JP3951107B2 - Porous silicon oxide powder - Google Patents

Porous silicon oxide powder Download PDF

Info

Publication number
JP3951107B2
JP3951107B2 JP2001393147A JP2001393147A JP3951107B2 JP 3951107 B2 JP3951107 B2 JP 3951107B2 JP 2001393147 A JP2001393147 A JP 2001393147A JP 2001393147 A JP2001393147 A JP 2001393147A JP 3951107 B2 JP3951107 B2 JP 3951107B2
Authority
JP
Japan
Prior art keywords
silicon oxide
powder
oxide powder
surface area
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393147A
Other languages
Japanese (ja)
Other versions
JP2003192326A (en
Inventor
宏文 福岡
幹夫 荒又
進 上野
一磨 籾井
悟 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001393147A priority Critical patent/JP3951107B2/en
Publication of JP2003192326A publication Critical patent/JP2003192326A/en
Application granted granted Critical
Publication of JP3951107B2 publication Critical patent/JP3951107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス製造用原料、包装用フィルム蒸着用原料、有機珪素化合物製造用原料及びリチウムイオンニ次電池負極活物質として有用とされる多孔質酸化珪素粉末関する。
【0002】
【従来の技術】
酸化珪素は公知の物質であり、化学的に活性であることを活用して工業的に有用なアルキルハロシラン合成(Gary N.Bokerman et al,USP5051247 Silane products from reaction of silicon monoxide with organic halides)、更には直接シロキサンの合成の試み(Peter L.Timms and William N.Rowlands,EPA0406000A2 Polysiloxane oils and process for their preparation)が行われたり、低温でマグネシウムとの反応で珪化マグネシウムが得られたとの報告がある(Fugle、in,E;Schubert,U,Chem.Mater.1999,11,865−866)。また、リチウムイオンニ次電池負極活物質としてSiOxを用いることでリチウムイオンの吸蔵放出が容易となる(特開平9−7638号公報)との報告もあり、近年リチウムイオンニ次電池負極活物質としての用途の拡大も期待されている。
【0003】
また、従来提案されている酸化珪素粉末としては、活性を高めることを目的とし、微細なものが一般的で、例えば特公昭59−50601号公報に少なくとも表面が窒化又は炭化もしくは酸化した粒径1μm以下のアモルファス状SiOの超微粉の記載があり、特公平4−81524号公報に0.1μm以下の超微細アモルファス状のSiO粉末を製造する方法が示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記超微粉のSiO粉末は、BET比表面積が大きく、各種反応を行う上では高活性であり、有利であるが、粒子径が1μm以下と微粉であるため、ハンドリング性,充填性に劣るといった問題があった。
【0005】
本発明は上記事情に鑑みなされたものであり、高活性で、しかもハンドリング性に優れ、このため上記用途に有用に用いることができる多孔質酸化珪素粉末提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは上記目的を達成するために鋭意検討を行った結果、特定の製造条件で酸化珪素粉末を製造することで、高BET比表面積でありながら微粉ではない多孔質酸化珪素粉末が得られ、この多孔質酸化珪素粉末を各種反応原料として用いることで、上記超微粉SiO並に高活性であり、かつハンドリング性,充填性の改善が可能になることを見出し、本発明をなすに至ったものである。
【0007】
従って、本発明は、一般式SiO x (0.9≦x≦1.6)で表され、細孔平均径0.5〜20nm、細孔容積0.005〜0.2cm3/g,BET比表面積5〜300m2/gである多孔質酸化珪素粉末を提供する。
【0009】
以下、本発明を更に詳しく説明する。
本発明における酸化珪素粉末は、細孔平均径が0.5〜20nm、好ましくは1.0〜10nmである。細孔平均径が0.5nm未満だと、BET比表面積が大きくなりすぎて、表面酸化による二酸化珪素含有量の割合が大きくなりすぎ、酸化珪素の純度が低下してしまい、結果として活性が低下する。逆に、細孔平均径が20nmより大きいと、BET比表面積が小さくなり、表面活性が低下する。次に、本発明の酸化珪素粉末は、細孔容積が0.005〜0.2cm3/g、好ましくは0.01〜0.15cm3/gである。細孔容積が0.005cm3/gより小さいと、BET比表面積が小さくなり、活性が低下するし、逆に細孔容積が0.2cm3/gより大きいと、BET比表面積が大きくなりすぎて、表面酸化の影響が大きく、結果として表面活性が低下する。また、本発明の酸化珪素粉末は、BET比表面積5〜300m2/g、好ましくは10〜200m2/gである。BET比表面積が5m2/g未満では、表面活性が低下し、他元素との反応性に劣る。逆に、BET比表面積が300m2/gより大きいと、表面酸化による二酸化珪素含有量の割合が大きくなりすぎて酸化珪素の純度が低下してしまい、結果として反応性が低下する。
【0010】
なお、本発明において、細孔平均径及び細孔容積は定容法によるN2ガス吸着法によって測定した値で、例えば島津製作所(株)製トライスター3000により測定した値である。また、比表面積は、窒素ガス吸着量によって測定するBET1点法によって測定することができる。
【0011】
本発明の酸化珪素粉末は一般式SiOxで表され、xの範囲は0.9〜1.6であるxの範囲が0.9より小さいと、実質的に金属珪素が過剰になり、結晶質及び/又はブロック状になり、活性酸素が含まれなくなり、好ましくない。xの範囲が1.8より大きいと、実質的に二酸化珪素となり、活性珪素が含まれなくなり、好ましくない。より好ましくは、xの範囲は0.9〜1.3である。
【0012】
更に、本発明の多孔質酸化珪素粉末は、X線回折測定において明瞭な回折線を有しないことが好ましい。X線回折測定において明瞭な回折線を有すると、珪素の活性が著しく損なわれるおそれがある。
【0013】
上記物性の多孔質酸化珪素粉末は、例えば、二酸化珪素粉末を含む混合原料粉末を不活性ガスもしくは減圧下1100〜1600℃の温度範囲で加熱し、酸化珪素ガスを発生させ、酸化珪素ガス蒸気濃度が0.5〜15g/cm3の酸化珪素ガスを100〜400℃に冷却した基体表面に析出させる方法によって製造することができる。
【0014】
この製造方法につき更に詳述すると、本発明の多孔質酸化珪素粉末の製造において、原料としてはニ酸化珪素粉末とこれを還元する粉末との混合物を用いる。具体的な還元粉末としては、金属珪素化合物,炭素含有粉末が挙げられるが、特に金属珪素粉末を用いたものが、▲1▼反応性を高める、▲2▼収率を高めるといった点で効果的であり、好ましく用いられる。なお、金属珪素粉末の種類については特に限定しないが、生成した酸化珪素粉末の純度を高める意味で、半導体グレードSi,セラミックスグレードSi,ケミカルグレードSiといった純度の高いものが好適に用いられる。
【0015】
なお、二酸化珪素粉末とこれを還元する粉末との使用割合は、特に制限されるものではなく、例えば還元用の金属粉末として金属珪素(Si)や炭素(C)を使用し、これらを例えば二酸化珪素粉末と1/1のモル比で使用した場合には、下記の式に従って還元反応が進行するものであるが、これらの反応に限定されるものではない。
・SiO2+Si→2SiO
・SiO2+C→SiO+CO
【0016】
本発明では、上記混合原料粉末を反応室内において1100〜1600℃、好ましくは1200〜1500℃の温度に加熱・保持し、酸化珪素ガスを発生させる。反応温度が1100℃未満では反応が進行し難く、生産性が低下してしまうし、逆に1600℃を超えると、混合原料粉末が溶融して、逆に反応性が低下したり、炉材の選定が困難になるおそれがある。
【0017】
また、この酸化珪素ガス発生工程において、本発明の物性の多孔質酸化珪素粉末を製造するために特に重要なことは、発生する酸化珪素ガス蒸気濃度を0.5〜15g/m3の範囲とすることである。発生する酸化珪素ガス蒸気濃度が0.5g/m3より少ないと得られる酸化珪素は細孔径の大きく、かつ細孔容積の大きな多孔質酸化珪素粉末となり、結果としてBET比表面積が大きくなりすぎて、表面酸化の影響で活性が低下する。逆に発生する酸化珪素ガス蒸気濃度が15g/m3より多いと、得られる酸化珪素は細孔径が小さく、かつ細孔容積が小さく、従ってBET比表面積が小さい酸化珪素であり、結果として活性が低下する。この場合、酸化珪素ガス蒸気濃度は、反応室への原料仕込み量、反応温度(酸化珪素ガス発生速度)及び真空ポンプの排気能力(速度)により決まり、それらを適宜選定することにより制御することが可能である。
【0018】
一方、炉内雰囲気は不活性ガスもしくは減圧下であるが、熱力学的に減圧下の方が反応性が高く、低温反応が可能となるため、減圧下で行うことが望ましい。なお、不活性ガスとしては、Ar、He、H2等の非酸化性ガス等が挙げられ、また減圧度は、10Torr(1330Pa)以下[即ち、0〜10Torr(0〜1330Pa)]、特に1Torr(133Pa)[即ち、0〜1Torr(0〜133Pa)]以下とすることが好ましい。
【0019】
この場合、上記反応室には、原料供給機構(フィーダー)にて、上記混合原料粉末を適宜間隔ごとに又は連続的に供給することができる。
上記反応室内で生成した酸化珪素ガスは、これを搬送管を介して析出室に供給する。
【0020】
この場合、搬送管は、1000℃を超え1300℃以下、好ましくは1100〜1200℃に加熱し、保持する。ここで、搬送管を加熱する目的は搬送管内壁への酸化珪素蒸気の析出防止であり、搬送管の温度が1000℃以下では、酸化珪素蒸気が搬送管内壁に析出・付着し、運転上支障を生じ、安定的な連続運転ができなくなる。逆に1300℃を超える温度に加熱しても、それ以上の効果は見れないばかりか、電力コストの上昇を招いてしまう。
【0021】
上記析出室には、冷媒により冷却された基体が配置され、この析出室内に導入された上記酸化珪素ガスがこの冷却基体に接触、冷却されることにより、この基体上に酸化珪素粉末が析出する。ここで、基体表面の温度は100〜500℃に制御することが重要である。基体表面の温度が100℃未満では、BET比表面積が300m2/gより大きくなり、表面酸化により不活性な二酸化珪素の割合が大きくなり、活性が低下する。逆に、基体表面の温度が500℃より高いとBET比表面積が5m2/g未満となり、活性が低下する。なお、基体表面温度によるBET比表面積の変化の原因については定かではないが、基体表面の温度を上げることにより、析出物表面の活性が高まり、その結果、融着により緻密化し、BET比表面積が低下するものと推測される。また、基体表面の温度については、析出室内温度(析出室ヒーターにより加熱)及び冷媒の種類,流量の組合せにより制御される。冷媒の種類については特に限定しないが、水,熱媒といった液体,空気,窒素といった気体がその目的によって使われる。基体の種類も特に限定しないが、加工性の点で、SUSやモリブデン,タングステンといった高融点金属が好適に用いられる。
【0022】
上記基体上に析出した酸化珪素粉末は、掻き取り等の適宜な手段により回収する。また、回収した酸化珪素粉末は、必要により適宜手段で粉砕し、所望の粒径とすることができる。
【0023】
上記方法に用いる装置としては、例えば図1に示すような装置を用いることができる。ここで、図1において、1は反応炉であり、この反応炉1内にマッフル2が配設されている。このマッフル2内は反応室3となっており、この反応室3内に二酸化珪素粉末を含む混合原料粉末4を収容する原料容器5が配置されている。また、マッフル2を取り囲むようにヒーター6が配設され、このヒーター6により上記混合原料粉末4が加熱されるようになっている。なお、7は断熱材である。
【0024】
また、8はヒーター9が埋設された搬送管、10は析出槽であり、上記反応室3内で発生した酸化珪素ガスが上記搬送管8内を通って上記析出槽10内の析出室11に導入される。この析出室11内には基体12が配設されている。この基体12内には冷却通路が形成されており、冷媒導入管14より冷媒通路に供給された冷媒により上記基体12が冷却され、酸化珪素ガスがこの冷却基体12に接触、冷却されることにより、基体12上に酸化珪素粉末が析出されるようになっている。なお、冷却基体12には熱電対13が埋設され、冷却基体12表面温度を測定することができる。上記冷媒は、冷媒排出管15を通って排出されるようになっており、また上記析出槽10内には、ヒーター16が配設されている。17は析出室11内の温度を測定するための熱電対である。18は真空ポンプである。
【0025】
【実施例】
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は下記実施例に限定されるものではない。
【0026】
[実施例1]
図1に示す製造装置を用いて、酸化珪素粉末を製造した。原料は、二酸化珪素粉末(BET比表面積=200m2/g)とセラミックスグレード用金属珪素粉末(BET比表面積=3m2/g)を等量モルの割合で混合した混合粉末であり、マッフル2の容積が6000cm3の反応炉内に200g仕込んだ。次に排気能力30m3/hrの真空ポンプ18を用いて炉内を1Torr以下に減圧した後、ヒーター6に通電し、1300℃の温度に昇温・保持した。一方で、搬送管8を1100℃に加熱・保持した。次に析出室ヒーター16に通電し、析出室11内温度を900℃とし、同時にSUS製の基体12(表面積200cm2)に水5.0NL/min流入した。なお、この条件における反応完了時間は3時間であり、上記真空ポンプ能力より、この時の酸化珪素ガス蒸気濃度は2.1g/cm3と算出できた。また基体表面温度は210℃であった。上記運転を3時間行った結果、基体12表面には黒色塊状の酸化珪素が析出していた。この塊状析出物を回収した後、ボールミルで5時間粉砕し、酸化珪素粉末を製造した。得られた酸化珪素粉末は、細孔平均径=4.5nm、細孔容積=0.05cm3/g、BET比表面積60m2/g、一般式SiOx(x=1.05)で示される非晶質粉末であった。
【0027】
次に、上記酸化珪素粉末10gを窒素中1100℃に加熱し、3時間保持して窒化珪素粉末を製造した。得られた窒化珪素粉末については、窒素含有量=36.5%のα型窒化珪素粉末であり、原料である酸化珪素粉末が非常に活性の高い粉末であることが確認された。
【0028】
[実施例2〜5、比較例1〜4]
原料仕込み量、反応温度、反応時間、及び基体12表面温度を表1に示す条件とした他は実施例1と同じ条件で酸化珪素粉末及びこの酸化珪素粉末を原料とした窒化珪素粉末を製造した。得られた酸化珪素粉末の細孔平均径,細孔容積,BET比表面積及びSiOxのx値を表1に併記する。一方、実施例1と同条件で窒化反応を行った窒化生成物の窒素含有量を表1に併記する。
【0029】
【表1】

Figure 0003951107
注:仕込み原料は、実施例1記載の二酸化珪素粉末とセラミックスグレード用金属珪素粉末との等量モル混合物である。
【0030】
[実施例6]
実施例1で得られた酸化珪素粉末100重量部、導電材としてグラファイト90重量部、及び結着材としてポリフッ化ビニリデン20重量部(N−メチルピロリドン溶媒)を混練し、その一部をステンレス製メッシュに塗布、圧着し、真空乾燥機にて一晩乾燥し、電極を得た。
上述のようにして得られた電極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1混合液に1mol/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作成した。
作成したリチウムイオン二次電池を一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、0.5mA/cm2の定電流で、放電の終止電圧0.003V、充電の終止電圧1.800Vの条件で充放電試験を行った。その結果、初回放電容量800mAh/gの高容量リチウムイオン二次電池が得られることが確認された。
【0031】
[比較例5]
比較例1で得られた酸化珪素粉末を用いる他は実施例6と同様な方法でリチウムイオン二次電池を作成し、実施例6と同じ方法で充放電試験を行った。
その結果、初回放電容量は480mAh/gであり、容量的に明らかに実施例6に劣るものであった。
【0032】
【発明の効果】
本発明の酸化珪素粉末は、高活性であり、かつハンドリング性に優れているため、他の元素と反応が容易であり、しかも工業的規模の生産にも十分耐えられるものである。
【図面の簡単な説明】
【図1】本発明の多孔質酸化珪素粉末の製造に用いる装置の一例を示す概略断面図である。
【符号の説明】
1 反応炉
2 マッフル
3 反応室
4 混合原料粉末
5 原料容器
6 ヒーター
7 断熱材
8 搬送管
9 ヒーター
10 析出槽
11 析出室
12 基体
13 熱電対
14 冷媒導入管
15 冷媒排出管
16 ヒーター
17 熱電対
18 真空ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous silicon oxide powder which is a ceramic raw material for producing, packaging film deposition raw material, useful as a raw material for an organic silicon compound produced and lithium ion secondary battery negative electrode active material.
[0002]
[Prior art]
Silicon oxide is a known substance, and is chemically useful to synthesize alkylhalosilanes that are industrially useful (Gary N. Bokerman et al, USP 50512247 Silane products from silicon monolith with organic organics). Furthermore, attempts to directly synthesize siloxane (Peter L. Timms and William N. Rowlands, EPA 0406000A2 Polysiloxane oils and process for ther preparation) were performed, and magnesium silicide was reported to have been reacted with magnesium at low temperature. (Fugle, in, E; Schubert, U, Chem. Mater. 1 99,11,865-866). There is also a report that the insertion and removal of lithium ions is facilitated by using SiO x as the negative electrode active material for lithium ion secondary batteries (Japanese Patent Laid-Open No. 9-7638). Expansion of applications is also expected.
[0003]
In addition, the conventionally proposed silicon oxide powder is generally a fine powder for the purpose of enhancing the activity. For example, Japanese Patent Publication No. 59-50601 discloses a particle size of 1 μm at least at the surface nitrided, carbonized or oxidized. There is a description of the following ultrafine powder of amorphous SiO, and Japanese Patent Publication No. 4-81524 discloses a method for producing ultrafine amorphous SiO powder of 0.1 μm or less.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned ultrafine SiO powder has a large BET specific surface area and is highly active in performing various reactions, and is advantageous. However, since the particle diameter is as fine as 1 μm or less, it is inferior in handling properties and filling properties. There was a problem.
[0005]
The present invention has been made in view of the above circumstances, high activity, yet excellent in handling properties, and to provide a porous silicon oxide powder which can be usefully employed for this purpose the application.
[0006]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have produced a silicon oxide powder under specific production conditions to obtain a porous silicon oxide powder that has a high BET specific surface area but is not fine. By using this porous silicon oxide powder as various reaction raw materials, it has been found that it is as highly active as the above-mentioned ultrafine powder SiO, and that the handling and filling properties can be improved, and the present invention has been made. It is a thing.
[0007]
Therefore, the present invention is represented by the general formula SiO x (0.9 ≦ x ≦ 1.6), average pore diameter 0.5 to 20 nm, pore volume 0.005 to 0.2 cm 3 / g, BET A porous silicon oxide powder having a specific surface area of 5 to 300 m 2 / g is provided.
[0009]
Hereinafter, the present invention will be described in more detail.
The silicon oxide powder in the present invention has an average pore diameter of 0.5 to 20 nm, preferably 1.0 to 10 nm. If the average pore diameter is less than 0.5 nm, the BET specific surface area becomes too large, the proportion of silicon dioxide content due to surface oxidation becomes too large, and the purity of the silicon oxide decreases, resulting in a decrease in activity. To do. On the contrary, if the average pore diameter is larger than 20 nm, the BET specific surface area becomes small and the surface activity is lowered. Then, silicon oxide powder of the present invention, the pore volume of 0.005~0.2cm 3 / g, preferably 0.01~0.15cm 3 / g. If the pore volume is smaller than 0.005 cm 3 / g, the BET specific surface area becomes small and the activity decreases. Conversely, if the pore volume is larger than 0.2 cm 3 / g, the BET specific surface area becomes too large. Thus, the effect of surface oxidation is great, resulting in a decrease in surface activity. The silicon oxide powder of the present invention has a BET specific surface area of 5 to 300 m 2 / g, preferably 10 to 200 m 2 / g. When the BET specific surface area is less than 5 m 2 / g, the surface activity is lowered and the reactivity with other elements is poor. On the other hand, if the BET specific surface area is larger than 300 m 2 / g, the ratio of silicon dioxide content due to surface oxidation becomes too large and the purity of silicon oxide is lowered, resulting in a decrease in reactivity.
[0010]
In the present invention, the average pore diameter and the pore volume are values measured by an N 2 gas adsorption method by a constant volume method, for example, values measured by Tristar 3000 manufactured by Shimadzu Corporation. The specific surface area can be measured by the BET one-point method that is measured by the nitrogen gas adsorption amount.
[0011]
The silicon oxide powder of the present invention is represented by the general formula SiO x , and the range of x is 0.9 to 1.6 . When the range of x is smaller than 0.9, the metal silicon is substantially excessive, becomes crystalline and / or blocky, and does not contain active oxygen, which is not preferable. When the range of x is larger than 1.8, silicon dioxide is substantially formed and active silicon is not contained, which is not preferable. More preferably, the range of x is 0 . 9 to 1.3.
[0012]
Furthermore, it is preferable that the porous silicon oxide powder of the present invention does not have a clear diffraction line in the X-ray diffraction measurement. If there is a clear diffraction line in the X-ray diffraction measurement, the activity of silicon may be significantly impaired.
[0013]
The porous silicon oxide powder having the above physical properties is obtained by, for example, heating a mixed raw material powder containing silicon dioxide powder in a temperature range of 1100 to 1600 ° C. under an inert gas or reduced pressure to generate a silicon oxide gas, and a silicon oxide gas vapor concentration Can be produced by a method in which a silicon oxide gas of 0.5 to 15 g / cm 3 is deposited on the substrate surface cooled to 100 to 400 ° C.
[0014]
This production method will be described in more detail. In the production of the porous silicon oxide powder of the present invention, a mixture of silicon dioxide powder and a powder for reducing it is used as a raw material. Specific reduction powders include metal silicon compounds and carbon-containing powders. Particularly, those using metal silicon powders are effective in terms of (1) increasing the reactivity and (2) increasing the yield. And is preferably used. In addition, although it does not specifically limit about the kind of metal silicon powder, The thing with high purity, such as semiconductor grade Si, ceramics grade Si, and chemical grade Si, is used suitably in order to raise the purity of the produced | generated silicon oxide powder.
[0015]
The use ratio of the silicon dioxide powder and the powder for reducing it is not particularly limited. For example, metal silicon (Si) or carbon (C) is used as the metal powder for reduction, and these can be used for example. When used in a molar ratio of 1/1 to silicon powder, the reduction reaction proceeds according to the following formula, but is not limited to these reactions.
・ SiO 2 + Si → 2SiO
・ SiO 2 + C → SiO + CO
[0016]
In the present invention, the mixed raw material powder is heated and held at a temperature of 1100 to 1600 ° C., preferably 1200 to 1500 ° C., in a reaction chamber to generate silicon oxide gas. If the reaction temperature is less than 1100 ° C., the reaction is difficult to proceed and the productivity is reduced. Conversely, if the reaction temperature exceeds 1600 ° C., the mixed raw material powder is melted, and the reactivity is lowered. Selection may be difficult.
[0017]
In this silicon oxide gas generation step, particularly important for producing the porous silicon oxide powder having the physical properties of the present invention is that the generated silicon oxide gas vapor concentration is in the range of 0.5 to 15 g / m 3 . It is to be. When the generated silicon oxide gas vapor concentration is less than 0.5 g / m 3 , the silicon oxide obtained becomes a porous silicon oxide powder having a large pore diameter and a large pore volume, resulting in an excessively large BET specific surface area. The activity decreases due to the effect of surface oxidation. On the other hand, when the generated silicon oxide gas vapor concentration is higher than 15 g / m 3 , the resulting silicon oxide is silicon oxide having a small pore diameter and a small pore volume, and thus a small BET specific surface area, resulting in activity. descend. In this case, the silicon oxide gas vapor concentration is determined by the amount of raw material charged into the reaction chamber, the reaction temperature (silicon oxide gas generation rate), and the exhaust capacity (speed) of the vacuum pump, and can be controlled by appropriately selecting them. Is possible.
[0018]
On the other hand, the atmosphere in the furnace is an inert gas or under reduced pressure, but it is desirable to carry out under reduced pressure because thermoreactive under reduced pressure has higher reactivity and enables low temperature reaction. Examples of the inert gas include non-oxidizing gases such as Ar, He, and H 2 , and the degree of vacuum is 10 Torr (1330 Pa) or less [that is, 0 to 10 Torr (0 to 1330 Pa)], particularly 1 Torr. (133 Pa) [that is, 0 to 1 Torr (0 to 133 Pa)] or less is preferable.
[0019]
In this case, the mixed raw material powder can be supplied to the reaction chamber at appropriate intervals or continuously by a raw material supply mechanism (feeder).
The silicon oxide gas generated in the reaction chamber is supplied to the deposition chamber via the transfer tube.
[0020]
In this case, the conveying tube is heated to 1000 ° C. and 1300 ° C. or less, preferably 1100 to 1200 ° C. and held. Here, the purpose of heating the transfer pipe is to prevent the deposition of silicon oxide vapor on the inner wall of the transfer pipe. When the temperature of the transfer pipe is 1000 ° C. or less, the silicon oxide vapor is deposited on and adhered to the inner wall of the transfer pipe, which hinders operation. And stable continuous operation becomes impossible. Conversely, heating to a temperature exceeding 1300 ° C. not only shows no further effect, but also leads to an increase in power cost.
[0021]
A substrate cooled by a refrigerant is disposed in the deposition chamber, and the silicon oxide gas introduced into the deposition chamber comes into contact with the cooling substrate and is cooled, whereby silicon oxide powder is deposited on the substrate. . Here, it is important to control the temperature of the substrate surface to 100 to 500 ° C. When the temperature of the substrate surface is less than 100 ° C., the BET specific surface area becomes larger than 300 m 2 / g, the ratio of inactive silicon dioxide increases due to surface oxidation, and the activity decreases. On the contrary, if the temperature of the substrate surface is higher than 500 ° C., the BET specific surface area becomes less than 5 m 2 / g, and the activity is lowered. The cause of the change in the BET specific surface area due to the substrate surface temperature is not clear, but by increasing the temperature of the substrate surface, the activity of the precipitate surface increases, resulting in densification by fusing, and the BET specific surface area is increased. Presumed to be reduced. Further, the temperature of the substrate surface is controlled by a combination of the temperature in the deposition chamber (heated by the deposition chamber heater), the type of refrigerant, and the flow rate. The type of the refrigerant is not particularly limited, but a liquid such as water or a heat medium, a gas such as air or nitrogen is used depending on the purpose. The type of the substrate is not particularly limited, but refractory metals such as SUS, molybdenum, and tungsten are preferably used in terms of workability.
[0022]
The silicon oxide powder deposited on the substrate is recovered by an appropriate means such as scraping. Moreover, the recovered silicon oxide powder can be pulverized by an appropriate means if necessary to obtain a desired particle size.
[0023]
As an apparatus used for the above method, for example, an apparatus as shown in FIG. 1 can be used. Here, in FIG. 1, 1 is a reaction furnace, and a muffle 2 is disposed in the reaction furnace 1. Inside the muffle 2 is a reaction chamber 3 in which a raw material container 5 for containing a mixed raw material powder 4 containing silicon dioxide powder is disposed. Further, a heater 6 is disposed so as to surround the muffle 2, and the mixed raw material powder 4 is heated by the heater 6. In addition, 7 is a heat insulating material.
[0024]
Further, 8 is a transfer pipe in which a heater 9 is embedded, 10 is a precipitation tank, and silicon oxide gas generated in the reaction chamber 3 passes through the transfer pipe 8 to the precipitation chamber 11 in the precipitation tank 10. be introduced. A substrate 12 is disposed in the deposition chamber 11. A cooling passage is formed in the base 12, and the base 12 is cooled by the refrigerant supplied to the refrigerant passage from the refrigerant introduction pipe 14, and the silicon oxide gas comes into contact with the cooling base 12 and is cooled. The silicon oxide powder is deposited on the substrate 12. A thermocouple 13 is embedded in the cooling base 12 so that the surface temperature of the cooling base 12 can be measured. The refrigerant is discharged through a refrigerant discharge pipe 15, and a heater 16 is disposed in the precipitation tank 10. Reference numeral 17 denotes a thermocouple for measuring the temperature in the deposition chamber 11. 18 is a vacuum pump.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to the following Example.
[0026]
[Example 1]
Silicon oxide powder was manufactured using the manufacturing apparatus shown in FIG. The raw material is a mixed powder in which silicon dioxide powder (BET specific surface area = 200 m 2 / g) and ceramic silicon metal powder (BET specific surface area = 3 m 2 / g) are mixed in an equimolar ratio. 200 g was charged in a reactor having a volume of 6000 cm 3 . Next, the inside of the furnace was depressurized to 1 Torr or less using a vacuum pump 18 having an exhaust capacity of 30 m 3 / hr, and then the heater 6 was energized to raise and maintain the temperature at 1300 ° C. On the other hand, the conveyance tube 8 was heated and held at 1100 ° C. Next, the deposition chamber heater 16 was energized to set the temperature in the deposition chamber 11 to 900 ° C., and at the same time, 5.0 NL / min of water flowed into the SUS substrate 12 (surface area 200 cm 2 ). The reaction completion time under these conditions was 3 hours, and the silicon oxide gas vapor concentration at this time was calculated as 2.1 g / cm 3 from the vacuum pump capability. The substrate surface temperature was 210 ° C. As a result of performing the above operation for 3 hours, black lump-shaped silicon oxide was deposited on the surface of the substrate 12. After collecting the massive precipitate, it was pulverized with a ball mill for 5 hours to produce a silicon oxide powder. The obtained silicon oxide powder has an average pore diameter of 4.5 nm, a pore volume of 0.05 cm 3 / g, a BET specific surface area of 60 m 2 / g, and a general formula SiO x (x = 1.05). It was an amorphous powder.
[0027]
Next, 10 g of the silicon oxide powder was heated to 1100 ° C. in nitrogen and held for 3 hours to produce a silicon nitride powder. The obtained silicon nitride powder was an α-type silicon nitride powder having a nitrogen content of 36.5%, and it was confirmed that the silicon oxide powder as a raw material was a very active powder.
[0028]
[Examples 2 to 5, Comparative Examples 1 to 4]
A silicon oxide powder and a silicon nitride powder using this silicon oxide powder as a raw material were produced under the same conditions as in Example 1 except that the raw material charge amount, reaction temperature, reaction time, and substrate 12 surface temperature were the conditions shown in Table 1. . Table 1 shows the average pore diameter, pore volume, BET specific surface area, and x value of SiO x of the obtained silicon oxide powder. On the other hand, the nitrogen content of the nitridation product subjected to the nitriding reaction under the same conditions as in Example 1 is also shown in Table 1.
[0029]
[Table 1]
Figure 0003951107
Note: The charged raw material is an equimolar mixture of the silicon dioxide powder described in Example 1 and the metal silicon powder for ceramic grade.
[0030]
[Example 6]
100 parts by weight of the silicon oxide powder obtained in Example 1, 90 parts by weight of graphite as a conductive material, and 20 parts by weight of polyvinylidene fluoride (N-methylpyrrolidone solvent) as a binder are kneaded, and a part thereof is made of stainless steel. It applied to the mesh, pressure-bonded, and dried overnight in a vacuum dryer to obtain an electrode.
In order to evaluate the charge / discharge characteristics of the electrode obtained as described above, a lithium foil was used as the counter electrode, and lithium hexafluorophosphate was used as the non-aqueous electrolyte by using 1/1 of ethylene carbonate and 1,2-dimethoxyethane. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution and a microporous polyethylene film having a thickness of 30 μm as a separator was prepared.
The prepared lithium ion secondary battery was allowed to stand overnight at room temperature, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) with a constant current of 0.5 mA / cm 2 and a discharge final voltage of 0. A charge / discharge test was performed under the conditions of 003 V and a charge end voltage of 1.800 V. As a result, it was confirmed that a high-capacity lithium ion secondary battery having an initial discharge capacity of 800 mAh / g was obtained.
[0031]
[Comparative Example 5]
A lithium ion secondary battery was prepared in the same manner as in Example 6 except that the silicon oxide powder obtained in Comparative Example 1 was used, and a charge / discharge test was performed in the same manner as in Example 6.
As a result, the initial discharge capacity was 480 mAh / g, clearly inferior to Example 6 in terms of capacity.
[0032]
【The invention's effect】
Since the silicon oxide powder of the present invention is highly active and excellent in handling properties, it can easily react with other elements and can sufficiently withstand industrial scale production.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an apparatus used for producing porous silicon oxide powder of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Muffle 3 Reaction chamber 4 Mixed raw material powder 5 Raw material container 6 Heater 7 Heat insulating material 8 Transport pipe 9 Heater 10 Deposition tank 11 Deposition chamber 12 Base 13 Thermocouple 14 Refrigerant introduction pipe 15 Refrigerant discharge pipe 16 Heater 17 Thermocouple 18 Vacuum pump

Claims (2)

一般式SiOx(0.9≦x≦1.6)で表され、細孔平均径0.5〜20nm、細孔容積0.005〜0.2cm3/g,BET比表面積5〜300m2/gであることを特徴とする多孔質酸化珪素粉末。Represented by the general formula SiO x (0.9 ≦ x ≦ 1.6), pore average diameter 0.5 to 20 nm, pore volume 0.005 to 0.2 cm 3 / g, BET specific surface area 5 to 300 m 2 / G porous silicon oxide powder. X線回折測定において明瞭な回折線を有しない請求項1記載の多孔質酸化珪素粉末。  The porous silicon oxide powder according to claim 1, which has no clear diffraction line in X-ray diffraction measurement.
JP2001393147A 2001-12-26 2001-12-26 Porous silicon oxide powder Expired - Fee Related JP3951107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393147A JP3951107B2 (en) 2001-12-26 2001-12-26 Porous silicon oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393147A JP3951107B2 (en) 2001-12-26 2001-12-26 Porous silicon oxide powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007009975A Division JP4518278B2 (en) 2007-01-19 2007-01-19 Method for producing porous silicon oxide powder

Publications (2)

Publication Number Publication Date
JP2003192326A JP2003192326A (en) 2003-07-09
JP3951107B2 true JP3951107B2 (en) 2007-08-01

Family

ID=27600206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393147A Expired - Fee Related JP3951107B2 (en) 2001-12-26 2001-12-26 Porous silicon oxide powder

Country Status (1)

Country Link
JP (1) JP3951107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043049A1 (en) 2009-10-09 2011-04-14 株式会社大阪チタニウムテクノロジーズ Siox, and deposition material for barrier film and negative electrode active material for lithium ion secondary battery each utilizing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594314B2 (en) * 2004-09-01 2010-12-08 株式会社大阪チタニウムテクノロジーズ SiO vapor deposition material, Si powder for SiO raw material, and method for producing SiO
JP4207055B2 (en) * 2006-04-26 2009-01-14 信越化学工業株式会社 Method for producing SiOx (x <1)
JP7019284B2 (en) * 2016-04-06 2022-02-15 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP7127275B2 (en) * 2016-11-22 2022-08-30 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043049A1 (en) 2009-10-09 2011-04-14 株式会社大阪チタニウムテクノロジーズ Siox, and deposition material for barrier film and negative electrode active material for lithium ion secondary battery each utilizing same

Also Published As

Publication number Publication date
JP2003192326A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
EP1236682B1 (en) Silicon oxide powder and its manufacture
US7794681B2 (en) Method for producing silicon oxide powder
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
JP5801317B2 (en) Method for improving electrochemical performance of alkali metal oxyanion electrode material, and alkali metal oxyanion electrode material obtained thereby
KR101193422B1 (en) A method of calcining an electrode material using a rotary kiln
JP2003192327A (en) Method of and device for producing metallic element- doped silicon oxide powder
JP2001226112A (en) Highly active silicon oxide powder and its manufacturing method
KR20180090774A (en) Method for producing high purity silicon from silica
JPS6112844B2 (en)
JP3951107B2 (en) Porous silicon oxide powder
JPS61117111A (en) Manufacture of metal silicon for light-generating-electric industry
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JP5508325B2 (en) Method for producing silicon oxide powder
JP3824047B2 (en) Method for producing amorphous silicon oxide powder
JP4518278B2 (en) Method for producing porous silicon oxide powder
KR100626437B1 (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
JP2021183550A (en) Lithium disilicate-containing lithium-containing silicon oxide and method for producing the same
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JP7384829B2 (en) Silicon fine particles and their manufacturing method
JP2002029721A (en) Device and method for producing graphite
JP5033948B2 (en) Method for producing aluminum nitride powder and method for producing aluminum nitride sintered body
US20240076192A1 (en) Methods and apparatus of producing silicon nanoparticles
JPS59174506A (en) Manufacture of new powdered silicon nitride
JP2024521849A (en) Method for producing silicon-carbon composite material
정용권 Study of Producing α-Si3N4 Powder by Low-temperature Vapor-phase Reaction Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3951107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees