JP2011142021A - Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor - Google Patents
Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor Download PDFInfo
- Publication number
- JP2011142021A JP2011142021A JP2010002278A JP2010002278A JP2011142021A JP 2011142021 A JP2011142021 A JP 2011142021A JP 2010002278 A JP2010002278 A JP 2010002278A JP 2010002278 A JP2010002278 A JP 2010002278A JP 2011142021 A JP2011142021 A JP 2011142021A
- Authority
- JP
- Japan
- Prior art keywords
- silicon oxide
- secondary battery
- negative electrode
- electrolyte secondary
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Silicon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池や電気化学キャパシタ用の負極活物質として用いた際に、高い初回充放電効率と良好なサイクル特性を示す非水電解質二次電池用の負極材とできる珪素酸化物とその製造方法、並びにそれが負極材に用いられたリチウムイオン二次電池や電気化学キャパシタに関する。 The present invention provides a silicon oxide that can be used as a negative electrode material for a non-aqueous electrolyte secondary battery that exhibits high initial charge / discharge efficiency and good cycle characteristics when used as a negative electrode active material for lithium ion secondary batteries and electrochemical capacitors. The present invention relates to a product, a manufacturing method thereof, and a lithium ion secondary battery and an electrochemical capacitor in which the product is used as a negative electrode material.
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の非水電解質二次電池が強く要望されている。
従来、この種の非水電解質二次電池の高容量化策として、例えば、負極材料にB,Ti,V,Mn,Co,Fe,Ni,Cr,Nb,Mo等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1,2等参照)、溶融急冷したM100−xSix(x≧50at%,M=Ni,Fe,Co,Mn)を負極材として適用する方法(特許文献3等参照)、負極材料に珪素の酸化物を用いる方法(特許文献4等参照)、負極材料にSi2N2O,Ge2N2O及びSn2N2Oを用いる方法(特許文献5等参照)等が知られている。
In recent years, with the remarkable development of portable electronic devices, communication devices, etc., there is a strong demand for non-aqueous electrolyte secondary batteries with high energy density from the viewpoints of economy and downsizing and weight reduction of devices.
Conventionally, as a measure for increasing the capacity of this type of non-aqueous electrolyte secondary battery, for example, negative electrode materials such as oxides such as B, Ti, V, Mn, Co, Fe, Ni, Cr, Nb, and Mo and composites thereof A method using an oxide (see
この中で、酸化珪素はSiOx(ただしxは酸化被膜のため理論値の1よりわずかに大きい)と表記することができるが、X線回折による分析では数nm〜数十nm程度のアモルファスシリコンがシリカ中に微分散している構造をとっている。
このため、電池容量は珪素と比較すると小さいものの、炭素と比較すれば重量あたりで5〜6倍と高く、さらには体積膨張も小さいため、負極活物質として使用しやすいと考えられていた。
Among these, silicon oxide can be expressed as SiO x (where x is slightly larger than the
For this reason, although the battery capacity is small compared to silicon, it is considered to be easy to use as a negative electrode active material because it is 5 to 6 times higher per weight than carbon and further has a small volume expansion.
しかしながら、酸化珪素は不可逆容量が大きく、初期効率が70%程度と非常に低いため、実際に電池を作製した場合に、正極の電池容量を過剰に必要とし、活物質あたり5〜6倍の容量増加分に見合うだけの電池容量の増加を期待することができなかった。 However, since silicon oxide has a large irreversible capacity and an initial efficiency as low as about 70%, when actually manufacturing a battery, the battery capacity of the positive electrode is excessively required, and the capacity is 5 to 6 times per active material. We could not expect an increase in battery capacity to meet the increase.
このように酸化珪素の実用上の問題は著しく初期効率が低い点にあり、これを解決する手段としては、例えば不可逆容量分を補充する方法、不可逆容量を抑制する方法が挙げられる。
例えば、Li金属をあらかじめドープすることで、不可逆容量分を補う方法が有効であることが報告されている。具体的にはLi金属をドープするために負極活物質表面にLi箔を貼り付ける方法(特許文献6等参照)や、負極活物質表面にLi蒸着を行う方法(特許文献7等参照)などが開示されている。
しかしながら、Li箔の貼り付けでは酸化珪素負極の初期効率に見合ったLi薄体の入手が困難で、かつ高コストである。また、Li蒸気による蒸着は製造工程が複雑となって実用的でない等の問題があった。
Thus, the practical problem of silicon oxide is that the initial efficiency is remarkably low, and means for solving this include, for example, a method of replenishing the irreversible capacity and a method of suppressing the irreversible capacity.
For example, it has been reported that a method of compensating for the irreversible capacity by doping Li metal in advance is effective. Specifically, there are a method of attaching a Li foil to the surface of the negative electrode active material in order to dope Li metal (see
However, it is difficult to obtain a Li thin body suitable for the initial efficiency of the silicon oxide negative electrode by attaching the Li foil, and the cost is high. Further, the vapor deposition using Li vapor has a problem that the manufacturing process is complicated and is not practical.
一方、LiドープによらずにSiの質量割合を高めることで初期効率を増加させる方法が開示されている。
ひとつには珪素粉末を酸化珪素粉末に添加して酸化珪素の質量割合を減少させる方法であり(特許文献8等参照)、他方では酸化珪素の製造段階において珪素蒸気を同時に発生、析出することで珪素と酸化珪素の混合固体を得る方法である(特許文献9等参照)。
しかしながら、珪素は酸化珪素と比較して高い初期効率と電池容量を併せ持つが、充電時に400%もの体積膨張率を示す活物質であり、酸化珪素と炭素材料の混合物に添加する場合であっても、酸化珪素の体積膨張率を維持することができない。そのため、結果的に炭素材料を20質量%以上添加して電池容量が1000mAh/gに抑えることが必要であった。一方、珪素と酸化珪素の蒸気を同時に発生させて混合固体を得る方法では、珪素の蒸気圧が低いことから、2000℃を超える高温での製造工程を必要とし、作業上の大きな問題があった。
On the other hand, a method for increasing the initial efficiency by increasing the mass ratio of Si irrespective of Li doping is disclosed.
One is a method in which silicon powder is added to silicon oxide powder to reduce the mass ratio of silicon oxide (see Patent Document 8, etc.), and the other is by simultaneously generating and depositing silicon vapor in the production stage of silicon oxide. This is a method of obtaining a mixed solid of silicon and silicon oxide (see Patent Document 9).
However, silicon has both high initial efficiency and battery capacity compared to silicon oxide, but is an active material that exhibits a volume expansion coefficient of 400% during charging, and even when added to a mixture of silicon oxide and carbon material. The volume expansion coefficient of silicon oxide cannot be maintained. Therefore, as a result, it was necessary to add 20% by mass or more of a carbon material to suppress the battery capacity to 1000 mAh / g. On the other hand, in the method of obtaining a mixed solid by simultaneously generating vapors of silicon and silicon oxide, since the vapor pressure of silicon is low, a manufacturing process at a high temperature exceeding 2000 ° C. is required, and there is a serious problem in work. .
以上のように、珪素系活物質は金属単体及びその酸化物であってもそれぞれ解決課題を有しており、実用上問題となっていた。
そこで、Liの吸蔵、放出に伴う体積変化を十分に抑制でき、粒子の割れによる微粉化や集電体からの剥離による導電性の低下を緩和することが可能であり、大量生産が可能で、コスト的に有利であって、かつ携帯電話用等の特に繰り返しのサイクル特性が重要視される用途に適応することが可能な負極活物質が望まれていた。
As described above, even if the silicon-based active material is a single metal or an oxide thereof, each has a problem to be solved, which has been a problem in practical use.
Therefore, volume change associated with insertion and extraction of Li can be sufficiently suppressed, and it is possible to alleviate a decrease in conductivity due to pulverization due to particle cracking and peeling from the current collector, and mass production is possible. There has been a demand for a negative electrode active material that is advantageous in terms of cost and that can be applied to applications in which repeated cycle characteristics are particularly important, such as for mobile phones.
本発明は、上記問題に鑑みなされたものであって、酸化珪素の高い電池容量と低い体積膨張率を維持しつつ、初回充放電効率が高く、サイクル特性に優れた非水電解質二次電池用の負極材として有効な活物質としての珪素酸化物とその製造方法、並びにこの珪素酸化物を用いた非水電解質二次電池負極が用いられた非水電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above-described problems, and maintains high battery capacity and low volume expansion coefficient of silicon oxide, and has high initial charge / discharge efficiency and excellent non-aqueous electrolyte secondary battery with excellent cycle characteristics. An object of the present invention is to provide a silicon oxide as an active material effective as a negative electrode material and a method for producing the same, and a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte secondary battery negative electrode using the silicon oxide. To do.
上記課題を解決するため、本発明では、非水電解質を用いる二次電池用の負極材に用いられる珪素酸化物であって、該珪素酸化物は、酸素含有量が20〜35質量%で、かつSiOガスと還元性ガスとを反応させることで得られたものであることを特徴とする非水電解質二次電池負極材用珪素酸化物を提供する。 In order to solve the above problems, in the present invention, a silicon oxide used for a negative electrode material for a secondary battery using a non-aqueous electrolyte, the silicon oxide having an oxygen content of 20 to 35 mass%, In addition, the present invention provides a silicon oxide for a negative electrode material for a non-aqueous electrolyte secondary battery, which is obtained by reacting SiO gas with a reducing gas.
このように、酸素含有量が20〜35質量%で、かつSiOガスと還元性ガスとを反応させることで得られた珪素酸化物は、酸素含有量が少ないため、非水電解質二次電池、例えばリチウムイオン二次電池の負極材に用いられた場合に、酸素とLiイオンの反応(不可逆なLi4SiO4の生成)が抑制されたものであり、初回の充放電効率の低下が従来に比べて抑制されたものとなる。よって、初回充放電効率やサイクル特性に優れた珪素酸化物となり、高容量と低い体積膨張率という酸化珪素の特徴も有する負極材とすることができる。
また、SiOガスと還元性ガスとを反応させることで得られたものであるため、珪素酸化物中の組成は安定しており、一酸化珪素と二酸化珪素の混合物のように組成が局所的に安定していない箇所が存在するというようなこともなく、サイクル特性に優れたものとなっている。
As described above, the silicon oxide obtained by reacting the SiO gas and the reducing gas with an oxygen content of 20 to 35% by mass has a low oxygen content. Therefore, the non-aqueous electrolyte secondary battery, For example, when used as a negative electrode material for a lithium ion secondary battery, the reaction between oxygen and Li ions (irreversible formation of Li 4 SiO 4 ) is suppressed, and the first decrease in charge / discharge efficiency has been conventionally achieved. It will be suppressed in comparison. Therefore, it becomes a silicon oxide excellent in initial charge / discharge efficiency and cycle characteristics, and can be a negative electrode material having characteristics of silicon oxide such as high capacity and low volume expansion coefficient.
Further, since it is obtained by reacting SiO gas and reducing gas, the composition in silicon oxide is stable, and the composition is locally as in a mixture of silicon monoxide and silicon dioxide. There is no part that is not stable, and the cycle characteristics are excellent.
ここで、前記珪素酸化物は、平均粒子径が0.1〜30μm、BET比表面積が0.5〜30m2/gの粒子とすることが好ましい。
このように、珪素酸化物の平均粒子径を0.1μm以上とすることによって、嵩密度が小さくなりすぎることが防止され、単位体積当たりの充放電容量が低下することを防ぐことができる。また、平均粒子径を30μm以下とすることによって、電極形成が容易になり、集電体(銅箔等)から剥離するおそれを極力小さいものとすることができる。
また、珪素酸化物のBET比表面積を0.5m2/g以上とすることによって、表面活性を大きくすることができ、また電極作製時の結着剤の結着力を強くすることができる。従って充放電を繰り返した時のサイクル特性を向上させることができる。そして、30m2/g以下とすることによって、電極作製時に溶媒の吸収量が大きくなることを抑制でき、結着性を維持するために結着剤を大量に添加することや、これにともなう導電性の低下によるサイクル特性が低下するおそれを防止することができる。
Here, the silicon oxide is preferably particles having an average particle diameter of 0.1 to 30 μm and a BET specific surface area of 0.5 to 30 m 2 / g.
Thus, by making the average particle diameter of silicon oxide 0.1 μm or more, the bulk density can be prevented from becoming too small, and the charge / discharge capacity per unit volume can be prevented from decreasing. Further, when the average particle diameter is 30 μm or less, electrode formation is facilitated, and the possibility of peeling from the current collector (such as copper foil) can be minimized.
In addition, when the BET specific surface area of silicon oxide is 0.5 m 2 / g or more, the surface activity can be increased, and the binding force of the binder during electrode production can be increased. Therefore, cycle characteristics when charging and discharging are repeated can be improved. And by setting it as 30 m < 2 > / g or less, it can suppress that the amount of absorption of a solvent becomes large at the time of electrode preparation, and in order to maintain binding property, a large amount of binders are added, and the electroconductivity accompanying this is added. It is possible to prevent the possibility that the cycle characteristics are deteriorated due to the deterioration of the property.
そして、本発明では、少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とからなるリチウムイオン二次電池であって、前記負極に、本発明に記載の非水電解質二次電池負極材用珪素酸化物が負極材に用いられたものであることを特徴とするリチウムイオン二次電池を提供する。
上述のように、本発明の非水電解質二次電池負極材用珪素酸化物は、非水電解質の二次電池の負極として用いた場合に電池特性(充放電容量、サイクル特性)を良好なものとできる非水電解質二次電池用負極材に好適である。このため、本発明の非水電解質二次電池負極材用珪素酸化物が負極材に用いられたリチウムイオン二次電池は、電池特性、特に充放電容量やサイクル特性に優れたものとなる。
And in this invention, it is a lithium ion secondary battery which consists of a positive electrode, a negative electrode, and a lithium ion conductive nonaqueous electrolyte at least, Comprising: The said negative electrode is a nonaqueous electrolyte secondary battery negative electrode as described in this invention Provided is a lithium ion secondary battery in which a silicon oxide for a material is used for a negative electrode material.
As described above, the silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material of the present invention has good battery characteristics (charge / discharge capacity, cycle characteristics) when used as a negative electrode for a non-aqueous electrolyte secondary battery. It is suitable for the negative electrode material for nonaqueous electrolyte secondary batteries. For this reason, the lithium ion secondary battery in which the silicon oxide for a nonaqueous electrolyte secondary battery negative electrode material of the present invention is used as a negative electrode material has excellent battery characteristics, particularly charge / discharge capacity and cycle characteristics.
また、本発明では、少なくとも、正極と、負極と、導電性の電解質とからなる電気化学キャパシタであって、前記負極に、本発明に記載の非水電解質二次電池負極材用珪素酸化物が負極材に用いられたものであることを特徴とする電気化学キャパシタを提供する。
このように、本発明の非水電解質二次電池負極材用珪素酸化物が負極材に用いられた電気化学キャパシタも、上述のリチウムイオン二次電池と同様に、キャパシタとしての特性(充放電容量やサイクル特性)に優れたものとなる。
The present invention is also an electrochemical capacitor comprising at least a positive electrode, a negative electrode, and a conductive electrolyte, wherein the silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material according to the present invention is formed on the negative electrode. Provided is an electrochemical capacitor used for a negative electrode material.
Thus, the electrochemical capacitor in which the silicon oxide for a negative electrode material of a non-aqueous electrolyte secondary battery of the present invention is used as a negative electrode material also has characteristics (charge / discharge capacity) as the above-described lithium ion secondary battery. And cycle characteristics).
更に、本発明では、非水電解質を用いる二次電池用の負極材に用いられる珪素酸化物の製造方法であって、少なくとも、SiOガスを発生する原料を、不活性ガスの存在下もしくは減圧下で、1,100〜1,600℃の温度範囲で加熱してSiOガスを発生させ、該発生したSiOガスに、還元性ガスを供給して反応させ、該反応によって得られた反応物を回収する事を特徴とする非水電解質二次電池負極材用珪素酸化物の製造方法を提供する。 Furthermore, the present invention provides a method for producing a silicon oxide used for a negative electrode material for a secondary battery using a non-aqueous electrolyte, wherein at least a raw material that generates SiO gas is used in the presence of an inert gas or under reduced pressure. Then, heating is performed in a temperature range of 1,100 to 1,600 ° C. to generate SiO gas, and a reducing gas is supplied to the generated SiO gas to react, and the reaction product obtained by the reaction is recovered. A method for producing a silicon oxide for a negative electrode material for a non-aqueous electrolyte secondary battery is provided.
このように、不活性ガスの存在下もしくは減圧下において1,100〜1,600℃の温度範囲で加熱して発生させたSiOガスと還元性ガスを反応させ、反応生成物(珪素酸化物)を回収することによって、電池容量が高く、また体積膨張率が低いという特徴を有するSiOxで表される珪素酸化物粒子中の酸素含有量を少ないものとすることができる。すなわち、例えばリチウムイオン二次電池の負極材として用いた場合、不可逆なLi4SiO4の生成が従来に比べて抑制されるため、初回の充放電効率やサイクル特性の劣化が従来に比べて抑制された珪素酸化物からなる負極材を製造することができる。
よって、例えば非水電解質二次電池の負極材として用いた場合に、初回充放電効率やサイクル特性に優れた負極材に好適な酸化珪素を製造することができ、延いては、高容量でサイクル性に優れた非水電解質二次電池を得ることができる。
Thus, the reaction product (silicon oxide) is produced by reacting the reducing gas with the SiO gas generated by heating in the temperature range of 1,100 to 1,600 ° C. in the presence of an inert gas or under reduced pressure. The oxygen content in the silicon oxide particles represented by SiO x having a high battery capacity and a low volume expansion coefficient can be reduced by recovering. That is, for example, when used as a negative electrode material of a lithium ion secondary battery, the generation of irreversible Li 4 SiO 4 is suppressed as compared with the conventional case, so that the first charge / discharge efficiency and the deterioration of cycle characteristics are suppressed as compared with the conventional case. The negative electrode material which consists of the made silicon oxide can be manufactured.
Therefore, for example, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, it is possible to produce silicon oxide suitable for a negative electrode material having excellent initial charge / discharge efficiency and cycle characteristics. A non-aqueous electrolyte secondary battery having excellent properties can be obtained.
また、前記反応物は、酸素含有量が20〜35質量%の珪素酸化物とすることが好ましい。
このように、反応生成物が、酸素含有量が20〜35質量%の珪素酸化物であれば、初回充放電効率やサイクル特性に優れた、電池容量が高く、また体積膨張率が低い珪素酸化物となり、より高容量でサイクル性に優れた非水電解質二次電池の製造に寄与する非水電解質二次電池負極材用珪素酸化物を製造することができる。
The reactant is preferably a silicon oxide having an oxygen content of 20 to 35% by mass.
Thus, if the reaction product is a silicon oxide having an oxygen content of 20 to 35% by mass, silicon oxide having excellent initial charge / discharge efficiency and cycle characteristics, high battery capacity, and low volume expansion coefficient. Thus, it is possible to produce a silicon oxide for a negative electrode of a non-aqueous electrolyte secondary battery that contributes to the production of a non-aqueous electrolyte secondary battery having higher capacity and excellent cycleability.
そして、前記原料として、酸化珪素粉末か、二酸化珪素粉末と金属珪素粉末との混合物のいずれかを用いることが好ましい。
このように、原料が酸化珪素粉末か、二酸化珪素粉末と金属珪素粉末との混合物のいずれかであれば、効率よくSiOガスを発生させることができる。このため、このような粉末若しくは混合粉末をSiOガスの発生原料として用いることによって、高い生産性で、高容量・高サイクル特性の非水電解質二次電池用の負極材に好適な珪素酸化物を製造することができ、また製造コストの低減に有用である。
As the raw material, it is preferable to use either silicon oxide powder or a mixture of silicon dioxide powder and metal silicon powder.
Thus, if the raw material is either silicon oxide powder or a mixture of silicon dioxide powder and metal silicon powder, SiO gas can be generated efficiently. Therefore, by using such a powder or mixed powder as a raw material for generating SiO gas, a silicon oxide suitable for a negative electrode material for a non-aqueous electrolyte secondary battery with high productivity and high capacity and high cycle characteristics can be obtained. It can be manufactured and is useful for reducing manufacturing costs.
更に、前記還元性ガスを、水素、一酸化炭素、CnH4n(n=1〜3)で表される炭化水素ガス、アンモニアのいずれかのガス、またはこれらの混合ガスのいずれかを含むものとすることが好ましい。
上述されたガスは、いずれも還元力に優れているため、SiOガスの還元に向いている。また副生物もほとんど生成されず、更にコスト的にも有利である。
Further, the reducing gas contains hydrogen, carbon monoxide, a hydrocarbon gas represented by C n H 4n (n = 1 to 3), any one of ammonia, or a mixed gas thereof. It is preferable to use it.
The above-described gases are all excellent in reducing power, and are suitable for reducing SiO gas. Further, almost no by-products are produced, which is advantageous in terms of cost.
以上説明したように、本発明で得られた珪素酸化物を、負極材としてリチウムイオン二次電池負極材や電気化学キャパシタに用いることで、初回充放電効率が高く、高容量・サイクル特性に優れたリチウムイオン二次電池や電気化学キャパシタを得ることができる。
また、珪素酸化物の製造方法についても、簡便かつ工業的規模の生産にも十分耐え得るものであり、安価な非水電解質二次電池を得ることができる。
As described above, the silicon oxide obtained in the present invention is used as a negative electrode material for a lithium ion secondary battery negative electrode material or an electrochemical capacitor, so that the initial charge / discharge efficiency is high and the high capacity / cycle characteristics are excellent. Lithium ion secondary batteries and electrochemical capacitors can be obtained.
Also, the silicon oxide production method can sufficiently withstand simple and industrial scale production, and an inexpensive non-aqueous electrolyte secondary battery can be obtained.
以下、本発明についてより具体的に説明する。
前述のように、酸化珪素の高い電池容量と低い体積膨張率を維持しつつ、初回充放電効率が高く、サイクル特性に優れた非水電解質二次電池負極用として有効な活物質と、その製造方法の開発が待たれていた。
Hereinafter, the present invention will be described more specifically.
As described above, while maintaining a high battery capacity and low volume expansion coefficient of silicon oxide, an active material effective for a negative electrode of a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency and excellent cycle characteristics, and its production The development of the method was awaited.
そこで、本発明者らは、炭素材料の電池容量を上回る活物質であって、珪素系負極活物質特有の体積膨張変化を抑制し、かつ珪素酸化物の欠点であった初回充放電効率の低下を改善した珪素系の活物質について鋭意検討を重ねた。 Therefore, the present inventors have reduced the initial charge / discharge efficiency, which is an active material that exceeds the battery capacity of the carbon material, suppresses the volume expansion change peculiar to the silicon-based negative electrode active material, and is a defect of silicon oxide. The silicon-based active material that improved the quality was studied earnestly.
その結果、SiOxで表される酸化珪素粒子を負極活物質として用いた場合、酸化珪素中の酸素とLiイオンが反応して不可逆なLi4SiO4が生成されるため、初回の充放電効率が低下することが判明した。
すなわち、酸化珪素中の酸素を減少させることで上記課題が解決できる可能性が高いことを見出した。
As a result, when silicon oxide particles represented by SiO x are used as the negative electrode active material, oxygen and Li ions in silicon oxide react to generate irreversible Li 4 SiO 4. Turned out to be lower.
That is, it has been found that there is a high possibility that the above problem can be solved by reducing oxygen in silicon oxide.
従って、本発明者らは酸化珪素を還元する方法について更に鋭意検討を行った結果、SiOガスを還元性ガスで還元し、反応物を回収することによって、比較的容易に酸素含有量の少ない珪素酸化物を効率的に製造できることを知見した。
そして、この珪素酸化物を活物質として負極材に用いることで、初回充放電効率を向上させることができるとともに、高容量でサイクル性に優れた珪素酸化物系の非水電解質二次電池用負極材を得られることを知見し、本発明をなすに至ったものである。
Accordingly, as a result of further intensive studies on the method for reducing silicon oxide, the present inventors have found that silicon having a low oxygen content is relatively easily obtained by reducing the SiO gas with a reducing gas and recovering the reactant. It has been found that oxides can be produced efficiently.
Then, by using this silicon oxide as an active material for the negative electrode material, the initial charge / discharge efficiency can be improved, and the negative electrode for a non-aqueous electrolyte secondary battery of a high capacity and excellent cycle performance It has been found that a material can be obtained, and has led to the present invention.
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明の非水電解質を用いる二次電池用の負極材に用いられる珪素酸化物は、SiOガスと還元性ガスとを反応させることで得られたものであって、その酸素含有量が20〜35質量%のものである。この酸素含有量は、より望ましくは23〜33質量%、更には25〜32質量%であることが望ましい。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
The silicon oxide used for the negative electrode material for a secondary battery using the nonaqueous electrolyte of the present invention is obtained by reacting SiO gas with a reducing gas, and the oxygen content thereof is 20 to 20%. 35% by mass. The oxygen content is more desirably 23 to 33% by mass, and further desirably 25 to 32% by mass.
この酸素含有量が20質量%より少ないと、非水電解質二次電池負極材として用いた場合に初期効率及び電池容量の向上が見られるものの、その組成が珪素に近くなってしまい、サイクル特性が低下してしまうという問題がある。また、逆に35質量%より多いと、初期効率及び電池容量の向上が達成できないという問題がある。このため、酸素含有量は20〜35質量%とする。
そして、SiOガスと還元性ガスとを反応させることで得られたものでない珪素酸化物(例えば、全体で酸素含有量が20〜35質量%となるように一酸化珪素粉末と珪素粉末を混合した珪素酸化物)が用いられた負極材では、二次電池とした時にサイクル特性に劣る電池になる。従って、本発明における珪素酸化物はSiOガスと還元性ガスとを反応させることで得られたものとする。
When the oxygen content is less than 20% by mass, the initial efficiency and the battery capacity are improved when used as a negative electrode material for a non-aqueous electrolyte secondary battery, but the composition is close to that of silicon and the cycle characteristics are improved. There is a problem that it falls. On the other hand, if the amount is more than 35% by mass, there is a problem that the initial efficiency and the battery capacity cannot be improved. For this reason, oxygen content shall be 20-35 mass%.
And silicon oxide which is not obtained by reacting SiO gas and reducing gas (for example, silicon monoxide powder and silicon powder were mixed so that the total oxygen content was 20 to 35% by mass) A negative electrode material using silicon oxide is inferior in cycle characteristics when used as a secondary battery. Accordingly, the silicon oxide in the present invention is obtained by reacting SiO gas and reducing gas.
このように、本発明の珪素酸化物は酸素含有量が少ないため、例えばリチウムイオン二次電池の負極材に用いられた場合に、不可逆なLi4SiO4の生成が従来に比べて抑制されたものとなる。このため、初回の充放電効率の低下が従来に比べて抑制されたものとなる。また、SiOガスと還元性ガスとを反応させて得られたもののため、珪素酸化物中の組成は局所的にも安定しており、サイクル特性に劣るということもなく、高品質の負極材とすることができるものである。
すなわち、高容量と低体積膨張率という酸化珪素の特徴も併せ持つ初回充放電効率やサイクル特性に優れた珪素酸化物であり、高品質な負極材とすることができる。
Thus, since the silicon oxide of the present invention has a low oxygen content, for example, when used as a negative electrode material for a lithium ion secondary battery, irreversible production of Li 4 SiO 4 was suppressed compared to the conventional case. It will be a thing. For this reason, the first decline in charge / discharge efficiency is suppressed as compared with the conventional case. In addition, because it is obtained by reacting SiO gas and reducing gas, the composition in the silicon oxide is locally stable, without being inferior in cycle characteristics, Is something that can be done.
That is, it is a silicon oxide excellent in initial charge / discharge efficiency and cycle characteristics, which also has the characteristics of silicon oxide such as high capacity and low volume expansion coefficient, and can be a high-quality negative electrode material.
ここで、珪素酸化物の酸素含有量は、例えば金属中酸素分析法(不活性ガス溶融炉酸素分析法)によって測定することができ、測定装置の具体例としては、堀場製作所製のEMGA−920等が挙げられる。 Here, the oxygen content of silicon oxide can be measured, for example, by a metal oxygen analysis method (inert gas melting furnace oxygen analysis method). As a specific example of the measuring apparatus, EMGA-920 manufactured by Horiba, Ltd. Etc.
そして、本発明における珪素酸化物は、酸素含有量が20〜35質量%で、SiOガスと還元性ガスとを反応させることで得られたものであること以外の物性は特に限定されるものではないが、平均粒子径は0.1〜30μm、特には0.2〜20μmであることが望ましい。またBET比表面積は0.5〜30m2/g、特には1〜20m2/gであることが望ましい。
なお、本発明における平均粒子径とは、レーザー光回折法による粒度分布測定において累積重量が50%となる時の粒子径(メジアン径)のことである。
また、本発明におけるBET比表面積とは、N2ガス吸着量によって評価するBET1点法にて測定した時の値のことである。
The silicon oxide in the present invention has an oxygen content of 20 to 35% by mass, and the physical properties other than those obtained by reacting SiO gas and reducing gas are not particularly limited. However, the average particle size is preferably 0.1 to 30 μm, particularly preferably 0.2 to 20 μm. The BET specific surface area is preferably 0.5 to 30 m 2 / g, particularly 1 to 20 m 2 / g.
In addition, the average particle diameter in this invention is a particle diameter (median diameter) when a cumulative weight will be 50% in the particle size distribution measurement by a laser beam diffraction method.
Further, the BET specific surface area in the present invention is a value when measured by the BET one-point method evaluated by the N 2 gas adsorption amount.
このように、珪素酸化物の平均粒子径を0.1μm以上とすることによって、比表面積が大きくなって粒子表面の二酸化珪素の割合が大きくなることや、それに伴う非水電解質二次電池負極材として用いた際に電池容量が低下することを抑制することができる。また、嵩密度が小さくなりすぎることが防止され、単位体積当たりの充放電容量が低下することも防ぐことができる。更に、その製造や、負極の形成も容易なものとなる。
また、平均粒子径を30μm以下とすることによって、電極に塗布した際に異物となって、電池特性が著しく低下することを防止できる。そして電極形成が容易になり、集電体(銅箔等)から剥離するおそれを極力小さいものとすることができる。
Thus, when the average particle diameter of the silicon oxide is 0.1 μm or more, the specific surface area is increased, and the proportion of silicon dioxide on the particle surface is increased, and the accompanying nonaqueous electrolyte secondary battery negative electrode material It can suppress that a battery capacity falls when using as. Moreover, it is prevented that a bulk density becomes small too much and it can also prevent that the charging / discharging capacity per unit volume falls. Furthermore, the manufacture and formation of the negative electrode are facilitated.
In addition, by setting the average particle size to 30 μm or less, it is possible to prevent the battery characteristics from being significantly deteriorated due to foreign matters when applied to the electrode. And electrode formation becomes easy and a possibility that it may peel from a collector (copper foil etc.) can be made as small as possible.
そして、BET比表面積が0.5m2/g以上であれば、表面活性を大きなものとでき、電極作製時の結着剤の結着力が小さくなって電池特性が低下することや、充放電を繰り返した時のサイクル特性が低下する危険性を確実に防止することができる。
また、30m2/g以下であれば、粒子表面の二酸化珪素の割合が大きくなって、リチウムイオン二次電池負極材として用いた際に電池容量が低下することを抑制でき、更に電極作製時の溶媒の吸収量や結着剤の消費量が多くなることを防止できる。
If the BET specific surface area is 0.5 m 2 / g or more, the surface activity can be increased, and the binding force of the binder during electrode production is reduced, resulting in deterioration of battery characteristics, and charge / discharge. It is possible to reliably prevent a risk that the cycle characteristics are deteriorated when repeated.
Moreover, if it is 30 m < 2 > / g or less, the ratio of the silicon dioxide of the particle | grain surface becomes large, and when it uses as a lithium ion secondary battery negative electrode material, it can suppress that a battery capacity falls, and also at the time of electrode preparation It is possible to prevent the solvent absorption amount and the binder consumption amount from increasing.
次に、本発明の非水電解質二次電池負極材用の珪素酸化物の製造方法について詳細に説明するが、もちろんこれらに限定されるものではない。 Next, although the manufacturing method of the silicon oxide for nonaqueous electrolyte secondary battery negative electrode materials of this invention is demonstrated in detail, of course, it is not limited to these.
まず、SiOガスを発生する原料を準備する。
このSiOガスを発生させる原料としては、SiOガスを発生させるものであれば特に限定されないが、一酸化珪素(SiO)か、あるいは二酸化珪素(SiO2)粉末とこれを還元する粉末との混合物を用いることができる。この還元粉末の具体的な例としては、金属珪素化合物、炭素含有粉末等が挙げられるが、特に金属珪素粉末を用いたものが、(1)反応性を高める、(2)収率を高めるといった点で効果的であり、好適に用いられる。
このように、酸化珪素粉末か、二酸化珪素粉末と金属珪素粉末との混合物のいずれかが原料であれば、高い反応性で、かつ収率を高くできるため、高効率でSiOガスを発生させることができる。従って、本発明の珪素酸化物を高歩留りで製造することができる。
First, a raw material that generates SiO gas is prepared.
The raw material for generating this SiO gas is not particularly limited as long as it generates SiO gas. However, silicon monoxide (SiO) or a mixture of silicon dioxide (SiO 2 ) powder and powder for reducing it is used. Can be used. Specific examples of this reduced powder include metal silicon compounds, carbon-containing powders, and the like, in particular, those using metal silicon powder (1) increase reactivity, (2) increase yield, etc. It is effective in terms and is preferably used.
Thus, if either silicon oxide powder or a mixture of silicon dioxide powder and metal silicon powder is a raw material, it is possible to generate SiO gas with high efficiency because it can be highly reactive and yield can be increased. Can do. Therefore, the silicon oxide of the present invention can be produced with a high yield.
また、原料に金属珪素粉末と二酸化珪素粉末との混合物を用いる場合、混合割合は適宜選定されるが、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比は1<金属珪素粉末/二酸化珪素粉末<1.1、特には1.01≦金属珪素粉末/二酸化珪素粉末≦1.08の範囲であることが望ましい。 In addition, when a mixture of metal silicon powder and silicon dioxide powder is used as a raw material, the mixing ratio is appropriately selected. It is desirable that 1 <metal silicon powder / silicon dioxide powder <1.1, particularly 1.01 ≦ metal silicon powder / silicon dioxide powder ≦ 1.08.
そして、準備した原料を、不活性ガスの存在下もしくは減圧下で、1,100〜1,600℃の温度、好適には1,200〜1,500℃の温度範囲で加熱して、SiOガスを発生させる。
この加熱温度は、1,100℃未満では反応が進行し難く、SiOガスの発生量が低下してしまうため、収率が著しく低下する。また、1,600℃を超えると、混合原料粉末が溶融してしまって反応性が低下し、SiOガス発生量が少なくなったり、反応炉材の選定が困難になるという問題が発生する。このため、加熱温度は1,100〜1,600℃の範囲内とする。
また、不活性ガス雰囲気やその減圧下でなければ、発生させたSiOガスが安定に存在せず、珪素酸化物の反応効率が低下し、歩留りが低下する、という問題が発生するため、不活性ガスの存在下もしくは減圧下で原料を加熱する。
The prepared raw material is heated in the presence of an inert gas or under reduced pressure at a temperature of 1,100 to 1,600 ° C., preferably in a temperature range of 1,200 to 1,500 ° C. Is generated.
If the heating temperature is less than 1,100 ° C., the reaction hardly proceeds and the generation amount of SiO gas is reduced, so that the yield is remarkably reduced. On the other hand, when the temperature exceeds 1,600 ° C., the mixed raw material powder is melted, the reactivity is lowered, the amount of generated SiO gas is reduced, and the selection of the reaction furnace material becomes difficult. For this reason, heating temperature shall be in the range of 1,100-1600 degreeC.
In addition, if the inert gas atmosphere or its reduced pressure is not used, the generated SiO gas does not exist stably, resulting in problems that the reaction efficiency of silicon oxide decreases and the yield decreases. The raw material is heated in the presence of gas or under reduced pressure.
そして、発生させたSiOガスに、還元性ガスを供給して反応させる。
この還元性ガスの流量、時間等によって、製造される珪素酸化物の酸素量は容易に制御することが可能である。
この還元製ガスの供給においては、原料を加熱する反応炉内の雰囲気は不活性ガスもしくは減圧下となっているが、熱力学的には減圧下の方が反応性が高く、低温反応が可能となる。このため、具体的には1〜200Pa、特には5〜100Paで行うことが望ましい。
Then, a reducing gas is supplied and reacted with the generated SiO gas.
The amount of oxygen in the produced silicon oxide can be easily controlled by the flow rate and time of the reducing gas.
In this reduced gas supply, the atmosphere in the reactor for heating the raw material is an inert gas or under reduced pressure, but thermodynamically, the lower pressure is more reactive and the reaction at low temperature is possible. It becomes. For this reason, specifically, it is desirable to carry out at 1-200 Pa, especially 5-100 Pa.
また、このSiOガスに供給する還元性ガスについては、SiOガス還元の目的を果たすものなら、特に限定されないが、水素、一酸化炭素、CnH4n(n=1〜3)で表される炭化水素ガス、アンモニアのいずれかのガス、またはこれらの混合ガスとすることができる。更に、これら還元性ガスとAr、Heガスといった不活性ガスとの混合ガスといった形で供給することができる。
上述のガスは、還元力に優れており、SiOガスの還元に好適である。また特に水素ガスは副生物を生成せず、コスト的にも有利であることより、特に好適に使用することができる。
Further, the reducing gas supplied to the SiO gas is not particularly limited as long as it fulfills the purpose of reducing the SiO gas, but is represented by hydrogen, carbon monoxide, C n H 4n (n = 1 to 3). It can be a hydrocarbon gas, a gas of ammonia, or a mixed gas thereof. Further, it can be supplied in the form of a mixed gas of these reducing gases and an inert gas such as Ar or He gas.
The gas described above is excellent in reducing power and is suitable for reducing SiO gas. In particular, hydrogen gas does not produce by-products and is advantageous in terms of cost, so that it can be particularly preferably used.
また、反応によって得られる珪素酸化物は、酸素含有量が20〜35質量%のものとすることができる。
酸素含有量を20〜35質量%とすることによって、得られる反応生成物中の酸素含有量が少ないものとなり、珪素酸化物中の酸素とリチウムの不可逆反応が抑制されることになる。すなわち、初回の充放電効率の低下が従来に比べてより抑制された珪素酸化物からなる負極材を得ることができ、より高容量でサイクル特性に優れた非水電解質二次電池を得ることができる。
Further, the silicon oxide obtained by the reaction may have an oxygen content of 20 to 35% by mass.
By setting the oxygen content to 20 to 35% by mass, the oxygen content in the obtained reaction product becomes small, and the irreversible reaction between oxygen and lithium in the silicon oxide is suppressed. That is, it is possible to obtain a negative electrode material made of silicon oxide in which the first reduction in charge / discharge efficiency is suppressed more than before, and to obtain a non-aqueous electrolyte secondary battery with higher capacity and excellent cycle characteristics. it can.
その後、反応によって得られた反応物を回収することによって、本発明の珪素酸化物は得られる。
このSiOガスと還元性ガスとの反応で得られた反応生成物の回収方法についても、特に限定されるものでは無いが、例えば冷却ゾーンにて析出基体に析出させる方法、冷却雰囲気中に噴霧する方法等が挙げられる。一般的には、上述の混合ガスを冷却ゾーンに流し、析出基体上に析出させる方法がよい。
Thereafter, the silicon oxide of the present invention is obtained by recovering the reaction product obtained by the reaction.
The method for recovering the reaction product obtained by the reaction between the SiO gas and the reducing gas is not particularly limited. For example, the reaction product is deposited on a deposition substrate in a cooling zone, and sprayed in a cooling atmosphere. Methods and the like. In general, a method in which the above-described mixed gas is allowed to flow in a cooling zone and deposited on a deposition substrate is preferable.
この場合、析出させる析出基体の種類(材質)も特に限定されないが、加工性の点で、SUSやモリブデン、タングステンといった高融点金属が好適に用いられる。また、冷却ゾーンの析出温度は500〜1000℃、特には700〜950℃が望ましい。
析出温度が500℃以上であれば、反応生成物のBET比表面積が30m2/g以上と大きくなることを抑制し易い。また1000℃以下であれば、析出基体の材質の選定は容易であり、装置コストが上昇することもない。
ここで、析出基体の温度の制御はヒーター加熱、断熱性能(断熱材の厚み)、強制冷却等により適宜行うことができる。
In this case, the type (material) of the precipitation base to be deposited is not particularly limited, but refractory metals such as SUS, molybdenum, and tungsten are preferably used in terms of workability. Further, the precipitation temperature in the cooling zone is preferably 500 to 1000 ° C, particularly 700 to 950 ° C.
If the deposition temperature is 500 ° C. or higher, it is easy to suppress the BET specific surface area of the reaction product from increasing to 30 m 2 / g or higher. Moreover, if it is 1000 degrees C or less, selection of the material of a precipitation base | substrate will be easy and will not raise an apparatus cost.
Here, the temperature of the deposition substrate can be appropriately controlled by heating with a heater, heat insulating performance (heat insulating material thickness), forced cooling, or the like.
また析出基体上に析出させた非水電解質二次電池負極材用珪素酸化物は、必要により適宜、公知の手段で粉砕し、所望の粒径とすることができる。 Moreover, the silicon oxide for a nonaqueous electrolyte secondary battery negative electrode material deposited on the deposition substrate can be appropriately pulverized by a known means as necessary to obtain a desired particle size.
また、導電性を付与する為に、得られた非水電解質二次電池負極材用珪素酸化物に対して、化学蒸着処理あるいはメカニカルアロイングによって炭素蒸着を行うことができる。
なお、炭素被覆を行う場合、炭素被覆量は、炭素被覆された珪素酸化物の総重量に占める割合が1〜50質量%、特には1〜20質量%とすることが望ましい。
Moreover, in order to provide electroconductivity, carbon vapor deposition can be performed by a chemical vapor deposition process or mechanical alloying with respect to the obtained silicon oxide for nonaqueous electrolyte secondary battery negative electrode materials.
When carbon coating is performed, the carbon coating amount is preferably 1 to 50% by mass, particularly 1 to 20% by mass, based on the total weight of the silicon oxide coated with carbon.
この炭素蒸着は、常圧下又は減圧下で、600〜1,200℃の温度範囲、より望ましくは800〜1,100℃の温度範囲で、炭化水素系化合物ガス及び/又は蒸気を蒸着用反応炉内に導入して、公知の熱化学蒸着処理等を施すことにより行うことができる。また、珪素−炭素層の界面に炭化珪素層が形成された珪素複合体粒子としてもよい。 This carbon vapor deposition is a reactor for vapor deposition of hydrocarbon compound gas and / or vapor in a temperature range of 600 to 1,200 ° C., more preferably in a temperature range of 800 to 1,100 ° C. under normal pressure or reduced pressure. It can introduce | transduce in and can perform by performing a known thermal chemical vapor deposition process etc. Alternatively, silicon composite particles in which a silicon carbide layer is formed at the silicon-carbon layer interface may be used.
この炭化水素系化合物としては、上記の熱処理温度範囲内で熱分解して炭素を生成するものが選択される。
例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の他、エチレン、プロピレン、ブチレン、アセチレン等の炭化水素の単独もしくは混合物、あるいは、メタノール、エタノール等のアルコール化合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環ないし3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。
また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も、単独もしくは混合物として用いることができる。
As this hydrocarbon compound, a compound that generates carbon by pyrolysis within the above heat treatment temperature range is selected.
For example, in addition to methane, ethane, propane, butane, pentane, hexane, etc., hydrocarbons such as ethylene, propylene, butylene, acetylene, etc., or alcohol compounds such as methanol, ethanol, benzene, toluene, xylene, styrene, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, and mixtures thereof.
Gas gas oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.
そして、本発明で得られた珪素酸化物からなる非水電解質二次電池用の負極材を用いて、リチウムイオン二次電池を製造することができる。
この場合、得られたリチウムイオン二次電池は、上記本発明の珪素酸化物が用いられた負極材を用いる点に特徴を有するものであって、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。
And a lithium ion secondary battery can be manufactured using the negative electrode material for nonaqueous electrolyte secondary batteries which consists of a silicon oxide obtained by this invention.
In this case, the obtained lithium ion secondary battery is characterized in that it uses a negative electrode material in which the silicon oxide of the present invention is used. Other materials such as positive electrode, electrolyte, separator, and battery Known shapes and the like can be used and are not particularly limited.
例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn2O4、V2O5、MnO2、TiS2、MoS2等の遷移金属の酸化物及びカルコゲン化合物などが用いられる。
また電解質としては、例えば、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の単体又は2種類以上が組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用することができる。
For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , chalcogen compounds, and the like are used.
As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like or 2 More than one type is used in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.
なお、上記珪素酸化物からなる二次電池用の負極材を用いて負極を作製する場合、負極材に黒鉛等の導電剤を添加することができる。
この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。
具体的には、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
In addition, when producing a negative electrode using the negative electrode material for secondary batteries which consists of the said silicon oxide, electrically conductive agents, such as graphite, can be added to a negative electrode material.
Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the configured battery may be used.
Specifically, metal powder such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, Graphite such as pitch-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.
また、電気化学キャパシタを得る場合は、電気化学キャパシタは、電極に上記本発明の珪素酸化物活物質を用いる点に特徴を有し、その他の電解質、セパレータ等の材料及びキャパシタ形状などは限定されない。 In addition, when obtaining an electrochemical capacitor, the electrochemical capacitor is characterized in that the silicon oxide active material of the present invention is used for an electrode, and other materials such as an electrolyte and a separator and a capacitor shape are not limited. .
例えば、電解質としては、六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の単体又は2種類以上が組み合わせて用いられたものとすることができる。また、それ以外の種々な非水系電解質や固体電解質も使用することができる。 For example, as the electrolyte, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate, etc. is used, and propylene carbonate, ethylene carbonate, A single substance such as dimethyl carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or a combination of two or more kinds may be used. Various other non-aqueous electrolytes and solid electrolytes can also be used.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図1に示すような横型管状炉を用いて、珪素酸化物を製造した。
具体的には、原料2として平均粒子径が5μmの金属珪素粉末とヒュームドシリカ粉末(BET比表面積:200m2/g)の等モル混合物を50g準備し、内径80mm・アルミナ製の反応管6の内に仕込んだ。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
Silicon oxide was produced using a horizontal tubular furnace as shown in FIG.
Specifically, 50 g of an equimolar mixture of metal silicon powder having an average particle diameter of 5 μm and fumed silica powder (BET specific surface area: 200 m 2 / g) as
次に、反応管6内を真空ポンプ7にて排気して20Pa以下に減圧しながら、ヒーター1によって、300℃/時間の昇温速度で1400℃まで昇温させた。
そして1400℃に到達した後、流量計4及びガス導入管5を介して1NL/分の流量でH2ガスを反応管6内に流入させた(炉内圧は70Paに上昇)。この運転状態を3時間継続した後、H2ガスの流入及びヒーター加熱を停止し、室温まで冷却した。
Next, while the inside of the
Then, after reaching 1400 ° C., H 2 gas was allowed to flow into the
冷却後、析出基体3上に析出した析出物を回収したところ、析出物は黒色塊状物であり、回収量は38gであった。
次に、この析出物30gを2Lアルミナ製ボールミルにて乾式粉砕を行い、珪素酸化物を製造した。
そして得られた珪素酸化物の平均粒子径とBET比表面積を評価した。その結果を表1に示す。
After cooling, when the deposit deposited on the
Next, 30 g of this precipitate was dry pulverized in a 2 L alumina ball mill to produce silicon oxide.
And the average particle diameter and BET specific surface area of the obtained silicon oxide were evaluated. The results are shown in Table 1.
[電池評価]
次に、以下の方法によって、得られた粉末(珪素酸化物)を処理した後、負極活物質として用いて電池評価を行った。
まず、上記で得られた処理粉末に人造黒鉛(平均粒子径10μm)を45wt%、ポリイミドを10wt%加え、更にN−メチルピロリドンを加えてスラリーとした。
このスラリーを厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
[Battery evaluation]
Next, after the obtained powder (silicon oxide) was treated by the following method, the battery was evaluated as a negative electrode active material.
First, 45 wt% of artificial graphite (average particle diameter 10 μm) and 10 wt% of polyimide were added to the treated powder obtained above, and N-methylpyrrolidone was further added to form a slurry.
The slurry was coated on a copper foil having a thickness of 12 [mu] m, after 1 hour drying at 80 ° C., the electrode was pressure-molded by a roller press, after the electrode was 1 hour vacuum drying at 350 ° C., punched into 2 cm 2, a negative electrode It was.
そして、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用い、セパレータとして厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。 In order to evaluate the charge / discharge characteristics of the obtained negative electrode, lithium foil was used as the counter electrode, and lithium hexafluorophosphate was used as a nonaqueous electrolyte in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and using a polyethylene microporous film having a thickness of 30 μm as a separator was produced.
作製した評価用リチウムイオン二次電池を、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
また、以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクルの充放電試験を行い、50サイクル後の放電容量を評価した。その電池評価の評価結果も表1に示す。
The prepared lithium ion secondary battery for evaluation was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reached 0 V / 0.5 mA / After charging with a constant current of cm 2 and reaching 0V, charging was performed by decreasing the current so that the cell voltage was kept at 0V. Then, the charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
Moreover, the above charge / discharge test was repeated, the charge / discharge test of 50 cycles of the evaluation lithium ion secondary battery was performed, and the discharge capacity after 50 cycles was evaluated. The evaluation results of the battery evaluation are also shown in Table 1.
(実施例2)
H2ガスの流量を1.5NL/minとした他は実施例1と同様の方法で非水電解質二次電池負極材用珪素酸化物を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
(Example 2)
A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that the flow rate of H 2 gas was 1.5 NL / min. Physical properties and batteries were produced in the same manner as in Example 1. The characteristics were evaluated. The evaluation results are shown in Table 1.
(実施例3)
H2ガスの流量を0.3NL/minとした他は実施例1と同様の方法で非水電解質二次電池負極材用珪素酸化物を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
(Example 3)
A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that the flow rate of H 2 gas was set to 0.3 NL / min. Physical properties and batteries were produced in the same manner as in Example 1. The characteristics were evaluated. The evaluation results are shown in Table 1.
(実施例4)
還元性ガスとしてCOガスを1.0NL/min流した他は実施例1と同様の方法で非水電解質二次電池負極材用珪素酸化物を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
Example 4
A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that CO gas was flowed at 1.0 NL / min as the reducing gas. Battery characteristics were evaluated. The evaluation results are shown in Table 1.
(比較例1)
還元性ガスを供給しなかった以外は実施例1と同様の方法で非水電解質二次電池負極材用珪素酸化物を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
(Comparative Example 1)
A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that no reducing gas was supplied, and physical properties and battery characteristics were evaluated in the same manner as in Example 1. It was. The evaluation results are shown in Table 1.
(比較例2)
H2ガスの流量を2.0NL/minとした他は実施例1と同様の方法で非水電解質二次電池負極材用珪素酸化物を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
(Comparative Example 2)
A silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material was produced in the same manner as in Example 1 except that the flow rate of H 2 gas was set to 2.0 NL / min. Physical properties and batteries were produced in the same manner as in Example 1. The characteristics were evaluated. The evaluation results are shown in Table 1.
(比較例3)
平均粒子径5μmのSiO粉末とSi粉末とをSiO/Si=2/1の割合で混合した珪素酸化物を用いた負極材を製造し、実施例1と同様の方法で物性及び電池特性の評価を行った。それらの評価結果を表1に示す。
(Comparative Example 3)
A negative electrode material using a silicon oxide in which SiO powder having an average particle diameter of 5 μm and Si powder was mixed at a ratio of SiO / Si = 2/1 was produced, and physical properties and battery characteristics were evaluated in the same manner as in Example 1. Went. The evaluation results are shown in Table 1.
表1に示すように、実施例1の製造方法で得られた非水電解質二次電池負極材用珪素酸化物は、平均粒子径が5.3μm、BET比表面積が8.3m2/g、酸素含有量が28.6質量%の粉末であった。また、実施例2の珪素酸化物は、平均粒子径が5.2μm、BET比表面積が9.7m2/g、酸素含有量が22.1質量%の粉末であった。そして、実施例3の珪素酸化物は、平均粒子径が5.3μm、BET比表面積が6.5m2/g、酸素含有量が33.8質量%の粉末であった。更に、実施例4の珪素酸化物は、平均粒子径が5.3μm、BET比表面積が8.7m2/g、酸素含有量が26.7%の粉末であった。
これに対し、比較例1の珪素酸化物は、平均粒子径が5.3μm、BET比表面積が6.3m2/g、酸素含有量が35.8質量%の粉末であった。また、比較例2の珪素酸化物は、平均粒子径が5.3μm、BET比表面積が10.6m2/g、酸素含有量が18.5質量%の粉末であった。そして比較例3の珪素酸化物は、平均粒子径が5.1μm、BET比表面積が5.3m2/g、酸素含有量が24.8質量%の粉末であった。
As shown in Table 1, the non-aqueous electrolyte secondary battery negative electrode material silicon oxide obtained by the production method of Example 1 has an average particle diameter of 5.3 μm, a BET specific surface area of 8.3 m 2 / g, The powder had an oxygen content of 28.6% by mass. The silicon oxide of Example 2 was a powder having an average particle size of 5.2 μm, a BET specific surface area of 9.7 m 2 / g, and an oxygen content of 22.1% by mass. The silicon oxide of Example 3 was a powder having an average particle size of 5.3 μm, a BET specific surface area of 6.5 m 2 / g, and an oxygen content of 33.8% by mass. Furthermore, the silicon oxide of Example 4 was a powder having an average particle size of 5.3 μm, a BET specific surface area of 8.7 m 2 / g, and an oxygen content of 26.7%.
In contrast, the silicon oxide of Comparative Example 1 was a powder having an average particle size of 5.3 μm, a BET specific surface area of 6.3 m 2 / g, and an oxygen content of 35.8 mass%. The silicon oxide of Comparative Example 2 was a powder having an average particle size of 5.3 μm, a BET specific surface area of 10.6 m 2 / g, and an oxygen content of 18.5% by mass. The silicon oxide of Comparative Example 3 was a powder having an average particle size of 5.1 μm, a BET specific surface area of 5.3 m 2 / g, and an oxygen content of 24.8% by mass.
そして、表1に示すように、実施例1の珪素酸化物が用いられた負極材を負極に使用したリチウムイオン二次電池は、初回充電容量1430mAh/g、初回放電容量1180mAh/g、初回充放電効率82.5%、50サイクル目の放電容量1150mAh/g、50サイクル後のサイクル保持率が97%と、高容量で、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
また、実施例2の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1510mAh/g、初回放電容量1280mAh/g、初回充放電効率84.8%、50サイクル目の放電容量1210mAh/g、50サイクル後のサイクル保持率が95%と、実施例1と同様に高容量で、かつ初回充放電効率及びサイクル性に優れたものであった。
そして、実施例3の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1350mAh/g、初回放電容量1080mAh/g、初回充放電効率80.0%、50サイクル目の放電容量1060mAh/g、50サイクル後のサイクル保持率が98%と、実施例1・2と同様に、高容量で、かつ初回充放電効率及びサイクル性に優れたものであった。
実施例4の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1440mAh/g、初回放電容量1200mAh/g、初回充放電効率83.3%、50サイクル目の放電容量1150mAh/g、50サイクル後のサイクル保持率が96%と、実施例1−3と同様に、高容量であり、かつ初回充放電効率及びサイクル性に優れたものであった。
As shown in Table 1, the lithium ion secondary battery using the negative electrode material using the silicon oxide of Example 1 as the negative electrode has an initial charge capacity of 1430 mAh / g, an initial discharge capacity of 1180 mAh / g, and an initial charge. A lithium ion secondary battery with a discharge capacity of 82.5%, a discharge capacity of 1150 mAh / g at the 50th cycle and a cycle retention of 97% after the 50th cycle, a high capacity and excellent initial charge / discharge efficiency and cycle performance. It was confirmed that there was.
Further, the lithium ion secondary battery using the silicon oxide of Example 2 has an initial charge capacity of 1510 mAh / g, an initial discharge capacity of 1280 mAh / g, an initial charge / discharge efficiency of 84.8%, and a discharge capacity of 1210 mAh at the 50th cycle. / G, the cycle retention after 50 cycles was 95%, which was high capacity as in Example 1, and excellent in initial charge / discharge efficiency and cycleability.
A lithium ion secondary battery using the silicon oxide of Example 3 has an initial charge capacity of 1350 mAh / g, an initial discharge capacity of 1080 mAh / g, an initial charge / discharge efficiency of 80.0%, and a 50th cycle discharge capacity of 1060 mAh. / G, the cycle retention after 50 cycles was 98%, and as in Examples 1 and 2, the capacity was high and the initial charge / discharge efficiency and cycleability were excellent.
The lithium ion secondary battery using the silicon oxide of Example 4 has an initial charge capacity of 1440 mAh / g, an initial discharge capacity of 1200 mAh / g, an initial charge and discharge efficiency of 83.3%, and a discharge capacity of 1150 mAh / g at the 50th cycle. As in Example 1-3, the cycle retention after 50 cycles was 96%, and the capacity was high, and the initial charge / discharge efficiency and cycleability were excellent.
これに対し、比較例1の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1310mAh/g、初回放電容量1000mAh/g、初回充放電効率76.3%、50サイクル目の放電容量980mAh/g、50サイクル後のサイクル保持率が98%であり、実施例1−4の珪素酸化物が用いられた場合に比べ、サイクル性は良好ではあるものの、酸素含有量が多いため、初回充放電効率が明らかに劣るリチウムイオン二次電池であることが確認された。
また、比較例2の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1560mAh/g、初回放電容量1370mAh/g、初回充放電効率87.8%、50サイクル目の放電容量1180mAh/g、50サイクル後のサイクル保持率が86%であり、実施例1−4の珪素酸化物を用いた場合に比べ、酸素含有量が少なすぎるために、明らかにサイクル性に劣るリチウムイオン二次電池であることが確認された。
そして、比較例3の珪素酸化物が用いられたリチウムイオン二次電池は、初回充電容量1500mAh/g、初回放電容量1290mAh/g、初回充放電効率86.0%、50サイクル目の放電容量760mAh/g、50サイクル後のサイクル保持率が59%であり、酸素含有量は実施例1−4と同程度であるにも係わらず、実施例1−4の珪素酸化物を用いた場合に比べ、明らかにサイクル性に劣るリチウムイオン二次電池であることが確認された。これは、比較例3の珪素酸化物は、実施例1−4のように、SiOガスと還元性ガスを反応させることによって製造したものではなく、SiO粉末とSi粉末とを混合したものだからである。これは比較例3では、組成が局所的に安定していない箇所が存在するためであると考えられる。
In contrast, a lithium ion secondary battery using the silicon oxide of Comparative Example 1 has an initial charge capacity of 1310 mAh / g, an initial discharge capacity of 1000 mAh / g, an initial charge / discharge efficiency of 76.3%, and a 50th cycle discharge. Since the capacity is 980 mAh / g, the cycle retention after 50 cycles is 98%, and the cycle performance is better than when the silicon oxide of Example 1-4 is used, the oxygen content is large. It was confirmed that the lithium ion secondary battery was clearly inferior in initial charge / discharge efficiency.
Moreover, the lithium ion secondary battery using the silicon oxide of Comparative Example 2 has an initial charge capacity of 1560 mAh / g, an initial discharge capacity of 1370 mAh / g, an initial charge / discharge efficiency of 87.8%, and a discharge capacity of 1180 mAh at the 50th cycle. / G, the cycle retention after 50 cycles is 86%, and the oxygen content is too small compared to the case of using the silicon oxide of Example 1-4. It was confirmed to be a secondary battery.
The lithium ion secondary battery using the silicon oxide of Comparative Example 3 has an initial charge capacity of 1500 mAh / g, an initial discharge capacity of 1290 mAh / g, an initial charge / discharge efficiency of 86.0%, and a 50th cycle discharge capacity of 760 mAh. / G, the cycle retention after 50 cycles is 59% and the oxygen content is similar to that of Example 1-4, but compared with the case of using the silicon oxide of Example 1-4. As a result, it was confirmed that the lithium ion secondary battery was clearly inferior in cycle performance. This is because the silicon oxide of Comparative Example 3 is not manufactured by reacting SiO gas and reducing gas as in Example 1-4, but is a mixture of SiO powder and Si powder. is there. This is considered to be because in Comparative Example 3, there are locations where the composition is not locally stable.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
1…ヒーター、 2…原料、 3…析出基体、 4…流量計、 5…ガス導入管、 6…反応管、 7…真空ポンプ。
DESCRIPTION OF
Claims (8)
該珪素酸化物は、酸素含有量が20〜35質量%で、かつSiOガスと還元性ガスとを反応させることで得られたものであることを特徴とする非水電解質二次電池負極材用珪素酸化物。 A silicon oxide used for a negative electrode material for a secondary battery using a non-aqueous electrolyte,
The silicon oxide has an oxygen content of 20 to 35% by mass, and is obtained by reacting SiO gas with a reducing gas. For non-aqueous electrolyte secondary battery negative electrode material Silicon oxide.
前記負極に、請求項1または請求項2に記載の非水電解質二次電池負極材用珪素酸化物が負極材に用いられたものであることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising at least a positive electrode, a negative electrode, and a lithium ion conductive non-aqueous electrolyte,
A lithium ion secondary battery, wherein the negative electrode material is a silicon oxide for a non-aqueous electrolyte secondary battery negative electrode material according to claim 1 or 2.
前記負極に、請求項1または請求項2に記載の非水電解質二次電池負極材用珪素酸化物が負極材に用いられたものであることを特徴とする電気化学キャパシタ。 An electrochemical capacitor comprising at least a positive electrode, a negative electrode, and a conductive electrolyte,
An electrochemical capacitor, wherein the negative electrode material is the non-aqueous electrolyte secondary battery negative electrode material silicon oxide according to claim 1 or 2 used as a negative electrode material.
少なくとも、SiOガスを発生する原料を、不活性ガスの存在下もしくは減圧下で、1,100〜1,600℃の温度範囲で加熱してSiOガスを発生させ、
該発生したSiOガスに、還元性ガスを供給して反応させ、
該反応によって得られた反応物を回収する事を特徴とする非水電解質二次電池負極材用珪素酸化物の製造方法。 A method for producing a silicon oxide used in a negative electrode material for a secondary battery using a non-aqueous electrolyte,
At least a raw material that generates SiO gas is heated in the temperature range of 1,100 to 1,600 ° C. in the presence of an inert gas or under reduced pressure to generate SiO gas,
A reducing gas is supplied to the generated SiO gas for reaction,
A method for producing a silicon oxide for a negative electrode of a non-aqueous electrolyte secondary battery, wherein a reaction product obtained by the reaction is recovered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002278A JP5379026B2 (en) | 2010-01-07 | 2010-01-07 | Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002278A JP5379026B2 (en) | 2010-01-07 | 2010-01-07 | Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011142021A true JP2011142021A (en) | 2011-07-21 |
JP5379026B2 JP5379026B2 (en) | 2013-12-25 |
Family
ID=44457735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010002278A Active JP5379026B2 (en) | 2010-01-07 | 2010-01-07 | Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5379026B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102997651A (en) * | 2012-11-30 | 2013-03-27 | 龙能科技(苏州)有限公司 | Pusher furnace for preparing lithium titanate negative electrode materials of lithium ion battery and method |
CN103427075A (en) * | 2012-05-16 | 2013-12-04 | 信越化学工业株式会社 | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
US20140106231A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
US20140106221A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide for anode active material of secondary battery |
WO2014061973A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Method for preparing silicon oxide |
WO2014084663A1 (en) * | 2012-11-30 | 2014-06-05 | 주식회사 엘지화학 | Silicon oxide, and method for preparing same |
CN103872303A (en) * | 2012-12-10 | 2014-06-18 | 信越化学工业株式会社 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
US20140302395A1 (en) * | 2011-10-14 | 2014-10-09 | Shi-Etsu Chemical Co., Ltd. | Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor |
CN104692394A (en) * | 2013-12-05 | 2015-06-10 | 谭美俊 | Silicon oxide production furnace convenient to observe and adjust |
WO2015156620A1 (en) * | 2014-04-09 | 2015-10-15 | (주)오렌지파워 | Negative electrode active material for secondary battery and method for manufacturing same |
US9312535B2 (en) | 2012-01-09 | 2016-04-12 | Yeil Electronics Co., Ltd. | Silicon oxide for anode of secondary battery, method for preparing the same and anode of secondary battery using the same |
JP2017130368A (en) * | 2016-01-21 | 2017-07-27 | 信越化学工業株式会社 | Negative electrode active substance, mixed negative electrode active substance material, nonaqueous electrolyte secondary battery, method of producing negative electrode active substance, and method of manufacturing nonaqueous electrolyte secondary battery |
CN107093711A (en) * | 2017-04-01 | 2017-08-25 | 武汉理工大学 | Monodispersed SiOxThe magnanimity preparation method of C complex microspheres |
WO2019002508A1 (en) | 2017-06-29 | 2019-01-03 | Sgl Carbon Se | Novel composite material |
US10388948B2 (en) | 2012-01-30 | 2019-08-20 | Nexeon Limited | Composition of SI/C electro active material |
CN110364691A (en) * | 2018-04-09 | 2019-10-22 | 北京航空航天大学 | Lithium ion battery graphene-silicon oxide compound electrode material and preparation method thereof |
US10476072B2 (en) | 2014-12-12 | 2019-11-12 | Nexeon Limited | Electrodes for metal-ion batteries |
US10522824B2 (en) | 2014-07-23 | 2019-12-31 | Nexeon Ltd | Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles |
US10586976B2 (en) | 2014-04-22 | 2020-03-10 | Nexeon Ltd | Negative electrode active material and lithium secondary battery comprising same |
CN111063947A (en) * | 2019-12-02 | 2020-04-24 | 苏州易来科得科技有限公司 | Lithium ion battery capacity recovery method |
US10822713B2 (en) | 2011-06-24 | 2020-11-03 | Nexeon Limited | Structured particles |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220124A (en) * | 2000-02-04 | 2001-08-14 | Shin Etsu Chem Co Ltd | Device for manufacturing silicon oxide powder |
JP2002170561A (en) * | 2000-11-30 | 2002-06-14 | Denki Kagaku Kogyo Kk | Electrode active material and nonaqueous system secondary battery |
JP2004047404A (en) * | 2002-05-17 | 2004-02-12 | Shin Etsu Chem Co Ltd | Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery |
WO2006025194A1 (en) * | 2004-09-01 | 2006-03-09 | Sumitomo Titanium Corporation | SiO DEPOSITION MATERIAL, Si POWDER FOR SiO RAW MATERIAL, AND METHOD FOR PRODUCING SiO |
JP2007290919A (en) * | 2006-04-26 | 2007-11-08 | Shin Etsu Chem Co Ltd | METHOD FOR PRODUCING SiOx (x<1) |
JP2008166013A (en) * | 2006-12-27 | 2008-07-17 | Matsushita Electric Ind Co Ltd | Composite active material and electrochemical element using same |
JP2008300255A (en) * | 2007-06-01 | 2008-12-11 | Panasonic Corp | Electrode for electrochemical element and electrochemical element using it |
JP2009091195A (en) * | 2007-10-09 | 2009-04-30 | Shin Etsu Chem Co Ltd | Apparatus and method for producing silicon monoxide |
JP2009212074A (en) * | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor |
JP2011051844A (en) * | 2009-09-02 | 2011-03-17 | Osaka Titanium Technologies Co Ltd | METHOD FOR PRODUCING SiOx |
-
2010
- 2010-01-07 JP JP2010002278A patent/JP5379026B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001220124A (en) * | 2000-02-04 | 2001-08-14 | Shin Etsu Chem Co Ltd | Device for manufacturing silicon oxide powder |
JP2002170561A (en) * | 2000-11-30 | 2002-06-14 | Denki Kagaku Kogyo Kk | Electrode active material and nonaqueous system secondary battery |
JP2004047404A (en) * | 2002-05-17 | 2004-02-12 | Shin Etsu Chem Co Ltd | Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery |
WO2006025194A1 (en) * | 2004-09-01 | 2006-03-09 | Sumitomo Titanium Corporation | SiO DEPOSITION MATERIAL, Si POWDER FOR SiO RAW MATERIAL, AND METHOD FOR PRODUCING SiO |
JP2007290919A (en) * | 2006-04-26 | 2007-11-08 | Shin Etsu Chem Co Ltd | METHOD FOR PRODUCING SiOx (x<1) |
JP2008166013A (en) * | 2006-12-27 | 2008-07-17 | Matsushita Electric Ind Co Ltd | Composite active material and electrochemical element using same |
JP2008300255A (en) * | 2007-06-01 | 2008-12-11 | Panasonic Corp | Electrode for electrochemical element and electrochemical element using it |
JP2009091195A (en) * | 2007-10-09 | 2009-04-30 | Shin Etsu Chem Co Ltd | Apparatus and method for producing silicon monoxide |
JP2009212074A (en) * | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor |
JP2011051844A (en) * | 2009-09-02 | 2011-03-17 | Osaka Titanium Technologies Co Ltd | METHOD FOR PRODUCING SiOx |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10822713B2 (en) | 2011-06-24 | 2020-11-03 | Nexeon Limited | Structured particles |
US20140302395A1 (en) * | 2011-10-14 | 2014-10-09 | Shi-Etsu Chemical Co., Ltd. | Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor |
KR101947620B1 (en) * | 2011-10-14 | 2019-02-14 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor |
US9312535B2 (en) | 2012-01-09 | 2016-04-12 | Yeil Electronics Co., Ltd. | Silicon oxide for anode of secondary battery, method for preparing the same and anode of secondary battery using the same |
US10388948B2 (en) | 2012-01-30 | 2019-08-20 | Nexeon Limited | Composition of SI/C electro active material |
CN103427075A (en) * | 2012-05-16 | 2013-12-04 | 信越化学工业株式会社 | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
JP2013258135A (en) * | 2012-05-16 | 2013-12-26 | Shin Etsu Chem Co Ltd | Silicon oxide particle, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor |
US9553309B2 (en) | 2012-05-16 | 2017-01-24 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
US9281129B2 (en) | 2012-05-16 | 2016-03-08 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide particles, making method, lithium ion secondary battery, and electrochemical capacitor |
KR101627396B1 (en) | 2012-10-16 | 2016-06-03 | 주식회사 엘지화학 | Silicon oxide for anode active material of secondary battery |
WO2014061973A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Method for preparing silicon oxide |
US20140106231A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
US20140106221A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide for anode active material of secondary battery |
CN103958408A (en) * | 2012-10-16 | 2014-07-30 | Lg化学株式会社 | Silicon oxide for cathode active material in secondary battery |
CN103958407A (en) * | 2012-10-16 | 2014-07-30 | Lg化学株式会社 | Method for preparing silicon oxide |
CN103974905A (en) * | 2012-10-16 | 2014-08-06 | Lg化学株式会社 | Silicon oxide-carbon composite and method for preparing same |
WO2014061975A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Silicon oxide for cathode active material in secondary battery |
CN108751203A (en) * | 2012-10-16 | 2018-11-06 | Lg 化学株式会社 | The preparation method of silica, the negative electrode active material comprising the silica, cathode and secondary cell |
US10084183B2 (en) | 2012-10-16 | 2018-09-25 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
TWI602781B (en) * | 2012-10-16 | 2017-10-21 | Lg化學股份有限公司 | Manufacturing method of silicon oxide |
KR101539856B1 (en) * | 2012-10-16 | 2015-07-27 | 주식회사 엘지화학 | Manufacturing method of silicon oxide |
TWI497808B (en) * | 2012-10-16 | 2015-08-21 | Lg Chemical Ltd | Silicon oxide for anode active material of secondary battery |
US9741462B2 (en) | 2012-10-16 | 2017-08-22 | Lg Chem, Ltd. | Method of manufacturing silicon oxide |
WO2014061974A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Silicon oxide-carbon composite and method for preparing same |
KR101560454B1 (en) * | 2012-10-16 | 2015-10-15 | 주식회사 엘지화학 | Silicon oxidecarbon composite and manufacturing method thereof |
TWI551545B (en) * | 2012-10-16 | 2016-10-01 | Lg化學股份有限公司 | Silicon oxide-carbon composite and manufacturing method thereof |
KR20140048820A (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Silicon oxide for anode active material of secondary battery |
EP2762449A4 (en) * | 2012-10-16 | 2016-03-09 | Lg Chemical Ltd | Silicon oxide-carbon composite and method for preparing same |
EP2762447A4 (en) * | 2012-10-16 | 2016-03-16 | Lg Chemical Ltd | Silicon oxide for cathode active material in secondary battery |
EP2762448A4 (en) * | 2012-10-16 | 2016-03-23 | Lg Chemical Ltd | Method for preparing silicon oxide |
CN102997651B (en) * | 2012-11-30 | 2015-09-16 | 龙能科技(苏州)有限公司 | Prepare pusher furnace and the method thereof of lithium titanate anode material for lithium ion battery |
WO2014084663A1 (en) * | 2012-11-30 | 2014-06-05 | 주식회사 엘지화학 | Silicon oxide, and method for preparing same |
CN102997651A (en) * | 2012-11-30 | 2013-03-27 | 龙能科技(苏州)有限公司 | Pusher furnace for preparing lithium titanate negative electrode materials of lithium ion battery and method |
KR101563788B1 (en) * | 2012-11-30 | 2015-11-06 | 주식회사 엘지화학 | Silicon oxide and the preparation method thereof |
CN103987660A (en) * | 2012-11-30 | 2014-08-13 | Lg化学株式会社 | Silicon oxide, and method for preparing same |
JP2015502026A (en) * | 2012-11-30 | 2015-01-19 | エルジー・ケム・リミテッド | Silicon oxide and method for producing the same |
US9601768B2 (en) | 2012-11-30 | 2017-03-21 | Lg Chem, Ltd. | Silicon oxide and method of preparing the same |
EP2778134A4 (en) * | 2012-11-30 | 2016-04-06 | Lg Chemical Ltd | Silicon oxide, and method for preparing same |
KR102069901B1 (en) | 2012-12-10 | 2020-01-23 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
JP2014135267A (en) * | 2012-12-10 | 2014-07-24 | Shin Etsu Chem Co Ltd | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
CN103872303A (en) * | 2012-12-10 | 2014-06-18 | 信越化学工业株式会社 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
KR20140074837A (en) * | 2012-12-10 | 2014-06-18 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon oxide and method for producing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor |
CN103872303B (en) * | 2012-12-10 | 2018-05-11 | 信越化学工业株式会社 | Silica material, manufacture method, negative electrode, lithium ion secondary accumulator battery and electrochemical capacitor |
US9484159B2 (en) | 2012-12-10 | 2016-11-01 | Shin-Etsu Chemical Co., Ltd. | Silicon oxide material, making method, negative electrode, lithium ion secondary battery, and electrochemical capacitor |
CN104692394A (en) * | 2013-12-05 | 2015-06-10 | 谭美俊 | Silicon oxide production furnace convenient to observe and adjust |
US10693134B2 (en) | 2014-04-09 | 2020-06-23 | Nexeon Ltd. | Negative electrode active material for secondary battery and method for manufacturing same |
WO2015156620A1 (en) * | 2014-04-09 | 2015-10-15 | (주)오렌지파워 | Negative electrode active material for secondary battery and method for manufacturing same |
JP2017516282A (en) * | 2014-04-09 | 2017-06-15 | オレンジ パワー リミテッド | Negative electrode active material for secondary battery and method thereof |
US10396355B2 (en) | 2014-04-09 | 2019-08-27 | Nexeon Ltd. | Negative electrode active material for secondary battery and method for manufacturing same |
US10586976B2 (en) | 2014-04-22 | 2020-03-10 | Nexeon Ltd | Negative electrode active material and lithium secondary battery comprising same |
US11196042B2 (en) | 2014-07-23 | 2021-12-07 | Nexeon Ltd | Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles |
US10522824B2 (en) | 2014-07-23 | 2019-12-31 | Nexeon Ltd | Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles |
US10476072B2 (en) | 2014-12-12 | 2019-11-12 | Nexeon Limited | Electrodes for metal-ion batteries |
WO2017125977A1 (en) * | 2016-01-21 | 2017-07-27 | 信越化学工業株式会社 | Negative electrode active material, mixed negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material, and method for manufacturing nonaqueous electrolyte secondary battery |
CN108496267A (en) * | 2016-01-21 | 2018-09-04 | 信越化学工业株式会社 | The manufacturing method of negative electrode active material, mixing negative electrode active material material, non-aqueous electrolyte secondary battery, the manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery |
JP2017130368A (en) * | 2016-01-21 | 2017-07-27 | 信越化学工業株式会社 | Negative electrode active substance, mixed negative electrode active substance material, nonaqueous electrolyte secondary battery, method of producing negative electrode active substance, and method of manufacturing nonaqueous electrolyte secondary battery |
CN107093711B (en) * | 2017-04-01 | 2019-10-25 | 武汉理工大学 | Monodispersed SiOxThe magnanimity preparation method of-C complex microsphere |
CN107093711A (en) * | 2017-04-01 | 2017-08-25 | 武汉理工大学 | Monodispersed SiOxThe magnanimity preparation method of C complex microspheres |
DE102017211086A1 (en) | 2017-06-29 | 2019-01-03 | Sgl Carbon Se | Novel composite material |
WO2019002508A1 (en) | 2017-06-29 | 2019-01-03 | Sgl Carbon Se | Novel composite material |
US11843112B2 (en) | 2017-06-29 | 2023-12-12 | Sgl Carbon Se | Composite material |
CN110364691A (en) * | 2018-04-09 | 2019-10-22 | 北京航空航天大学 | Lithium ion battery graphene-silicon oxide compound electrode material and preparation method thereof |
CN111063947A (en) * | 2019-12-02 | 2020-04-24 | 苏州易来科得科技有限公司 | Lithium ion battery capacity recovery method |
CN111063947B (en) * | 2019-12-02 | 2023-05-16 | 苏州易来科得科技有限公司 | Lithium ion battery capacity recovery method |
Also Published As
Publication number | Publication date |
---|---|
JP5379026B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5379026B2 (en) | Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor | |
JP5454353B2 (en) | Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor | |
JP5500047B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor | |
JP5184567B2 (en) | Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor | |
JP5245592B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor | |
JP5675546B2 (en) | Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor | |
US20100243951A1 (en) | Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery | |
JP6156089B2 (en) | Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor | |
US20090202911A1 (en) | Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor | |
JP5737265B2 (en) | Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor | |
JP2021506059A (en) | Negative electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method | |
JP2009301935A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor | |
JP2013008696A (en) | Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery | |
JP2010272411A (en) | Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor | |
JP5182498B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor | |
JP6020331B2 (en) | Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor | |
JP2010177070A (en) | Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor | |
JP2015218080A (en) | Granular silicon oxide and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5379026 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |