JP3570443B2 - Carbon material for negative electrode of non-aqueous solvent secondary battery - Google Patents

Carbon material for negative electrode of non-aqueous solvent secondary battery Download PDF

Info

Publication number
JP3570443B2
JP3570443B2 JP11990295A JP11990295A JP3570443B2 JP 3570443 B2 JP3570443 B2 JP 3570443B2 JP 11990295 A JP11990295 A JP 11990295A JP 11990295 A JP11990295 A JP 11990295A JP 3570443 B2 JP3570443 B2 JP 3570443B2
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
carbon material
secondary battery
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11990295A
Other languages
Japanese (ja)
Other versions
JPH08315818A (en
Inventor
幸男 酒井
英男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11990295A priority Critical patent/JP3570443B2/en
Publication of JPH08315818A publication Critical patent/JPH08315818A/en
Application granted granted Critical
Publication of JP3570443B2 publication Critical patent/JP3570443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、大容量で充放電サイクル特性に優れた、改良された非水溶媒二次電池負極用炭素材料に関するものである。
【0002】
【従来の技術】
負極に炭素材料を用いた非水溶媒二次電池はリチウムイオン二次電池として、その高エネルギー密度、軽量小型および長期保存性などの利点により既に実用化されている。だが、電子機器の小型・軽量化に対応するため、さらに高容量化を実現する等の改善が必要である。そのために特開平4−115458号、特開平6−168725号等に記載されている様にメソフェースピッチを炭素化処理した炭素材料が精力的に検討されてきた。しかしながら、従来の光学的異方性相含有率の高いメソフェースピッチは、軟化点が高いため熱溶融時に急激な縮合反応が生じたり、また不融化性が低く、ガス発生や不融物を生じ易かった。そのため、炭素化処理を行った時、クラックや極度に黒鉛化が進んだ部分を生じ易く、非水溶媒二次電池の負極として使用した場合には電解液の分解によるガス発生が起こるものであった。逆に、軟化点を下げるため異方性含有率を少なくすると異方性と等方性の相分離、低沸成分によるガス発生等が生じ、熱溶融や不融化処理が困難であった。この様に、従来のメソフェーズピッチを炭素化処理して得られた炭素材料は非水溶媒二次電池の負極として充分なものでなかった。
【0003】
【発明が解決しようとする課題】
上述したように、従来のメソフェースピッチを炭素化処理して得られた炭素材料を負極材料として用いた非水溶媒二次電池は、その特徴である大容量を実現するには十分なものではなかった。本発明は、従来のかかる問題を解消し、大容量を実現でき、かつ充放電サイクル特性が良好で、しかも安定かつ安全性に優れた高性能な負極用炭素材料を提供することを目的とする。
【0004】
【課題を解決するための手段及び作用】
本発明者らは上記の目的を達成するため鋭意検討した結果、特定の物性を持つメソフェースピッチを炭素化処理することにより調製された炭素材料が非水溶媒二次電池の負極として優れた性質を有することを見い出し、本発明を完成するに至った。
【0005】
本発明で用いられるメソフェースピッチは特開昭63−146920号、特開平1−139621号及び特開平1−254796号に記載されている、弗化水素・三弗化硼素触媒の存在下でナフタレン、メチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等の縮合多環炭化水素を重合させて得られるメソフェースピッチである。
【0006】
