JPH10308220A - Manufacture of carbon material for negative electrode of non-aqueous solvent secondary battery - Google Patents

Manufacture of carbon material for negative electrode of non-aqueous solvent secondary battery

Info

Publication number
JPH10308220A
JPH10308220A JP9119634A JP11963497A JPH10308220A JP H10308220 A JPH10308220 A JP H10308220A JP 9119634 A JP9119634 A JP 9119634A JP 11963497 A JP11963497 A JP 11963497A JP H10308220 A JPH10308220 A JP H10308220A
Authority
JP
Japan
Prior art keywords
pitch
tar
negative electrode
hydrogen
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9119634A
Other languages
Japanese (ja)
Other versions
JP3687711B2 (en
Inventor
Koichi Sugano
公一 菅野
Nobuyuki Koike
信行 小池
Takashi Yoshimura
貴史 吉村
Yuzuru Takahashi
譲 高橋
Hitoshi Sakamoto
斉 坂本
Jitsuo Oishi
實雄 大石
Takaaki Tosen
孝明 東泉
Kyoko Shibahara
恭子 芝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11963497A priority Critical patent/JP3687711B2/en
Publication of JPH10308220A publication Critical patent/JPH10308220A/en
Application granted granted Critical
Publication of JP3687711B2 publication Critical patent/JP3687711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material for negative electrode, which has a high capacity and which can lower the irreversible capacity in a first cycle, by reforming precursor pitch or tar, which is obtained by polymerizing condensation polycyclic compound in the existence of hydrogen fluoride and boron trifluoride, so as to prepare the isotropic reformed pitch or tar, and performing the infusible processing with the oxidant gas, and thereafter, burning it. SOLUTION: As a precursor pitch or tar, a pitch and a tar, which has a softening point at 0-200 deg.C, atomic ratio of hydrogen to carbon at 0.60-1.10, pyridine insoluble matter at 1.0% or less and ratio of aliphatic hydrogen in the whole of hydrogen included in the pitch or tar at 20-80%, is desirable. Reform of the pitch or the tar is easily and effectively performed by flowing air in the pitch and the tar. At the time of infusible processing, stay of the impure material after burning is reduced by using the oxidant gas, and especially, air is easily and desirably used, and processing is performed at 100-400 deg.C of temperature range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は大容量かつ不可逆容
量の少ない非水溶媒二次電池負極用炭素材料の製造法に
関するものである。
The present invention relates to a method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery having a large capacity and a small irreversible capacity.

【0002】[0002]

【従来の技術】負極に炭素材料を用いた非水溶媒二次電
池はリチウムイオン二次電池として、その高エネルギー
密度、軽量小型および長期保存性などの利点により、す
でに実用化されている。しかし、電子機器の小型化、軽
量化に対応するための負極用炭素材料高容量化が必要で
ある。そのため、例えば、特開平6−187988号公
報に記載されているように、ピッチやタール類をニトロ
化合物と反応させることにより、重量当たりの放電容量
が500mAh/gを超える高容量な炭素材料が見出さ
れ、検討されてきた。ところが、さらに長時間作動可能
なリチウムイオン二次電池の開発に対する要求は大き
く、これまでの材料では容量において要求に対応するに
は不十分だあった。これまで、低温で焼成したコークス
やフェーノール樹脂を焼成したポリアセン等が高い容量
を有することが見いだされているが、容量が向上する反
面、二次電池化において不利となる不可逆容量(第1サ
イクル目における充電容量と放電容量の差)が増大し、
要求に対応するには不十分であった。さらに、放電時、
負極材料のリチウム金属に対する電位が高いため、正極
材料と組み合わせて二次電池を設計したときの平均電圧
が低くなることが大きな欠点となっていた。
2. Description of the Related Art A non-aqueous solvent secondary battery using a carbon material for a negative electrode has already been put into practical use as a lithium ion secondary battery because of its advantages such as high energy density, light weight, small size and long-term storage. However, it is necessary to increase the capacity of the carbon material for the negative electrode in order to cope with the reduction in size and weight of electronic devices. Therefore, for example, as described in JP-A-6-187988, by reacting pitch or tar with a nitro compound, a high-capacity carbon material having a discharge capacity per weight exceeding 500 mAh / g has been found. Issued and considered. However, there is a great demand for the development of a lithium ion secondary battery that can be operated for a longer time, and conventional materials have been insufficient to meet the demand for capacity. So far, it has been found that coke fired at a low temperature or polyacene fired with phenolic resin has a high capacity. The difference between the charge capacity and the discharge capacity at
It was not enough to meet the demand. Furthermore, at the time of discharge,
Since the potential of the negative electrode material with respect to lithium metal is high, a major drawback is that the average voltage when a secondary battery is designed in combination with the positive electrode material is low.

