JP2009091195A - Apparatus and method for producing silicon monoxide - Google Patents

Apparatus and method for producing silicon monoxide Download PDF

Info

Publication number
JP2009091195A
JP2009091195A JP2007263368A JP2007263368A JP2009091195A JP 2009091195 A JP2009091195 A JP 2009091195A JP 2007263368 A JP2007263368 A JP 2007263368A JP 2007263368 A JP2007263368 A JP 2007263368A JP 2009091195 A JP2009091195 A JP 2009091195A
Authority
JP
Japan
Prior art keywords
silicon monoxide
silicon
powder
gas
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263368A
Other languages
Japanese (ja)
Inventor
Hirofumi Fukuoka
宏文 福岡
Toshio Okada
敏雄 岡田
Shu Kashida
周 樫田
Toshio Oba
敏夫 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007263368A priority Critical patent/JP2009091195A/en
Publication of JP2009091195A publication Critical patent/JP2009091195A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing silicon monoxide which can stably and efficiently produce highly pure silicon monoxide, and can be easily expanded to cope with the production on an industrial scale. <P>SOLUTION: This production apparatus of silicon monoxide is used for the production of silicon monoxide comprising heating a mixed raw material powder comprising silicon dioxide powder at a temperature range of 1,100-1,600°C under an inert gas atmosphere or a reduced pressure, to generate silicon monoxide gas, and depositing the silicon monoxide gas on the surface of a substrate held at 1,000°C or lower, where the structural member (except the substrate for deposition) in contact with the silicon monoxide gas heated at 1,100-1,600°C is constructed with a C/C composite material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、包装フィルム蒸着用及びリチウムイオン二次電池負極活物質等として好適に用いられている一酸化珪素の製造装置及び製造方法に関する。   The present invention relates to an apparatus and a method for producing silicon monoxide which are suitably used for packaging film deposition and as a negative electrode active material for lithium ion secondary batteries.

従来、一酸化珪素の製造方法としては、珪素と石英粉末を真空中で1,300℃で加熱保持し、一酸化珪素の気体を発生させ、この一酸化珪素の気体を450〜950℃へ加熱保持した蒸着管に析出させる方法(特許文献1:特公昭40−22050号公報)、二酸化珪素系酸化物粉末からなる原料混合物を減圧非酸化性雰囲気中で熱処理し、一酸化珪素蒸気を発生させ、この一酸化珪素蒸気を気相中で凝縮させて、0.1μm以下の微細アモルファス状の一酸化珪素粉末を連続的に製造する方法(特許文献2:特開昭63−103815号公報)、及び原料珪素を加熱蒸発させて、表面組織を粗とした基体の表面に蒸着させる方法(特許文献3:特開平9−110412号公報)が知られており、いずれも一酸化珪素蒸気を蒸着する方法にて製造されている。この場合、発生した一酸化珪素蒸気は非常に活性が高く、反応性が高いものであり、この一酸化珪素蒸気と接触する炉構成部材の選定は困難にもかかわらず、上記従来技術においては、構成部材の材質にふれているものは無かった。   Conventionally, as a method for producing silicon monoxide, silicon and quartz powder are heated and held in vacuum at 1,300 ° C. to generate a gas of silicon monoxide, and the gas of silicon monoxide is heated to 450 to 950 ° C. A method of depositing on a held vapor deposition tube (Patent Document 1: Japanese Patent Publication No. 40-22050), a raw material mixture made of silicon dioxide-based oxide powder is heat-treated in a reduced pressure non-oxidizing atmosphere to generate silicon monoxide vapor. , A method of continuously producing a fine amorphous silicon monoxide powder of 0.1 μm or less by condensing this silicon monoxide vapor in a gas phase (Patent Document 2: JP-A 63-103815), And a method of evaporating raw material silicon by heating and evaporating it on the surface of a substrate having a rough surface structure (Patent Document 3: Japanese Patent Application Laid-Open No. 9-110212) is known. On the way It has been produced. In this case, the generated silicon monoxide vapor is very active and highly reactive, and it is difficult to select a furnace component that contacts the silicon monoxide vapor. None of the components were touching the material.