該メソフェースピッチを製造するための原料は、ナフタレン、メチルナフタレン、アントラセン、フェナントレン、アセナフテン、アセナフチレン、ピレン等の縮合多環炭化水素およびこれらの混合物ないしこれらを含有する物質である。不純物として酸素、窒素、硫黄、ケイ素、また鉄、ニッケルなどの金属元素はできるだけ少ないことが好ましい。重合触媒量は、縮合多環炭化水素1モルに対し弗化水素を0.1〜20モル、三弗化硼素を0.05〜1.0モルである。重合反応の温度は220〜400℃であり、好ましくは230〜320℃である。最適の反応温度は、原料の種類により限定されるが、重合を過度に進める条件は、後の触媒回収を困難にするため避ける必要がある。
【0007】
この様にして得られたメソフェースピッチは軟化点が280℃以下、好ましくは200〜260℃であり、光学的異方性相含有率は80%以上、好ましくは90%以上であり、更に好ましくは98%以上である。該メソフェースピッチは全炭素中にナフテン系炭素を7%以上、あるいは全炭素中にメチル基の炭素を4%以上含むと共に、炭素に対する水素の原子比(H/C原子比)が0.5〜1.0である。
【0008】
本発明の非水溶媒二次電池負極用炭素材料は該メソフェースピッチを不融化処理したのち、炭素化処理して得られる。
【0009】
不融化処理は該メソフエースピッチを所定の粒度に調整したのち行っても良いし、または短炭素繊維または長炭素繊維に紡糸した後に行ってもよい。不融化処理は酸化性ガス中200〜370℃まで昇温することにより行われる。酸化性ガスとしては空気が通常用いられる。
【0010】
不融化後の炭素化処理は不活性ガス中で900℃以上でおこなう。黒鉛化までおこなうには、さらに2000℃以上の温度で炭素化処理を行う。
【0011】
最終的に得られる炭素材料の粒度は平均粒径で1〜50μm、通常5〜30μmの範囲になる様に製造条件が選択される。但し、粉砕操作は最後の炭素化処理の前に行う必要があり、例えば、黒鉛化した後粉砕した場合には粉砕後2000℃以上で処理する必要がある。粉砕機は衝撃式粉砕機、ジェットミル、ボールミル等から適宜、最適な機種が選択される。分級機も機械式分級機、風力式分級機等から適宜、最適な機種が選択される。
【0012】
本発明で用いられるメソフェースピッチは、光学的異方性相含有率が高いにもかかわらず軟化点が低く、上記した様な問題を解決でき、均一な炭素材料を安定して製造することが可能ある。さらに、不融化に際して分解ガス及び不融物生成がほとんどなく、また不融化に富み炭化収率が高いなどの種々の優れた特徴を持っており、該メソフェースピッチを炭素化処理して得られた非水溶媒二次電池負極用炭素材料は高い特性を再現性良く持つものである。
【0013】
以下、本発明について実施例、及び、比較例を示してその効果を具体的にかつ詳細に説明するが、以下に示す例は、具体的に説明するためのものであって本発明の実施態様や発明の範囲を限定するものとしては意図されていない。また、本実施例での各種分析方法及び分析条件を以下に記載する。
[光学的異方性相含有率]
常温近くで固化したピッチ塊の断面を研磨し、反射型光学顕微鏡で直交ニコル下で観察したとき、試料または直交ニコルを回転して光輝が認められた部分の面積分率。
[軟化点]
降下式フローテスターにより測定されたピッチの固−液転位温度。
[粒度分布]
装置は堀場制作所製、レーザー回折式、粒度分布測定装置、LA−500型を使用した。測定は100ml の純水に3滴の界面活性剤を加え、この中に所定濃度になるように試料を加え、超音波分散を10分間行ったのち、測定し、得られたメジアン径を平均粒子径とした。
[炭素及び水素量]
CHN型元素分析計を用いて測定した。
[ナフテン系およびメチル基の炭素量]
NMRにより測定した。
【0014】
【実施例】
実施例1
内容積500mlの耐酸オートクレーブに、ナフタレン1モル、弗化水素 (HF) 0. 5モル、三弗化硼素 (BF ) 0. 25モルを仕込み、260℃にまで昇温した後、2時間反応した。その後オートクレーブの放出弁を開け、常圧迄落圧して実質的に全量のHF、BF をガス状で回収した後、窒素を吹き込み、低沸点成分を除去したピッチを得た。得られたピッチの光学的異方性相含有率は100%であり、軟化点は216℃であった。また、H/C原子比は0.67、ナフテン系炭素の比率は14%であった。ここで得られたピッチを空気中で270℃に昇温することで不融化処理を行なった後、窒素雰囲気下500℃で熱処理を行った後、粉砕して平均粒径15μmの粒度に調整した。更に、窒素ガス気流中2800℃で焼成して、粉末状の炭素材料を得た。
【0015】