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
の炭素材料を負極材料として用いた非水溶媒系リチウム
二次電池は、その特徴である大容量を実現するには十分
なものではなかった。本発明は、従来のかかる問題点を
克服し、大容量で、充放電サイクル特性が良好で、しか
も、安定かつ安全性に優れた高性能な非水溶媒二次電池
を製造するための、1)重量当たり500mAh/g以
上の高容量を有し、2)負極用炭素材料の第1サイクル
目における不可逆容量を低減化し、3)放電時の負極材
料のリチウム金属に対する電位が0.2V以下である領
域の容量が大きい負極用炭素材料を提供することを目的
とする。
As described above, the conventional non-aqueous solvent-based lithium secondary battery using a carbon material as a negative electrode material is not sufficient for realizing a large capacity which is a characteristic of the non-aqueous solvent-based lithium secondary battery. Was. SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned conventional problems and provides a high-capacity, high-performance non-aqueous solvent secondary battery with good charge / discharge cycle characteristics and excellent stability and safety. ) Having a high capacity of 500 mAh / g or more per weight, 2) reducing the irreversible capacity of the carbon material for the negative electrode in the first cycle, and 3) reducing the potential of the negative electrode material to lithium metal at the time of discharge to 0.2 V or less. An object is to provide a carbon material for a negative electrode having a large capacity in a certain region.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するため、ピッチやタールを原料とする高容量
な負極用炭素材料を鋭意検討した結果、縮合多環式化合
物またはこれを含有する物質から合成によって得られる
特定の前駆ピッチやタールを改質し、さらに特定の不融
化方法によって処理した後、焼成することによって得ら
れる炭素材料が非水溶媒二次電池の負極として優れた性
質を有することを見出し本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on a high-capacity carbon material for a negative electrode using pitch or tar as a raw material. A carbon material obtained by modifying a specific precursor pitch or tar obtained by synthesis from a substance containing, and further processing by a specific infusibilization method, and then firing is excellent as a negative electrode of a non-aqueous solvent secondary battery. It has been found that the present invention has such properties, and the present invention has been completed.

【0005】本発明の非水溶媒二次電池負極用炭素材料
の製造法は、縮合多環式化合物またはこれを含有する物
質を弗化水素・三弗化硼素の存在下で重合させて得られ
る特定の前駆ピッチあるいはタールを改質することで等
方性の改質ピッチあるいはタールを調製し、これを酸化
性ガスによって不融化処理した後、焼成することを特徴
とする非水溶媒二次電池負極用炭素材料の製造法であ
る。
The method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery according to the present invention is obtained by polymerizing a condensed polycyclic compound or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. A non-aqueous solvent secondary battery characterized by preparing an isotropic modified pitch or tar by modifying a specific precursor pitch or tar, infusibilizing it with an oxidizing gas, and then firing. This is a method for producing a carbon material for a negative electrode.

【0006】[0006]

【発明の実施の形態】縮合多環式化合物としては、ナフ
タレン、アントラセン、ピレン、コロネン等の縮合多環
式炭化水素およびその誘導体、ベンゾフラン、キノリ
ン、チアナフタレン、シラナフタレン等の縮合複素環式
化合物およびその誘導体、これら化合物が相互に架橋し
た化合物、またそれらの混合物である種々の石油留分、
石油加工工程の残油及び石炭タール留分等が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As condensed polycyclic compounds, condensed polycyclic hydrocarbons such as naphthalene, anthracene, pyrene, coronene and derivatives thereof, and condensed heterocyclic compounds such as benzofuran, quinoline, thianaphthalene, silanaphthalene, etc. And derivatives thereof, compounds in which these compounds are cross-linked to each other, and various petroleum fractions which are mixtures thereof,
Examples include the residual oil of the petroleum processing step and the coal tar fraction.

【0007】縮合多環式化合物から、弗化水素・三弗化
硼素触媒下、前駆ピッチあるいはタールを合成する方法
は、特に制限はないが、通常縮合多環式化合物に対する
触媒量を、縮合多環式化合物1モルに対し、弗化水素を
0.1〜10モル、三弗化硼素を0.01〜1.0モ
ル、反応温度は0〜300℃の範囲、好ましくは40〜
200℃、さらに好ましくは60〜170℃で行なわれ
る。
The method of synthesizing the precursor pitch or tar from the condensed polycyclic compound in the presence of a hydrogen fluoride / boron trifluoride catalyst is not particularly limited. 0.1 to 10 mol of hydrogen fluoride, 0.01 to 1.0 mol of boron trifluoride, and the reaction temperature is in the range of 0 to 300 ° C, preferably 40 to 100 mol per mol of the cyclic compound.
The reaction is performed at 200 ° C, more preferably at 60 to 170 ° C.

【0008】縮合多環式化合物から得られる前駆ピッチ
あるいはタールの性状として、軟化点としては0〜20
0℃が好ましく、炭素に対する水素の原子比が0.6〜
1.10、ピリジン不溶分が1.0%以下、ピッチある
いはタールに含まれる全水素の中の脂肪族水素の割合が
20〜80%であることが好ましい。前駆ピッチあるい
はタールを常法により研磨後、偏光顕微鏡下で観察した
ときの光学的組織は100%等方性である。
As a property of the precursor pitch or tar obtained from the condensed polycyclic compound, the softening point is 0 to 20.
0 ° C. is preferable, and the atomic ratio of hydrogen to carbon is 0.6 to
1.10, pyridine-insoluble matter is preferably 1.0% or less, and the proportion of aliphatic hydrogen in all hydrogen contained in pitch or tar is preferably 20 to 80%. After polishing the precursor pitch or tar by a conventional method, the optical structure when observed under a polarizing microscope is 100% isotropic.

【0009】次に、前駆ピッチあるいはタールは光学的
等方性を保ったまま、軟化点150℃以上の改質ピッチ
あるいはタールへと処理される。改質は、蒸留、エアー
ブローイング、硝酸添加、硫黄添加等の公知の方法によ
って行う事ができる。それらのなかでも、加熱下流動状
態にあるピッチあるいはタールの中に酸化性ガス、一般
には空気を流通させることによって行なう方法が、簡便
かつ安価であり、有効である。この時の温度は前駆ピツ
チあるいはタールの軟化点により一概に特定できない
が、200℃以上、好ましくは300〜350℃で行な
われる。処理温度が低すぎると反応性が低いため、空気
による改質が十分に行われない。また温度が高すぎると
ピッチ自身の熱重合が起こり、空気による改質が有効に
行われない。空気流量は装置形状等によって異なるが、
ピッチあるいはタールに対して0.5〜50ml/g程
度である。この時、ピッチあるいはタールと空気との接
触効率を上げるためメッシュやフィルター等の使用ある
いは撹拌すること等が適用できる。空気による改質の終
了点は、軟化点の上昇が伴うため、この軟化点の測定に
より判断できる。出発原料等により改質の終了点の軟化
点は特定できないが、150〜350℃、好ましくは2
00〜300℃である。
Next, the precursor pitch or tar is processed into a modified pitch or tar having a softening point of 150 ° C. or higher while maintaining optical isotropy. The reforming can be performed by a known method such as distillation, air blowing, addition of nitric acid, and addition of sulfur. Among them, a method in which an oxidizing gas, generally air is passed through pitch or tar in a fluidized state under heating is simple, inexpensive and effective. Although the temperature at this time cannot be specified unconditionally by the softening point of the precursor pitch or tar, it is carried out at 200 ° C. or more, preferably 300 to 350 ° C. If the treatment temperature is too low, the reactivity is low, and the reforming with air is not performed sufficiently. On the other hand, if the temperature is too high, thermal polymerization of the pitch itself occurs, and reforming with air is not effectively performed. The air flow varies depending on the device shape, etc.
It is about 0.5 to 50 ml / g with respect to pitch or tar. At this time, use of a mesh or a filter or stirring may be applied to increase the contact efficiency between the pitch or tar and the air. Since the end point of the reforming by air involves an increase in the softening point, it can be determined by measuring the softening point. Although the softening point at the end point of the reforming cannot be specified by the starting material or the like, it is 150 to 350 ° C., preferably 2 to
00-300 ° C.

【0010】不融化処理は、二酸化窒素ガス、オゾン、
空気、酸素等およびこれらの混合物等の酸化性ガスを用
いるのが、焼成後の不純物の残留が少なく得られた炭素
材料の性能にとって好ましい。特に、空気ガスを用いる
のが、簡便かつ安価であり、さらに好ましい。酸化性ガ
スによる不融化の方法は特に限定されないが、一定粒度
以下に粉砕した粉末状、繊維状、あるいは薄膜状に改質
ピッチを加工した後、100〜400℃の温度範囲、好
ましくは150〜350℃の温度範囲で酸化性ガスを流
通させることによって行われる。
[0010] The infusibilizing treatment includes nitrogen dioxide gas, ozone,
Use of an oxidizing gas such as air, oxygen, or a mixture thereof is preferable for the performance of the obtained carbon material with less impurities remaining after firing. In particular, it is more preferable to use air gas because it is simple and inexpensive. The method of infusibilizing with an oxidizing gas is not particularly limited, but after processing the modified pitch into a powder, fibrous, or thin film ground to a certain particle size or less, a temperature range of 100 to 400 ° C., preferably 150 to 400 ° C. This is performed by flowing an oxidizing gas in a temperature range of 350 ° C.

【0011】この様にして得られた原料有機化合物を非
酸化性ガスまたは真空下で焼成することにより、本願発
明の炭素材料が得られる。焼成温度は800〜1800
℃、好ましくは1000〜1300℃、焼成時間は1〜
50時間で原料有機化合物に応じて適宜、最適な条件が
選択される。また、800℃以下で予備焼成を行っても
よい。非酸化性ガスとしては窒素、アルゴンが好まし
い。非酸化性ガスを気流として連続的に供給し、原料有
機化合物の焼成によって発生するガスを同伴して排出す
る方法や、真空排気により強制的に発生ガスを系外に排
出する方法が適宜適用できる。
The raw material organic compound thus obtained is calcined under a non-oxidizing gas or under vacuum to obtain the carbon material of the present invention. Firing temperature is 800 ~ 1800
° C, preferably 1000-1300 ° C, firing time is 1 ~
In 50 hours, optimal conditions are appropriately selected according to the starting organic compound. Further, preliminary firing may be performed at 800 ° C. or lower. Nitrogen and argon are preferable as the non-oxidizing gas. A method in which a non-oxidizing gas is continuously supplied as an air stream and a gas generated by baking the raw material organic compound is discharged together with the gas, or a method in which the generated gas is forcibly discharged to the outside by evacuation can be appropriately applied. .

【0012】本発明の非水溶媒系二次電池負極用炭素材
料は種々の優れた特徴を持っているが、特に、対リチウ
ム金属電位で0〜1.5Vの間で500mAh/g以上
の放出容量が可能であると同時に、対リチウム金属電位
で0〜0.2Vの間の容量が350mAh/g以上であ
り、第1サイクル目における不可逆容量が100mAh
/g以下であることが最大の特徴である。
The carbon material for a negative electrode of a non-aqueous solvent-based secondary battery of the present invention has various excellent characteristics. In particular, a carbon material having a discharge potential of 500 mAh / g or more between 0 and 1.5 V with respect to lithium metal potential. While the capacity is possible, the capacity between 0 and 0.2 V with respect to the lithium metal potential is 350 mAh / g or more, and the irreversible capacity in the first cycle is 100 mAh.
/ G or less is the most significant feature.

【0013】以下、本発明について実施例を示してその
効果を具体的かつ詳細に説明するが、以下に示す例は、
具体的に説明するためのものであって本発明の実施形態
や発明の範囲を限定するものとしては意図されていな
い。また、本実施例でのピッチあるいはタールの分析方
法及び分析条件を以下に記載する。 (元素分析)炭素、窒素、水素の同時分析には、分析装
置としてパーキンエルマー(PERKINELMER )社製、2400
CHN 型元素分析計を使用した。測定は、試料のピッチあ
るいはタールを錫製の容器に1.5 ±0.2mg を秤量し、装
置にセット後、975 ℃の温度で5分間燃焼し、Heガスキ
ャリヤーによりTCDで検出し測定した。なお、試料の
測定にあたって、予め、標準物質のアセトアニリド(2.
0 ±0.1mg )により補正した。
Hereinafter, the effects of the present invention will be described specifically and in detail with reference to examples.
It is for the purpose of specific description and is not intended to limit the embodiments or the scope of the invention. The method and conditions for analyzing pitch or tar in this example are described below. (Elemental analysis) For simultaneous analysis of carbon, nitrogen, and hydrogen, use a PerkinElmer 2400 analyzer.
A CHN-type elemental analyzer was used. In the measurement, 1.5 ± 0.2 mg of the pitch or tar of the sample was weighed in a tin container, set in the apparatus, burned at a temperature of 975 ° C. for 5 minutes, and detected and measured by TCD using a He gas carrier. Before measuring the sample, the standard substance acetanilide (2.
0 ± 0.1 mg).

【0014】(NMR分析)ピッチあるいはタールに含
まれる全水素の中の脂肪族水素の割合を求めるには、 1
H−NMR法を用いた。ピッチあるいはタールはほぼ全
量がクロロホルムに可溶であるので、その1%重クロロ
ホルム溶液を、NMRサンプル管に入れ、日本電子
(株)製JNM−EX270により測定を行った。な
お、TMS(テトラメチルシラン)を基準物質として、
これを0ppmとした。
[0014] To determine the percentage of aliphatic hydrogen in the total hydrogen contained in (NMR analysis) pitch or tar, 1
The H-NMR method was used. Since almost all the pitch or tar is soluble in chloroform, a 1% deuterated chloroform solution was put into an NMR sample tube, and the measurement was performed using JNM-EX270 manufactured by JEOL Ltd. In addition, TMS (tetramethylsilane) is used as a reference substance,
This was set to 0 ppm.

【0015】実施例1 内容積3Lの耐酸オートクレーブに、ナフタレン7モ
ル、弗化水素(HF)2.45モル、三弗化硼素(BF
3 )0.77モルを仕込み、自生圧下に100℃まで昇
温した後、更に4時間、100℃に保持して反応させ
た。次いで、常法に従って、オートクレーブ内に窒素を
吹き込んでHF及びBF3 を回収し、引き続いて低沸点
成分を除去して軟化点82℃の前駆ピッチを得た。前駆
ピッチに含有されている水素原子の炭素原子に対する比
(H/C)は0.76、ピリジン不溶分は0.0%、ピ
ッチに含まれる全水素の中の脂肪族水素の割合は35%
であった。得られた前駆ピッチを、別のオートクレーブ
に仕込み、340℃で100g当たり、毎分2Lの空気
を吹き込み、4時間反応させ、軟化点234℃の100
%光学的等方性の改質ピッチを得た。この改質ピッチを
200μm以下の粉末に粉砕し、10gを磁製の皿にい
れ、マッフル炉中で空気を毎分1L流しながら、150
℃から1℃/分で320℃まで昇温後、30分間保持し
て取り出した。得られた処理物を、平均粒径15μmに
調製し、ついで少量の窒素を流通させながら、10To
rrの減圧下、1200℃で2時間焼成し、粉末状の炭
素材料を得た。
Example 1 In a 3 L acid-resistant autoclave, 7 mol of naphthalene, 2.45 mol of hydrogen fluoride (HF), and boron trifluoride (BF) were added.
3 ) After charging 0.77 mol, the temperature was raised to 100 ° C. under autogenous pressure, and the mixture was further reacted at 100 ° C. for 4 hours. Next, HF and BF 3 were recovered by blowing nitrogen into the autoclave according to a conventional method, followed by removing low boiling components to obtain a precursor pitch having a softening point of 82 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.76, the pyridine-insoluble content is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 35%.
Met. The obtained precursor pitch was charged into another autoclave, and air was blown at 2 L / min at 340 ° C. per 100 g and reacted for 4 hours.
% Modified pitch with optical isotropy was obtained. The modified pitch is pulverized into powder having a size of 200 μm or less, and 10 g is placed in a porcelain dish.
After the temperature was raised from 320 ° C. to 320 ° C. at a rate of 1 ° C./min, it was taken out for 30 minutes. The obtained treated material was adjusted to an average particle size of 15 μm, and then 10 To
The powder was calcined at 1200 ° C. for 2 hours under a reduced pressure of rr to obtain a powdery carbon material.

【0016】(負極材料としての評価)得られた炭素材
料90重量部に、ポリフッ化ビニリデン粉末10重量部
(バインダー)を加え、ジメチルホルムアミドを溶媒と
して配合・混合した後、銅箔上に塗布し、乾燥後1cm
角に切り出して、評価用試験片とした。次いで、LiC
lO4 をエチレンカーボネート/ジメチルカーボネート
/ジエチルカーボネートの配合比が、1/0.5/0.
5の3種類の混合物に溶解した溶液(濃度1.0mol/l
)を電解液とし、厚さ50μmのポリプロピレン製微
孔膜をセパレーターとするハーフセルを作製した。な
お、対極として直径16mm、厚さ0.5mmのリチウ
ム金属を使用した。また、参照極として対極と同様にリ
チウム金属の小片を使用した。
(Evaluation as Negative Electrode Material) To 90 parts by weight of the obtained carbon material, 10 parts by weight of polyvinylidene fluoride powder (binder) were added, mixed and mixed with dimethylformamide as a solvent, and then coated on a copper foil. 1cm after drying
It was cut into a corner to obtain a test piece for evaluation. Then, LiC
The mixing ratio of 10 4 with ethylene carbonate / dimethyl carbonate / diethyl carbonate is 1 / 0.5 / 0.
5 dissolved in three kinds of mixture (concentration 1.0 mol / l
) Was used as an electrolyte to prepare a half cell using a 50 μm-thick polypropylene microporous membrane as a separator. Note that lithium metal having a diameter of 16 mm and a thickness of 0.5 mm was used as a counter electrode. A small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode.

【0017】電流密度2mA/cm2 で参照極に対する
評価用試験片の電極電位が1mVまで定電流充電を行
い、さらに電極電位1mVで定電位充電を40時間行っ
たところ、吸蔵容量:595mAh/gが確認された。
次いで、電流密度1mAh/cm3 で参照極に対する評
価用試験片の電極電位が1.5Vまで定電流放電を行っ
たところ、放出容量:531mAh/gが確認された。
容量ロスは64mAh/gであり、対リチウム金属電位
で0〜0.2Vの間の放出容量は369mAh/gであ
った。
At a current density of 2 mA / cm 2 , the test piece for evaluation with respect to the reference electrode was charged at a constant current up to an electrode potential of 1 mV, and further charged at a constant potential of 1 mV for 40 hours. The occlusion capacity: 595 mAh / g Was confirmed.
Next, a constant current discharge was performed at a current density of 1 mAh / cm 3 until the electrode potential of the test piece for evaluation with respect to the reference electrode was 1.5 V. As a result, a discharge capacity of 531 mAh / g was confirmed.
The capacity loss was 64 mAh / g, and the release capacity between 0 and 0.2 V relative to lithium metal potential was 369 mAh / g.

【0018】実施例2 内容積500mLの耐酸オートクレーブに、アントラセ
ン1モル、弗化水素(HF)2.50モル、三弗化硼素
(BF3 )0.20モルを仕込み、自生圧下に80℃ま
で昇温した後、更に4時間、80℃に保持して反応させ
た。次いで、常法に従って、オートクレーブ内に窒素を
吹き込んでHF及びBF3 を回収し、引き続いて低沸点
成分を除去して軟化点193℃の前駆ピッチを得た。前
駆ピッチに含有されている水素原子の炭素原子に対する
比(H/C)は0.63、ピリジン不溶分は0.0%、
ピッチに含まれる全水素の中の脂肪族水素の割合は45
%であった。得られた前駆ピッチを、別のオートクレー
ブに仕込み、340℃で100g当たり、毎分2Lの空
気を吹き込み、1時間反応させ、軟化点208℃の10
0%光学的等方性の改質ピッチを得た。この改質ピッチ
を200μm以下の粉末に粉砕し、10gを磁製の皿に
いれ、マッフル炉中で空気を毎分1L流しながら、15
0℃から1℃/分で320℃まで昇温後、10分間保持
して取り出した。得られた処理物を、平均粒径15μm
に調製し、ついで少量の窒素を流通させながら、10T
orrの減圧下、1200℃で2時間焼成し、粉末状の
炭素材料を得た。実施例1と同様の、負極材料としての
評価を行ったところ、吸蔵容量:626mAh/g、及
び放出容量:543mAh/gが確認された。容量ロス
は83mAh/gであり、対リチウム金属電位で0〜
0.2Vの間の放出容量は380mAh/gであった。
Example 2 1 mol of anthracene, 2.50 mol of hydrogen fluoride (HF) and 0.20 mol of boron trifluoride (BF 3 ) were charged into an acid-resistant autoclave having a content volume of 500 mL, and the mixture was heated to 80 ° C. under autogenous pressure. After the temperature was raised, the reaction was maintained at 80 ° C. for further 4 hours. Next, HF and BF 3 were recovered by blowing nitrogen into the autoclave according to a conventional method, and subsequently, low boiling components were removed to obtain a precursor pitch having a softening point of 193 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.63, the pyridine-insoluble content is 0.0%,
The proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 45
%Met. The obtained precursor pitch was charged into another autoclave, and air was blown at 2 L / min at 340 ° C. per 100 g and reacted for 1 hour.
A 0% optically isotropic modified pitch was obtained. This modified pitch is pulverized into powder having a size of 200 μm or less, and 10 g is placed in a porcelain dish.
After the temperature was raised from 0 ° C. to 320 ° C. at 1 ° C./min, it was taken out for 10 minutes. The obtained processed product was treated with an average particle size of 15 μm.
And 10T while passing a small amount of nitrogen through.
The powder was calcined at 1200 ° C. for 2 hours under a reduced pressure of orr to obtain a powdery carbon material. When the same negative electrode material was evaluated as in Example 1, an occlusion capacity of 626 mAh / g and an emission capacity of 543 mAh / g were confirmed. The capacity loss is 83 mAh / g, and 0 to
The emission capacity during 0.2 V was 380 mAh / g.

【0019】比較例1 実施例1で得られた改質ピッチ100重量部と硫酸アン
モニウム35部を粉末状態で混合し、450℃まで昇温
し、1時間保持した後、室温まで冷却した。得られた処
理物を、平均粒径15μmに粉砕した。ついで、少量の
窒素を流通させながら、10Torrの減圧下、120
0℃で2時間焼成し、粉末状の炭素材料を得た。実施例
1と同様の、負極材料としての評価を行ったところ、吸
蔵容量:570mAh/g、及び放出容量:485mA
h/gが確認された。容量ロスは85mAh/gと小さ
かったが、放出容量は500mAh/g以下であり、対
リチウム金属電位で0〜0.2Vの間の放出容量は29
0mAh/gと小さかった。
Comparative Example 1 100 parts by weight of the modified pitch obtained in Example 1 and 35 parts of ammonium sulfate were mixed in a powder state, heated to 450 ° C., kept for 1 hour, and then cooled to room temperature. The obtained processed product was pulverized to an average particle size of 15 μm. Then, under a reduced pressure of 10 Torr, 120
The powder was fired at 0 ° C. for 2 hours to obtain a powdery carbon material. When an evaluation as a negative electrode material was performed in the same manner as in Example 1, an occlusion capacity: 570 mAh / g and an emission capacity: 485 mA
h / g was confirmed. Although the capacity loss was as small as 85 mAh / g, the emission capacity was 500 mAh / g or less, and the emission capacity between 0 and 0.2 V with respect to lithium metal potential was 29 mAh / g.
It was as small as 0 mAh / g.

【0020】比較例2 含有されている水素原子の炭素原子に対する比(H/
C)が0.95、ピリジン不溶分が0.0%、ピッチに
含まれる全水素の中の脂肪族水素の割合が57%である
エチレンボトムオイルを、弗化水素・三弗化硼素の存在
下での反応を行わずに、そのままオートクレーブに仕込
み、340℃で100g当たり、毎分2Lの空気を吹き
込み、2時間反応させ、軟化点260℃の100%光学
的等方性の等方性ピッチを得た。この改質ピッチを20
0μm以下の粉末に粉砕し、10gを磁製の皿にいれ、
マッフル炉中で空気を毎分1L流しながら、150℃か
ら3℃/分で300℃まで昇温後、10分間保持して取
り出した。得られた処理物を、平均粒径15μmに調製
し、ついで少量の窒素を流通させながら、10Torr
の減圧下、1200℃で2時間焼成し、粉末状の炭素材
料を得た。実施例1と同様の、負極材料としての評価を
行ったところ、吸蔵容量:625mAh/g、及び放出
容量:459mAh/gが確認された。すなわち、容量
ロスは166mAh/gと大きく、充放電容量も低下し
た。対リチウム金属電位で0〜0.2Vの間の放出容量
は280mAh/gと小さかった。
Comparative Example 2 The ratio of hydrogen atoms contained to carbon atoms (H /
C) 0.95, a pyridine-insoluble content of 0.0%, and a ratio of aliphatic hydrogen in the total hydrogen contained in the pitch of 57% to ethylene bottom oil, and the presence of hydrogen fluoride and boron trifluoride Without performing the reaction below, the mixture was charged into an autoclave as it was, and air was blown at a rate of 2 L / min at 340 ° C. per 100 g and reacted for 2 hours, and a 100% optically isotropic pitch having a softening point of 260 ° C. I got This modified pitch is 20
Pulverize to a powder of 0 μm or less, put 10 g in a porcelain dish,
The temperature was raised from 150 ° C. to 300 ° C. at a rate of 3 ° C./min while flowing 1 L of air per minute in a muffle furnace, followed by holding for 10 minutes and taking out. The obtained treated product was adjusted to an average particle size of 15 μm, and then 10 Torr while flowing a small amount of nitrogen.
The powder was calcined at 1200 ° C. for 2 hours under reduced pressure to obtain a powdery carbon material. When the same negative electrode material was evaluated as in Example 1, an occlusion capacity of 625 mAh / g and an emission capacity of 459 mAh / g were confirmed. That is, the capacity loss was as large as 166 mAh / g, and the charge / discharge capacity was also reduced. The discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was as small as 280 mAh / g.

【0021】比較例3 内容積3Lの耐酸オートクレーブに、ナフタレン7モ
ル、弗化水素(HF)2.45モル、三弗化硼素(BF
3 )0.77モルを仕込み、自生圧下に230℃まで昇
温した後、更に4時間、230℃に保持して反応させ
た。次いで、常法に従って、オートクレーブ内に窒素を
吹き込んでHF及びBF3 を回収し、引き続いて低沸点
成分を除去して軟化点210℃の前駆ピッチを得た。ピ
ッチに含有されている水素原子の炭素原子に対する比
(H/C)は0.68、ピリジン不溶分が18.0%で
あった。なお、ピッチに含まれる全水素の中の脂肪族水
素の割合は、ピッチが全量は溶媒には溶けないので測定
できなかった。得られた前駆ピッチを、別のオートクレ
ーブに仕込み、340℃で100g当たり、毎分2Lの
空気を吹き込み、2時間反応させ、軟化点240℃のピ
ッチを得た。ピッチを常法により研磨後、偏光顕微鏡下
で観察したときの光学的組織は約50%が異方性を示し
た。この改質ピッチを200μm以下の粉末に粉砕し、
10gを磁製の皿にいれ、マッフル炉中で空気を毎分1
L流しながら、150℃から1℃/分で320℃まで昇
温後、10分間保持して取り出した。得られた処理物
を、平均粒径15μmに調製し、ついで少量の窒素を流
通させながら、10Torrの減圧下、1200℃で2
時間焼成し、粉末状の炭素材料を得た。実施例1と同様
の、負極材料としての評価を行ったところ、吸蔵容量:
520mAh/g、及び放出容量:384mAh/gが
確認された。すなわち、容量ロスは136mAh/gと
大きく、充放電容量も低下した。対リチウム金属電位で
0〜0.2Vの間の放出容量は230mAh/gと小さ
かった。
Comparative Example 3 In an acid-resistant autoclave having a volume of 3 L, 7 mol of naphthalene, 2.45 mol of hydrogen fluoride (HF) and boron trifluoride (BF) were added.
3 ) After charging 0.77 mol, the temperature was raised to 230 ° C. under the autogenous pressure, and the reaction was further maintained at 230 ° C. for 4 hours. Subsequently, nitrogen was blown into the autoclave to recover HF and BF 3 according to a conventional method, and subsequently low boiling components were removed to obtain a precursor pitch having a softening point of 210 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the pitch was 0.68, and the pyridine-insoluble content was 18.0%. In addition, the ratio of the aliphatic hydrogen in the total hydrogen contained in the pitch could not be measured because the entire pitch was not dissolved in the solvent. The obtained precursor pitch was charged into another autoclave, and 2 L of air was blown per minute at 340 ° C. per 100 g and reacted for 2 hours to obtain a pitch having a softening point of 240 ° C. After polishing the pitch by a conventional method, when observed under a polarizing microscope, about 50% of the optical structure showed anisotropy. This modified pitch is pulverized into powder of 200 μm or less,
Put 10 g in a porcelain dish and air in a muffle furnace at 1 minute per minute.
While flowing L, the temperature was raised from 150 ° C. to 320 ° C. at 1 ° C./min, and then held for 10 minutes and taken out. The obtained treated material was adjusted to an average particle size of 15 μm, and then passed at 1200 ° C. under a reduced pressure of 10 Torr while flowing a small amount of nitrogen.
After firing for a time, a powdery carbon material was obtained. When an evaluation as a negative electrode material was performed in the same manner as in Example 1, the occlusion capacity:
520 mAh / g and a release capacity of 384 mAh / g were confirmed. That is, the capacity loss was as large as 136 mAh / g, and the charge / discharge capacity was also reduced. The discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was as small as 230 mAh / g.

【0022】[0022]

【発明の効果】従来のリチウム二次電池に比べ、負極用
炭素材料の放電容量が大きく、かつ第1サイクル目にお
ける不可逆容量を低減化できたことにより、二次電池の
大容量を実現できる。
As compared with the conventional lithium secondary battery, the discharge capacity of the carbon material for the negative electrode is large and the irreversible capacity in the first cycle can be reduced, so that a large capacity of the secondary battery can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 譲 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 坂本 斉 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 大石 實雄 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 東泉 孝明 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 芝原 恭子 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Joh Takahashi 22nd Wadai, Tsukuba, Ibaraki Prefecture Mitsubishi Gas Chemical Co., Ltd. Within the Research Institute (72) Inventor Norio Oishi 22nd Wadai, Tsukuba, Ibaraki Prefecture Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Takaaki Higashiizumi 22nd Wadai, Tsukuba, Ibaraki Prefecture (72) Inventor Kyoko Shibahara 22nd Wadai, Tsukuba City, Ibaraki Prefecture Mitsubishi Gas Chemical Company, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 縮合多環式化合物またはこれを含有する
物質を弗化水素・三弗化硼素の存在下で重合させて得ら
れた前駆ピッチあるいはタールを改質して製造された1
00%光学的等方性の改質ピッチあるいはタールを、酸
化性ガスの存在下に不融化処理した後、焼成することを
特徴とする非水溶媒二次電池負極用炭素材料の製造法。
1. A precursor prepared by polymerizing a condensed polycyclic compound or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride to modify a precursor pitch or tar.
A method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery, comprising subjecting a 00% optically isotropic modified pitch or tar to an infusibilization treatment in the presence of an oxidizing gas, followed by firing.
【請求項2】 前駆ピッチあるいはタールの軟化点が0
〜200℃、炭素に対する水素の原子比が0.60〜
1.10、ピリジン不溶分が1.0%以下、ピッチある
いはタールに含まれる全水素の中の脂肪族水素の割合が
20〜80%である請求項1記載の非水溶媒二次電池負
極用炭素材料の製造法。
2. The softening point of the precursor pitch or tar is 0.
~ 200 ° C, the atomic ratio of hydrogen to carbon is 0.60
The non-aqueous solvent secondary battery negative electrode according to claim 1, wherein 1.10, a pyridine-insoluble content is 1.0% or less, and a ratio of aliphatic hydrogen to total hydrogen contained in pitch or tar is 20 to 80%. Manufacturing method of carbon material.
【請求項3】 不融化処理を100℃以上400℃以下
の温度で行う請求項1記載の非水溶媒二次電池負極用炭
素材料の製造法。
3. The method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery according to claim 1, wherein the infusibilization treatment is performed at a temperature of 100 ° C. or more and 400 ° C. or less.
JP11963497A 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery Expired - Fee Related JP3687711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11963497A JP3687711B2 (en) 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11963497A JP3687711B2 (en) 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH10308220A true JPH10308220A (en) 1998-11-17
JP3687711B2 JP3687711B2 (en) 2005-08-24

Family

ID=14766311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11963497A Expired - Fee Related JP3687711B2 (en) 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3687711B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088711A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013111595A1 (en) * 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH07226202A (en) * 1993-12-17 1995-08-22 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187988A (en) * 1991-12-17 1994-07-08 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH07226202A (en) * 1993-12-17 1995-08-22 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle
JP2016104698A (en) * 2011-12-16 2016-06-09 Jfeケミカル株式会社 Amorphous carbon particle
US20140295284A1 (en) * 2011-12-16 2014-10-02 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2013144632A (en) * 2011-12-16 2013-07-25 Jfe Chemical Corp Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
CN104093664A (en) * 2011-12-16 2014-10-08 杰富意化学株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9735421B2 (en) * 2011-12-16 2017-08-15 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR20140093987A (en) * 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20140093986A (en) * 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013144633A (en) * 2011-12-16 2013-07-25 Jfe Chemical Corp Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2013088711A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
CN104093664B (en) * 2011-12-16 2017-04-12 杰富意化学株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9379384B2 (en) 2011-12-16 2016-06-28 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
EP2808300B1 (en) 2012-01-27 2023-09-13 JFE Chemical Corporation Method for producing non-graphitizable carbon material, non-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9327978B2 (en) 2012-01-27 2016-05-03 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, non-graphitizable carbon material, negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
CN104105661A (en) * 2012-01-27 2014-10-15 杰富意化学株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
EP2808300A4 (en) * 2012-01-27 2015-09-02 Jfe Chemical Corp Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013173663A (en) * 2012-01-27 2013-09-05 Jfe Chemical Corp Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2013111595A1 (en) * 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3687711B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
CN109148847B (en) Boron-doped modified hard carbon-coated negative electrode material with high rate performance and liquid-phase preparation method thereof
US20230113201A1 (en) Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used
WO2016159212A1 (en) Organic sulfur material and method for producing same
JP2011142021A (en) Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
KR102537180B1 (en) Organic sulfur material and its manufacturing method
JP2013258032A (en) Negative-electrode active material for nonaqueous electrolytic secondary battery, negative electrode material, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
CN113060724B (en) Hollow carbon sphere and preparation method and application thereof
JP4697770B2 (en) Carbon material and non-aqueous electrolyte secondary battery using the same
JP3687711B2 (en) Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
JPH1083814A (en) Carbon material for anode for non-aqueous solvent secondary battery
JP2500677B2 (en) Improved non-aqueous solvent lithium secondary battery
JP3687712B2 (en) Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
US6228343B1 (en) Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes
CN107851522B (en) Carbonaceous material for electronic material
JPH08298114A (en) Carbon material for negative electrode and nonaqueous electrolyte secondary battery
JPH097598A (en) Carbon material for nonaqueous solvent secondary battery electrode
JPH10149830A (en) Carbon material for nonaqueous solvent secondary battery negative electrode
JP2002124256A (en) Nonaqueous solvent secondary battery
JP3570443B2 (en) Carbon material for negative electrode of non-aqueous solvent secondary battery
JPH07226202A (en) Improved nonaqueous solvent lithium secondary battery
JP3489600B2 (en) Carbon material for negative electrode of non-aqueous solvent secondary battery
JP2000149947A (en) Graphite powder for lithium ion battery negative electrode
JP2874999B2 (en) Secondary battery electrode
CN114621255B (en) PTCDI2-2Se compound, preparation method thereof and application thereof in potassium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

LAPS Cancellation because of no payment of annual fees