JP2013008696A - Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013008696A
JP2013008696A JP2012204495A JP2012204495A JP2013008696A JP 2013008696 A JP2013008696 A JP 2013008696A JP 2012204495 A JP2012204495 A JP 2012204495A JP 2012204495 A JP2012204495 A JP 2012204495A JP 2013008696 A JP2013008696 A JP 2013008696A
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
secondary battery
electrode material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204495A
Other languages
Japanese (ja)
Inventor
Koichiro Watanabe
浩一朗 渡邊
Hidekazu Uehara
秀和 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012204495A priority Critical patent/JP2013008696A/en
Publication of JP2013008696A publication Critical patent/JP2013008696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide negative electrode material for a nonaqueous electrolyte secondary battery and a method of manufacturing the same enabling manufacture of a negative electrode of a lithium ion secondary battery having higher cycle characteristics and rate characteristics than conventional one, and to provide the lithium ion secondary battery and an electrochemical capacitor.SOLUTION: Negative electrode material for a secondary battery using nonaqueous electrolyte comprises a chemical element except silicon and oxygen at concentration of 50 to 100,000 ppm, in at least one of: silicon oxide represented by a general formula SiO(x=0.5 to 1.6); a silicon composite where Si/O having such a structure that silicon is dispersed into silicon dioxide has a molar ratio of 1/0.5 to 1.6; and a compound of the silicon oxide and the silicon composite.

Description

本発明は、リチウムイオン二次電池や電気化学キャパシタ等の非水電解質二次電池の負極活物質として用いた際に良好なサイクル特性を示す非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタに関する。   The present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery that exhibits good cycle characteristics when used as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery or an electrochemical capacitor, and a method for producing the same. The present invention also relates to a lithium ion secondary battery and an electrochemical capacitor.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。
従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1,2等参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3等参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4等参照)、負極材料にSiO及びGeOを用いる方法(例えば、特許文献5等参照)等が知られている。
また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6等参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7等参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8等参照)がある。
In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices.
Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (for example, Patent Documents 1 and 2). Etc.), a method of applying a melt-quenched metal oxide as a negative electrode material (for example, see Patent Document 3), a method of using silicon oxide as a negative electrode material (for example, see Patent Document 4), and Si 2 as a negative electrode material. A method using N 2 O and Ge 2 N 2 O (see, for example, Patent Document 5) is known.
In addition, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (for example, see Patent Document 6), a method of coating a carbon layer on the surface of silicon particles by chemical vapor deposition (For example, refer patent document 7 grade | etc.,), And the method (For example, refer patent document 8 grade | etc.) Which coat | covers a carbon layer by the chemical vapor deposition method on the silicon oxide particle surface.

しかしながら、上記のような従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, the conventional methods as described above increase the charge / discharge capacity and increase the energy density, but the cycle performance is insufficient and the required characteristics of the market are still insufficient, which is not always satisfactory. However, further improvement in energy density has been desired.

特に、特許文献4に記載の方法では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが知る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。
また、負極材に導電性を付与する技術についても、特許文献6に記載の方法では、固体と固体の融着であるため、均一な炭素被膜が形成されず、導電性が不十分であるといった問題がある。特許文献7に記載の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならないという問題がある。
更に、特許文献8に記載の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるものの、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
また、上述した従来の負極材では、レート特性が未だに不十分なものが多く、サイクル特性トレーと特性のいずれも満足するものがないという問題があった。
In particular, in the method described in Patent Document 4, silicon oxide is used as a negative electrode material for a lithium ion secondary battery, and a high-capacity electrode is obtained. There is room for improvement because the irreversible capacity is large and the cycle performance has not reached the practical level.
In addition, regarding the technique for imparting conductivity to the negative electrode material, the method described in Patent Document 6 is a solid-solid fusion, so a uniform carbon film is not formed, and the conductivity is insufficient. There's a problem. In the method described in Patent Document 7, although a uniform carbon film can be formed, since Si is used as a negative electrode material, the expansion / contraction at the time of adsorption / desorption of lithium ions is too large. As such, there is a problem in that it cannot be put into practical use and the chargeability must be limited in order to prevent this because the cycle performance deteriorates.
Furthermore, in the method described in Patent Document 8, although the improvement in cycleability is confirmed due to insufficient precipitation of fine silicon crystals, the structure of the carbon coating and the fusion with the base material, When the number of cycles is repeated, there is a phenomenon that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery.
Further, the above-described conventional negative electrode materials have many problems that the rate characteristics are still insufficient, and none of the cycle characteristic tray and the characteristics are satisfied.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A

本発明は、上記事情に鑑みなされたもので、従来よりサイクル特性及びレート特性の高いリチウムイオン二次電池の負極の製造を可能とする非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a negative electrode material for a non-aqueous electrolyte secondary battery that enables production of a negative electrode of a lithium ion secondary battery having higher cycle characteristics and rate characteristics than the conventional one, and a method for manufacturing the same, and An object is to provide a lithium ion secondary battery and an electrochemical capacitor.

上記課題を解決するため、本発明では、非水電解質を用いる二次電池用の負極材であって、少なくとも、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と前記珪素複合体の混合物のいずれかに、珪素、酸素以外の元素が50〜100000ppmの濃度で含まれているものであることを特徴とする非水電解質二次電池用負極材を提供する。 In order to solve the above-described problems, the present invention provides a negative electrode material for a secondary battery using a nonaqueous electrolyte, and at least silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6). Any of a silicon composite having a structure in which silicon is dispersed in silicon dioxide and having a Si / O molar ratio of 1 / 0.5 to 1.6, and a mixture of the silicon oxide and the silicon composite, Provided is a negative electrode material for a non-aqueous electrolyte secondary battery characterized in that an element other than oxygen is contained at a concentration of 50 to 100,000 ppm.

このように、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と前記珪素複合体の混合物のいずれかに、珪素、酸素以外の元素が50〜100000ppmの濃度で含まれている非水電解質二次電池用負極材であれば、バルクでの導電性が改善されたものとなり、これによって負極として用いた時のレート特性及びサイクル特性が改善されたものとなる。よって従来に比べてレート特性及びサイクル特性に優れた非水電解質を用いる二次電池用の負極に好適な負極材となる。 Thus, the silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6) and the Si / O molar ratio having a structure in which silicon is dispersed in silicon dioxide are 1 / 0.5 to 1 .6, and a mixture of the silicon oxide and the silicon composite contains an element other than silicon and oxygen at a concentration of 50 to 100000 ppm. If present, the conductivity in the bulk is improved, thereby improving the rate characteristics and cycle characteristics when used as a negative electrode. Therefore, it becomes a negative electrode material suitable for a negative electrode for a secondary battery using a nonaqueous electrolyte that is superior in rate characteristics and cycle characteristics as compared with the conventional one.

ここで、前記珪素、酸素以外の元素が、La、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Pb、Ag、As、Bi、Br、Cr、Hg、S、Te、P、Nbのうち少なくとも1種類であるものとすることが好ましい。
このように、珪素、酸素以外の元素が上述のような元素であれば、更にバルクでの導電性を向上させることができ、よりレート特性及びサイクル特性に優れた負極材とすることができる。
Here, elements other than silicon and oxygen are La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Pb, Ag, As, Bi, Br, Cr, Hg, S, It is preferable that at least one of Te, P, and Nb is used.
Thus, if elements other than silicon and oxygen are elements as described above, the conductivity in the bulk can be further improved, and a negative electrode material having more excellent rate characteristics and cycle characteristics can be obtained.

また、前記非水電解質二次電池用負極材は、レーザー回折散乱式粒度分布測定法による体積平均値D50が0.01〜50μmのものであることが好ましい。
非水電解質二次電池用負極材として、D50が0.01μm以上のものとすることによって、得られた負極材の嵩密度が小さくなりすぎることを抑制でき、電極形成時の充填密度を高くすることができる。また表面酸化の影響で純度が低下するおそれを極力避けることができ、単位体積当たりの充放電容量を高くすることができる。そして、D50が50μm以下のものとすることによって、電極の形成が難しくなることもなく、集電体からの剥離の可能性を十分に低いものとすることができる。
Moreover, it is preferable that the negative electrode material for a non-aqueous electrolyte secondary battery has a volume average value D50 of 0.01 to 50 [ mu] m by a laser diffraction / scattering particle size distribution measurement method.
As the negative electrode material for non-aqueous electrolyte secondary battery, by the D 50 of the more than 0.01 [mu] m, it can prevent the bulk density of the negative electrode material obtained is too small, a high packing density in electrode formation can do. Further, it is possible to avoid the possibility that the purity is lowered due to the effect of surface oxidation, and it is possible to increase the charge / discharge capacity per unit volume. And by making D50 into 50 micrometers or less, formation of an electrode does not become difficult and the possibility of peeling from a collector can be made sufficiently low.

そして、前記非水電解質二次電池用負極材は、更に、表面にカーボン被膜が被覆されたものであることが好ましい。
このように、表面上にカーボン被膜が更に被覆された非水電解質二次電池用負極材は、表面の導電性が良好なものであるため、更にサイクル特性に優れた非水電解質二次電池の負極に好適な負極材となる。
And it is preferable that the negative electrode material for a non-aqueous electrolyte secondary battery further has a surface coated with a carbon film.
Thus, the negative electrode material for a non-aqueous electrolyte secondary battery in which the carbon coating is further coated on the surface has a good surface conductivity, so that the non-aqueous electrolyte secondary battery further excellent in cycle characteristics can be obtained. It becomes a negative electrode material suitable for the negative electrode.

そして、本発明では、少なくとも、正極と、負極と、リチウムイオン導電性の非水電解質とからなるリチウムイオン二次電池であって、前記負極に、本発明に記載の非水電解質二次電池用負極材が用いられたものであることを特徴とするリチウムイオン二次電池を提供する。
上述のように、本発明の非水電解質二次電池用負極材は、非水電解質の二次電池の負極として用いた場合に電池特性(レート特性、サイクル特性)を良好なものとできるものである。このため、本発明の非水電解質二次電池用負極材が用いられたリチウムイオン二次電池は、電池特性、特にレート特性やサイクル特性に優れたものとなる。
And in this invention, it is a lithium ion secondary battery which consists of a positive electrode, a negative electrode, and a lithium ion conductive nonaqueous electrolyte, Comprising: The said negative electrode is used for the nonaqueous electrolyte secondary battery as described in this invention Provided is a lithium ion secondary battery using a negative electrode material.
As described above, the negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention can improve battery characteristics (rate characteristics, cycle characteristics) when used as a negative electrode for a non-aqueous electrolyte secondary battery. is there. For this reason, the lithium ion secondary battery using the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention has excellent battery characteristics, particularly rate characteristics and cycle characteristics.

また、本発明では、少なくとも、正極と、負極と、導電性の電解質とからなる電気化学キャパシタであって、前記負極に、本発明に記載の非水電解質二次電池用負極材が用いられたものであることを特徴とする電気化学キャパシタを提供する。
このように、本発明の非水電解質二次電池用負極材が用いられた電気化学キャパシタも、上述のリチウムイオン二次電池と同様に、キャパシタとしての特性(レート特性やサイクル特性)に優れたものとなる。
Further, in the present invention, an electrochemical capacitor comprising at least a positive electrode, a negative electrode, and a conductive electrolyte, wherein the negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention is used for the negative electrode. An electrochemical capacitor is provided.
Thus, the electrochemical capacitor using the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is also excellent in characteristics (rate characteristics and cycle characteristics) as a capacitor, like the above-described lithium ion secondary battery. It will be a thing.

また、本発明では、非水電解質を用いる二次電池用の負極材の製造方法であって、少なくとも、珪素原料に珪素、酸素以外の元素を含有させ、該珪素、酸素以外の元素が含有された珪素原料を用いて、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と前記珪素複合体の混合物のいずれかを、前記珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるように作製することを特徴とする非水電解質二次電池用負極材の製造方法を提供する。 Further, in the present invention, there is provided a method for producing a negative electrode material for a secondary battery using a nonaqueous electrolyte, wherein at least an element other than silicon and oxygen is contained in a silicon raw material, and the element other than silicon and oxygen is contained. Using a silicon raw material, the silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6) and the Si / O molar ratio having a structure in which silicon is dispersed in silicon dioxide have a molar ratio of 1 / 0.0. Any one of the silicon composite of 5 to 1.6 and the mixture of the silicon oxide and the silicon composite is prepared so that elements other than the silicon and oxygen are contained at a concentration of 50 to 100,000 ppm. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery is provided.

このように、珪素、酸素以外の元素を含有させた珪素原料から一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と前記珪素複合体の混合物のいずれかの中に、珪素、酸素以外の元素が50〜100000ppmの濃度で含まれるように製造することによって、負極材のバルクの導電性を向上させることができ、負極を製造した時にレート特性及びサイクル特性を向上させることができる。よって従来に比べてレート特性やサイクル特性に優れた非水電解質二次電池用の負極に好適な負極材を製造することができる。 Thus, Si having a structure in which silicon oxide, silicon represented by the general formula SiO x (x = 0.5 to 1.6), silicon is dispersed in silicon dioxide, from a silicon raw material containing elements other than silicon and oxygen. The concentration of elements other than silicon and oxygen is 50 to 100000 ppm in any of the silicon composite having a / O molar ratio of 1 / 0.5 to 1.6 and the mixture of the silicon oxide and the silicon composite. The bulk conductivity of the negative electrode material can be improved, and rate characteristics and cycle characteristics can be improved when the negative electrode is manufactured. Therefore, a negative electrode material suitable for a negative electrode for a non-aqueous electrolyte secondary battery, which is excellent in rate characteristics and cycle characteristics as compared with conventional ones, can be produced.

ここで、前記珪素、酸素以外の元素を、La、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Pb、Ag、As、Bi、Br、Cr、Hg、S、Te、P、Nbのうち少なくとも1種類とすることが好ましい。
このように、珪素、酸素以外の元素として上述のような元素が50〜100000ppmの濃度で含まれるように負極材を製造することによって、製造された負極材の導電性をより改善することができ、よって更にレート特性やサイクル特性に優れた非水電解質二次電池用の負極に好適な負極材を製造することができる。
Here, the elements other than silicon and oxygen are La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Pb, Ag, As, Bi, Br, Cr, Hg, S, Preferably, at least one of Te, P, and Nb is used.
Thus, by manufacturing the negative electrode material such that the above-described elements other than silicon and oxygen are contained at a concentration of 50 to 100,000 ppm, the conductivity of the manufactured negative electrode material can be further improved. Therefore, a negative electrode material suitable for a negative electrode for a non-aqueous electrolyte secondary battery that is further excellent in rate characteristics and cycle characteristics can be produced.

また、更に、有機物ガス中で化学蒸着することにより、表面をカーボン被膜で被覆することが好ましい。
このように、表面上に更にカーボン被膜を被覆することによって、表面の導電性が良好な負極材となり、更にサイクル特性に優れた非水電解質二次電池の負極に好適な負極材となる。
Furthermore, it is preferable to coat the surface with a carbon film by chemical vapor deposition in an organic gas.
Thus, by further covering the surface with a carbon coating, the surface becomes a negative electrode material with good conductivity, and further becomes a negative electrode material suitable for the negative electrode of a non-aqueous electrolyte secondary battery with excellent cycle characteristics.

以上説明したように、本発明で得られた非水電解質二次電池用負極材をリチウムイオン二次電池の負極材や電気化学キャパシタの負極材として用いることで、レート特性及びサイクル性に優れたリチウムイオン二次電池や電気化学キャパシタを得ることができる。
また、非水電解質二次電池用負極材自体の製造方法についても簡便かつ工業的規模の生産にも十分耐え得るものであり、高品質で安価な非水電解質二次電池を得ることに大きく寄与することができるものとなっている。
As described above, by using the negative electrode material for non-aqueous electrolyte secondary batteries obtained in the present invention as a negative electrode material for lithium ion secondary batteries or a negative electrode material for electrochemical capacitors, it has excellent rate characteristics and cycle characteristics. A lithium ion secondary battery or an electrochemical capacitor can be obtained.
In addition, the manufacturing method of the negative electrode material itself for non-aqueous electrolyte secondary batteries is simple and can sufficiently withstand industrial scale production, and contributes greatly to obtaining high-quality and inexpensive non-aqueous electrolyte secondary batteries. It has become something that can be done.

本発明の実施例1−3・比較例1−2で用いた酸化珪素粉末の製造装置の概略を示した図である。It is the figure which showed the outline of the manufacturing apparatus of the silicon oxide powder used in Example 1-3 and Comparative Example 1-2 of this invention.

以下、本発明についてより具体的に説明する。
まず、本発明の非水電解質二次電池用負極材について説明する。
本発明の非水電解質二次電池用負極材は、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前述の酸化珪素と前述の珪素複合体の混合物のいずれかに、珪素、酸素以外の元素が50〜100000ppmの濃度で含まれているものである。
Hereinafter, the present invention will be described more specifically.
First, the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention will be described.
The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is composed of silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6), Si / O having a structure in which silicon is dispersed in silicon dioxide. Any of a silicon composite having a molar ratio of 1 / 0.5 to 1.6 and a mixture of the above silicon oxide and the above silicon composite contains an element other than silicon and oxygen at a concentration of 50 to 100,000 ppm. It is what.

このような非水電解質二次電池用負極材では、珪素、酸素以外の元素が50〜100000ppmの濃度で含まれていることによってバルクの導電性が従来の負極材に比べて改善されたものとなり、これによって負極として用いた時に電池のレート特性及びサイクル特性を改善されたものとすることができる。
また、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前述の酸化珪素と前述の珪素複合体の混合物がベースとなっており、従来の負極材よりも充放電効率やサイクル特性に優れたものとすることができる。
これらの効果によって、従来に比べてレート特性及びサイクル特性が優れた非水電解質二次電池用負極材が得られる。
In such a negative electrode material for a non-aqueous electrolyte secondary battery, elements other than silicon and oxygen are contained at a concentration of 50 to 100,000 ppm, so that the bulk conductivity is improved as compared with the conventional negative electrode material. Thus, when used as a negative electrode, the rate characteristics and cycle characteristics of the battery can be improved.
The molar ratio of Si / O having a structure in which silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6) and silicon are dispersed in silicon dioxide is 1 / 0.5 to 1.6. And a mixture of the above-mentioned silicon oxide and the above-mentioned silicon composite, which is superior in charge / discharge efficiency and cycle characteristics than the conventional negative electrode material.
Due to these effects, a negative electrode material for a non-aqueous electrolyte secondary battery having excellent rate characteristics and cycle characteristics as compared with the conventional one can be obtained.

ここで、本発明における酸化珪素とは、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称のことであり、一般式SiO(x=0.5〜1.6)で表されるものをいう。 Here, silicon oxide in the present invention is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. Yes, it is represented by the general formula SiO x (x = 0.5 to 1.6).

また、本発明における珪素複合体は、Si/Oのモル比が1/0.5〜1.6で、珪素が二酸化珪素に分散した構造を有する珪素複合体のことをいう。   The silicon composite in the present invention refers to a silicon composite having a Si / O molar ratio of 1 / 0.5 to 1.6 and having a structure in which silicon is dispersed in silicon dioxide.

なお、上記酸化珪素中のx、及び珪素複合体のSiに対するOのモル比は、0.5〜1.6である。このモル比は望ましくは0.5〜1.3、特には0.5〜1.0がより望ましい。
上記モル比は、0.5より小さい酸化珪素又は珪素複合体は、その製造は技術的に困難である。また1.6より大きい酸化珪素又は珪素複合体では、製造過程における熱処理の際に、不活性なSiOの割合が大きく、リチウムイオン2次電池として使用した場合に充放電容量が低下するおそれがある。このため、上記酸化珪素中のx、及び珪素複合体のSiに対するOのモル比は、0.5〜1.6とする。
Note that the molar ratio of x in the silicon oxide and O in the silicon composite to Si is 0.5 to 1.6. This molar ratio is desirably 0.5 to 1.3, and more desirably 0.5 to 1.0.
It is technically difficult to produce a silicon oxide or silicon composite having a molar ratio of less than 0.5. Further, in the case of silicon oxide or silicon composite larger than 1.6, the ratio of inactive SiO 2 is large during the heat treatment in the production process, and the charge / discharge capacity may decrease when used as a lithium ion secondary battery. is there. For this reason, the molar ratio of x in the silicon oxide and O in the silicon composite to Si is 0.5 to 1.6.

ここで、上記珪素複合体は、銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークを評価した際に、以下に示す様な条件(i)、(ii)を満たすものとすることが望ましい。   Here, when the silicon composite was evaluated for a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° in X-ray diffraction (Cu-Kα) using copper as a counter cathode In addition, it is desirable that the following conditions (i) and (ii) are satisfied.

(i):銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとにシェーラーの式によって求めた珪素複合体中の珪素の結晶の粒子径が、1〜500nm(望ましくは2〜200nm、より望ましくは2〜50nm)となったものであることが望ましい。
この珪素複合体中の微粒子の大きさを1nm以上とすることによって、充放電容量が小さくなる危険を極力低減できる。また500nm以下とすることによって、充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれを防ぐことができる。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
(I): In X-ray diffraction (Cu-Kα) using copper as a cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and the broadening of the diffraction line It is desirable that the particle diameter of the silicon crystal in the silicon composite obtained from Scherrer's equation is 1 to 500 nm (preferably 2 to 200 nm, more preferably 2 to 50 nm).
By setting the size of the fine particles in the silicon composite to 1 nm or more, it is possible to reduce the risk of reducing the charge / discharge capacity as much as possible. Moreover, by setting it as 500 nm or less, the expansion / contraction at the time of charging / discharging becomes large, and a possibility that cycling property may fall can be prevented. The size of the silicon fine particles can be measured by a transmission electron micrograph.

(ii):固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに、−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在するものとすることが望ましい。なお、このスペクトルは、通常の酸化珪素(SiO:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。
また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
(Ii): In solid-state NMR ( 29 Si-DDMAS) measurement, the spectrum has a broad silicon dioxide peak centered around −110 ppm and a peak characteristic of Si diamond crystals in the vicinity of −84 ppm Is desirable. This spectrum is completely different from ordinary silicon oxide (SiO x : x = 1.0 + α), and the structure itself is clearly different.
Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.

そして酸化珪素と珪素複合体の混合物とは、上述の酸化珪素の粉末と、上述の珪素複合物の粉末が所定の割合で混合されたもののことである。
この混合物は、混合割合や混合方法は特に限定されず、所望の物性となるように適宜選択することができる。
The mixture of silicon oxide and silicon composite is a mixture of the above-described silicon oxide powder and the above-mentioned silicon composite powder in a predetermined ratio.
The mixing ratio and mixing method of this mixture are not particularly limited, and can be appropriately selected so as to have desired physical properties.

ここで、上述の珪素、酸素以外の元素が、La、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Pb、Ag、As、Bi、Br、Cr、Hg、S、Te、P、Nbのうち少なくとも1種類とすることができる。
このように、珪素、酸素以外の元素として上述のような元素が50〜100000ppmの濃度で含まれているものであれば、更に負極材中におけるバルクの導電性を向上させることができる。よって、よりレート特性及びサイクル特性に優れた負極材となる。
Here, elements other than silicon and oxygen described above are La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Pb, Ag, As, Bi, Br, Cr, Hg, and S. , Te, P, and Nb.
Thus, if the above elements are contained at a concentration of 50 to 100,000 ppm as elements other than silicon and oxygen, the bulk conductivity in the negative electrode material can be further improved. Therefore, the negative electrode material is more excellent in rate characteristics and cycle characteristics.

また、上記酸化珪素や珪素複合体及びこれらの混合物である非水電解質二次電池用負極材は、レーザー回折散乱式粒度分布測定法による体積平均値D50(即ち、累積体積が50%となる時の粒子径又はメジアン径)が0.01〜50μmのものとすることができる。
50が0.01μm以上のものとすることによって、表面酸化の影響で純度が低下するおそれを極力避けることができ、また負極材として用いた場合に、嵩密度が低下し、単位体積あたりの充放電容量が低下する危険性も極力低くすることができる。
また、D50が50μm以下とすることによって、負極膜を貫通してショートする原因となるおそれを最小限に抑えることができるとともに、電極の形成が難しくなることもなく、集電体からの剥離の可能性を十分に低いものとすることができる。
In addition, the negative electrode material for a non-aqueous electrolyte secondary battery, which is the silicon oxide, the silicon composite, or a mixture thereof, has a volume average value D 50 (that is, a cumulative volume of 50% by a laser diffraction scattering type particle size distribution measuring method). (Time particle diameter or median diameter) may be 0.01 to 50 μm.
By making D 50 0.01 μm or more, the possibility of lowering the purity due to the effect of surface oxidation can be avoided as much as possible, and when used as a negative electrode material, the bulk density decreases and the unit volume per unit volume is reduced. The risk of a decrease in charge / discharge capacity can be reduced as much as possible.
Further, by the D 50 is to 50μm or less, it is possible to minimize the risk of causing a short circuit through the negative electrode film, that no formation of the electrode becomes difficult, peeling from the current collector This possibility can be made sufficiently low.

そして、本発明の非水電解質二次電池用負極材は、更に、表面にカーボン被膜が被覆されたものとすることができる。
このように、表面上にカーボン被膜が更に被覆された非水電解質二次電池用負極材は、表面での導電性も従来より良好なものとなり、特によりサイクル特性に優れた負極材とすることができる。
And the negative electrode material for nonaqueous electrolyte secondary batteries of this invention can make the surface further coat | covered with the carbon film.
Thus, the negative electrode material for a non-aqueous electrolyte secondary battery in which a carbon film is further coated on the surface has better conductivity on the surface than the conventional material, and in particular, a negative electrode material with more excellent cycle characteristics. Can do.

次に、本発明における非水電解質二次電池用負極材の製造方法について、詳細に説明する。
まず、珪素原料に珪素、酸素以外の元素を含有させる。
そして、この珪素、酸素以外の元素が含有された珪素原料を用いて、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と珪素複合体の混合物のいずれかを、珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるように作製する。
Next, the manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries in this invention is demonstrated in detail.
First, an element other than silicon and oxygen is contained in the silicon raw material.
And using this silicon raw material containing elements other than silicon and oxygen, a structure in which silicon oxide and silicon represented by the general formula SiO x (x = 0.5 to 1.6) are dispersed in silicon dioxide is used. One of the silicon composite having a Si / O molar ratio of 1 / 0.5 to 1.6 and the mixture of the silicon oxide and the silicon composite at a concentration of 50 to 100,000 ppm of elements other than silicon and oxygen Prepare to be contained.

まず、本発明の酸化珪素からなる非水電解質二次電池用負極材の製造方法についてより詳細に説明する。
珪素、酸素以外の元素、好適にはLa、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Pb、Ag、As、Bi、Br、Cr、Hg、S、Te、P、Nbのうち少なくとも1種類を含有した珪素粉末と、二酸化珪素(SiO)粉末を、珪素と二酸化珪素のモル比で1:1の割合となるように含有させる。
そして含有させた原料を、3000Pa以下(好適には0.1〜100Pa)の減圧下で、1200〜1500℃(望ましくは1300〜1500℃)で反応させて発生するSiOガスを冷却して酸化珪素固体として析出させる。この析出させる固体中に、上述の珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるようにする。なお珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるようにするには、例えば珪素粉末中の珪素・酸素以外の元素濃度を調整することによって達成されるが、もちろんこれに限定されない。
その後析出物を回収して、本発明の酸化珪素は得られる。
First, the manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries made of silicon oxide of the present invention will be described in more detail.
Elements other than silicon and oxygen, preferably La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Pb, Ag, As, Bi, Br, Cr, Hg, S, Te, Silicon powder containing at least one of P and Nb and silicon dioxide (SiO 2 ) powder are contained so that the molar ratio of silicon to silicon dioxide is 1: 1.
The contained raw material is reacted at 1200 to 1500 ° C. (preferably 1300 to 1500 ° C.) under a reduced pressure of 3000 Pa or less (preferably 0.1 to 100 Pa) to cool the generated SiO gas, and silicon oxide Precipitate as a solid. In the solid to be precipitated, elements other than the above-described silicon and oxygen are contained at a concentration of 50 to 100,000 ppm. In order to contain elements other than silicon and oxygen at a concentration of 50 to 100,000 ppm, for example, it is achieved by adjusting the element concentration other than silicon and oxygen in the silicon powder, but of course not limited thereto. .
Thereafter, the precipitate is recovered to obtain the silicon oxide of the present invention.

ここで、この混合原料の反応させる際の減圧度を3000Pa以下とすることによって、SiOガスを効率的に発生させることができる。
また、反応温度を1200℃以上とすることによって、SiOガスを効率的に発生させることができる。そして1500℃以下とすることによって、原料中の珪素が溶融して反応性が悪化することや、炉が損傷することを確実に防止することができる。しかし、反応時間は特に限定されず、原料の仕込み量に合わせ適宜選定される。
Here, the SiO gas can be efficiently generated by setting the degree of reduced pressure when the mixed raw materials are reacted to 3000 Pa or less.
Moreover, SiO gas can be efficiently generated by making reaction temperature into 1200 degreeC or more. And by setting it as 1500 degrees C or less, it can prevent reliably that the silicon | silicone in a raw material fuse | melts and a reactivity deteriorates or a furnace is damaged. However, the reaction time is not particularly limited, and is appropriately selected according to the amount of raw material charged.

なお、この時、珪素、酸素以外の元素を、珪素原料に含有させずに混合物として混入させたり、別途設置して含有させようとすると、析出した酸化珪素にうまくドープされない可能性が高くなる。
具体的には、溶融するだけで反応せず、反応残として未反応原料中に留まったり、酸化珪素とは別の場所に単独で析出したりしてしまう可能性がある。そのため、予め珪素原料に含有させておく。
At this time, if elements other than silicon and oxygen are mixed as a mixture without being contained in the silicon raw material, or are separately installed and contained, there is a high possibility that the deposited silicon oxide will not be doped well.
Specifically, it does not react only by melting and may remain in an unreacted raw material as a reaction residue, or may be deposited alone in a place different from silicon oxide. Therefore, it is previously contained in the silicon raw material.

次に、本発明の珪素複合体は、一般式SiOで表わされる上述の酸化珪素粉末を原料として、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下で、900〜1400℃(望ましくは1000〜1400℃、より望ましくは1050〜1300℃、更に望ましくは1100〜1200℃)の温度域で熱処理することによって珪素と二酸化珪素の複合体に不均化することによって得ることができるものである。 Next, the silicon composite of the present invention is produced by using the above silicon oxide powder represented by the general formula SiO x as a raw material at 900 to 1400 ° C. (preferably 1000 to 1400 in an atmosphere containing at least an organic gas and / or steam). C., more preferably from 1050 to 1300.degree. C., and even more preferably from 1100 to 1200.degree. C.) to obtain a composite of silicon and silicon dioxide.

また、一般式SiOで表わされる上述の酸化珪素粉末を、予め不活性ガス雰囲気下で、900〜1400℃(望ましくは1000〜1400℃、より望ましくは1100〜1300℃)で熱処理を施して不均化することによっても得られる。 Further, the above silicon oxide powder represented by the general formula SiO x is preliminarily subjected to heat treatment at 900 to 1400 ° C. (preferably 1000 to 1400 ° C., more preferably 1100 to 1300 ° C.) in an inert gas atmosphere. It can also be obtained by leveling.

更に、一般式SiOで表わされる上述の酸化珪素粉末をあらかじめ500〜1200℃(望ましくは500〜1000℃、より望ましくは500〜900℃)の温度域で有機物ガス及び/又は蒸気で化学蒸着処理したものを原料として、不活性ガス雰囲気下で、900〜1400℃(望ましくは1000〜1400℃、より望ましくは1100〜1300℃)の温度域で熱処理を施して不均化することによっても得られる。 Furthermore, the above-described silicon oxide powder represented by the general formula SiO x is subjected to chemical vapor deposition with an organic gas and / or vapor in a temperature range of 500 to 1200 ° C. (preferably 500 to 1000 ° C., more preferably 500 to 900 ° C.). It is also possible to obtain a disproportionated material by subjecting it to a heat treatment at 900 to 1400 ° C. (preferably 1000 to 1400 ° C., more preferably 1100 to 1300 ° C.) in an inert gas atmosphere. .

そして、シリコン微粒子をゾルゲル法により二酸化珪素でコーティングすることや、シリコン微粉末を煙霧状シリカ、沈降シリカのような微粉状シリカと水を介して凝固させたものを焼結しても得られる。
その他、珪素及びこの部分酸化物もしくは窒化物等(望ましくは0.1〜50μmの粒度まで粉砕したもの)を、予め不活性ガス気流下で800〜1400℃で加熱することによっても得られる。
It can also be obtained by coating silicon fine particles with silicon dioxide by the sol-gel method, or sintering silicon fine powder solidified through fine silica such as fumed silica or precipitated silica and water.
In addition, it can also be obtained by heating silicon and its partial oxide or nitride (desirably ground to a particle size of 0.1 to 50 μm) at 800 to 1400 ° C. under an inert gas stream.

酸化珪素と珪素複合体の混合物は、上述の酸化珪素と、上述の珪素複合物を所定の割合で混合することによって得られる。
この際の混合割合や混合方法は特に限定されず、所望の物性となるように適宜選択することができる。
The mixture of silicon oxide and silicon composite is obtained by mixing the above-described silicon oxide and the above-described silicon composite at a predetermined ratio.
The mixing ratio and mixing method at this time are not particularly limited, and can be appropriately selected so as to achieve desired physical properties.

ここで、作製される上述のような酸化珪素、上述の珪素複合物、及びこれらの混合物における珪素、酸素以外の元素含有量が、粒子中において50〜100000ppm(望ましくは500〜10000ppm)となるようにする。
50ppm未満だと、ドープされたことによって得られる導電性改善の効果が出にくく、サイクル特性及びレート特性が不足気味となる。また、100000ppmを超えると含有量が過多になり、容量の低下を生じるおそれがあるため、珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるように作製することとする。
Here, the content of elements other than silicon and oxygen in the silicon oxide as described above, the silicon composite described above, and a mixture thereof is 50 to 100,000 ppm (preferably 500 to 10,000 ppm) in the particles. To.
If it is less than 50 ppm, the effect of improving the conductivity obtained by doping is difficult to obtain, and the cycle characteristics and rate characteristics become insufficient. Moreover, since content will become excessive when it exceeds 100000 ppm, there exists a possibility that the fall of a capacity | capacitance may be produced, and it shall produce so that elements other than silicon and oxygen may be contained with the density | concentration of 50-100,000 ppm.

そして、更に、上述のような酸化珪素、上述の珪素複合物、及びこれらの混合物の表面を、カーボン被膜で被覆し、導電性を付与することができる。
この被覆方法としては、粒子を有機物ガス中で化学蒸着(CVD)する方法が好適であり、熱処理時に反応器内に有機物ガスを導入することで効率よく行うことが可能である。
Further, the surface of the above-described silicon oxide, the above-described silicon composite, and a mixture thereof can be coated with a carbon coating to impart conductivity.
As this coating method, a method of chemical vapor deposition (CVD) of particles in an organic gas is suitable, and it can be efficiently performed by introducing an organic gas into the reactor during heat treatment.

例えば、上述のような酸化珪素、上述の珪素複合物、及びこれらの混合物を、有機物ガス中30,000Pa以下の減圧下で化学蒸着することにより得ることができる。上記圧力は10,000Pa以下が望ましく、より望ましくは2,000Pa程度である。また、化学蒸着温度は800〜1,200℃、特には900〜1,100℃がより望ましい。
なお、処理時間は目的とするカーボン被覆量、処理温度、有機物ガスの濃度(流速)や導入量等によって適宜選定されるが、通常、1〜10時間、特に2〜7時間程度が経済的にも効率的である。
For example, the above-described silicon oxide, the above-described silicon composite, and a mixture thereof can be obtained by chemical vapor deposition in an organic gas under a reduced pressure of 30,000 Pa or less. The pressure is preferably 10,000 Pa or less, more preferably about 2,000 Pa. The chemical vapor deposition temperature is more preferably 800 to 1,200 ° C, particularly 900 to 1,100 ° C.
The treatment time is appropriately selected depending on the target carbon coating amount, treatment temperature, organic gas concentration (flow rate), introduction amount, etc., but usually 1 to 10 hours, particularly about 2 to 7 hours is economical. Is also efficient.

この減圧度が30,000Pa以下であれば、グラファイト構造を有する黒鉛材の割合が大きくなり過ぎて、リチウムイオン二次電池負極材として用いた場合に、電池容量の低下に加えてサイクル性が低下する危険性を防ぐことができる。
また、処理温度を800℃以上とすることによって、長時間の処理が必要とならず、生産性を高いものとすることができる。そして1,200℃以下とすることによって、化学蒸着処理により粒子同士が融着、凝集を起こす可能性を確実に抑制でき、凝集面で導電性被膜が形成されず、非水電解質二次電池用負極材として用いた場合に、サイクル性能が改善されないといった事態が発生することを確実に防ぐことができる。
If the degree of vacuum is 30,000 Pa or less, the ratio of the graphite material having a graphite structure becomes too large, and when used as a negative electrode material for a lithium ion secondary battery, the cycle performance is reduced in addition to the reduction in battery capacity. You can prevent the risk of doing.
Further, by setting the treatment temperature to 800 ° C. or higher, it is not necessary to perform a long-time treatment, and the productivity can be increased. By setting the temperature to 1,200 ° C. or lower, the possibility of particles fusing and agglomerating by chemical vapor deposition can be reliably suppressed, and a conductive coating is not formed on the agglomerated surface, and for non-aqueous electrolyte secondary batteries. When used as a negative electrode material, it is possible to reliably prevent a situation in which the cycle performance is not improved.

そして本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが好適に選択される。
例えば、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。
また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
The organic material used as a raw material for generating the organic gas in the present invention is preferably selected from those that can be pyrolyzed at the above heat treatment temperature to produce carbon (graphite), particularly in a non-acidic atmosphere.
For example, hydrocarbons such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, etc., alone or as a mixture, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, and mixtures thereof.
Further, gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.

このカーボン被覆量は特に限定されるものではないが、カーボン被覆した上述のような酸化珪素、上述の珪素複合物、及びこれらの混合物の全体に対して0.3〜40質量%が望ましく、特には0.5〜30質量%が望ましい。
カーボン被膜の被覆量を0.3質量%以上とすることによって、十分な導電性を維持することができ、非水電解質二次電池用負極材とした際にサイクル特性をより高く向上させることができる。また、カーボン被膜の被覆量を40質量%以下とすることによって、負極材に占めるカーボンの割合が大きくなりすぎることを防ぐことができ、よって充放電容量が低下することをより確実に防ぐことができる。
The amount of the carbon coating is not particularly limited, but is preferably 0.3 to 40% by mass with respect to the total of the above-described silicon oxide coated with carbon, the above-described silicon composite, and a mixture thereof. Is preferably 0.5 to 30% by mass.
By setting the coating amount of the carbon coating to 0.3% by mass or more, sufficient conductivity can be maintained, and when the negative electrode material for a non-aqueous electrolyte secondary battery is obtained, the cycle characteristics can be further improved. it can. In addition, by setting the coating amount of the carbon coating to 40% by mass or less, it is possible to prevent the proportion of carbon in the negative electrode material from becoming too large, and thus more reliably prevent the charge / discharge capacity from being lowered. it can.

そして、本発明で得られた非水電解質二次電池負極材を活物質として用いて、負極を作製し、リチウムイオン二次電池や電気化学キャパシタを製造することができる。   And the negative electrode can be produced using the nonaqueous electrolyte secondary battery negative electrode material obtained by this invention as an active material, and a lithium ion secondary battery and an electrochemical capacitor can be manufactured.

なお、上記非水電解質二次電池用負極材を用いて負極を作製する場合、カーボン、黒鉛等の導電剤を添加することができる。
この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
In addition, when producing a negative electrode using the said negative electrode material for nonaqueous electrolyte secondary batteries, electrically conductive agents, such as carbon and graphite, can be added.
Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the configured battery may be used. Specifically, metal powder such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fiber, natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch Graphite such as carbon-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used.

また、負極(成型体)の調製方法としては例えば下記の方法が挙げられる。
先に製造した負極材と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。その後乾燥・プレス等の工程を行うことによって、負極を集電体上に形成することができる。
この集電体は、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。
なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。
Moreover, as a preparation method of a negative electrode (molded object), the following method is mentioned, for example.
N-methylpyrrolidone or water or other solvent is kneaded with the previously manufactured negative electrode material, a conductive agent, if necessary, and other additives such as a binder. The agent is applied to the current collector sheet. Thereafter, a negative electrode can be formed on the current collector by performing a process such as drying and pressing.
If this collector is a material normally used as a collector of a negative electrode, such as a copper foil or a nickel foil, it can be used without any particular limitation on thickness and surface treatment.
In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

そして、本発明で得られた非水電解質二次電池用負極材を用いて、リチウムイオン二次電池を製造することができる。
この場合、得られたリチウムイオン二次電池は、上記本発明の非水電解質二次電池用負極材を用いる点に特徴を有するものであって、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。
And a lithium ion secondary battery can be manufactured using the negative electrode material for nonaqueous electrolyte secondary batteries obtained by this invention.
In this case, the obtained lithium ion secondary battery is characterized in that the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention is used, and other materials such as positive electrode, electrolyte, separator, and battery Known shapes and the like can be used and are not particularly limited.

例えば、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoS等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。
また電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられたものとすることができる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , lithium, chalcogen compounds, and the like are used.
As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone is used. , 2-methyltetrahydrofuran or the like can be used alone or in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.

また、電気化学キャパシタを製造する場合は、電気化学キャパシタは、上記本発明の非水電解質二次電池用負極材を用いる点に特徴を有し、その他の電解質、セパレータ等の材料及びキャパシタ形状等は限定されない。   In the case of producing an electrochemical capacitor, the electrochemical capacitor is characterized in that the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is used, and other electrolytes, materials such as separators, capacitor shapes, etc. Is not limited.

例えば、電解質として六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられたものとすることができる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。   For example, non-aqueous solutions containing lithium salts such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate, etc. are used as the electrolyte, and propylene carbonate, ethylene carbonate, dimethyl carbonate are used as the non-aqueous solvent. , Diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, or the like, or a combination of two or more types. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
半導体製造用多結晶Si2kgと金属Mn粉末60gを坩堝に仕込み、高温雰囲気炉を用いて、Ar通気、1450℃で3時間加熱溶融させた。
冷却後に坩堝から取出し、ジョークラッシャーで粗砕した後にボールミルで粉砕して平均粒子径5μmの合金粉末を得た。
この合金粉末1kgと二酸化珪素粉末(BET比表面積200m/g)2kgを、純水3kgを加えて混練したのち、乾燥させて酸化珪素製造原料とした。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
2 kg of polycrystalline Si for semiconductor production and 60 g of metal Mn powder were charged into a crucible and melted by heating at 1450 ° C. for 3 hours in an Ar atmosphere using a high-temperature atmosphere furnace.
After cooling, it was taken out from the crucible, coarsely crushed with a jaw crusher, and then pulverized with a ball mill to obtain an alloy powder having an average particle size of 5 μm.
1 kg of this alloy powder and 2 kg of silicon dioxide powder (BET specific surface area 200 m 2 / g) were kneaded by adding 3 kg of pure water, and then dried to obtain a silicon oxide production raw material.

次に酸化珪素の作製を行った。この酸化珪素の作製には図1に示すような装置を用いた。
図1に示すような装置において、酸化珪素製造原料5を試料容器4に100g仕込み、これをアルミナ製の炉芯管1内に入れ、真空ポンプ7を用いて炉芯管1内を減圧した。
そして圧力計8で炉内圧が100Paに到達したことを確認した後、ヒーター2を通電し、1,400℃の温度に昇温して一酸化珪素蒸気を発生させた状態で5時間保持した。そして発生した一酸化珪素蒸気を、SUS製の析出基体6上に析出させた。この際、析出基体6の温度制御は断熱材3の厚さと強制冷却の2系統で行った。
その結果、炉芯管1内は最終的に30Paまで減圧された。また、原料の反応残重量より求めた反応率は93.8%であった。そして基体6上に析出した酸化珪素72gを回収することができた。
Next, silicon oxide was produced. An apparatus as shown in FIG. 1 was used for producing this silicon oxide.
In an apparatus as shown in FIG. 1, 100 g of the silicon oxide production raw material 5 was charged in a sample container 4, placed in an alumina furnace core tube 1, and the inside of the furnace core tube 1 was decompressed using a vacuum pump 7.
Then, after confirming that the pressure inside the furnace reached 100 Pa with the pressure gauge 8, the heater 2 was energized, heated to a temperature of 1,400 ° C., and maintained for 5 hours in a state where silicon monoxide vapor was generated. The generated silicon monoxide vapor was deposited on a SUS deposition base 6. At this time, the temperature control of the precipitation base 6 was performed by two systems of the thickness of the heat insulating material 3 and forced cooling.
As a result, the pressure inside the furnace core tube 1 was finally reduced to 30 Pa. Moreover, the reaction rate calculated | required from the reaction residual weight of the raw material was 93.8%. Then, 72 g of silicon oxide deposited on the substrate 6 could be recovered.

得られた析出物をライカイ機により解砕後、ICP発光分光分析装置により元素分析を行った。
その結果、Mn含有量は1質量%(10000ppm)であった。
The obtained precipitate was pulverized with a raikai machine and then subjected to elemental analysis with an ICP emission spectroscopic analyzer.
As a result, the Mn content was 1% by mass (10000 ppm).

この析出物をボールミルで5時間粉砕し、平均粒子径4.5μm、BET比表面積5.6m/gのMnドープ酸化珪素粉末を得た。
この粉末をX線回折装置(Bruker AXS社 D8 ADVANCE)で分析した。その結果、銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークを使用し、シェーラーの式によって求めた珪素の結晶の粒子径は2nmであった。また、透過電子顕微鏡により、珪素ナノ粒子が酸化珪素中に分散した構造が確認された。
This precipitate was pulverized with a ball mill for 5 hours to obtain a Mn-doped silicon oxide powder having an average particle diameter of 4.5 μm and a BET specific surface area of 5.6 m 2 / g.
This powder was analyzed with an X-ray diffractometer (Bruker AXS D8 ADVANCE). As a result, in the X-ray diffraction (Cu-Kα) using copper as the counter cathode, the diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° was used, and the value was obtained by the Scherrer equation. The particle size of the silicon crystals was 2 nm. Further, a structure in which silicon nanoparticles were dispersed in silicon oxide was confirmed by a transmission electron microscope.

次に、この粉末50gをバッチ式加熱炉内に仕込んだ。
具体的には、油回転式真空ポンプで炉内を減圧しつつ炉内を1100℃に昇温し、1100℃に達した後にCHガスを0.3NL/min流入し、5時間のカーボン被覆処理を行った。なお、この時の減圧度は800Paであった。
処理後は降温し、約52.7gの黒色粉末を得た。得られた黒色粉末は、平均粒子径5.2μm、黒色粉末に対するカーボン被覆量5質量%の導電性粉末であった。
この粉末のX線回折ピークを使用したシェーラーの式によって求めた珪素の結晶の粒子径は5nmであった。また、透過電子顕微鏡により、珪素ナノ粒子が酸化珪素中に分散した構造が確認された。
Next, 50 g of this powder was charged into a batch type heating furnace.
Specifically, the inside of the furnace is heated to 1100 ° C. while the inside of the furnace is depressurized with an oil rotary vacuum pump, and after reaching 1100 ° C., CH 4 gas is introduced at 0.3 NL / min, and carbon coating is performed for 5 hours. Processed. In addition, the pressure reduction degree at this time was 800 Pa.
After the treatment, the temperature was lowered to obtain about 52.7 g of black powder. The obtained black powder was a conductive powder having an average particle diameter of 5.2 μm and a carbon coating amount of 5 mass% with respect to the black powder.
The particle diameter of the silicon crystal determined by the Scherrer equation using the X-ray diffraction peak of this powder was 5 nm. Further, a structure in which silicon nanoparticles were dispersed in silicon oxide was confirmed by a transmission electron microscope.

<電池評価>
次に、以下の方法で、得られた導電性粉末を負極活物質として用いた電池評価を行った。
まず、得られた導電性粉末90gにポリイミドを10g加え、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cmに打ち抜き、負極とした。
<Battery evaluation>
Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, 10 g of polyimide was added to 90 g of the obtained conductive powder, and further N-methylpyrrolidone was added to form a slurry. This slurry was applied to a copper foil having a thickness of 20 μm, dried at 80 ° C. for 1 hour, and then by a roller press. The electrode was pressure-molded, and this electrode was vacuum-dried at 350 ° C. for 1 hour, then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製した評価用リチウムイオン二次電池を一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで0.5mA/cmの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cmを下回った時点で充電を終了した。放電は0.5mA/cmの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の200サイクル後の充放電試験を行った。その結果を表1に示す。
また、放電を放電レート0.2c及び1.0cの2種類で行い、1.0c放電時の放電容量を0.2c放電時の放電容量で割ったものを測定し、レート特性を評価した。その結果を同様に表1に示す。
The prepared lithium ion secondary battery for evaluation was allowed to stand overnight at room temperature, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm. The battery was charged with a constant current of 2 , and after reaching 0V, the battery was charged by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
The above charge / discharge test was repeated, and a charge / discharge test after 200 cycles of the evaluation lithium ion secondary battery was performed. The results are shown in Table 1.
Moreover, discharge was performed at two discharge rates of 0.2c and 1.0c, and the discharge capacity at the time of 1.0c discharge divided by the discharge capacity at the time of 0.2c discharge was measured to evaluate the rate characteristics. The results are also shown in Table 1.

(実施例2)
実施例1で用いたものと同じグレードの半導体製造用多結晶Si2kgと金属Ga粉末60gを坩堝に仕込み、高温雰囲気炉を用いて、Ar通気、1450℃で3時間加熱溶融させた。
冷却後に坩堝から取出し、ジョークラッシャーで粗砕した後にボールミルで粉砕して平均粒子径5μmの合金粉末を得た。
この合金粉末を使用し、実施例1と同様に図1に示すような装置を用いて酸化珪素を製造した。この時の反応率は92.9%であった。
(Example 2)
2 kg of polycrystalline Si for semiconductor production and 60 g of metal Ga powder of the same grade as those used in Example 1 were charged in a crucible and heated and melted at 1450 ° C. for 3 hours in an Ar atmosphere using a high-temperature atmosphere furnace.
After cooling, it was taken out from the crucible, coarsely crushed with a jaw crusher, and then pulverized with a ball mill to obtain an alloy powder having an average particle size of 5 μm.
Using this alloy powder, silicon oxide was produced using an apparatus as shown in FIG. The reaction rate at this time was 92.9%.

得られた析出物をライカイ機により解砕後、ICP発光分光分析装置により元素分析を行った。
その結果、Ga含有量は1質量%(10000ppm)であった。
The obtained precipitate was pulverized with a raikai machine and then subjected to elemental analysis with an ICP emission spectroscopic analyzer.
As a result, the Ga content was 1% by mass (10000 ppm).

この析出物をボールミルで5時間粉砕し、平均粒子径4.7μm、BET比表面積4.8m/gのGaドープ酸化珪素粉末を得た。 This precipitate was pulverized with a ball mill for 5 hours to obtain a Ga-doped silicon oxide powder having an average particle size of 4.7 μm and a BET specific surface area of 4.8 m 2 / g.

この粉末を実施例1と同様にカーボン被覆処理を行い、平均粒子径5.0μm、粉末に対するカーボン被覆量5質量%の黒色導電性粉末を得た。
この粉末を、実施例1と同様にX線回折装置で分析した結果、珪素の結晶の粒子径は5nmであった。
This powder was subjected to a carbon coating treatment in the same manner as in Example 1 to obtain a black conductive powder having an average particle diameter of 5.0 μm and a carbon coating amount of 5 mass% with respect to the powder.
As a result of analyzing this powder with an X-ray diffractometer in the same manner as in Example 1, the particle diameter of the silicon crystals was 5 nm.

そして実施例1と同様の条件で評価用リチウムイオン二次電池を作製し、同様の評価を行った。その結果を表1に示す。   And the evaluation lithium ion secondary battery was produced on the conditions similar to Example 1, and the same evaluation was performed. The results are shown in Table 1.

(実施例3)
実施例1で用いたものと同じグレードの半導体製造用多結晶Si2kgと金属Sn粉末60gを坩堝に仕込み、高温雰囲気炉を用いて、Ar通気、1450℃で3時間加熱溶融させた。
冷却後に坩堝から取出し、ジョークラッシャーで粗砕した後にボールミルで粉砕して平均粒子径5.1μmの合金粉末を得た。
この合金粉末を使用し、実施例1と同様に図1に示すような装置を用いて酸化珪素を製造した。この時の反応率は94.0%であった。
(Example 3)
2 kg of polycrystalline Si for semiconductor production and 60 g of metal Sn powder of the same grade as those used in Example 1 were charged in a crucible and heated and melted at 1450 ° C. for 3 hours in an Ar atmosphere using a high-temperature atmosphere furnace.
After cooling, it was taken out from the crucible, coarsely crushed with a jaw crusher, and then pulverized with a ball mill to obtain an alloy powder having an average particle size of 5.1 μm.
Using this alloy powder, silicon oxide was produced using an apparatus as shown in FIG. The reaction rate at this time was 94.0%.

得られた析出物をライカイ機により解砕後、ICP発光分光分析装置により元素分析を行った。
その結果、Sn含有量は4000ppmであった。
The obtained precipitate was pulverized with a raikai machine and then subjected to elemental analysis with an ICP emission spectroscopic analyzer.
As a result, the Sn content was 4000 ppm.

この析出物をボールミルで5時間粉砕し、平均粒子径5.0μm、BET比表面積5.1m/gのSn含有粉末を得た。 This precipitate was pulverized with a ball mill for 5 hours to obtain a Sn-containing powder having an average particle diameter of 5.0 μm and a BET specific surface area of 5.1 m 2 / g.

この粉末を実施例1と同様にカーボン被覆処理を行い、平均粒子径5.0μm、粉末に対するカーボン被覆量5質量%の黒色導電性粉末を得た。
この粉末を、実施例1と同様にX線回折装置で分析した結果、珪素の結晶の粒子径は5nmであった。
This powder was subjected to a carbon coating treatment in the same manner as in Example 1 to obtain a black conductive powder having an average particle diameter of 5.0 μm and a carbon coating amount of 5 mass% with respect to the powder.
As a result of analyzing this powder with an X-ray diffractometer in the same manner as in Example 1, the particle diameter of the silicon crystals was 5 nm.

そして実施例1と同様の条件で評価用リチウムイオン二次電池を作製し、同様の評価を行った。その結果を表1に示す。   And the evaluation lithium ion secondary battery was produced on the conditions similar to Example 1, and the same evaluation was performed. The results are shown in Table 1.

(比較例1)
実施例1で用いたものと同じグレードの半導体製造用多結晶Si2kgをボールミルで粉砕して平均粒径5μmとした粉末を使用し、実施例1と同様に図1に示すような装置を用いて酸化珪素を製造した。この時の反応率は95.5%であった。
(Comparative Example 1)
Using a powder as shown in FIG. 1 in the same manner as in Example 1 using a powder having an average particle size of 5 μm obtained by pulverizing 2 kg of polycrystalline Si for semiconductor production of the same grade as that used in Example 1 with a ball mill. Silicon oxide was produced. The reaction rate at this time was 95.5%.

この析出物をライカイ機により解砕後、ICP発光分光分析装置による元素分析を行った結果、珪素と酸素以外の元素の含有量は10ppm未満であった。   The precipitate was pulverized by a raikai machine and then subjected to elemental analysis using an ICP emission spectroscopic analyzer. As a result, the content of elements other than silicon and oxygen was less than 10 ppm.

これをボールミルで5時間粉砕し、平均粒子径5.0μm、BET比表面積5.1m/gの粉末を得た。 This was pulverized with a ball mill for 5 hours to obtain a powder having an average particle diameter of 5.0 μm and a BET specific surface area of 5.1 m 2 / g.

この粉末を実施例1と同様にカーボン被覆処理を行い、平均粒子径5.0μm、粉末に対するカーボン被覆量5質量%の黒色導電性粉末を得た。
この粉末を、実施例1と同様にX線回折装置で分析した結果、珪素の結晶の粒子径は5nmであった。
This powder was subjected to a carbon coating treatment in the same manner as in Example 1 to obtain a black conductive powder having an average particle diameter of 5.0 μm and a carbon coating amount of 5 mass% with respect to the powder.
As a result of analyzing this powder with an X-ray diffractometer in the same manner as in Example 1, the particle diameter of the silicon crystals was 5 nm.

そして実施例1と同様の条件で評価用リチウムイオン二次電池を作製し、同様の評価を行った。その結果を表1に示す。   And the evaluation lithium ion secondary battery was produced on the conditions similar to Example 1, and the same evaluation was performed. The results are shown in Table 1.

(比較例2)
実施例1で用いたものと同じグレードの半導体製造用多結晶Siをボールミルで粉砕して平均粒径5μmとした粉末30gと、金属Mn粉末0.9g、二酸化珪素粉末(BET比表面積200m/g)64gとを純水100gを加えて混練して乾燥させた。
この混練乾燥粉末を坩堝に仕込み、実施例1と同様に図1に示すような装置を用いて酸化珪素を製造した。析出物の回収時、酸化珪素とは別の場所に金属状の物質が析出しており、反応率も57.4%と低かった。
(Comparative Example 2)
Polycrystalline Si for semiconductor production of the same grade as used in Example 1 was pulverized with a ball mill to give an average particle size of 5 μm, 30 g of metal Mn powder, 0.9 g of silicon dioxide powder (BET specific surface area of 200 m 2 / g) 100 g of pure water was added to 64 g and kneaded and dried.
This kneaded and dried powder was charged into a crucible, and silicon oxide was produced using an apparatus as shown in FIG. At the time of collecting the precipitate, a metallic substance was deposited at a place different from silicon oxide, and the reaction rate was as low as 57.4%.

この析出物をライカイ機により解砕後、ボールミルで5時間粉砕し、平均粒子径5.1μm、BET比表面積5.2m/gの黒色導電性粉末を得た。
この粉末は、ICP発光分光分析装置による元素分析の結果、Mnの含有量は35ppmであることが判った。
The precipitate was pulverized with a lykai machine and then pulverized with a ball mill for 5 hours to obtain a black conductive powder having an average particle diameter of 5.1 μm and a BET specific surface area of 5.2 m 2 / g.
As a result of elemental analysis using an ICP emission spectroscopic analyzer, this powder was found to have a Mn content of 35 ppm.

そして実施例1と同様の条件で評価用リチウムイオン二次電池を作製し、同様の評価を行った。その結果を表1に示す。   And the evaluation lithium ion secondary battery was produced on the conditions similar to Example 1, and the same evaluation was performed. The results are shown in Table 1.

Figure 2013008696
Figure 2013008696

表1に示すように、実施例1の粉末は、200サイクル後の容量維持率88%であり、サイクル特性に優れたリチウムイオン二次電池であることが確認された。また、1.0c/0.2cの比率も90%であり、優れたレート特性であることも確認できた。
また、実施例2の粉末も、200サイクル後の容量維持率83%、1.0c/0.2cの比率も87%であり、実施例1と同様に優れたレート特性であることが確認された。
実施例3の粉末も、200サイクル後の容量維持率86%、1.0c/0.2cの比率も89%であり、実施例1,2と同様に優れたレート特性であることが確認された。
As shown in Table 1, it was confirmed that the powder of Example 1 was a lithium ion secondary battery with a capacity retention rate of 88% after 200 cycles and excellent cycle characteristics. Moreover, the ratio of 1.0c / 0.2c was 90%, and it was confirmed that the rate characteristics were excellent.
In addition, the powder of Example 2 also had a capacity retention rate of 83% after 200 cycles and a ratio of 1.0c / 0.2c of 87%, and it was confirmed that the rate characteristics were excellent as in Example 1. It was.
The powder of Example 3 also had a capacity retention rate of 86% after 200 cycles and a ratio of 1.0c / 0.2c of 89%, and it was confirmed that the rate characteristics were excellent as in Examples 1 and 2. It was.

これに対し、表1に示すように、比較例1の粉末は、200サイクル後の容量維持率73%と、実施例1−3に比べて明らかに劣っており、サイクル特性に劣ることが判った。また、1.0c/0.2cの比率も82%であり、レート特性にも劣ることが判った。
そして、比較例2の粉末は、200サイクル後の容量維持率75%と、比較例1の粉末と同様に実施例1−3に比べてサイクル特性が劣っていることが判った。そして1.0c/0.2cの比率も83%であり、レート特性も劣ることが判った。
On the other hand, as shown in Table 1, it was found that the powder of Comparative Example 1 had a capacity retention rate of 73% after 200 cycles, which was clearly inferior to that of Example 1-3 and inferior in cycle characteristics. It was. Further, the ratio of 1.0c / 0.2c was 82%, and it was found that the rate characteristics were inferior.
And it turned out that the powder of the comparative example 2 is inferior in cycle characteristics compared with Example 1-3 like the powder of the comparative example 1 with the capacity | capacitance maintenance factor 75% after 200 cycles. The ratio of 1.0c / 0.2c was 83%, indicating that the rate characteristics were inferior.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…炉芯管、 2…ヒーター、 3…断熱材、 4…試料容器、 5…原料、 6…析出基体、 7…真空ポンプ、 8…圧力計。   DESCRIPTION OF SYMBOLS 1 ... Furnace core tube, 2 ... Heater, 3 ... Thermal insulation material, 4 ... Sample container, 5 ... Raw material, 6 ... Precipitation base, 7 ... Vacuum pump, 8 ... Pressure gauge.

Claims (3)

非水電解質を用いる二次電池用の負極材の製造方法であって、
少なくとも、珪素原料に珪素、酸素以外の元素を含有させ、
該珪素、酸素以外の元素が含有された珪素原料を用いて、一般式SiO(x=0.5〜1.6)で表される酸化珪素、珪素が二酸化珪素に分散した構造を有するSi/Oのモル比が1/0.5〜1.6の珪素複合体、及び前記酸化珪素と前記珪素複合体の混合物のいずれかを、前記珪素、酸素以外の元素が50〜100000ppmの濃度で含有されるように作製することを特徴とする非水電解質二次電池用負極材の製造方法。
A method for producing a negative electrode material for a secondary battery using a non-aqueous electrolyte,
At least the silicon raw material contains elements other than silicon and oxygen,
Using silicon raw materials containing elements other than silicon and oxygen, silicon oxide represented by the general formula SiO x (x = 0.5 to 1.6), Si having a structure in which silicon is dispersed in silicon dioxide Any of a silicon composite having a / O molar ratio of 1 / 0.5 to 1.6 and a mixture of the silicon oxide and the silicon composite is contained at a concentration of 50 to 100,000 ppm of elements other than the silicon and oxygen. A method for producing a negative electrode material for a nonaqueous electrolyte secondary battery, wherein the negative electrode material is produced so as to be contained.
前記珪素、酸素以外の元素を、La、V、Co、Mn、Ga、Ge、Sn、B、Al、Fe、Mg、Pb、Ag、As、Bi、Br、Cr、Hg、S、Te、P、Nbのうち少なくとも1種類とすることを特徴とする請求項1に記載の非水電解質二次電池用負極材の製造方法。   Elements other than silicon and oxygen are La, V, Co, Mn, Ga, Ge, Sn, B, Al, Fe, Mg, Pb, Ag, As, Bi, Br, Cr, Hg, S, Te, P. The method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to claim 1, wherein at least one of Nb and Nb is used. 更に、有機物ガス中で化学蒸着することにより、表面をカーボン被膜で被覆することを特徴とする請求項1または請求項2に記載の非水電解質二次電池用負極材の製造方法。   Furthermore, the surface is coat | covered with a carbon film by carrying out chemical vapor deposition in organic substance gas, The manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2012204495A 2012-09-18 2012-09-18 Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery Pending JP2013008696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204495A JP2013008696A (en) 2012-09-18 2012-09-18 Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204495A JP2013008696A (en) 2012-09-18 2012-09-18 Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010055940A Division JP5184567B2 (en) 2010-03-12 2010-03-12 Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor

Publications (1)

Publication Number Publication Date
JP2013008696A true JP2013008696A (en) 2013-01-10

Family

ID=47675832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204495A Pending JP2013008696A (en) 2012-09-18 2012-09-18 Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2013008696A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
WO2014188851A1 (en) * 2013-05-23 2014-11-27 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
WO2014199554A1 (en) * 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR20170069951A (en) * 2015-12-11 2017-06-21 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
CN112310384A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
CN112310357A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery containing same
WO2021053951A1 (en) * 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active substance, negative electrode, and methods for producing these
CN112751031A (en) * 2019-10-30 2021-05-04 华为技术有限公司 Cathode material, preparation method thereof, lithium ion battery and terminal
CN115036482A (en) * 2022-06-23 2022-09-09 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and secondary battery
US11522181B2 (en) 2019-07-29 2022-12-06 Contemporary Amperex Technology Co., Limited Silicon-oxygen compound, secondary battery using it, and related battery module, battery pack and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007227138A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Electrode for nonaqueous secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2009038033A (en) * 2007-02-02 2009-02-19 Panasonic Corp Electrode for lithium cell and manufacturing method of electrode for lithium cell
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2010040231A (en) * 2008-08-01 2010-02-18 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP2010244950A (en) * 2009-04-09 2010-10-28 Nec Energy Devices Ltd Film outer package type nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007227138A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Electrode for nonaqueous secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2009038033A (en) * 2007-02-02 2009-02-19 Panasonic Corp Electrode for lithium cell and manufacturing method of electrode for lithium cell
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2010040231A (en) * 2008-08-01 2010-02-18 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP2010244950A (en) * 2009-04-09 2010-10-28 Nec Energy Devices Ltd Film outer package type nonaqueous electrolyte secondary battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
WO2014188851A1 (en) * 2013-05-23 2014-11-27 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
CN105229828A (en) * 2013-05-23 2016-01-06 信越化学工业株式会社 Negative electrode material for nonaqueous electrode secondary battery and secondary cell
JPWO2014188851A1 (en) * 2013-05-23 2017-02-23 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2017063056A (en) * 2013-05-23 2017-03-30 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and secondary battery
US9893353B2 (en) 2013-05-23 2018-02-13 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
CN109244420A (en) * 2013-05-23 2019-01-18 信越化学工业株式会社 Negative electrode material for nonaqueous electrode secondary battery and secondary cell
US10700348B2 (en) 2013-05-23 2020-06-30 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
CN109244420B (en) * 2013-05-23 2021-09-24 信越化学工业株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and secondary battery
WO2014199554A1 (en) * 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR102237949B1 (en) 2015-12-11 2021-04-08 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
KR20170069951A (en) * 2015-12-11 2017-06-21 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
KR20220030275A (en) * 2019-07-29 2022-03-10 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Silicon oxygen compound, its manufacturing method, and related secondary batteries, battery modules, battery packs and devices
JP2022542272A (en) * 2019-07-29 2022-09-30 寧徳時代新能源科技股▲分▼有限公司 Silicon-oxygen compound, preparation method thereof, and related secondary battery, battery module, battery pack and device
KR102648495B1 (en) 2019-07-29 2024-03-19 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Silicon oxygen compounds, manufacturing methods thereof, and secondary batteries, battery modules, battery packs and devices related thereto
JP7301212B2 (en) 2019-07-29 2023-06-30 寧徳時代新能源科技股▲分▼有限公司 Silicon-oxygen compound, preparation method thereof, and related secondary battery, battery module, battery pack and device
WO2021017826A1 (en) * 2019-07-29 2021-02-04 宁德时代新能源科技股份有限公司 Siloxane compound, preparation method therefor, and related secondary battery, battery module, battery pack, and apparatus
US11522181B2 (en) 2019-07-29 2022-12-06 Contemporary Amperex Technology Co., Limited Silicon-oxygen compound, secondary battery using it, and related battery module, battery pack and device
EP3800711A4 (en) * 2019-07-29 2021-08-25 Contemporary Amperex Technology Co., Limited Siloxane compound, preparation method therefor, and related secondary battery, battery module, battery pack, and apparatus
CN112310357A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery containing same
CN112310357B (en) * 2019-07-29 2022-02-11 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery containing same
CN112310384A (en) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
CN112310384B (en) * 2019-07-29 2022-03-11 宁德时代新能源科技股份有限公司 Silicon-oxygen compound and secondary battery
EP3926715A4 (en) * 2019-07-29 2022-05-04 Contemporary Amperex Technology Co., Limited Silicon-oxygen compound, preparation method therefor, and secondary battery, battery module, battery pack and apparatus related thereto
WO2021017813A1 (en) * 2019-07-29 2021-02-04 宁德时代新能源科技股份有限公司 Silicon-oxygen compound, preparation method therefor, and secondary battery, battery module, battery pack and apparatus related thereto
JP2021048049A (en) * 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active material, negative electrode, and manufacturing method of them
WO2021053951A1 (en) * 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active substance, negative electrode, and methods for producing these
CN112751031A (en) * 2019-10-30 2021-05-04 华为技术有限公司 Cathode material, preparation method thereof, lithium ion battery and terminal
CN112751031B (en) * 2019-10-30 2023-10-20 华为技术有限公司 Negative electrode material, preparation method thereof, lithium ion battery and terminal
CN115036482A (en) * 2022-06-23 2022-09-09 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and secondary battery
CN115036482B (en) * 2022-06-23 2023-08-15 欣旺达电动汽车电池有限公司 Negative electrode material, preparation method thereof and secondary battery

Similar Documents

Publication Publication Date Title
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5411780B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
JP5379026B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor
JP4985949B2 (en) Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
KR101676048B1 (en) Silicon oxide for nonaqueous electrolytic secondary battery negative electrode material, process for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5215978B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6156089B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5675546B2 (en) Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP6020331B2 (en) Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5320890B2 (en) Method for producing negative electrode material
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN107925074B (en) Negative electrode material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304