbon film in which N atoms having unshared electron pairs are modified on at least the film surface is formed on the surface. It was confirmed that the adhesion between the electrode layer and the current collector can be easily increased.
 1…電極体
 1a…集電体
 1b…導電性カーボン膜
 1c…正極層(電極層)
 2…固体電解質層
 3…負極層
 4…集電体
 10…固体電池
DESCRIPTION OF SYMBOLS 1 ... Electrode body 1a ... Current collector 1b ... Conductive carbon film 1c ... Positive electrode layer (electrode layer)
2 ... Solid electrolyte layer 3 ... Negative electrode layer 4 ... Current collector 10 ... Solid battery

Claims (12)

  1. 集電体と、該集電体に接続された電極層と、を有し、
     前記電極層は、少なくとも活物質及びバインダーを含有し、
     少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜が、前記集電体の、前記電極層側の表面に形成されている、電極体。
    A current collector, and an electrode layer connected to the current collector,
    The electrode layer contains at least an active material and a binder,
    An electrode body, wherein a conductive carbon film in which N atoms having unshared electron pairs at least on the film surface are modified is formed on the surface of the current collector on the electrode layer side.
  2. 集電体と、該集電体に接続された電極層と、を有し、
     前記電極層は、少なくとも活物質及びバインダーを含有し、
     蒸着法により形成した導電性カーボン膜が、前記集電体の、前記電極層側の表面に配置されている、電極体。
    A current collector, and an electrode layer connected to the current collector,
    The electrode layer contains at least an active material and a binder,
    An electrode body, wherein a conductive carbon film formed by a vapor deposition method is disposed on a surface of the current collector on the electrode layer side.
  3. 前記導電性カーボン膜は、少なくとも膜表面に、非共有電子対を有するN原子が修飾されている、請求項2に記載の電極体。 The electrode body according to claim 2, wherein the conductive carbon film is modified with N atoms having unshared electron pairs at least on a film surface.
  4. 前記バインダーが、極性を有する、請求項1~3のいずれか1項に記載の電極体。 The electrode body according to any one of claims 1 to 3, wherein the binder has polarity.
  5. 前記電極層は、少なくとも前記活物質、前記バインダー、及び、固体電解質を含有している、請求項1~4のいずれか1項に記載の電極体。 The electrode body according to any one of claims 1 to 4, wherein the electrode layer contains at least the active material, the binder, and a solid electrolyte.
  6. 前記バインダーに、ポリフッ化ビニリデンが含まれている、請求項1~5のいずれか1項に記載の電極体。 The electrode body according to any one of claims 1 to 5, wherein the binder contains polyvinylidene fluoride.
  7. 集電体の表面に、少なくとも膜表面に非共有電子対を有するN原子が修飾された導電性カーボン膜を形成する、カーボン膜形成工程と、
     形成した前記導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する電極層を形成する、電極層形成工程と、
    を有する、電極体の製造方法。
    A carbon film forming step of forming, on the surface of the current collector, a conductive carbon film in which N atoms having unshared electron pairs are modified at least on the film surface;
    An electrode layer forming step of forming an electrode layer containing at least an active material and a binder on the surface of the formed conductive carbon film; and
    A method for producing an electrode body.
  8. 集電体の表面に、蒸着法により導電性カーボン膜を形成する、カーボン膜形成工程と、
     形成した前記導電性カーボン膜の表面に、少なくとも活物質及びバインダーを含有する電極層を形成する、電極層形成工程と、
    を有する、電極体の製造方法。
    Forming a conductive carbon film on the surface of the current collector by vapor deposition;
    An electrode layer forming step of forming an electrode layer containing at least an active material and a binder on the surface of the formed conductive carbon film; and
    A method for producing an electrode body.
  9. 前記カーボン膜形成工程で、前記導電性カーボン膜の少なくとも表面に、非共有電子対を有するN原子を修飾させる、請求項8に記載の電極体の製造方法。 The method for producing an electrode body according to claim 8, wherein, in the carbon film forming step, N atoms having unshared electron pairs are modified on at least a surface of the conductive carbon film.
  10. 前記バインダーが、極性を有する、請求項7~9のいずれか1項に記載の電極体の製造方法。 The method for producing an electrode body according to any one of claims 7 to 9, wherein the binder has polarity.
  11. 前記電極層形成工程が、形成した前記導電性カーボン膜の表面に、少なくとも前記活物質、前記バインダー、及び、固体電解質を含有する前記電極層を形成する工程である、請求項7~10のいずれか1項に記載の電極体の製造方法。 The electrode layer forming step is a step of forming the electrode layer containing at least the active material, the binder, and a solid electrolyte on the surface of the formed conductive carbon film. A method for producing the electrode body according to claim 1.
  12. 前記バインダーとして、ポリフッ化ビニリデンを含むバインダーを用いる、請求項7~11のいずれか1項に記載の電極体の製造方法。 The method for producing an electrode body according to any one of claims 7 to 11, wherein a binder containing polyvinylidene fluoride is used as the binder.
PCT/JP2012/081947 2012-01-20 2012-12-10 Electrode element and method for producing same WO2013108516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013554208A JP5806335B2 (en) 2012-01-20 2012-12-10 Electrode body and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009569 2012-01-20
JP2012009569 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108516A1 true WO2013108516A1 (en) 2013-07-25