[負極としての単極評価] (但し、以下の放電と充電は電池として組んだ場合を想定している。)得られた粉末状炭素材料100重量部に、ポリテトラフルオロエチレン粉末5重量部[バインダー]を配合・混合して円板状に圧縮成形した柔軟な成形体を作製し、評価用試験片とした。この評価用試験片を用いて、LiPF をエチレンカーボネートとジエチレンカーボネートとの等容量混合物に溶解した溶液[濃度1. 0mol/l ]を電解液とし、厚さ50μmのポリプロピレン製微孔膜をセパレータとするハーフセルを作製した。なお、対極として直径16mm、厚さ0. 5mmのリチウム金属を使用した。また、参照極として対極と同様にリチウム金属の小片を使用した。
【0016】
電流密度2.0mA/cm で参照極に対する評価用試験片の電極電位が10mVまで定電流充電を行ない、さらに電極電位10mVで定電位充電を計20hr行なったところ420mAh/g の充電容量が確認された。ついで、電流密度1.0mA/cm で参照極に対する評価用試験片の電極電位が1.5Vまで定電流放電を行なったところ、330mAh/gの放電容量が確認された。
【0017】
実施例2
実施例1で得られたメソフェーズピッチを320℃で溶融紡糸した後、空気中280℃で不融化を行なった。次に、窒素雰囲気下1000℃で炭素化処理した後、平均粒径25μmに粉砕した。得られた炭素粉末をアルゴンガス気流中3000℃で更に炭素化処理を行って粉末状の炭素材料を得た。実施例1と同様にして負極としての評価を行なったところ、充電容量:350mAh/g、放電容量:305mAh/gが確認された。
【0018】
実施例3
内容積3Lの耐酸オートクレーブに、α−メチルナフタレン1モル、HF0.5モル、BF 0.2モルを仕込み、270℃にまで昇温し、4時間反応を行なった。ついで、実施例1と同様の操作を行ない、得られたメソフェースピッチの光学的異方性相含有率は100%、軟化点は240℃、H/C原子比は0.65、メチル基の炭素は6%であった。ここで得られたピッチに実施例1と同様の操作を行った後、アルゴン気流中3000℃で炭素化処理を行い、粉末状の炭素材料を得た。実施例1と同様にして負極としての評価を行なったところ、充電容量:410mAh/g、放電容量:340mAh/gが確認された。
【0019】
比較例1
内容積500mLの耐酸オートクレーブに、ナフタレン1モル、HF0.5モル、BF 0.25モルを仕込み、200℃にまで昇温した後、2時間反応した。得られたピッチの光学的異方性相含有率は10%、軟化点は175℃であった。ついで、実施例1と同様の操作を行ない、不融化処理を実施したが不融化できず負極として適当な炭素材料が得られなかった。
【0020】
比較例2
内容積3Lの耐酸オートクレーブに、ナフタレン1モル、HF3モル、BF 0.5モルを仕込み、80℃にまで昇温し、3時間反応を行なった。その後オートクレーブの放出弁を開け、常圧において180〜200℃まで徐々に加熱し、実質的に全量のHF、BF をガス状で回収した後、溶融状態でピッチを抜き出した。このピッチの軟化点は72℃であり、光学的異方性相含有率は0%であった。このピッチを常圧下475℃で50分間、100TORRの減圧下450℃で30分間熱処理して光学的異方性相含有率100%、軟化点300℃のピッチを得た。また、H/C原子比は0.51、ナフテン系炭素の比率は4%であった。得られたメソフェースピッチに実施例1と同様の操作を行ない粉末状の炭素材料を得た。さらに、実施例1と同様にして負極としての評価を行ったところ、電解液の分解によるガス発生が生じた。
【0021】
比較例3
内容積3Lの耐酸オートクレーブに、ナフタレン1モル、HF3モル、BF 0.5モルを仕込み、80℃にまで昇温し、3時間反応を行なった。その後オートクレーブの放出弁を開け、常圧において180〜200℃まで徐々に加熱し、実質的に全量のHF、BF をガス状で回収した後、溶融状態でピッチを抜き出した。このピッチの軟化点は72℃であり、光学的異方性相含有率は0%であった。このピッチを常圧下475℃で50分間、10TORRの減圧下420℃で30分間熱処理して光学的異方性相含有率100%、軟化点290℃のピッチを得た。また、H/C原子比は0.51、全炭素中のメチル基の炭素は2%であった。得られたメソフェースピッチに実施例1と同様の操作を行ない粉末状の炭素材料を得た。さらに、実施例1と同様にして負極としての評価を行ったところ、電解液の分解によるガス発生が生じた。
【0022】
【発明の効果】
本願発明により、工業的に安定して製造可能でかつ、高性能な非水溶媒二次電池負極用炭素材料が得られる。
[0001]
[Industrial applications]
The present invention relates to an improved carbon material for a negative electrode of a non-aqueous solvent secondary battery, which has a large capacity and excellent charge / discharge cycle characteristics.