そこで、本発明者らは、この問題点に着目し、少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを冷却した基体表面に析出させる一酸化珪素粉末の製造方法において、炉構成部材である反応室,搬送管及びヒーターの少なくとも1つがMo,W及び/又はそれらの化合物といった高融点金属あるいは炭化珪素膜で黒鉛を被覆した黒鉛材によって形成した発明を提案し(特許文献4:特開2001−220124号公報)、安定的な一酸化珪素製造を可能とした。   Therefore, the present inventors pay attention to this problem, and heat the mixed raw material powder containing at least silicon dioxide powder at a temperature range of 1,100 to 1,600 ° C. under an inert gas or a reduced pressure to produce silicon monoxide gas. In the method for producing silicon monoxide powder in which the silicon monoxide gas is deposited on the cooled substrate surface, at least one of the reaction chamber, the transfer pipe, and the heater, which are furnace components, is Mo, W and / or their An invention formed by a graphite material in which graphite is coated with a high melting point metal such as a compound or a silicon carbide film has been proposed (Patent Document 4: Japanese Patent Application Laid-Open No. 2001-220124), enabling stable production of silicon monoxide.

しかしながら、上記特開2001−220124号公報に記載された方法は、従来の炉構成部材として黒鉛材を用いた方法に比べると、格段に損傷が少なくなるものの、Mo,Wといった高融点金属を使用した場合は高価であったり、所定形状の加工が困難といった問題があった。また、炭化珪素膜で黒鉛を被覆した黒鉛材の使用においても、偶発的に炭化珪素膜が剥離した場合に、晒された黒鉛材を起点として、損傷が起こる場合があるなど、必ずしも完全に満足のいく方法ではなかった。   However, the method described in JP-A-2001-220124 uses a refractory metal such as Mo or W, although the damage is significantly reduced as compared with a method using a graphite material as a conventional furnace component. In such a case, there is a problem that it is expensive and it is difficult to process a predetermined shape. In addition, even when using a graphite material with graphite coated with a silicon carbide film, if the silicon carbide film is accidentally peeled off, damage may occur starting from the exposed graphite material. It was not the way to go.

一方で、一般的な一酸化珪素の製造装置では、炉構成部材として黒鉛が用いられており、発生した一酸化珪素蒸気と、構成されている黒鉛部材が下記反応式による反応が起こってしまう。   On the other hand, in a general silicon monoxide production apparatus, graphite is used as a furnace constituent member, and the generated silicon monoxide vapor and the composed graphite member undergo a reaction according to the following reaction formula.

C(s)+SiO(g) → SiC(s)+CO(g)
このような反応の結果、上記一酸化珪素の製造装置では、黒鉛材の消耗による強度劣化や、黒鉛材内部に不均質に形成された炭化珪素と黒鉛材の熱膨張差による内部での残留歪みが原因となって、黒鉛部材、即ち原料容器及びマッフルで構成される反応室,搬送管及びヒーターに破損が生じ、長時間の運転に耐えられないといった問題があった。
C (s) + SiO (g) → SiC (s) + CO (g)
As a result of such a reaction, the silicon monoxide production apparatus described above suffers strength deterioration due to exhaustion of the graphite material, and internal residual strain due to the difference in thermal expansion between the silicon carbide and the graphite material that are heterogeneously formed inside the graphite material. For this reason, there is a problem that the graphite member, that is, the reaction chamber composed of the raw material container and the muffle, the transfer tube, and the heater are damaged, and cannot be operated for a long time.

特公昭40−22050号公報Japanese Patent Publication No. 40-22050 特開昭63−103815号公報JP-A 63-103815 特開平9−110412号公報JP-A-9-110412 特開2001−220124号公報JP 2001-220124 A

本発明は上記事情に鑑みなされたもので、一酸化珪素蒸気雰囲気で使用しても安定的かつ効率的に一酸化珪素を製造することができ、かつ大型化が可能な一酸化珪素の製造装置及び製造方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and is capable of producing silicon monoxide stably and efficiently even when used in a silicon monoxide vapor atmosphere and capable of increasing the size. And it aims at providing a manufacturing method.

本発明者らは、上記目的を達成するために種々の高温部材をテストピースを用いた一酸化珪素蒸気雰囲気での高温テストを行った結果、C/Cコンポジット材を用いることで、一酸化珪素蒸気中での使用に十分耐えられるとの知見を得ることができ、C/Cコンポジット材を一酸化珪素の製造装置の構成部材として用いることで、安定して一酸化珪素が製造できることが可能となることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors conducted a high temperature test on various high temperature members in a silicon monoxide vapor atmosphere using a test piece, and as a result, silicon monoxide was obtained by using a C / C composite material. Knowledge that it can sufficiently withstand use in steam can be obtained, and silicon monoxide can be stably produced by using a C / C composite material as a constituent member of a production apparatus for silicon monoxide. As a result, the present invention has been completed.

従って、本発明は、下記の一酸化珪素の製造装置及び製造方法を提供する。
(1)少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法に用いられる一酸化珪素の製造装置において、1,100〜1,600℃の一酸化珪素ガスが接触する構成部材(但し、該析出基体を除く)をC/Cコンポジット材で構成したことを特徴とする一酸化珪素の製造装置。
(2)C/Cコンポジット材が黒鉛粉末と黒鉛繊維との混合物であり、黒鉛繊維の混合割合が20〜70質量%であることを特徴とする(1)の一酸化珪素の製造装置。
(3)少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法において、(1)又は(2)の製造装置を用いて製造することを特徴とする一酸化珪素の製造方法。
Therefore, this invention provides the manufacturing apparatus and manufacturing method of the following silicon monoxide.
(1) A mixed raw material powder containing at least silicon dioxide powder is heated at 1,100 to 1,600 ° C. under an inert gas or under reduced pressure to generate silicon monoxide gas. In a silicon monoxide production apparatus used in a method for producing silicon monoxide to be deposited on a substrate surface of 000 ° C. or lower, a component in contact with silicon monoxide gas at 1,100 to 1,600 ° C. Is made of a C / C composite material.
(2) The apparatus for producing silicon monoxide according to (1), wherein the C / C composite material is a mixture of graphite powder and graphite fiber, and the mixing ratio of the graphite fiber is 20 to 70% by mass.
(3) The mixed raw material powder containing at least silicon dioxide powder is heated in an inert gas or under a reduced pressure at a temperature range of 1,100 to 1,600 ° C. to generate silicon monoxide gas. In the manufacturing method of the silicon monoxide deposited on the base-material surface below 000 degreeC, it manufactures using the manufacturing apparatus of (1) or (2), The manufacturing method of the silicon monoxide characterized by the above-mentioned.

本発明の一酸化珪素の製造装置によれば、高純度な一酸化珪素を効率的かつ安定的に製造することができ、かつ、大型化も容易であり、工業的規模の生産にも十分に応えられるものである。   According to the silicon monoxide production apparatus of the present invention, high-purity silicon monoxide can be produced efficiently and stably, and it is easy to increase the size, which is sufficient for industrial scale production. It can be answered.

図1は、本発明の一実施例に係る一酸化珪素の製造装置を示すもので、図中1は、反応装置であり、この反応装置1内にマッフル(保護容器)2が配設されており、このマッフル2内が反応室2aとして構成され、更にこのマッフル2内に(即ち、反応室2aに)原料容器3が配設され、この容器3内に原料4として二酸化珪素粉末とこれを還元する粉末との混合物が収容される。この場合、還元粉末としては金属珪素粉末、炭素粉末等が挙げられるが、特に金属珪素粉末を用いたものが、<1>反応性を高める、<2>収率を高めるといった点で効果的であり、好ましく用いられる。二酸化珪素粉末と還元粉末との混合割合は特に制限されないが、通常、二酸化珪素粉末に対する還元粉末のモル比で、1<(還元粉末/二酸化珪素粉末)<1.3(モル比)、特に1.05≦(還元粉末/二酸化珪素粉末)≦1.2(モル比)、更には、1.05<(還元粉末/二酸化珪素粉末)<1.2(モル比)程度であることが好ましい。   FIG. 1 shows an apparatus for producing silicon monoxide according to an embodiment of the present invention, in which 1 is a reaction apparatus, and a muffle (protective container) 2 is disposed in the reaction apparatus 1. The inside of the muffle 2 is configured as a reaction chamber 2a, and further, a raw material container 3 is disposed in the muffle 2 (that is, in the reaction chamber 2a), and silicon dioxide powder and this are used as the raw material 4 in the container 3. Contains a mixture with the powder to be reduced. In this case, the reducing powder includes metallic silicon powder, carbon powder, and the like, and those using metallic silicon powder are particularly effective in that <1> increase the reactivity and <2> increase the yield. Yes, preferably used. The mixing ratio of the silicon dioxide powder and the reduced powder is not particularly limited, but usually the molar ratio of the reduced powder to the silicon dioxide powder is 1 <(reduced powder / silicon dioxide powder) <1.3 (molar ratio), particularly 1. .05 ≦ (reduced powder / silicon dioxide powder) ≦ 1.2 (molar ratio), and further preferably about 1.05 <(reduced powder / silicon dioxide powder) <1.2 (molar ratio).

上記マッフル2の外側方には、上記反応装置1内に存して、マッフル2を取り囲んでヒーター5が配設され、更にヒーター5を取り囲んで、断熱材6が配設されており、ヒーター5に通電し、反応室2aを1,100〜1,600℃、好ましくは1,200〜1,500℃の温度に加熱・保持する。反応温度が1,100℃未満では反応が進行し難く、生産性が低下してしまうし、逆に1,600℃を超えると、混合原料粉末が溶融して、逆に反応性が低下したり、炉材の選定が困難になるおそれがある。
上記加熱により、原料混合物中の二酸化珪素が還元粉末により還元されて1,100〜1,600℃、好ましくは1,200〜1,500℃の一酸化珪素ガスが生成する。
On the outside of the muffle 2, a heater 5 is provided surrounding the muffle 2 in the reactor 1, and a heat insulating material 6 is further provided surrounding the heater 5. The reaction chamber 2a is heated and maintained at a temperature of 1,100 to 1,600 ° C, preferably 1,200 to 1,500 ° C. If the reaction temperature is less than 1,100 ° C., the reaction is difficult to proceed and the productivity is reduced. Conversely, if the reaction temperature exceeds 1,600 ° C., the mixed raw material powder is melted, and the reactivity is reduced. This may make it difficult to select furnace materials.
By the heating, silicon dioxide in the raw material mixture is reduced by the reducing powder to generate silicon monoxide gas at 1,100 to 1,600 ° C., preferably 1,200 to 1,500 ° C.

なお、炉内雰囲気は不活性ガスもしくは減圧下であるが、熱力学的に減圧下の方が反応性が高く、低温反応が可能となるため、減圧下で行うことが望ましい。なお、減圧度は、1〜3,000Pa、特に5〜1,000Paの範囲が好ましい。減圧度を1Paより小さくするには真空ポンプの能力を大きく増大させねばならず、設備コストが増大する反面、反応性向上の効果は軽微であり、また逆に3,000Paより大きいと反応性が著しく低下する。   The atmosphere in the furnace is an inert gas or under reduced pressure. However, it is desirable to perform under reduced pressure because thermoreactive under reduced pressure has higher reactivity and enables low-temperature reaction. The degree of vacuum is preferably in the range of 1 to 3,000 Pa, particularly 5 to 1,000 Pa. In order to reduce the degree of decompression to less than 1 Pa, the capacity of the vacuum pump must be greatly increased, and the equipment cost increases. On the other hand, the effect of improving the reactivity is negligible. It drops significantly.

上記マッフル2は、その上端が開口し、この開口部にガス搬送管7が連結され、更にこのガス搬送管7に一酸化珪素析出容器(析出基体)8が連結され、この析出基体8内が一酸化珪素析出ゾーン8aとして構成され、上記析出基体8の内壁面が一酸化珪素析出部9とされている。   The upper end of the muffle 2 is opened, a gas transport pipe 7 is connected to the opening, and a silicon monoxide deposition vessel (precipitation base) 8 is connected to the gas transport pipe 7. The silicon monoxide deposition zone 8a is configured, and the inner wall surface of the deposition base 8 is a silicon monoxide deposition portion 9.

上記反応室2a内で発生した一酸化珪素ガスは、ガス搬送管7を通過し、析出ゾーン8a内に流入し、1,000℃以下の温度域に設置された析出ゾーン8a内の析出基体8の析出部9上に冷却、析出される。ここで、析出基体8の種類、材質は特に限定されず、1,000℃の温度に耐え得るものであれば特に問題ないが、加工性の面でSUSやモリブデン、タングステンといった高融点金属が好ましく用いられる。なお、析出ゾーン8aは1,000℃以下の温度範囲、通常、700〜1,000℃、特に800〜950℃の温度範囲に設定されていることが好ましく、析出ゾーン8aの温度が700℃未満では生成する固体状一酸化珪素(粒子)のBET比表面積が高くなり、取り出す際に酸化が生じて一酸化珪素としての純度が低下する(即ち、SiO2成分が混入する)場合があり、一方、析出ゾーン8aの温度が1,000℃を超える場合にはC/Cコンポジット材を除いて析出基体8の材質の選定が困難になる。 The silicon monoxide gas generated in the reaction chamber 2a passes through the gas transport pipe 7, flows into the deposition zone 8a, and the deposition substrate 8 in the deposition zone 8a installed in a temperature range of 1,000 ° C. or lower. Then, it is cooled and deposited on the precipitation portion 9. Here, the type and material of the precipitation base 8 are not particularly limited and are not particularly limited as long as they can withstand a temperature of 1,000 ° C., but refractory metals such as SUS, molybdenum, and tungsten are preferable in terms of workability. Used. The precipitation zone 8a is preferably set to a temperature range of 1,000 ° C. or less, usually 700 to 1,000 ° C., particularly 800 to 950 ° C., and the temperature of the precipitation zone 8a is less than 700 ° C. In the case where the solid silicon monoxide (particles) produced has a high BET specific surface area, oxidation may occur at the time of extraction, and the purity of silicon monoxide may be reduced (that is, the SiO 2 component may be mixed). When the temperature of the precipitation zone 8a exceeds 1,000 ° C., it is difficult to select the material of the precipitation base 8 except for the C / C composite material.

なお、10は真空ポンプであり、この真空ポンプ10に連結された排気管11が上記析出ゾーン8aに連通されていることにより、上記真空ポンプ10の作動で、析出ゾーン8a、ガス搬送管7内及び反応室2aがそれぞれ所定の減圧度となるように減圧されるものである。   Reference numeral 10 denotes a vacuum pump. Since the exhaust pipe 11 connected to the vacuum pump 10 communicates with the deposition zone 8a, the vacuum pump 10 is operated so that the inside of the deposition zone 8a and the gas transport pipe 7 The reaction chamber 2a is depressurized so as to have a predetermined depressurization degree.

ここで、本発明においては、少なくとも上記原料容器3、マッフル2、ガス搬送管7、及び、マッフルを設置しない場合のヒーターといった1,100〜1,600℃の一酸化珪素ガスと接触する可能性のある炉構成部材をC/Cコンポジット材とするものである。なお、上記図1の実施例では、ヒーター5及び断熱材6は、マッフル2により一酸化珪素蒸気から遮断、保護されているため、これらの部材をC/Cコンポジット材にて形成する必要はない。また、1,000℃以下の温度範囲にある析出基体8も必ずしもC/Cコンポジット材にて形成する必要もない。
ここで、C/Cコンポジット材は特に限定されず、黒鉛粉と黒鉛繊維で形成されたものが使用される。
Here, in the present invention, there is a possibility of contact with at least 1,100 to 1,600 ° C. silicon monoxide gas such as the raw material container 3, the muffle 2, the gas transport pipe 7, and the heater when the muffle is not installed. A furnace constituent member having a C / C composite material is used. In the embodiment shown in FIG. 1, the heater 5 and the heat insulating material 6 are shielded and protected from the silicon monoxide vapor by the muffle 2, so that it is not necessary to form these members with a C / C composite material. . In addition, the deposition base 8 in the temperature range of 1,000 ° C. or less is not necessarily formed of the C / C composite material.
Here, the C / C composite material is not particularly limited, and a material formed of graphite powder and graphite fiber is used.

上記したような炉構成部材をC/Cコンポジット材とすることで、黒鉛材と同じく、発生した一酸化珪素ガスと下記反応が起こる。
C(s)+SiO(g) → SiC(s)+CO(g)
即ち、C/Cコンポジット材がSiC/SiCコンポジット材と転化するわけであるが、黒鉛材の炭化珪素化と異なり、黒鉛繊維が混在していることによって、脆性が改良され、黒鉛と炭化珪素の熱膨張差による応力が緩和されるため、上記反応が起こった場合でも形状を維持することができる。
By using the above-mentioned furnace constituent member as a C / C composite material, the following reaction occurs with the generated silicon monoxide gas as in the case of the graphite material.
C (s) + SiO (g) → SiC (s) + CO (g)
That is, the C / C composite material is converted to the SiC / SiC composite material, but unlike the silicon carbide conversion of the graphite material, the presence of graphite fibers improves the brittleness, and the graphite and silicon carbide. Since the stress due to the difference in thermal expansion is relaxed, the shape can be maintained even when the above reaction occurs.

ここで、黒鉛粉と黒鉛繊維の混合割合は特に限定されるものではないが、黒鉛繊維の混合割合が20〜70質量%、特に35〜60質量%が好ましい。黒鉛繊維の混合割合が20質量%より少ないと一酸化珪素ガスとの反応で生成した炭化珪素と基材の黒鉛との熱膨張係数の違いによる応力により破壊される場合があるし、逆に黒鉛繊維の混合割合が70質量%より多いとC/Cコンポジット材の形状を保持できなくなる場合があり、結果として損傷の原因となり得る。   Here, the mixing ratio of the graphite powder and the graphite fiber is not particularly limited, but the mixing ratio of the graphite fiber is preferably 20 to 70 mass%, particularly preferably 35 to 60 mass%. If the mixing ratio of the graphite fiber is less than 20% by mass, the silicon carbide produced by the reaction with the silicon monoxide gas may be broken due to the stress due to the difference in thermal expansion coefficient between the base graphite and the graphite. When the mixing ratio of the fibers is more than 70% by mass, the shape of the C / C composite material may not be maintained, and as a result, damage may be caused.

以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to the following Example.

[実施例]
図1に示す装置を用いて、一酸化珪素を製造した。ここで、原料容器3、マッフル2、ガス搬送管7はC/Cコンポジット材(黒鉛粉/黒鉛繊維=45/55(質量比))を用いた。原料は、二酸化珪素粉末と金属珪素粉末の等量モル混合粉末を用い、マッフル2の容積が0.5m3の反応炉内に20kg仕込んだ。次に真空ポンプ10を用いて炉内を100Pa以下に減圧した後、ヒーター5を通電し、1,400℃の温度に昇温・保持した。発生した一酸化珪素ガスは上部に設置され、850℃に設定した析出ゾーン8aにて析出される。なお、析出ゾーン8aの内面が析出基体8そのものとなり、材質はSUS製である。上記運転を5時間行った後、冷却を開始した。冷却終了後に、析出ゾーン8a内面の析出基体表面に析出した析出物を回収、炉内の状態観察を行った。得られた一酸化珪素は、BET=5m2/g,純度=99.9%以上の非晶質粉末であり、約16kg回収された。また、装置内観察においてもC/Cコンポジット材が若干緑色に変色しているものの、特に破損等問題が無いことが確認され、以降30バッチ以上の運転を行ったが、変化は見られなかった。
[Example]
Silicon monoxide was manufactured using the apparatus shown in FIG. Here, the C / C composite material (graphite powder / graphite fiber = 45/55 (mass ratio)) was used for the raw material container 3, the muffle 2, and the gas transport pipe 7. As raw materials, an equimolar molar mixed powder of silicon dioxide powder and metal silicon powder was used, and 20 kg was charged in a reactor having a muffle 2 volume of 0.5 m 3 . Next, after reducing the pressure in the furnace to 100 Pa or less using the vacuum pump 10, the heater 5 was energized, and the temperature was raised and maintained at a temperature of 1,400 ° C. The generated silicon monoxide gas is installed in the upper part and deposited in the deposition zone 8a set at 850 ° C. The inner surface of the precipitation zone 8a becomes the precipitation base 8 itself, and the material is SUS. After the above operation was performed for 5 hours, cooling was started. After cooling was completed, the precipitate deposited on the surface of the deposition base on the inner surface of the deposition zone 8a was collected and the state inside the furnace was observed. The obtained silicon monoxide was an amorphous powder having a BET of 5 m 2 / g and a purity of 99.9% or more, and about 16 kg was recovered. In addition, although the C / C composite material was slightly discolored in green in the in-apparatus observation, it was confirmed that there was no particular problem such as breakage, and after that, operation was performed for 30 batches or more, but no change was observed. .

[比較例]
原料容器、マッフル、ガス搬送管を黒鉛とした他は、実施例と同じ条件で一酸化珪素を製造した。得られた一酸化珪素は、実施例と同様、BET=5m2/g,純度=99.9%以上の非晶質粉末であり、約16kg回収された。一方、炉内観察では、黒鉛表面が一部緑色に変色しており、その後、15バッチ目にマッフルが破損し、運転を中止せざる得なかった。以降、マッフルを交換し、何度か運転を行ったが、いずれも10〜30バッチ目に、原料容器、マッフル、ガス搬送管のいずれかが破損し、以降の運転に耐えられるものではなかった。
[Comparative example]
Silicon monoxide was produced under the same conditions as in the Examples except that the raw material container, muffle, and gas transport pipe were made of graphite. The obtained silicon monoxide was an amorphous powder having a BET of 5 m 2 / g and a purity of 99.9% or more, as in the Example, and about 16 kg was recovered. On the other hand, in the observation inside the furnace, the graphite surface was partially discolored in green, and then the muffle was damaged at the 15th batch, and the operation had to be stopped. Thereafter, the muffle was replaced and the operation was performed several times. However, in any of the 10th to 30th batches, either the raw material container, the muffle, or the gas transport pipe was damaged, and the subsequent operation was not able to withstand. .

本発明の一実施例に係る一酸化珪素の製造装置を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing apparatus of the silicon monoxide which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 反応装置
2 マッフル
2a 反応室
3 原料容器
4 原料
5 ヒーター
6 断熱材
7 ガス搬送管
8 析出容器(析出基体)
8a 析出ゾーン
9 析出部
10 真空ポンプ
11 排気管
DESCRIPTION OF SYMBOLS 1 Reaction apparatus 2 Muffle 2a Reaction chamber 3 Raw material container 4 Raw material 5 Heater 6 Heat insulating material 7 Gas conveyance pipe 8 Deposition container (deposition base)
8a Precipitation zone 9 Precipitation part 10 Vacuum pump 11 Exhaust pipe

Claims (3)

少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法に用いられる一酸化珪素の製造装置において、1,100〜1,600℃の一酸化珪素ガスが接触する構成部材(但し、該析出基体を除く)をC/Cコンポジット材で構成したことを特徴とする一酸化珪素の製造装置。   The mixed raw material powder containing at least silicon dioxide powder is heated in a temperature range of 1,100 to 1,600 ° C. under an inert gas or under reduced pressure to generate silicon monoxide gas, and the silicon monoxide gas is 1,000 ° C. or less. In a silicon monoxide production apparatus used in a method for producing silicon monoxide to be deposited on the surface of the substrate, components contacting silicon monoxide gas at 1,100 to 1600 ° C. (excluding the deposition substrate) Is made of a C / C composite material. C/Cコンポジット材が黒鉛粉末と黒鉛繊維との混合物であり、黒鉛繊維の混合割合が20〜70質量%であることを特徴とする請求項1記載の一酸化珪素の製造装置。   The apparatus for producing silicon monoxide according to claim 1, wherein the C / C composite material is a mixture of graphite powder and graphite fiber, and the mixing ratio of the graphite fiber is 20 to 70 mass%. 少なくとも二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1,100〜1,600℃の温度範囲で加熱し、一酸化珪素ガスを発生させ、該一酸化珪素ガスを1,000℃以下の基体表面に析出させる一酸化珪素の製造方法において、請求項1又は2記載の製造装置を用いて製造することを特徴とする一酸化珪素の製造方法。   The mixed raw material powder containing at least silicon dioxide powder is heated in a temperature range of 1,100 to 1,600 ° C. under an inert gas or under reduced pressure to generate silicon monoxide gas, and the silicon monoxide gas is 1,000 ° C. or less. A method for producing silicon monoxide to be deposited on the surface of the substrate, wherein the production method is performed using the production apparatus according to claim 1 or 2.
JP2007263368A 2007-10-09 2007-10-09 Apparatus and method for producing silicon monoxide Pending JP2009091195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263368A JP2009091195A (en) 2007-10-09 2007-10-09 Apparatus and method for producing silicon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263368A JP2009091195A (en) 2007-10-09 2007-10-09 Apparatus and method for producing silicon monoxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013011611A Division JP2013121915A (en) 2013-01-25 2013-01-25 Apparatus and method for producing silicon monoxide

Publications (1)

Publication Number Publication Date
JP2009091195A true JP2009091195A (en) 2009-04-30

Family

ID=40663549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263368A Pending JP2009091195A (en) 2007-10-09 2007-10-09 Apparatus and method for producing silicon monoxide

Country Status (1)

Country Link
JP (1) JP2009091195A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
JP2011142021A (en) * 2010-01-07 2011-07-21 Shin-Etsu Chemical Co Ltd Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
US8502178B2 (en) 2009-07-29 2013-08-06 Gigaphoton Inc. Extreme ultraviolet light source apparatus, method for controlling extreme ultraviolet light source apparatus, and recording medium with program recorded thereon
CN103395836A (en) * 2013-08-15 2013-11-20 蚌埠中恒新材料科技有限责任公司 Collecting device for silicon monoxide generated in process of smelting zircon sand by electric arc furnace
JP2015074584A (en) * 2013-10-09 2015-04-20 信越化学工業株式会社 Method for producing silicon oxide
JP2022179336A (en) * 2021-05-19 2022-12-02 中美▲せき▼晶製品股▲ふん▼有限公司 Manufacturing apparatus of silicon oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119788A (en) * 1994-10-28 1996-05-14 Toshiba Denko Kk Radiation screen for single crystal pull device
JPH09159366A (en) * 1995-12-08 1997-06-20 Shin Etsu Chem Co Ltd Heating furnace and heat treatment method of metal powder
JPH1072291A (en) * 1996-08-30 1998-03-17 Ibiden Co Ltd Crucible for silicon single crystal pulling-up device
JPH1072292A (en) * 1996-08-30 1998-03-17 Ibiden Co Ltd Heat insulation cylinder for silicon single crystal pulling-up device
JP2001220124A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Device for manufacturing silicon oxide powder
JP2001261481A (en) * 2000-01-11 2001-09-26 Toyo Tanso Kk Sheet for protecting inner surface of carbonaceous crucible

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119788A (en) * 1994-10-28 1996-05-14 Toshiba Denko Kk Radiation screen for single crystal pull device
JPH09159366A (en) * 1995-12-08 1997-06-20 Shin Etsu Chem Co Ltd Heating furnace and heat treatment method of metal powder
JPH1072291A (en) * 1996-08-30 1998-03-17 Ibiden Co Ltd Crucible for silicon single crystal pulling-up device
JPH1072292A (en) * 1996-08-30 1998-03-17 Ibiden Co Ltd Heat insulation cylinder for silicon single crystal pulling-up device
JP2001261481A (en) * 2000-01-11 2001-09-26 Toyo Tanso Kk Sheet for protecting inner surface of carbonaceous crucible
JP2001220124A (en) * 2000-02-04 2001-08-14 Shin Etsu Chem Co Ltd Device for manufacturing silicon oxide powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502178B2 (en) 2009-07-29 2013-08-06 Gigaphoton Inc. Extreme ultraviolet light source apparatus, method for controlling extreme ultraviolet light source apparatus, and recording medium with program recorded thereon
JP2011051866A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Method for producing silicon carbide-coated carbon substrate, silicon carbide-coated carbon substrate, silicon carbide-carbon composite sintered compact, ceramic-coated silicon carbide-carbon composite sintered compact, and method for producing silicon carbide-carbon composite sintered compact
US9085493B2 (en) 2009-09-04 2015-07-21 Toyo Tanso Co., Ltd. Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JP2011142021A (en) * 2010-01-07 2011-07-21 Shin-Etsu Chemical Co Ltd Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
CN103395836A (en) * 2013-08-15 2013-11-20 蚌埠中恒新材料科技有限责任公司 Collecting device for silicon monoxide generated in process of smelting zircon sand by electric arc furnace
JP2015074584A (en) * 2013-10-09 2015-04-20 信越化学工業株式会社 Method for producing silicon oxide
JP2022179336A (en) * 2021-05-19 2022-12-02 中美▲せき▼晶製品股▲ふん▼有限公司 Manufacturing apparatus of silicon oxide
JP7361824B2 (en) 2021-05-19 2023-10-16 中美▲せき▼晶製品股▲ふん▼有限公司 Silicon oxide production equipment

Similar Documents

Publication Publication Date Title
JP4900573B2 (en) Method for producing silicon oxide powder
JP2009091195A (en) Apparatus and method for producing silicon monoxide
TW201713597A (en) Silica to high purity silicon production process
TW201400411A (en) Method and system for the production of silicon oxide deposit
EP0209954A2 (en) Melt consolidation of silicon powder
JP2013121915A (en) Apparatus and method for producing silicon monoxide
JPS6395106A (en) Production of silicon carbide
JP6468240B2 (en) Silicon monoxide manufacturing apparatus and manufacturing method
JP2001220124A (en) Device for manufacturing silicon oxide powder
JP6371818B2 (en) Manufacturing method of carbide raw material
JP2005225690A (en) METHOD AND APPARATUS FOR MANUFACTURING SiO
JP2007055891A (en) Method for manufacturing polycrystalline silicon
JP2001039708A (en) High purity metal silicon and its production
JP2008260661A (en) Silicon carbide-silicon carbide fiber compound material and manufacturing method of the same
WO2007013644A1 (en) Process for producing polycrystalline silicon
KR101736547B1 (en) Method and apparatus for manufacturing of metallurgical grade silicon
WO2005123584A1 (en) Cylindrical container made of carbon and method for producing silicon
JP3951107B2 (en) Porous silicon oxide powder
JP6028702B2 (en) Method for producing silicon oxide
US2908563A (en) Process for production of plutonium from its oxides
JP5131634B2 (en) Recycling method of optical fiber core
JP4518278B2 (en) Method for producing porous silicon oxide powder
KR102539325B1 (en) Plasma resistant quartz glass and manufacturing method of the same
KR102539330B1 (en) Plasma resistant quartz glass and manufacturing method of the same
JP5088966B2 (en) Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121121