Family

ID=48798953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081947 WO2013108516A1 (en) 2012-01-20 2012-12-10 Electrode element and method for producing same

Country Status (2)

Country Link
JP (1) JP5806335B2 (en)
WO (1) WO2013108516A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001603A (en) * 2014-05-23 2016-01-07 株式会社半導体エネルギー研究所 Negative electrode active material and power storage device
JP2016025027A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Method for manufacturing positive electrode for solid battery, method for manufacturing solid battery, and slurry for positive electrode
US10629892B2 (en) 2016-11-01 2020-04-21 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US11108044B2 (en) 2016-11-02 2021-08-31 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11152607B2 (en) 2018-04-27 2021-10-19 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
US11201329B2 (en) 2018-04-20 2021-12-14 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
WO2022249776A1 (en) 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 Electrode and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116632A (en) * 1996-10-11 1998-05-06 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JPH11250900A (en) * 1998-02-26 1999-09-17 Sony Corp Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode
JP2009134988A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Electrode current collector of battery, and method of manufacturing electrode for battery equipped with the electrode current collector
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675694B2 (en) * 2011-08-25 2015-02-25 トヨタ自動車株式会社 Method for manufacturing electrolyte layer / electrode laminate and method for manufacturing sulfide-based solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116632A (en) * 1996-10-11 1998-05-06 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JPH11250900A (en) * 1998-02-26 1999-09-17 Sony Corp Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode
JP2009134988A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Electrode current collector of battery, and method of manufacturing electrode for battery equipped with the electrode current collector
JP2011258348A (en) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery and method of manufacturing negative electrode for lithium secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001603A (en) * 2014-05-23 2016-01-07 株式会社半導体エネルギー研究所 Negative electrode active material and power storage device
US10847791B2 (en) 2014-05-23 2020-11-24 Semiconductor Energy Laboratory Co., Ltd. Negative electrode active material and power storage device
US11677073B2 (en) 2014-05-23 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Power storage device comprising a negative electrode comprising a first active material and a second active material
JP2016025027A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Method for manufacturing positive electrode for solid battery, method for manufacturing solid battery, and slurry for positive electrode
US10629892B2 (en) 2016-11-01 2020-04-21 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
US11108044B2 (en) 2016-11-02 2021-08-31 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11201329B2 (en) 2018-04-20 2021-12-14 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
US11715830B2 (en) 2018-04-20 2023-08-01 Samsung Sdi Co., Ltd. Negative electrode for a rechargeable lithium battery and rechargeable lithium battery including the same
US11152607B2 (en) 2018-04-27 2021-10-19 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2022249776A1 (en) 2021-05-27 2022-12-01 パナソニックIpマネジメント株式会社 Electrode and battery

Also Published As

Publication number Publication date
JPWO2013108516A1 (en) 2015-05-11
JP5806335B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5765349B2 (en) All-solid battery and method for manufacturing the same
JP6941808B2 (en) All solid state battery
CN104412440B (en) All-solid-state battery and manufacture method thereof
JP5806335B2 (en) Electrode body and manufacturing method thereof
TWI555257B (en) All-solid battery and method for manufacturing the same
WO2015045929A1 (en) All-solid-state battery
JP5850154B2 (en) Manufacturing method of all solid state battery
JP6127528B2 (en) Electrode, all-solid-state battery, and manufacturing method thereof
JP2015005421A (en) Electrode body and all-solid-state battery
JP5418088B2 (en) Current collector for lithium ion secondary battery
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
WO2020038011A1 (en) Lithium ion battery and preparation method therefor, and electric vehicle
JP2015065029A (en) All-solid battery
JP2016157608A (en) Method for processing all-solid battery
CN110416630B (en) All-solid-state battery
JP2013115022A (en) Method of manufacturing electrode for solid-state battery
JP2015153647A (en) Method for manufacturing solid battery
JP2016039128A (en) All-solid battery
JP2015216077A (en) Method for manufacturing all-solid battery
JP2018190537A (en) Laminate battery and method for manufacturing the same
JP2014102982A (en) All-solid-state battery and manufacturing method for the same
JP2021057291A (en) All-solid battery system
WO2023281910A1 (en) Battery and method for producing same
WO2023281911A1 (en) Battery and method for producing same
WO2024028622A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866150

Country of ref document: EP

Kind code of ref document: A1