[0002]
[Prior art]
Non-aqueous solvent secondary batteries using a carbon material for the negative electrode have already been put into practical use as lithium ion secondary batteries due to their advantages such as high energy density, light weight, small size, and long-term storage. However, in order to cope with the reduction in size and weight of electronic devices, improvements such as realizing higher capacity are necessary. Therefore, carbon materials obtained by carbonizing a mesoface pitch as described in JP-A-4-115458 and JP-A-6-168725 have been energetically studied. However, conventional mesophase pitches with a high optically anisotropic phase content have a high softening point, causing a rapid condensation reaction during heat melting, and also have low infusibilization properties, generating gas and infusible substances. It was easy. For this reason, when carbonization is performed, cracks and extremely graphitized portions are likely to occur, and when used as a negative electrode of a non-aqueous solvent secondary battery, gas is generated due to decomposition of the electrolytic solution. Was. Conversely, when the anisotropic content is reduced to lower the softening point, anisotropic and isotropic phase separation, gas generation due to low boiling components, and the like occur, making it difficult to perform heat melting or infusibility treatment. Thus, the carbon material obtained by carbonizing the conventional mesophase pitch was not sufficient as a negative electrode for a non-aqueous solvent secondary battery.
[0003]
[Problems to be solved by the invention]
As described above, a non-aqueous solvent secondary battery using a carbon material obtained by carbonizing a conventional mesoface pitch as a negative electrode material is not sufficient for realizing a large capacity that is a feature of the nonaqueous solvent secondary battery. Did not. An object of the present invention is to solve the conventional problems and to provide a high-performance carbon material for a negative electrode that can realize a large capacity, has good charge / discharge cycle characteristics, and has excellent stability and safety. .
[0004]
Means and Action for Solving the Problems
The present inventors have conducted intensive studies to achieve the above object, and as a result, a carbon material prepared by carbonizing a mesoface pitch having specific physical properties has excellent properties as a negative electrode of a non-aqueous solvent secondary battery. Have been found, and the present invention has been completed.
[0005]
The mesophase pitch used in the present invention is described in JP-A-63-146920, JP-A-1-139621 and JP-A-1-254796, which are used in the presence of a hydrogen fluoride / boron trifluoride catalyst. And a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon such as methylnaphthalene, anthracene, phenanthrene, acenaphthene, and pyrene.
[0006]
Raw materials for producing the mesoface pitch are condensed polycyclic hydrocarbons such as naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, pyrene, and mixtures thereof, or substances containing these. It is preferable that oxygen, nitrogen, sulfur, silicon, and metal elements such as iron and nickel as impurities are as small as possible. The amount of the polymerization catalyst is 0.1 to 20 mol of hydrogen fluoride and 0.05 to 1.0 mol of boron trifluoride per 1 mol of the condensed polycyclic hydrocarbon. The temperature of the polymerization reaction is from 220 to 400 ° C, preferably from 230 to 320 ° C. The optimum reaction temperature is limited by the type of the raw material, but conditions that promote excessive polymerization must be avoided because it makes it difficult to recover the catalyst later.
[0007]
The mesoface pitch thus obtained has a softening point of 280 ° C. or lower, preferably 200 to 260 ° C., and an optically anisotropic phase content of 80% or higher, preferably 90% or higher, and more preferably. Is 98% or more. The mesophase pitch contains not less than 7% of naphthenic carbon in all carbon, or not less than 4% of methyl group carbon in all carbon, and has an atomic ratio of hydrogen to carbon (H / C atomic ratio) of 0.5%. ~ 1.0.
[0008]
The carbon material for a negative electrode of a non-aqueous solvent secondary battery of the present invention is obtained by infusibilizing the mesoface pitch and then carbonizing the mesoface pitch.
[0009]
The infusibilization treatment may be performed after adjusting the mesophase pitch to a predetermined particle size, or may be performed after spinning into short carbon fibers or long carbon fibers. The infusibilization treatment is performed by raising the temperature to 200 to 370 ° C. in the oxidizing gas. Air is usually used as the oxidizing gas.
[0010]
The carbonization treatment after infusibilization is performed in an inert gas at 900 ° C. or higher. To perform graphitization, a carbonization treatment is further performed at a temperature of 2000 ° C. or higher.
[0011]
The production conditions are selected so that the particle size of the finally obtained carbon material is in the range of 1 to 50 μm, usually 5 to 30 μm in average particle size. However, the pulverization operation needs to be performed before the final carbonization treatment. For example, when pulverization is performed after graphitization, the pulverization must be performed at 2000 ° C. or more. As the crusher, an optimal model is appropriately selected from an impact crusher, a jet mill, a ball mill and the like. As the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier, and the like.
[0012]
The mesoface pitch used in the present invention has a low softening point despite having a high optically anisotropic phase content, and can solve the problems described above, and can stably produce a uniform carbon material. It is possible. Furthermore, it has almost no decomposition gas and no insoluble matter generated during infusibilization, and has various excellent features such as high infusibilization and high carbonization yield, and is obtained by carbonizing the mesoface pitch. The non-aqueous solvent secondary battery negative electrode carbon material has high characteristics with good reproducibility.
[0013]
Hereinafter, the effects of the present invention will be described specifically and in detail with reference to Examples and Comparative Examples, but the following examples are provided for specifically describing the embodiments of the present invention. It is not intended to limit the scope of the invention. Various analysis methods and analysis conditions in this example are described below.
[Content of optically anisotropic phase]
When the cross section of the pitch mass solidified near room temperature is polished and observed under a crossed Nicols with a reflection optical microscope, the area fraction of the portion where the sample or the crossed Nicols are rotated and glitter is observed.
[Softening point]
Solid-liquid transition temperature of the pitch measured by a falling flow tester.
[Particle size distribution]
The apparatus used was a laser diffraction type, particle size distribution analyzer, model LA-500, manufactured by Horiba Seisakusho. For the measurement, three drops of a surfactant were added to 100 ml of pure water, a sample was added to this at a predetermined concentration, ultrasonic dispersion was performed for 10 minutes, and the obtained median diameter was measured. Diameter.
[Amount of carbon and hydrogen]
It measured using the CHN type elemental analyzer.
[Carbon content of naphthenic and methyl groups]
Measured by NMR.
[0014]
【Example】
Example 1
In a 500 ml acid-resistant autoclave, 1 mol of naphthalene and hydrogen fluoride (HF) were added. 5 mol, boron trifluoride (BF 3 ) After 25 mol was charged and the temperature was raised to 260 ° C., the reaction was carried out for 2 hours. Then open the discharge valve of the autoclave, normal圧迄落圧to substantially the total amount HF, the BF 3 was recovered in gaseous form, with nitrogen blowing to obtain a pitch to remove low-boiling components. The obtained pitch had an optically anisotropic phase content of 100% and a softening point of 216 ° C. The H / C atomic ratio was 0.67, and the ratio of naphthenic carbon was 14%. After heating the pitch obtained here to 270 ° C. in the air to perform infusibilization, heat treatment was performed at 500 ° C. in a nitrogen atmosphere, and then pulverized to adjust the average particle size to 15 μm. . Further, the powder was fired at 2800 ° C. in a nitrogen gas stream to obtain a powdery carbon material.
[0015]
[Evaluation of Monopolar as Negative Electrode] (However, the following discharging and charging are assumed to be performed in a battery.) 5 parts by weight of polytetrafluoroethylene powder is added to 100 parts by weight of the obtained powdery carbon material. Binder] was blended and mixed to prepare a flexible molded article which was compression-molded into a disk shape and used as a test piece for evaluation. Using this test piece for evaluation, a solution obtained by dissolving LiPF 6 in an equal volume mixture of ethylene carbonate and diethylene carbonate [concentration 1. 0 mol / l] as an electrolytic solution, and a half cell using a 50 μm-thick polypropylene microporous membrane as a separator was produced. The counter electrode has a diameter of 16 mm and a thickness of 0.1 mm. 5 mm lithium metal was used. A small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode.
[0016]
At a current density of 2.0 mA / cm 2 , a constant current charge was performed until the electrode potential of the evaluation test piece with respect to the reference electrode was 10 mV, and a constant potential charge was further performed at an electrode potential of 10 mV for a total of 20 hours, and a charge capacity of 420 mAh / g was confirmed. Was done. Next, when a constant current discharge was performed at a current density of 1.0 mA / cm 2 until the electrode potential of the test piece for evaluation with respect to the reference electrode was 1.5 V, a discharge capacity of 330 mAh / g was confirmed.
[0017]
Example 2
After the mesophase pitch obtained in Example 1 was melt-spun at 320 ° C, it was rendered infusible at 280 ° C in air. Next, it was carbonized at 1000 ° C. in a nitrogen atmosphere, and then pulverized to an average particle size of 25 μm. The obtained carbon powder was further carbonized at 3000 ° C. in an argon gas stream to obtain a powdery carbon material. When a negative electrode was evaluated in the same manner as in Example 1, a charge capacity of 350 mAh / g and a discharge capacity of 305 mAh / g were confirmed.
[0018]
Example 3
1 mol of α-methylnaphthalene, 0.5 mol of HF and 0.2 mol of BF 3 were charged into an acid-resistant autoclave having an internal volume of 3 L, and the temperature was raised to 270 ° C., and the reaction was carried out for 4 hours. Then, the same operation as in Example 1 was performed, and the obtained mesoface pitch had an optically anisotropic phase content of 100%, a softening point of 240 ° C., an H / C atomic ratio of 0.65, and a methyl group. Carbon was 6%. After the same operation as in Example 1 was performed on the obtained pitch, carbonization was performed at 3000 ° C. in an argon stream to obtain a powdery carbon material. When a negative electrode was evaluated in the same manner as in Example 1, a charge capacity: 410 mAh / g and a discharge capacity: 340 mAh / g were confirmed.
[0019]
Comparative Example 1
1 mol of naphthalene, 0.5 mol of HF, and 0.25 mol of BF 3 were charged into an acid-resistant autoclave having an inner volume of 500 mL, and the mixture was reacted at 200 ° C. for 2 hours. The obtained pitch had an optically anisotropic phase content of 10% and a softening point of 175 ° C. Then, the same operation as in Example 1 was performed to perform infusibilization treatment. However, infusibility was not achieved, and a carbon material suitable as a negative electrode could not be obtained.
[0020]
Comparative Example 2
1 mol of naphthalene, 3 mol of HF, and 0.5 mol of BF 3 were charged into an acid-resistant autoclave having an inner volume of 3 L, the temperature was raised to 80 ° C., and the reaction was carried out for 3 hours. Thereafter, the discharge valve of the autoclave was opened, and the mixture was gradually heated to 180 to 200 ° C. at normal pressure to recover substantially all of HF and BF 3 in a gaseous state. The softening point of this pitch was 72 ° C., and the optically anisotropic phase content was 0%. The pitch was heat-treated at 475 ° C. for 50 minutes under normal pressure and at 450 ° C. for 30 minutes under reduced pressure of 100 Torr to obtain a pitch having an optically anisotropic phase content of 100% and a softening point of 300 ° C. The H / C atomic ratio was 0.51, and the ratio of naphthenic carbon was 4%. The same operation as in Example 1 was performed on the obtained mesoface pitch to obtain a powdery carbon material. Further, when the anode was evaluated in the same manner as in Example 1, gas was generated due to decomposition of the electrolytic solution.
[0021]
Comparative Example 3
1 mol of naphthalene, 3 mol of HF, and 0.5 mol of BF 3 were charged into an acid-resistant autoclave having an inner volume of 3 L, the temperature was raised to 80 ° C., and the reaction was carried out for 3 hours. Thereafter, the discharge valve of the autoclave was opened, and the mixture was gradually heated to 180 to 200 ° C. at normal pressure to recover substantially all of HF and BF 3 in a gaseous state. The softening point of this pitch was 72 ° C., and the optically anisotropic phase content was 0%. This pitch was heat-treated at 475 ° C. under normal pressure for 50 minutes at 420 ° C. under a reduced pressure of 10 TOR for 30 minutes to obtain a pitch having an optically anisotropic phase content of 100% and a softening point of 290 ° C. Further, the H / C atomic ratio was 0.51, and the carbon of the methyl group in the total carbon was 2%. The same operation as in Example 1 was performed on the obtained mesoface pitch to obtain a powdery carbon material. Further, when evaluation as a negative electrode was performed in the same manner as in Example 1, gas was generated due to decomposition of the electrolytic solution.
[0022]
【The invention's effect】
According to the present invention, a carbon material for a negative electrode of a non-aqueous solvent secondary battery which can be industrially stably manufactured and has high performance can be obtained.

Claims (3)

弗化水素・三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させて得られる、軟化点が280℃以下でかつ光学的異方性相含有率が80%以上であるメソフェースピッチを不融化処理したのち、2000℃以上の温度で炭素化処理することにより調製された非水溶媒二次電池負極用炭素材料。A polymer having a softening point of 280 ° C. or less and an optically anisotropic phase content of 80% or more obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. A carbon material for a non-aqueous solvent secondary battery negative electrode prepared by subjecting a mesoface pitch, which is described above, to an infusibilization treatment and then performing a carbonization treatment at a temperature of 2000 ° C. or higher . メソフェースピッチが、軟化点が200〜260℃で全炭素中にナフテン系炭素を7%以上含み、炭素に対する水素の原子比が0.5〜1.0であり、光学的異方性相含有率が90%以上であることを特徴とする請求項1記載の非水溶媒二次電池負極用炭素材料。The mesophase pitch has a softening point of 200 to 260 ° C., contains at least 7% of naphthenic carbon in all carbons, an atomic ratio of hydrogen to carbon of 0.5 to 1.0, and contains an optically anisotropic phase. The carbon material for a negative electrode of a non-aqueous solvent secondary battery according to claim 1, wherein the ratio is 90% or more. メソフェースピッチが、軟化点が200〜260℃で全炭素中にメチル基の炭素を4%以上含み、炭素に対する水素の原子比が0.5〜1.0であり、光学的異方性相含有率が90%以上であることを特徴とする請求項1記載の非水溶媒二次電池負極用炭素材料。A mesophase pitch having a softening point of 200 to 260 ° C., containing at least 4% of carbon of a methyl group in all carbons, an atomic ratio of hydrogen to carbon of 0.5 to 1.0, and an optically anisotropic phase; The carbon material for a non-aqueous solvent secondary battery negative electrode according to claim 1, wherein the content is 90% or more.
JP11990295A 1995-05-18 1995-05-18 Carbon material for negative electrode of non-aqueous solvent secondary battery Expired - Fee Related JP3570443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11990295A JP3570443B2 (en) 1995-05-18 1995-05-18 Carbon material for negative electrode of non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11990295A JP3570443B2 (en) 1995-05-18 1995-05-18 Carbon material for negative electrode of non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH08315818A JPH08315818A (en) 1996-11-29
JP3570443B2 true JP3570443B2 (en) 2004-09-29

Family

ID=14773053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11990295A Expired - Fee Related JP3570443B2 (en) 1995-05-18 1995-05-18 Carbon material for negative electrode of non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3570443B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511811B2 (en) * 2003-06-24 2010-07-28 日本電気株式会社 Lithium ion secondary battery negative electrode active material resin composition, negative electrode active material carbon material, method for producing the same, and lithium ion secondary battery
CN104087331A (en) * 2014-07-18 2014-10-08 上海交通大学 Mesophase pitch raw material as well as preparation method and application of mesophase pitch raw material in preparing high-performance carbon fiber
CN104195676A (en) * 2014-08-12 2014-12-10 上海交通大学 Mesophase pitch material for preparing high-performance carbon fibers and preparation method of mesophase pitch material

Also Published As

Publication number Publication date
JPH08315818A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US7008526B2 (en) Processes for producing coke, artificial graphite and carbon material for negative electrode of non-aqueous solvent type secondary battery and pitch composition used therefor
TWI543431B (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and its manufacturing method, and the use of the carbonaceous material of the negative and non-aqueous electrolyte secondary battery
US20150024277A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
JP3568563B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP3570443B2 (en) Carbon material for negative electrode of non-aqueous solvent secondary battery
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP2000090925A (en) Carbon material for negative electrode, manufacture thereof, and lithium secondary battery using the carbon material
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
US10170752B2 (en) Method for producing amorphous carbon particle, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JPH10289718A (en) Manufacture of graphite material for large-capacity lithium-ion secondary battery negative electrode
CN113830768B (en) Lithium ion battery cathode material and preparation method thereof
JP2002124256A (en) Nonaqueous solvent secondary battery
JPH10149830A (en) Carbon material for nonaqueous solvent secondary battery negative electrode
JP4179720B2 (en) Method for producing carbon material and graphite material, and material for negative electrode of lithium ion secondary battery
JP2012138350A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3687711B2 (en) Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery
JP2002124255A (en) Nonaqueous solvent secondary battery
JPH1083814A (en) Carbon material for anode for non-aqueous solvent secondary battery
CN115895255B (en) Preparation method of carbon nanotube modified silicon oxide composite material, product and application thereof
JP2000149947A (en) Graphite powder for lithium ion battery negative electrode
JP2019008980A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH07335217A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees