JP3687712B2 - Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery - Google Patents

Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery Download PDF

Info

Publication number
JP3687712B2
JP3687712B2 JP11963597A JP11963597A JP3687712B2 JP 3687712 B2 JP3687712 B2 JP 3687712B2 JP 11963597 A JP11963597 A JP 11963597A JP 11963597 A JP11963597 A JP 11963597A JP 3687712 B2 JP3687712 B2 JP 3687712B2
Authority
JP
Japan
Prior art keywords
pitch
hydrogen
negative electrode
carbon material
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11963597A
Other languages
Japanese (ja)
Other versions
JPH10308221A (en
Inventor
公一 菅野
信行 小池
貴史 吉村
譲 高橋
斉 坂本
實雄 大石
孝明 東泉
恭子 芝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11963597A priority Critical patent/JP3687712B2/en
Priority to US08/924,864 priority patent/US5944980A/en
Priority to EP97306937A priority patent/EP0838515B1/en
Priority to DE69732825T priority patent/DE69732825T8/en
Publication of JPH10308221A publication Critical patent/JPH10308221A/en
Priority to US09/293,249 priority patent/US6228343B1/en
Application granted granted Critical
Publication of JP3687712B2 publication Critical patent/JP3687712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は大容量かつ不可逆容量の少ない非水溶媒二次電池負極用炭素材料の製造法に関するものである。
【0002】
【従来の技術】
負極に炭素材料を用いた非水溶媒二次電池はリチウムイオン二次電池として、その高エネルギー密度、軽量小型および長期保存性などの利点により、すでに実用化されている。しかし、電子機器の小型化、軽量化に対応するための負極用炭素材料高容量化が必要である。そのため、例えば、特開平6−187988号公報に記載されているように、ピッチやタール類をニトロ化合物と反応させることにより、重量当たりの放電容量が500mAh/gを超える高容量な炭素材料が見出され、検討されてきた。ところが、さらに長時間作動可能なリチウムイオン二次電池の開発に対する要求は大きく、これまでの材料では容量において要求に対応するには不充分であった。これまで、低温で焼成したコークスやフェーノール樹脂を焼成したポリアセン等が高い容量を有することが見いだされているが、容量が向上する反面、二次電池化において不利となる不可逆容量(第1サイクル目における充電容量と放電容量の差)が増大し、要求に対応するには不十分であった。さらに、放電時、負極材料のリチウム金属に対する電位が高いため、正極材料と組み合わせて二次電池を設計したときの平均電圧が低くなることが大きな欠点となっていた。
【0003】
【発明が解決しようとする課題】
上述したように、従来の炭素材を負極材料として用いた非水溶媒系リチウム二次電池は、その特徴である大容量を実現するには十分なものではなかった。
本発明は、従来のかかる問題点を克服し、大容量で、充放電サイクル特性が良好で、しかも、安定かつ安全性に優れた高性能な非水溶媒二次電池を製造するための、1)重量当たり500mAh/g以上の高容量を有し、2)負極用炭素材料の第1サイクル目における不可逆容量を低減化し、3)放電時の負極材料のリチウム金属に対する電位が0.2V以下である領域の容量が大きい負極用炭素材料を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するため、ピッチやタールを原料とする高容量な負極用炭素材料を鋭意検討した結果、特定の縮合多環式化合物またはこれを含有する物質から合成によって得られる特定の前駆ピッチやタールを改質して、特定の改質ピッチとし、これを不融化処理した後、焼成することによって得られる炭素材料が非水溶媒二次電池の負極として優れた性質を有することを見出し本発明を完成するに至った。
【0005】
本発明の非水溶媒二次電池負極用炭素材料は、特定の縮合多環式化合物またはこれを含有する物質を弗化水素・三弗化硼素の存在下で重合させて得られる特定の前駆ピッチあるいはタールを改質することで特定の改質ピッチあるいはタールを調製し、これを酸化性ガスによって不融化処理した後、焼成することにより調製されたことを特徴とする非水溶媒二次電池負極用炭素材料である。
【0006】
合成される前駆ピッチあるいはタールの原料となる、メチル基を一個以上含む縮合多環式化合物またはこれを含有する物質としては、ナフタレン、アントラセン、ピレン、コロネン等の縮合多環式炭化水素のメチル基を一個以上含む誘導体、ベンゾフラン、キノリン、チアナフタレン、シラナフタレン等の縮合複素環式化合物のメチル基を一個以上含む誘導体、及びそれらと縮合多環式化合物の混合物、また、それらを含む石炭タール留分、石油留分、石油加工工程の残油等が用いられる。特にメチルナフタレンやジメチルナフタレン等のナフタレン誘導体、またそれらの混合物であるコールタールのメチルナフタレン留分、エチレンボトムオイル等が、後述する負極用炭素材料としての性能、及び不融化工程にとって好ましい。
【0007】
縮合多環式化合物から、弗化水素・三弗化硼素触媒下、前駆ピッチあるいはタールを合成する方法は、特に制限はないが、通常縮合多環式化合物に対する触媒量を、縮合多環式化合物1モルに対し、弗化水素を0.1〜10モル、三弗化硼素を0.01〜1.0モル、反応温度は0〜300℃の範囲、好ましくは40〜200℃、さらに好ましくは60〜170℃で行なわれる。
【0008】
縮合多環式化合物から得られる前駆ピッチあるいはタールの性状として、軟化点としては0〜180℃が好ましく、さらに好ましくは20〜150℃である。また炭素に対する水素の原子比が0.7〜1.10、ピリジン不溶分が1.0%以下、ピッチに含まれる全水素の中の脂肪族水素の割合が30〜80%であることが好ましい。前駆ピッチあるいはタールを常法により研磨後、偏光顕微鏡下で観察したときの光学的組織は100%等方性である。
【0009】
次に、前駆ピッチあるいはタールは光学的等方性を保ったまま、軟化点150℃以上の改質ピッチへあるいはタールと処理される。改質は、蒸留、エアーブローイング、硝酸添加、硫黄添加等の公知の方法によって行う事ができる。それらのなかでも、加熱下流動状態にあるピッチあるいはタールの中に酸化性ガス、一般には空気を流通させることによって行なう方法が、簡便かつ安価であり、有効である。この時の温度は前駆ピツチあるいはタールの軟化点により一概に特定できないが、200℃以上、好ましくは300〜350℃で行なわれる。処理温度が低すぎると反応性が低いため、空気による改質が十分に行われない。また温度が高すぎるとピッチあるいはタール自身の熱重合が起こり、空気による改質が有効に行われない。空気流量は装置形状等によって異なるが、ピッチあるいはタールに対して0.5〜50ml/g程度である。この時、ピッチあるいはタールと空気との接触効率を上げるためメッシュやフィルター等の使用あるいは撹拌すること等が適用できる。空気による改質の終了点は、軟化点の上昇が伴うため、この軟化点の測定により判断できる。出発原料等により改質の終了点の軟化点は特定できないが、150〜350℃、好ましくは200〜300℃である。また、炭素に対する水素の原子比が0.50〜0.80、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が0.5以上であることが好ましい。
【0010】
不融化処理は窒素、硫黄、酸素等を含有する化合物が使用できる。例えば、硝酸、硫酸、ニトロ化剤、ニトロ化合物、硫酸アンモニウム、酸性硫酸アンモニウム、二酸化窒素ガス、オゾン、空気、酸素等およびこれらの混合物が挙げられる。なかでも空気のような酸化性ガスを用いるのが簡便かつ安価であり、焼成後の不純物の残留も少なく得られた炭素材料の性能にとって好ましい。特に、空気ガスを用いるのが、簡便かつ安価であり、さらに好ましい。酸化性ガスによる不融化の方法は特に限定されないが、一定粒度以下に粉砕した粉末状、繊維状、あるいは薄膜状に改質ピッチあるいはタールを加工した後、100〜400℃の温度範囲、好ましくは150〜350℃の温度範囲で酸化性ガスを流通させることによって行われる。酸化性ガスによるピッチあるいはタールの不融化工程は、炭素繊維製造等に一般的に用いられる方法であり、ピッチあるいはタールの酸素に対する反応性が高いほど、低温でかつ短時間で完了させることができ、生産性の向上のために重要である。ここで、本願発明に記載されている前駆ピッチあるいはタール、及び改質ピッチあるいはタール中に多く含まれるメチル基が、ピッチあるいはタールの不融化性を向上させると考えている。従って、後述の実施例と比較例との比較からもわかるように、前駆ピッチあるいはタールの原料としてメチル基を有する縮合多環式化合物を用いることにより、メチル基を持たない縮合多環式化合物を用いる場合に比べて、より迅速に且つより熱履歴が少ない条件で不融化が可能となる。
【0011】
この様にして得られた原料有機化合物を非酸化性ガスまたは真空下で焼成することにより、本願発明の炭素材料が得られる。焼成温度は800〜1800℃、好ましくは1000〜1300℃、焼成時間は1〜50時間で原料有機化合物に応じて適宜、最適な条件が選択される。また、800℃以下で予備焼成を行ってもよい。非酸化性ガスとしては窒素、アルゴンが好ましい。非酸化性ガスを気流として連続的に供給し、原料有機化合物の焼成によって発生するガスを同伴して排出する方法や、真空排気により強制的に発生ガスを系外に排出する方法が適宜適用できる。
【0012】
本発明の非水溶媒系二次電池負極用炭素材料は、まずその製造工程において、酸化性ガスによる改質ピッチあるいはタールの不融化性に優れることが特徴であり、対リチウム金属電位で0〜1.5Vの間で540mAh/g以上の放出容量が可能であると同時に、対リチウム金属電位で0〜0.2Vの間の容量が380mAh/g以上であり、第1サイクル目における不可逆容量が100mAh/g以下であることが最大の特徴である。以下、本発明について実施例を示してその効果を具体的かつ詳細に説明するが、以下に示す例は、具体的に説明するためのものであって本発明の実施形態や発明の範囲を限定するものとしては意図されていない。また、本実施例でのピッチの分析方法及び分析条件を以下に記載する。
【0013】
(元素分析)
炭素、窒素、水素の同時分析には、分析装置としてパーキンエルマー(PERKINELMER )社製、2400CHN 型元素分析計を使用した。測定は、試料のピッチを錫製の容器に1.5 ±0.2mg を秤量し、装置にセット後、975 ℃の温度で5分間燃焼し、HeガスキャリヤーによりTCDで検出し測定した。なお、試料の測定にあたって、予め、標準物質のアセトアニリド(2.0 ±0.1mg )により補正した。
【0014】
(NMR分析)
前駆ピッチあるいはタールに含まれる全水素の中の脂肪族水素の割合を求めるには、 1H−NMR法を用いた。ピッチあるいはタールはほぼ全量がクロロホルムに可溶であるので、その1%重クロロホルム溶液を、NMRサンプル管に入れ、日本電子(株)製JNM−EX270により測定を行った。なお、TMS(テトラメチルシラン)を基準物質として、これを0ppmとした。
【0015】
(FT−IR分析)
KBr粉末100部に対して、改質ピッチあるいはタール粉末1部を加え、めのう乳鉢上で混合した。ついで、これを日本分光(株)製FT/IRー5300、拡散反射法測定装置DRー81にセットし測定を行った。得られた拡散反射スペクトルを、Kubelka−Munk変換して得られたスペクトル上の、2930cm-1付近のピーク強度(脂肪族CーH伸縮振動の吸収強度)の、3050cm-1付近のピーク強度(芳香族CーH伸縮振動の吸収強度)に対する比を求めた。
【0016】
実施例1
内容積3Lの耐酸オートクレーブに、メチルナフタレン7モル、弗化水素(HF)3.68モル、三弗化硼素(BF3 )1.16モルを仕込み、自生圧下に100℃まで昇温した後、更に4時間、100℃に保持して反応させた。次いで、常法に従って、オートクレーブ内に窒素を吹き込んでHF及びBF3 を回収し、引き続いて低沸点成分を除去して軟化点76℃の前駆ピッチを得た。前駆ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.87、ピリジン不溶分は0.0%、ピッチに含まれる全水素の中の脂肪族水素の割合は58%であった。得られた前駆ピッチを、別のオートクレーブに仕込み、320℃で100g当たり、毎分2Lの空気を吹き込み、2時間反応させ、軟化点200℃の改質ピッチを得た。改質ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.66、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族CーH伸縮振動の吸収強度に対する比が1.1であった。この改質ピッチを200μm以下の粉末に粉砕し、150℃から5℃/分で300℃まで昇温後、10分間保持して取り出した。得られた処理物を、平均粒径15μmに調製し、ついで少量の窒素を流通させながら、10Torrの減圧下、1200℃で2時間焼成し、粉末状の炭素材料を得た。
【0017】
(負極材料としての評価)
得られた炭素材料90重量部に、ポリフッ化ビニリデン粉末10重量部(バインダー)を加え、ジメチルホルムアミドを溶媒として配合・混合した後、銅箔上に塗布し、乾燥後1cm角に切り出して、評価用試験片とした。次いで、LiClO4をエチレンカーボネート/ジメチルカーボネート/ジエチルカーボネートの配合比が、1/0.5/0.5の3種類の混合物に溶解した溶液(濃度1.0mol/l )を電解液とし、厚さ50μmのポリプロピレン製微孔膜をセパレーターとするハーフセルを作製した。なお、対極として直径16mm、厚さ0.5mmのリチウム金属を使用した。また、参照極として対極と同様にリチウム金属の小片を使用した。
【0018】
電流密度2mA/cm2 で参照極に対する評価用試験片の電極電位が1mVまで定電流充電を行い、さらに電極電位1mVで定電位充電を40時間行ったところ、吸蔵容量:647mAh/gが確認された。次いで、電流密度1mAh/cm3 で参照極に対する評価用試験片の電極電位が1.5Vまで定電流放電を行ったところ、放出容量:562mAh/gが確認された。容量ロスは85mAh/gであり、対リチウム金属電位で0〜0.2Vの間の放電容量は417mAh/gであった。
【0019】
実施例2
内容積3Lの耐酸オートクレーブに、ジメチルナフタレン7モル、弗化水素(HF)4.90モル、三弗化硼素(BF3 )1.40モルを仕込み、自生圧下に120℃まで昇温した後、更に4時間、120℃に保持して反応させた。次いで、常法に従って、オートクレーブ内に窒素を吹き込んでHF及びBF3を回収し、引き続いて低沸点成分を除去して軟化点40℃の前駆ピッチを得た。前駆ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.91、ピリジン不溶分は0.0%、ピッチに含まれる全水素の中の脂肪族水素の割合は66%であった。得られた前駆ピッチを、別のオートクレーブに仕込み、320℃で100g当たり、毎分2Lの空気を吹き込み、2時間反応させ、軟化点249℃の100%光学的等方性の改質ピッチを得た。改質ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.65、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が1.6であった。この改質ピッチを200μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マッフル炉中で空気を毎分1L流しながら、150℃から5℃/分で300℃まで昇温後、10分間保持して取り出した。得られた処理物を、平均粒径15μmに調製し、ついで少量の窒素を流通させながら、10Torrの減圧下、1200℃で2時間焼成し、粉末状の炭素材料を得た。実施例1と同様の、負極材料としての評価を行ったところ、吸蔵容量:635mAh/g、及び放出容量:547mAh/gが確認された。容量ロスは88mAh/gであり、対リチウム金属電位で0〜0.2Vの間の放電容量は397mAh/gであった。
【0020】
実施例3
内容積3Lの耐酸オートクレーブに、エチレンボトムオイル(丸善石油化学製)142g、弗化水素(HF)5.30モル、三弗化硼素(BF3 )1.50モルを仕込み、自生圧下に120℃まで昇温した後、更に4時間、120℃に保持して反応させた。次いで、常法に従って、オートクレーブ内に窒素を吹き込んでHF及びBF3 を回収し、引き続いて低沸点成分を除去して軟化点107℃の前駆ピッチを得た。前駆ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.95、ピリジン不溶分は0.0%、ピッチに含まれる全水素の中の脂肪族水素の割合は66%であった。得られた前駆ピッチを、別のオートクレーブに仕込み、340℃で100g当たり、毎分2Lの空気を吹き込み、2時間反応させ、軟化点246℃の100%光学的等方性の改質ピッチを得た。改質ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.78、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が2.9であった。この改質ピッチを200μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マッフル炉中で空気を毎分1L流しながら、150℃から5℃/分で280℃まで昇温後、10分間保持して取り出した。得られた処理物を、平均粒径15μmに調製し、ついで少量の窒素を流通させながら、10Torrの減圧下、1200℃で2時間焼成し、粉末状の炭素材料を得た。実施例1と同様の、負極材料としての評価を行ったところ、吸蔵容量:658mAh/g、及び放出容量:600mAh/gが確認された。容量ロスは58mAh/gであり、対リチウム金属電位で0〜0.2Vの間の放電容量は429mAh/gであった。
【0021】
比較例1
軟化点76℃、ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.55、ピリジン不溶分が0.1%、ピッチに含まれる全水素の中の脂肪族水素の割合が3%であるコールタールピッチを、オートクレーブに仕込み、340℃で100g当たり、毎分2Lの空気を吹き込み、1時間反応させ、軟化点243℃の100%光学的等方性の改質ピッチを得た。改質ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.48、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が0.0であった。この改質ピッチを200μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マッフル炉中で空気を毎分1L流しながら、150℃から5℃/分で320℃まで昇温後、10分間保持して取り出した。得られた処理物は昇温過程で溶融して、塊状となっていた。これを平均粒径15μmの粉末に調製し、ついで少量の窒素を流通させながら、10Torrの減圧下、1200℃で2時間焼成し、粉末状の炭素材料を得た。実施例1と同様の、負極材料としての評価を行ったところ、吸蔵容量:525mAh/g、及び放出容量:398mAh/gが確認された。容量ロスは127mAh/gと大きく、充放電容量も低下した。対リチウム金属電位で0〜0.2Vの間の放電容量は230mAh/gと小さかった。
【0022】
比較例2
内容積3Lの耐酸オートクレーブに、ナフタレン7モル、弗化水素(HF)2.45モル、三弗化硼素(BF3 )0.77モルを仕込み、自生圧下に100℃まで昇温した後、更に4時間、100℃に保持して反応させた。次いで、常法に従って、オートクレーブ内に窒素を吹き込んでHF及びBF3 を回収し、引き続いて低沸点成分を除去して軟化点82℃の前駆ピッチを得た。前駆ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.76、ピリジン不溶分は0.0%、ピッチに含まれる全水素の中の脂肪族水素の割合は35%であった。得られた前駆ピッチを、別のオートクレーブに仕込み、340℃で100g当たり、毎分2Lの空気を吹き込み、4時間反応させ、軟化点234℃の100%光学的等方性の改質ピッチを得た。改質ピッチに含有されている水素原子の炭素原子に対する比(H/C)は0.49、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が0.20であった。この改質ピッチを200μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マッフル炉中で空気を毎分1L流しながら、150℃から5℃/分で320℃まで昇温後、30分間保持して取り出した。得られた処理物は昇温過程で溶融して、塊状となっていた。これを平均粒径15μmの粉末に調製し、ついで少量の窒素を流通させながら、10Torrの減圧下、1200℃で2時間焼成し、粉末状の炭素材料を得た。実施例1と同様の、負極材料としての評価を行ったところ、吸蔵容量:535mAh/g、及び放出容量:403mAh/gが確認された。容量ロスは132mAh/gと大きく、充放電容量も低下した。対リチウム金属電位で0〜0.2Vの間の放電容量は240mAh/gと小さかった。
【0023】
【発明の効果】
従来のリチウム二次電池負極用炭素材料に較べ、生産性に優れ、放電容量が大きく、かつ第1サイクル目における不可逆容量を低減化できることにより、大容量かつ安価な二次電池を実現できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery having a large capacity and a small irreversible capacity.
[0002]
[Prior art]
Nonaqueous solvent secondary batteries using a carbon material for the negative electrode have already been put into practical use as lithium ion secondary batteries due to advantages such as high energy density, light weight, small size, and long-term storage. However, it is necessary to increase the capacity of the carbon material for the negative electrode in order to cope with the reduction in size and weight of electronic devices. Therefore, for example, as described in JP-A-6-187888, a high-capacity carbon material having a discharge capacity per weight exceeding 500 mAh / g is found by reacting pitch or tar with a nitro compound. Has been issued and reviewed. However, there is a great demand for the development of a lithium ion secondary battery that can operate for a longer time, and conventional materials have been insufficient to meet the demand in terms of capacity. So far, it has been found that coke baked at low temperature and polyacene baked phenol resin have a high capacity. However, while the capacity is improved, the irreversible capacity (first cycle), which is disadvantageous in making a secondary battery, has been found. The difference between the charge capacity and the discharge capacity at the time of increase was insufficient to meet the demand. Furthermore, since the potential of the negative electrode material with respect to lithium metal is high at the time of discharge, a major drawback is that the average voltage when the secondary battery is designed in combination with the positive electrode material is low.
[0003]
[Problems to be solved by the invention]
As described above, a nonaqueous solvent type lithium secondary battery using a conventional carbon material as a negative electrode material has not been sufficient for realizing the large capacity which is the feature thereof.
The present invention overcomes the conventional problems, and provides a high-performance non-aqueous solvent secondary battery having a large capacity, good charge / discharge cycle characteristics, and stable and safe. ) Having a high capacity of 500 mAh / g or more per weight, 2) reducing the irreversible capacity in the first cycle of the carbon material for negative electrode, and 3) the potential of the negative electrode material with respect to lithium metal during discharge being 0.2 V or less. An object is to provide a carbon material for a negative electrode having a large capacity in a certain region.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have intensively studied a high-capacity negative electrode carbon material using pitch or tar as a raw material, and as a result, synthesized from a specific condensed polycyclic compound or a substance containing the same. The specific precursor pitch and tar obtained are modified into a specific modified pitch, which is infusibilized and then baked, and the resulting carbon material has excellent properties as a negative electrode for non-aqueous solvent secondary batteries As a result, the present invention has been completed.
[0005]
The carbon material for a negative electrode of a non-aqueous solvent secondary battery according to the present invention is a specific precursor pitch obtained by polymerizing a specific condensed polycyclic compound or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. Alternatively, a non-aqueous solvent secondary battery negative electrode prepared by preparing a specific modified pitch or tar by reforming tar, infusible treatment with an oxidizing gas, and then firing. Carbon material.
[0006]
A condensed polycyclic compound containing one or more methyl groups or a material containing the same as a precursor pitch or tar material to be synthesized includes methyl groups of condensed polycyclic hydrocarbons such as naphthalene, anthracene, pyrene and coronene. A derivative containing one or more methyl groups of a condensed heterocyclic compound such as benzofuran, quinoline, thiaphthalene, silanaphthalene, and the like, a mixture of these and a condensed polycyclic compound, and a coal tar fraction containing them. Fractions, petroleum fractions, oil processing residue, etc. are used. In particular, naphthalene derivatives such as methylnaphthalene and dimethylnaphthalene, and a coal tar methylnaphthalene fraction, ethylene bottom oil, and the like, which are mixtures thereof, are preferable for the performance as a carbon material for a negative electrode, which will be described later, and the infusibilization step.
[0007]
A method for synthesizing precursor pitch or tar from a condensed polycyclic compound under a hydrogen fluoride / boron trifluoride catalyst is not particularly limited. 1 mol to 0.1 mol of hydrogen fluoride, 0.01 to 1.0 mol of boron trifluoride, reaction temperature in the range of 0 to 300 ° C, preferably 40 to 200 ° C, more preferably It is carried out at 60 to 170 ° C.
[0008]
As the properties of the precursor pitch or tar obtained from the condensed polycyclic compound, the softening point is preferably 0 to 180 ° C, more preferably 20 to 150 ° C. Further, it is preferable that the atomic ratio of hydrogen to carbon is 0.7 to 1.10, the pyridine insoluble content is 1.0% or less, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 30 to 80%. . After polishing the precursor pitch or tar by a conventional method, the optical structure when observed under a polarizing microscope is 100% isotropic.
[0009]
Next, the precursor pitch or tar is treated with a modified pitch having a softening point of 150 ° C. or higher or with tar while maintaining optical isotropy. The modification can be performed by a known method such as distillation, air blowing, nitric acid addition, sulfur addition and the like. Among these methods, a method in which an oxidizing gas, generally air, is circulated through pitch or tar that is in a fluid state under heating is simple, inexpensive, and effective. The temperature at this time cannot be generally specified depending on the softening point of the precursor pitch or tar, but is 200 ° C. or higher, preferably 300 to 350 ° C. If the treatment temperature is too low, the reactivity is low, so that reforming with air is not sufficiently performed. On the other hand, if the temperature is too high, thermal polymerization of pitch or tar itself occurs, and reforming with air is not performed effectively. The air flow rate varies depending on the device shape and the like, but is about 0.5 to 50 ml / g with respect to pitch or tar. At this time, in order to increase the contact efficiency between pitch or tar and air, use of a mesh or a filter or stirring can be applied. Since the end point of reforming with air is accompanied by an increase in the softening point, it can be determined by measuring the softening point. Although the softening point of the end point of the reforming cannot be specified depending on the starting material or the like, it is 150 to 350 ° C, preferably 200 to 300 ° C. Further, the atomic ratio of hydrogen to carbon is 0.50 to 0.80, and the ratio of the absorption strength of aliphatic C—H stretching vibration measured by FT-IR to the absorption strength of aromatic C—H stretching vibration is 0.00. It is preferably 5 or more.
[0010]
For the infusibilization treatment, a compound containing nitrogen, sulfur, oxygen or the like can be used. For example, nitric acid, sulfuric acid, nitrating agent, nitro compound, ammonium sulfate, acidic ammonium sulfate, nitrogen dioxide gas, ozone, air, oxygen and the like and mixtures thereof can be mentioned. Of these, the use of an oxidizing gas such as air is convenient and inexpensive, and is preferable for the performance of the obtained carbon material with little residual impurities after firing. In particular, it is more preferable to use air gas because it is simple and inexpensive. The method of infusibilization with an oxidizing gas is not particularly limited, but after processing the modified pitch or tar into a powder, fiber, or thin film pulverized to a certain particle size or less, preferably in the temperature range of 100 to 400 ° C, preferably It is performed by circulating an oxidizing gas in a temperature range of 150 to 350 ° C. The pitch or tar infusibilization step using an oxidizing gas is a method generally used for carbon fiber production and the like. The higher the reactivity of pitch or tar to oxygen, the lower the temperature and the shorter the time. It is important for productivity improvement. Here, it is considered that the precursor pitch or tar described in the present invention and the methyl group contained in a large amount in the modified pitch or tar improve the infusibilities of the pitch or tar. Therefore, as can be seen from a comparison between Examples and Comparative Examples described later, a condensed polycyclic compound having no methyl group can be obtained by using a condensed polycyclic compound having a methyl group as a precursor pitch or tar raw material. Compared to the case of using, infusibilization is possible more quickly and under a condition with less heat history.
[0011]
The carbon material of the present invention is obtained by firing the raw material organic compound thus obtained in a non-oxidizing gas or under vacuum. The firing temperature is 800 to 1800 ° C., preferably 1000 to 1300 ° C., the firing time is 1 to 50 hours, and optimum conditions are appropriately selected according to the raw material organic compound. Moreover, you may pre-calculate at 800 degrees C or less. As the non-oxidizing gas, nitrogen and argon are preferable. A method in which a non-oxidizing gas is continuously supplied as an air flow and the gas generated by firing the raw organic compound is accompanied and discharged, or a method in which the generated gas is forced out of the system by vacuum evacuation can be applied as appropriate. .
[0012]
The carbon material for a non-aqueous solvent secondary battery negative electrode according to the present invention is characterized in that, in its production process, it is characterized by excellent infusibility of a modified pitch or tar by an oxidizing gas, and a potential of 0 to lithium metal potential. An emission capacity of 540 mAh / g or more is possible between 1.5 V, and at the same time, a capacity between 0 and 0.2 V at the lithium metal potential is 380 mAh / g or more, and the irreversible capacity in the first cycle is The maximum feature is 100 mAh / g or less. Hereinafter, the present invention will be described specifically and in detail with reference to examples, but the examples shown below are for specific description and limit the embodiments of the present invention and the scope of the invention. It is not intended to be. The pitch analysis method and analysis conditions in this example are described below.
[0013]
(Elemental analysis)
For simultaneous analysis of carbon, nitrogen, and hydrogen, a 2400CHN type elemental analyzer manufactured by PERKINELMER was used as an analyzer. The measurement was performed by measuring 1.5 ± 0.2 mg of the sample pitch in a tin container, setting it in the apparatus, burning it at a temperature of 975 ° C. for 5 minutes, and detecting and measuring by TCD with a He gas carrier. The sample was corrected in advance with the standard substance acetanilide (2.0 ± 0.1 mg).
[0014]
(NMR analysis)
The 1 H-NMR method was used to determine the proportion of aliphatic hydrogen in the total hydrogen contained in the precursor pitch or tar. Since almost all pitch or tar is soluble in chloroform, the 1% deuterated chloroform solution was placed in an NMR sample tube and measured with JNM-EX270 manufactured by JEOL Ltd. Note that TMS (tetramethylsilane) was used as a reference substance, and this was set to 0 ppm.
[0015]
(FT-IR analysis)
1 part of modified pitch or tar powder was added to 100 parts of KBr powder and mixed in an agate mortar. Subsequently, this was set in FT / IR-5300 manufactured by JASCO Corporation and diffuse reflection method measuring apparatus DR-81, and measurement was performed. The resulting diffuse reflection spectrum, on spectra obtained by converting Kubelka-Munk, the peak intensity at around 2930 cm -1 (absorption intensity of aliphatic C over H stretching vibration), peak intensity in the vicinity of 3050 cm -1 ( The ratio to the absorption intensity of the aromatic CH stretching vibration) was determined.
[0016]
Example 1
An acid-resistant autoclave with an internal volume of 3 L was charged with 7 mol of methylnaphthalene, 3.68 mol of hydrogen fluoride (HF) and 1.16 mol of boron trifluoride (BF 3 ), and heated to 100 ° C. under autogenous pressure. The reaction was further continued for 4 hours at 100 ° C. Then, in accordance with a conventional method, nitrogen was blown into the autoclave to recover HF and BF 3. Subsequently, low boiling point components were removed to obtain a precursor pitch having a softening point of 76 ° C. The ratio of hydrogen atoms to carbon atoms contained in the precursor pitch (H / C) is 0.87, the pyridine insoluble content is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 58%. Met. The obtained precursor pitch was charged into another autoclave, 2 L of air was blown per 100 g at 320 ° C. and reacted for 2 hours to obtain a modified pitch having a softening point of 200 ° C. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the modified pitch is 0.66, and the absorption strength of the aliphatic C—H stretching vibration measured by FT-IR is an aromatic C—H stretching vibration. The ratio of to the absorption intensity was 1.1. The modified pitch was pulverized into a powder of 200 μm or less, heated from 150 ° C. to 300 ° C. at 5 ° C./min, held for 10 minutes, and taken out. The obtained processed product was adjusted to an average particle size of 15 μm, and then baked at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material.
[0017]
(Evaluation as negative electrode material)
To 90 parts by weight of the obtained carbon material, 10 parts by weight of polyvinylidene fluoride powder (binder) was added, and after blending and mixing dimethylformamide as a solvent, it was coated on copper foil, cut into 1 cm squares after drying, and evaluated. A test piece was obtained. Next, a solution (concentration of 1.0 mol / l) in which LiClO4 was dissolved in three kinds of mixtures having a blending ratio of ethylene carbonate / dimethyl carbonate / diethyl carbonate of 1 / 0.5 / 0.5 was used as the electrolyte, A half cell having a 50 μm polypropylene microporous membrane as a separator was produced. Note that lithium metal having a diameter of 16 mm and a thickness of 0.5 mm was used as a counter electrode. In addition, a small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode.
[0018]
When the electrode potential of the test piece for evaluation with respect to the reference electrode was 1 mV at a current density of 2 mA / cm 2 and further constant potential charging was performed at an electrode potential of 1 mV for 40 hours, an occlusion capacity of 647 mAh / g was confirmed. It was. Subsequently, constant current discharge was performed until the electrode potential of the test piece for evaluation with respect to the reference electrode was 1.5 V at a current density of 1 mAh / cm 3 , and a discharge capacity: 562 mAh / g was confirmed. The capacity loss was 85 mAh / g, and the discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was 417 mAh / g.
[0019]
Example 2
An acid-resistant autoclave having an internal volume of 3 L was charged with 7 mol of dimethylnaphthalene, 4.90 mol of hydrogen fluoride (HF) and 1.40 mol of boron trifluoride (BF 3 ), and heated to 120 ° C. under autogenous pressure. The reaction was further continued for 4 hours at 120 ° C. Subsequently, in accordance with a conventional method, nitrogen was blown into the autoclave to recover HF and BF3, and subsequently, low-boiling components were removed to obtain a precursor pitch having a softening point of 40 ° C. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the precursor pitch is 0.91, the pyridine insoluble content is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 66%. Met. The obtained precursor pitch is charged into another autoclave, blown 2 L of air per 100 g at 320 ° C. and reacted for 2 hours to obtain a 100% optically isotropic modified pitch with a softening point of 249 ° C. It was. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the modified pitch is 0.65, and the absorption strength of the aliphatic C—H stretching vibration measured by FT-IR is an aromatic C—H stretching vibration. The ratio to the absorption intensity was 1.6. This modified pitch is pulverized into a powder of 200 μm or less, 10 g is put in a magnetic dish, and the temperature is raised from 150 ° C. to 300 ° C. at 5 ° C./min while flowing 1 L / min in a muffle furnace. Hold for minutes and remove. The obtained processed product was adjusted to an average particle size of 15 μm, and then baked at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When the negative electrode material was evaluated in the same manner as in Example 1, the storage capacity: 635 mAh / g and the discharge capacity: 547 mAh / g were confirmed. The capacity loss was 88 mAh / g, and the discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was 397 mAh / g.
[0020]
Example 3
An acid-resistant autoclave with an internal volume of 3 L is charged with 142 g of ethylene bottom oil (manufactured by Maruzen Petrochemical), 5.30 mol of hydrogen fluoride (HF), and 1.50 mol of boron trifluoride (BF 3 ), and 120 ° C. under autogenous pressure. Then, the reaction was further continued for 4 hours while maintaining the temperature at 120 ° C. Subsequently, in accordance with a conventional method, nitrogen was blown into the autoclave to recover HF and BF 3. Subsequently, low boiling point components were removed to obtain a precursor pitch having a softening point of 107 ° C. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the precursor pitch is 0.95, the pyridine insoluble content is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 66%. Met. The obtained precursor pitch is charged into another autoclave, 2 L of air is blown per 100 g at 340 ° C. and reacted for 2 hours to obtain a 100% optically isotropic modified pitch with a softening point of 246 ° C. It was. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the modified pitch is 0.78, and the absorption strength of the aliphatic CH stretching vibration measured by FT-IR is the aromatic CH stretching vibration. The ratio to the absorption intensity was 2.9. This modified pitch is pulverized into a powder of 200 μm or less, 10 g is put into a magnetic dish, and the temperature is raised from 150 ° C. to 280 ° C. at 5 ° C./min while flowing 1 L / min in a muffle furnace. Hold for minutes and remove. The obtained processed product was adjusted to an average particle size of 15 μm, and then baked at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When the negative electrode material was evaluated in the same manner as in Example 1, the storage capacity: 658 mAh / g and the discharge capacity: 600 mAh / g were confirmed. The capacity loss was 58 mAh / g, and the discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was 429 mAh / g.
[0021]
Comparative Example 1
Softening point 76 ° C., ratio of hydrogen atoms contained in pitch to carbon atoms (H / C) is 0.55, pyridine insoluble content is 0.1%, aliphatic hydrogen in total hydrogen contained in pitch Coal tar pitch with a ratio of 3% is charged into an autoclave, 2 L of air is blown per 100 g at 340 ° C., reacted for 1 hour, and a 100% optically isotropic modified pitch with a softening point of 243 ° C. Got. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the modified pitch is 0.48, and the absorption strength of the aliphatic C—H stretching vibration measured by FT-IR is an aromatic C—H stretching vibration. The ratio to the absorption intensity was 0.0. This modified pitch is pulverized into a powder of 200 μm or less, 10 g is put in a magnetic dish, and the temperature is raised from 150 ° C. to 320 ° C. at 5 ° C./min while flowing 1 L / min in a muffle furnace. Hold for minutes and remove. The obtained processed product melted during the temperature rising process and became a lump. This was prepared into a powder having an average particle diameter of 15 μm, and then baked at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When the negative electrode material was evaluated in the same manner as in Example 1, the storage capacity: 525 mAh / g and the discharge capacity: 398 mAh / g were confirmed. The capacity loss was as large as 127 mAh / g, and the charge / discharge capacity was also reduced. The discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was as small as 230 mAh / g.
[0022]
Comparative Example 2
An acid-resistant autoclave with an internal volume of 3 L was charged with 7 moles of naphthalene, 2.45 moles of hydrogen fluoride (HF), and 0.77 moles of boron trifluoride (BF 3 ), and the temperature was raised to 100 ° C. under autogenous pressure. The reaction was carried out while maintaining at 100 ° C. for 4 hours. Then, in accordance with a conventional method, nitrogen was blown into the autoclave to recover HF and BF 3. Subsequently, low boiling point components were removed to obtain a precursor pitch having a softening point of 82 ° C. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the precursor pitch is 0.76, pyridine insoluble matter is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 35%. Met. The obtained precursor pitch is charged into another autoclave, 2 L of air is blown per 100 g at 340 ° C., and reacted for 4 hours to obtain a 100% optically isotropic modified pitch with a softening point of 234 ° C. It was. The ratio of hydrogen atoms to carbon atoms (H / C) contained in the modified pitch is 0.49, and the absorption strength of the aliphatic C—H stretching vibration measured by FT-IR is an aromatic C—H stretching vibration. The ratio to the absorption intensity was 0.20. This modified pitch is pulverized into a powder of 200 μm or less, 10 g is put in a magnetic dish, heated at 150 ° C. to 320 ° C. at a rate of 1 ° C./min in a muffle furnace, and then 30 Hold for minutes and remove. The obtained processed product melted during the temperature rising process and became a lump. This was prepared into a powder having an average particle size of 15 μm, and then baked at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When the negative electrode material was evaluated in the same manner as in Example 1, the storage capacity: 535 mAh / g and the release capacity: 403 mAh / g were confirmed. The capacity loss was as large as 132 mAh / g, and the charge / discharge capacity was also reduced. The discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was as small as 240 mAh / g.
[0023]
【The invention's effect】
Compared with conventional carbon materials for negative electrodes of lithium secondary batteries, it is possible to realize a secondary battery having a large capacity and a low cost by being excellent in productivity, having a large discharge capacity, and reducing the irreversible capacity in the first cycle.

Claims (1)

メチル基を一個以上含む縮合多環式化合物を弗化水素・三弗化硼素の存在下、該縮合多環式化合物:弗化水素:三弗化硼素のモル比が1:0.1〜10:0.01〜1.0の範囲において0〜200℃で重合させて得られる、軟化点が0〜180℃、炭素に対する水素の原子比が0.70〜1.10、ピリジン不溶分が1.0%以下、ピッチに含まれる全水素の中の脂肪族水素の割合が30〜80%である前駆ピッチの中に、200℃以上の流動状態で酸化性ガスを流通させることにより、軟化点が150℃以上350℃以下、炭素に対する水素の原子比が0.50〜0.80、FT−IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度に対する比が0.5以上である100%光学的等方性の改質ピッチとし、該改質ピッチを酸化性ガスの存在下に100℃以上400℃以下の温度で不融化処理した後、焼成することを特徴とする非水溶媒二次電池負極用炭素材料の製造法。In the presence of hydrogen fluoride / boron trifluoride, a condensed polycyclic compound containing one or more methyl groups is present in a molar ratio of the condensed polycyclic compound: hydrogen fluoride: boron trifluoride of 1: 0.1-10. : Obtained by polymerizing at 0 to 200 ° C. in the range of 0.01 to 1.0, the softening point is 0 to 180 ° C., the atomic ratio of hydrogen to carbon is 0.70 to 1.10, and the pyridine insoluble content is 1 The softening point is obtained by circulating an oxidizing gas in a flowing state at 200 ° C. or higher in a precursor pitch in which the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 30% to 80%. Absorption of aromatic C—H stretching vibration of 150 to 350 ° C., atomic ratio of hydrogen to carbon of 0.50 to 0.80, and absorption intensity of aliphatic C—H stretching vibration measured by FT-IR A 100% optically isotropic modified pitch having a ratio to strength of 0.5 or more; After infusibilized at a temperature of 100 ° C. or higher 400 ° C. or less in the presence of an oxidizing gas reforming pitch, firing the preparation of non-aqueous solvent secondary battery negative electrode carbon material characterized in that.
JP11963597A 1996-09-06 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery Expired - Fee Related JP3687712B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11963597A JP3687712B2 (en) 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
US08/924,864 US5944980A (en) 1996-09-06 1997-09-05 Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes
EP97306937A EP0838515B1 (en) 1996-09-06 1997-09-08 A method for producing isotropic pitch, active carbon fibers and carbon materials for non-aqueous secondary battery anodes
DE69732825T DE69732825T8 (en) 1996-09-06 1997-09-08 Process for the preparation of isotropic pitch, active carbon fibers and carbon material for anodes of non-aqueous secondary batteries
US09/293,249 US6228343B1 (en) 1996-09-06 1999-04-16 Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11963597A JP3687712B2 (en) 1997-05-09 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH10308221A JPH10308221A (en) 1998-11-17
JP3687712B2 true JP3687712B2 (en) 2005-08-24

Family

ID=14766336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11963597A Expired - Fee Related JP3687712B2 (en) 1996-09-06 1997-05-09 Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3687712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093667A (en) 2000-09-13 2002-03-29 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917486B2 (en) * 1989-11-29 1999-07-12 三菱瓦斯化学株式会社 Mesoface pitch for carbon materials
JPH07226202A (en) * 1993-12-17 1995-08-22 Mitsubishi Gas Chem Co Inc Improved nonaqueous solvent lithium secondary battery
JPH07335218A (en) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd Nonaqueous electrolytic secondary battery
JPH0927322A (en) * 1995-07-11 1997-01-28 Mitsubishi Gas Chem Co Inc Carbon material for nonaqueous solvent secondary battery negative electrode

Also Published As

Publication number Publication date
JPH10308221A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
US5326658A (en) Lithium secondary battery using a non-aqueous solvent
KR20170133406A (en) Organic sulfur material and its manufacturing method
CN102479942A (en) Hard carbon negative electrode material, its preparation method and application
JP2013258032A (en) Negative-electrode active material for nonaqueous electrolytic secondary battery, negative electrode material, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor
WO2012098597A1 (en) Sulfur-based positive electrode active material, method of producing the same, and positive electrode for lithium ion secondary battery
KR20170133405A (en) Organic sulfur material and method for its production
JP3687711B2 (en) Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
JP2500677B2 (en) Improved non-aqueous solvent lithium secondary battery
JP3687712B2 (en) Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
US6228343B1 (en) Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes
JPH0737577A (en) Improved nonaqueous solvent lithium secondary battery
CN110890532A (en) Lithium-sulfur battery positive electrode material and preparation method thereof
JPH1083814A (en) Carbon material for anode for non-aqueous solvent secondary battery
JP3430706B2 (en) Carbon material for negative electrode and non-aqueous electrolyte secondary battery
JPH06132031A (en) Improved nonaquaous solvent lithium secondary battery
JPH097598A (en) Carbon material for nonaqueous solvent secondary battery electrode
JP2002124256A (en) Nonaqueous solvent secondary battery
JPH10149830A (en) Carbon material for nonaqueous solvent secondary battery negative electrode
TW201810788A (en) Gel electrolyte and precursor composition thereof and battery
JP3570443B2 (en) Carbon material for negative electrode of non-aqueous solvent secondary battery
JP2012138350A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003346796A (en) Compound carbon material and lithium ion secondary battery
JPH08264180A (en) Lithium secondary battery negative electrode material and lithium secondary battery using it
JPH07226202A (en) Improved nonaqueous solvent lithium secondary battery
JPH07254412A (en) Improved nonaqueous solvent lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

LAPS Cancellation because of no payment of annual fees