JP2002029721A - Device and method for producing graphite - Google Patents

Device and method for producing graphite

Info

Publication number
JP2002029721A
JP2002029721A JP2000213023A JP2000213023A JP2002029721A JP 2002029721 A JP2002029721 A JP 2002029721A JP 2000213023 A JP2000213023 A JP 2000213023A JP 2000213023 A JP2000213023 A JP 2000213023A JP 2002029721 A JP2002029721 A JP 2002029721A
Authority
JP
Japan
Prior art keywords
graphite
heating
gas
heating tube
gas atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000213023A
Other languages
Japanese (ja)
Inventor
Toshio Kitaki
敏夫 北木
Yoshio Sato
義雄 佐藤
Tsunehiko Shibata
恒彦 芝田
Tai Nakajima
耐 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEC Corp
Original Assignee
SEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEC Corp filed Critical SEC Corp
Priority to JP2000213023A priority Critical patent/JP2002029721A/en
Publication of JP2002029721A publication Critical patent/JP2002029721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing graphite, with which a graphite- based powder and granular material in which the contents of the impurities are quite low can be continuously produced. SOLUTION: The device for producing the graphite has a heating tube 2 constituted of plural cylindrical graphite tubes 1 mutually connected. Further, the device for producing the graphite has a control means for controlling an inert gas atmosphere or the inert gas atmosphere and a gaseous halogen atmosphere in the heating tube 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、黒鉛質粉粒体(製
品黒鉛)を製造する装置および方法に関し、詳しくは、
高品質・高純度の黒鉛質粉粒体を効率良く連続的に製造
する装置および方法に関する。また、該方法により得ら
れるリチウムイオン二次電池負極用黒鉛材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing graphitic powder (product graphite).
The present invention relates to an apparatus and a method for efficiently and continuously producing high-quality and high-purity graphitic powder. Further, the present invention relates to a graphite material for a negative electrode of a lithium ion secondary battery obtained by the method.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】黒鉛質粉
粒体は、耐熱性、電気伝導性、熱伝導性、耐薬品性、自
己潤滑性等の特異な性質を具備しているので、冶金用、
電気・電子製品用、機械用等の材料として各種の用途に
広く使用されている。最近は、高温で熱処理してその黒
鉛結晶を発達させ、電気伝導性を向上させたものが、導
電性塗料のフィラ−として、また、リチウムイオン二次
電池の負極材として大量に使用されている。特に、携帯
電子機器の電源をはじめとして、電気自動車や電力貯蔵
用の材料として注目されている。
2. Description of the Related Art Graphite particles have unique properties such as heat resistance, electrical conductivity, thermal conductivity, chemical resistance, and self-lubricating properties. For metallurgy,
It is widely used in various applications as a material for electrical and electronic products, machinery and the like. Recently, those which have been heat treated at a high temperature to develop their graphite crystals and have improved electrical conductivity have been used in large quantities as fillers for conductive coatings and as negative electrode materials for lithium ion secondary batteries. . In particular, attention has been paid to materials for electric vehicles and electric power storage, including power supplies for portable electronic devices.

【0003】このような黒鉛質粉粒体は、フェノール、
フラン等の樹脂の粉粒体、コークス、カーボンブラッ
ク、メソカーボン、天然黒鉛等の炭素質や黒鉛質の粉粒
体等(原料)を、高温処理(一般的には黒鉛化処理と称
される)および高純度化処理することにより製造され
る。
[0003] Such graphitic powders include phenol,
Resin powder such as furan, carbonaceous or graphitic powder such as coke, carbon black, mesocarbon, and natural graphite (raw material) is subjected to high temperature treatment (generally referred to as graphitization treatment). ) And highly purified.

【0004】工業的規模での黒鉛化処理の方法として
は、(1)人造黒鉛電極の黒鉛化に類似した方法、すなわ
ち、黒鉛製容器に原料の炭素質粉粒体を充填して、従来
の黒鉛化方式(直接通電方式(LWG炉)または間接通
電方式(アチソン炉))にて、3000℃までの所望温
度に加熱する方法が、一般的に用いられている。また、
新しい試みとして、例えば(2)特開平1−272827
号公報、(3)特開平3−83809号公報、(4)特開平3
−183610号公報、(5)特開平8−198612号
公報、(6)特開平10−284062号公報等に記載の
装置や方法が挙げられる。
[0004] As a method of graphitization on an industrial scale, (1) a method similar to graphitization of an artificial graphite electrode, that is, a graphite container is filled with a raw material of carbonaceous powder, and the conventional method is used. A method of heating to a desired temperature up to 3000 ° C. by a graphitization method (a direct current method (LWG furnace) or an indirect current method (Acheson furnace)) is generally used. Also,
As a new attempt, for example, (2) Japanese Patent Laid-Open No. 1-272827
JP, JP-A-3-83809, (4) JP-A-3-83809
No. 183610, (5) JP-A-8-198612, and (6) JP-A-10-280462.

【0005】この内、上記(1)の方法では、粉粒体の嵩
密度が小さいために、容器内の充填密度が小さくなり処
理効率に劣ること、また、炉の操業がバッチ式であり、
かつ、炉の冷却に時間がかかることから、効率的な処理
は期待できない。特に、粉粒体が細かくなると、容器へ
の充填や取り出し作業が煩雑になったり、作業環境を悪
化させる。充填量の改善方法としては、粉粒体を一旦成
形体にして熱処理した後に粉砕・分級する方法も考えら
れるが、粉体特性上好ましくない。何れにしても、黒鉛
製容器を介しての加熱なので熱効率は悪く、また、大量
の黒鉛製容器を必要とする。
In the method (1), the bulk density of the granular material is low, so that the packing density in the container is low and the processing efficiency is inferior, and the operation of the furnace is a batch type.
In addition, since it takes time to cool the furnace, efficient treatment cannot be expected. In particular, when the granular material becomes fine, the work of filling and taking out the container becomes complicated and the working environment is deteriorated. As a method for improving the filling amount, a method in which the powder is once formed into a compact, heat-treated, and then pulverized and classified is considered, but this is not preferable in terms of powder characteristics. In any case, since the heating is performed via the graphite container, the thermal efficiency is low, and a large amount of graphite container is required.

【0006】一方、ノートパソコン、携帯電話等の携帯
電子機器の急速な普及と高機能化に伴い、高電池容量の
リチウムイオン二次電池用の負極材が要望され、その開
発が急務である。高電池容量化の方法の一つとして、炭
化ホウ素や酸化ホウ素等のホウ素源を原料の炭素質粉粒
体に添加する方法もあるが、負極材としては、鉄やアル
ミニウム等の金属不純物を含まないことも重要である。
On the other hand, with the rapid spread of portable electronic devices such as notebook personal computers and mobile phones and the enhancement of their functions, negative electrode materials for lithium ion secondary batteries having a high battery capacity are demanded, and their development is urgently required. One method of increasing the battery capacity is to add a boron source such as boron carbide or boron oxide to the raw carbonaceous powder, but the negative electrode material contains metal impurities such as iron and aluminum. It is also important not to have it.

【0007】しかしながら、添加剤として用いられる炭
化ホウ素や酸化ホウ素等のホウ素化合物は、金属類との
反応性に富んでいるので、従来の黒鉛化方式では、黒鉛
詰粉の原料であるブリーズコークスや人造黒鉛製容器、
さらには炉壁を保護するためのSiCライニング材に含
まれている金属不純物と反応し、黒鉛質粉粒体の中の不
純物濃度を上昇させてしまう。
However, boron compounds such as boron carbide and boron oxide used as additives are highly reactive with metals, and therefore, in the conventional graphitization method, Breeze coke, which is a raw material of graphite filling powder, is used. Artificial graphite containers,
Further, it reacts with metal impurities contained in the SiC lining material for protecting the furnace wall, and increases the impurity concentration in the graphite powder.

【0008】これを防ぐためには、不純物の少ない断熱
材を使用すること、SiCライニング材を使用しないこ
と、黒鉛化工程および黒鉛化後の冷却工程では、雰囲気
ガス圧を黒鉛質粉粒体周囲のガス圧よりもプラス圧とし
て不純物の拡散侵入を防止すること等の方法が考えられ
るが、何れも十分な効果を奏し得るものではない。
In order to prevent this, use of a heat insulating material containing a small amount of impurities, no use of a SiC lining material, and a graphitization step and a cooling step after the graphitization are carried out by reducing the atmospheric gas pressure around the graphitic particles. Although a method of preventing the diffusion and penetration of impurities by using a positive pressure rather than a gas pressure is conceivable, none of them can provide a sufficient effect.

【0009】黒鉛製容器に原料の炭素質粉粒体を充填し
て、従来の黒鉛化方式の炉に詰め、その周囲を黒鉛詰粉
で覆い、これに通電して3000℃までの所望温度で処
理する方法においても、黒鉛製容器中に雰囲気ガスを導
入することにより、黒鉛質粉粒体中の不純物の増加を防
止することは可能である。しかしながら、黒鉛製容器が
50〜100本と多数であるので、膨大な設備が必要で
あり、しかも横詰めでは施工自体が困難である等の問題
を有している。
A graphite container is filled with carbonaceous powder as a raw material, packed in a conventional graphitization furnace, and the periphery thereof is covered with graphite filling powder, which is energized at a desired temperature up to 3000 ° C. Also in the treatment method, it is possible to prevent an increase in impurities in the graphite powder by introducing an atmospheric gas into the graphite container. However, since the number of graphite containers is as large as 50 to 100, an enormous amount of equipment is required, and furthermore, there is a problem that the installation itself is difficult in horizontal packing.

【0010】また、(3)特開平3−83809号公報に
記載の装置においては、不活性雰囲気は形成できるもの
の、縦型装置であるために複数個のガス導入管を設置し
たとしても、それらのガスは混合ガスとなってしまい、
複数のガス雰囲気帯を同時に形成することはできない。
一方、(4)特開平3−183610号公報に記載の装置
においては、横型であるので複数個のガス導入管を設置
することはできるが、スクリュー方式であるので、工業
レベルでの炉を設置するためには長大なスクリューを製
作する必要があり、炉を製作すること自体が現実的では
ない。
(3) In the apparatus described in Japanese Patent Application Laid-Open No. 3-83809, although an inert atmosphere can be formed, even if a plurality of gas introduction pipes are installed because the apparatus is a vertical apparatus, they are not Gas becomes a mixed gas,
A plurality of gas atmosphere zones cannot be formed simultaneously.
On the other hand, (4) In the apparatus described in JP-A-3-183610, it is possible to install a plurality of gas introduction pipes because it is a horizontal type. To do so, it is necessary to produce a long screw, and it is not practical to produce a furnace.

【0011】なお、新しい装置や方法として、上述の
(2)、(3)、(4)、(5)、(6)等の連続的に黒鉛化する装置
や方法が提案されているが、何れも酸化防止や棚吊り防
止が目的であり、汚染防止や高純度化および洗浄等を目
的としたガス雰囲気帯の形成については示唆されていな
い。
[0011] As a new device or method,
(2), (3), (4), (5), (6) such as continuous graphitizing apparatus and method has been proposed, but both are intended to prevent oxidation and shelf hanging, There is no suggestion about formation of a gas atmosphere zone for the purpose of prevention of contamination, high purification, and cleaning.

【0012】上記の如く、従来の黒鉛化方式による黒鉛
化処理では、処理雰囲気を制御できないので、熱処理炉
における汚染を避けることはできない。
As described above, in the conventional graphitization process using the graphitization method, the treatment atmosphere cannot be controlled, so that contamination in the heat treatment furnace cannot be avoided.

【0013】一般的に、黒鉛質粉粒体の高純度化には、
ハロゲンガス(ハロゲンガス単体、または、分解により
ハロゲンガスを発生するフレオンガス、四塩化炭素等の
物質)を使用するが、高純度化後に残留するハロゲンガ
スを除去するには、窒素ガス等の不活性且つ無害なガス
により置換することが必要である。
[0013] In general, to purify graphite-like powdery granules,
Halogen gas (halogen gas alone, or a substance such as freon gas or carbon tetrachloride that generates halogen gas by decomposition) is used. To remove the residual halogen gas after high purification, use inert gas such as nitrogen gas. In addition, it is necessary to replace with a harmless gas.

【0014】また一方、添加剤として用いられる炭化ホ
ウ素や酸化ホウ素等のホウ素化合物は、高温で窒素と反
応して負極材にとって有害な窒化ホウ素(BN)を生成
するので、黒鉛化処理においては、不活性ガスとして、
高価なアルゴンガスを一般的に使用している。
On the other hand, a boron compound such as boron carbide or boron oxide used as an additive reacts with nitrogen at a high temperature to form boron nitride (BN) which is harmful to a negative electrode material. As an inert gas,
Expensive argon gas is commonly used.

【0015】そこで、本発明の目的は、不純物の極めて
少ない黒鉛質粉粒体を得るために、各種ガス雰囲気帯を
同時に形成することができ、黒鉛化処理および高純度化
処理を連続的に行える装置および方法を提供することに
ある。また、生産効率、品質、エネルギーコスト等の問
題点を解決し、樹脂類および炭素質の粉粒体や成形体を
高効率で加熱処理可能な工業生産レベルの装置および方
法を提供することにある。
Therefore, an object of the present invention is to simultaneously form various gas atmosphere zones in order to obtain a graphitic powder having very few impurities, and to continuously perform graphitization and high-purification. It is to provide an apparatus and a method. Another object of the present invention is to solve the problems of production efficiency, quality, energy cost, and the like, and to provide an industrial production level apparatus and method capable of heat-treating resins and carbonaceous powders and compacts with high efficiency. .

【0016】[0016]

【課題を解決するための手段】本発明者らは、黒鉛製造
装置において加熱部として円筒状の黒鉛管を複数本連接
した加熱管を用い、加熱管内のガス雰囲気を調整するこ
とにより、上記目的が達成されることを見出した。
Means for Solving the Problems The present inventors have achieved the above object by adjusting the gas atmosphere in a heating tube by using a heating tube in which a plurality of cylindrical graphite tubes are connected as a heating unit in a graphite manufacturing apparatus. Is achieved.

【0017】すなわち、本発明は、下記に示すとおりの
黒鉛製造装置、黒鉛製造方法および該方法により得られ
るリチウムイオン二次電池負極用黒鉛材料を提供するも
のである。 項1. 加熱部として円筒状の黒鉛管を複数本連接した
加熱管を用いた黒鉛製造装置であって、加熱管内の不活
性ガス雰囲気または不活性ガス雰囲気とハロゲンガス雰
囲気とを調整する手段を有する黒鉛製造装置。 項2. 円筒状の黒鉛管を複数本連接して加熱管を形成
し、この加熱管の一端部に原料の導入部を設けるととも
に、この加熱管の他端部に製品黒鉛の導出部を設け、上
記加熱管を加熱手段により加熱することにより、上記原
料を加熱し、上記製品黒鉛を製造する項1に記載の黒鉛
製造装置。 項3. 加熱管内、または、導入部、加熱管および導出
部内に、同時に複数のガス雰囲気帯を形成する手段を有
する項2に記載の黒鉛製造装置。 項4. 加熱部として円筒状の黒鉛管を複数本連接した
加熱管を用いた黒鉛製造装置を用いて、上記加熱管を加
熱することにより上記加熱管内の原料を加熱して製品黒
鉛を製造する方法であって、上記加熱管内の不活性ガス
雰囲気または不活性ガス雰囲気とハロゲンガス雰囲気と
を調整する黒鉛製造方法。 項5. 項4に記載の黒鉛製造方法により得られるリチ
ウムイオン二次電池負極用黒鉛材料。
That is, the present invention provides a graphite production apparatus, a graphite production method, and a graphite material for a negative electrode of a lithium ion secondary battery obtained by the method as described below. Item 1. A graphite production apparatus using a heating tube formed by connecting a plurality of cylindrical graphite tubes as a heating unit, the graphite production device having means for adjusting an inert gas atmosphere or an inert gas atmosphere and a halogen gas atmosphere in the heating tube. apparatus. Item 2. A heating tube is formed by connecting a plurality of cylindrical graphite tubes, and an introduction portion of a raw material is provided at one end of the heating tube, and a product graphite outlet portion is provided at the other end of the heating tube. Item 2. The graphite producing apparatus according to Item 1, wherein the raw material is heated by heating the tube by a heating means to produce the product graphite. Item 3. Item 3. The graphite producing apparatus according to Item 2, further comprising means for simultaneously forming a plurality of gas atmosphere zones in the heating pipe or in the introduction section, the heating pipe, and the outlet section. Item 4. A method for producing a product graphite by heating the heating tube by using a graphite production apparatus using a heating tube in which a plurality of cylindrical graphite tubes are connected as a heating unit, thereby heating the raw material in the heating tube. And an inert gas atmosphere or an inert gas atmosphere and a halogen gas atmosphere in the heating tube. Item 5. Item 6. A graphite material for a negative electrode of a lithium ion secondary battery obtained by the method for producing graphite according to Item 4.

【0018】[0018]

【発明の実施の形態】以下に、本発明の実施の形態を、
図1を参照しつつ説明する。図1は、本発明の黒鉛製造
装置の一例を示す概略側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to FIG. FIG. 1 is a schematic side view showing an example of the graphite manufacturing apparatus of the present invention.

【0019】本発明の黒鉛製造装置は、図1に示すよう
に、加熱部として円筒状の黒鉛管1を複数本連接した加
熱管2を用いた装置である。
As shown in FIG. 1, the graphite production apparatus of the present invention is an apparatus using a heating tube 2 in which a plurality of cylindrical graphite tubes 1 are connected as a heating unit.

【0020】上記黒鉛管1は、加熱手段により、180
0〜3500℃に昇温される。これにより、黒鉛管1内
を通過する、黒鉛を製造するための原料が黒鉛化または
高純度化され、製品たる黒鉛(製品黒鉛)が製造され
る。
The graphite tube 1 is heated 180
The temperature is raised to 0-3500 ° C. As a result, the raw material for producing graphite, which passes through the interior of the graphite tube 1, is graphitized or highly purified, and the product graphite (product graphite) is produced.

【0021】上記黒鉛管1の連接方法は、特に限定され
ない。例えば、加熱管2を構成する黒鉛管1の端面を平
面状に形成し、1つの黒鉛管1の端面と、これに隣接す
る黒鉛管1の端面とを突き合わせて連接する方法が挙げ
られる。
The method of connecting the graphite tubes 1 is not particularly limited. For example, there is a method in which the end surface of the graphite tube 1 constituting the heating tube 2 is formed in a flat shape, and the end surface of one graphite tube 1 and the end surface of the graphite tube 1 adjacent thereto are connected to each other.

【0022】上記加熱管2の一端部には原料の導入部3
が、また、上記加熱管2の他端部には製品黒鉛の導出部
4が連接される。この導出部4の加熱管側とは反対側に
は冷却・解砕部5が連接される。
At one end of the heating tube 2 is introduced a raw material introduction section 3.
The other end of the heating tube 2 is connected to a lead portion 4 for product graphite. A cooling / crushing unit 5 is connected to the outlet 4 on the side opposite to the heating tube.

【0023】上記導入部3は、原料を導入し、加熱管2
に送出するためのものであり、導入部3内に原料を供給
するための原料供給部(不図示)および雰囲気ガスを導
入するためのガス導入管6を有する。
The introduction section 3 introduces the raw material,
It has a material supply unit (not shown) for supplying a material into the introduction unit 3 and a gas introduction pipe 6 for introducing an atmosphere gas.

【0024】上記導出部4は、加熱管2で製造された製
品黒鉛を加熱管2から導出するためのものであり、雰囲
気ガスを導入するためのガス導入管7を有する。
The lead-out section 4 serves to lead product graphite produced by the heating pipe 2 out of the heating pipe 2 and has a gas introduction pipe 7 for introducing atmospheric gas.

【0025】上記ガス導入管6,7は、加熱管2内に同
時に複数のガス雰囲気帯を形成するための手段である。
また、上記ガス導入管6,7は、加熱管2内の不活性ガ
ス雰囲気または不活性ガス雰囲気とハロゲンガス雰囲気
とを調整するための手段である。
The gas introduction pipes 6 and 7 are means for simultaneously forming a plurality of gas atmosphere zones in the heating pipe 2.
The gas introduction pipes 6 and 7 are means for adjusting an inert gas atmosphere or an inert gas atmosphere and a halogen gas atmosphere in the heating pipe 2.

【0026】上記加熱管2は、不純物を含む雰囲気ガス
を排出するための排気管8,9を有する。加熱管2に含
まれる不純物や原料中に含まれる金属不純物が気体化し
た場合、製品黒鉛を汚染する可能性が高いので、排気管
8,9により、これら不純物を外部へ追い出すことがで
きる。
The heating pipe 2 has exhaust pipes 8 and 9 for discharging an atmosphere gas containing impurities. When impurities contained in the heating tube 2 and metal impurities contained in the raw material are gasified, there is a high possibility that the product graphite will be contaminated. Therefore, these impurities can be expelled to the outside by the exhaust pipes 8 and 9.

【0027】上記原料および製品黒鉛の加熱管2内の移
動方法としては、加熱管2、導入部3および導出部4に
搬送トレイ(不図示)を配し、導入部3に取り付けた押
込装置(不図示)によって、搬送トレイを導入部3に押
し込むことにより、順次、搬送トレイを移動させて、加
熱管2内を通過させる方法が挙げられる。なお、このと
き、原料供給部でこの搬送トレイに、原料が供給され
る。また、原料を所定形状に成形し、この成形体を加熱
管2、導入部3または導出部4に配し、そして、導入部
3に取り付けた押込装置(不図示)によって、上記成形
体を導入部3に押し込み、順次、原料の成形体を移動さ
せて、加熱管2内を移動させる方法が挙げられる。この
ように、原料の成形体が移動する場合、上記の搬送トレ
イの代わりに原料の成形体を用いればよい。
As a method for moving the raw material and the product graphite in the heating tube 2, a conveying tray (not shown) is arranged in the heating tube 2, the introduction section 3 and the extraction section 4, and a pushing device (not shown) attached to the introduction section 3 is used. (Not shown), there is a method in which the transport tray is moved sequentially by pushing the transport tray into the introduction section 3 so as to pass through the heating tube 2. At this time, the raw material is supplied to this transport tray by the raw material supply unit. Further, the raw material is formed into a predetermined shape, and the formed body is arranged in the heating tube 2, the introduction section 3 or the outlet section 4, and the formed body is introduced by a pushing device (not shown) attached to the introduction section 3. A method of moving the inside of the heating pipe 2 by pushing the molded body of the raw material sequentially into the heating tube 2 by pushing the molded body into the heating part 2. As described above, when the raw material molded body moves, the raw material molded body may be used instead of the above-described transport tray.

【0028】加熱管2を通過する間に原料は、加熱さ
れ、製品黒鉛となる。この製品黒鉛は、導出部4に送ら
れ、ここで回収される。さらに、製品黒鉛は、冷却・解
砕部5に送られ、冷却されると共に解砕される。製品黒
鉛の解砕を必要としない場合は、解砕機を使用せずに製
品黒鉛を回収する。冷却・解砕部5は、雰囲気ガスを導
入するためのガス導入管10を有する。
The raw material is heated while passing through the heating tube 2 to become product graphite. This product graphite is sent to the lead-out section 4 and collected there. Further, the product graphite is sent to the cooling / crushing unit 5, where it is cooled and broken. If the crushing of product graphite is not required, recover the product graphite without using a crusher. The cooling / crushing unit 5 has a gas introduction pipe 10 for introducing an atmospheric gas.

【0029】上記加熱手段は、任意の手段を採用するこ
とができる。例えば、他で発生させた熱を加熱管2に伝
えて、加熱管2を間接加熱する手段が挙げられる。ま
た、給電装置を用い、加熱管2に通電することにより抵
抗熱を発生させ、加熱管2を直接加熱する手段が挙げら
れる。
As the heating means, any means can be adopted. For example, there is a means for transmitting heat generated elsewhere to the heating tube 2 to indirectly heat the heating tube 2. In addition, there is a means for generating a resistance heat by supplying a current to the heating tube 2 using a power supply device and directly heating the heating tube 2.

【0030】本発明で使用される原料としては、フェノ
ール、フラン等の樹脂の粉粒体、コークス、カーボンブ
ラック、メソカーボン、天然黒鉛等の炭素質や黒鉛質の
粉粒体等、任意のものを使用できる。また、原料の形状
は、特に限定されない。製品黒鉛とした後に解砕する場
合は、粉状、粒子状、粉粒状等のものを用いることがで
きる。さらに、前もって成形した原料の成形体を用いて
もよい。この場合、解砕せずに製品黒鉛を回収するのが
好ましい。
The raw material used in the present invention may be any material such as resin powders such as phenol and furan, carbonaceous and graphite powders such as coke, carbon black, mesocarbon, and natural graphite. Can be used. The shape of the raw material is not particularly limited. In the case of crushing after being made into product graphite, powdery, particulate, powdery and the like can be used. Further, a molded body of a raw material molded in advance may be used. In this case, it is preferable to recover the product graphite without crushing.

【0031】本発明の装置を用いることにより、黒鉛質
粉粒体中の不純物を極めて少なくすることが、効率よく
できる。
By using the apparatus of the present invention, it is possible to efficiently reduce the amount of impurities in the graphitic granular material with high efficiency.

【0032】本発明の装置を用いて、雰囲気を調整する
には、例えば、次のようにすればよい。 (1) ガス導入管6より雰囲気ガスを一定量導入し、排気
管8より不純物ガスと同時に排気する。同時に、ガス導
入管7からは、別の雰囲気ガスを一定量導入し、排気管
9より不純物ガスと同時に排気する。雰囲気ガスは、窒
素ガス、アルゴンガス等の不活性ガスや、塩素ガス、フ
ッ素ガス等のハロゲンガスを含むガスである。例えば、
ガス導入管6よりハロゲンガスを導入し、ガス導入管7
から不活性ガスを導入する場合には、ハロゲンガスと反
応して気体化した金属不純物(ハロゲン化物)を含むハ
ロゲンガス雰囲気と不活性ガスとのガス置換が高温で行
われることにより、加熱管2の導出部4側において、雰
囲気中に残留するハロゲン化物の濃度を素早く効率よく
下げることができる。 (2) 黒鉛化の段階で、炭化ホウ素や酸化ホウ素等の添加
剤を使用する場合には、ガス導入管6より、例えばアル
ゴンガスを導入し、黒鉛化領域の雰囲気をアルゴンガス
雰囲気とする。これにより、窒化ホウ素の生成を防止で
きる。 (3) さらに不純物を除去して製品黒鉛をより高純度化す
る場合には、ハロゲンガス(塩素ガスまたはフッ素ガ
ス)をガス導入管7より導入し、冷却域をハロゲンガス
雰囲気とすることにより、高純度化を行うこともでき
る。ハロゲンガスと反応して気体化した金属不純物は、
外部へ排気される。 (4) なお、ガス導入管10より不活性ガスを導入して冷
却・解砕部5を不活性ガス雰囲気とし、黒鉛質粉粒体の
酸化とハロゲンガスの残留を防止する。
The atmosphere can be adjusted by using the apparatus of the present invention, for example, as follows. (1) Atmospheric gas is introduced in a fixed amount from the gas inlet pipe 6 and exhausted from the exhaust pipe 8 simultaneously with the impurity gas. At the same time, a certain amount of another atmospheric gas is introduced from the gas introduction pipe 7 and exhausted from the exhaust pipe 9 simultaneously with the impurity gas. The atmosphere gas is a gas containing an inert gas such as nitrogen gas or argon gas, or a halogen gas such as chlorine gas or fluorine gas. For example,
A halogen gas is introduced from the gas introduction pipe 6 and the gas introduction pipe 7
When the inert gas is introduced from the heating pipe 2, the halogen gas atmosphere containing a metal impurity (halide) which has been reacted with the halogen gas and gasified is replaced with the inert gas at a high temperature. , The concentration of halide remaining in the atmosphere can be quickly and efficiently reduced. (2) When an additive such as boron carbide or boron oxide is used in the graphitization stage, for example, an argon gas is introduced from the gas introduction pipe 6 to make the atmosphere in the graphitization region an argon gas atmosphere. Thereby, generation of boron nitride can be prevented. (3) In order to further purify the product graphite by further removing impurities, a halogen gas (chlorine gas or fluorine gas) is introduced from the gas introduction pipe 7, and the cooling zone is set to a halogen gas atmosphere. Purification can also be performed. The metal impurities gasified by reacting with the halogen gas are
It is exhausted to the outside. (4) An inert gas is introduced from the gas introduction pipe 10 to make the cooling / crushing section 5 an inert gas atmosphere, thereby preventing oxidation of the graphitic powder and particles and residual halogen gas.

【0033】[0033]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0034】実施例1 図1に示す黒鉛連続製造装置を用いて、黒鉛を連続的に
製造した。ガス導入管6およびガス導入管7からはアル
ゴンガスを、ガス導入管10からは窒素ガスを導入し
て、装置内の雰囲気を調整した。
Example 1 Graphite was continuously produced using the continuous graphite production apparatus shown in FIG. Argon gas was introduced from the gas introduction pipe 6 and the gas introduction pipe 7, and nitrogen gas was introduced from the gas introduction pipe 10 to adjust the atmosphere in the apparatus.

【0035】操業条件を以下に示す。 被処理物:ホウ素化合物(炭化ホウ素)を添加した炭素
質粉粒体(ニードルコークス) ガス導入管6からのガス:アルゴンガス(流速50リッ
トル/分) ガス導入管7からのガス:アルゴンガス(流速50リッ
トル/分) ガス導入管10からのガス:窒素ガス(流速50リット
ル/分) 処理温度:3000℃ 連続操業時間:30日 トレイの加熱管における平均滞留時間:20時間 黒鉛化処理した黒鉛質粉粒体を冷却した後、5つのサン
プルを取り、灰分、鉄分、X線パラメーター、BET比
表面積、B、N、放電容量および放電効率を測定した。
その結果を表1に示す。
The operating conditions are shown below. Object to be treated: carbonaceous powder (needle coke) to which a boron compound (boron carbide) is added Gas from gas inlet tube 6: argon gas (flow rate 50 liter / min) Gas from gas inlet tube 7: argon gas ( (Flow rate: 50 liter / min) Gas from gas inlet pipe: nitrogen gas (flow rate: 50 liter / min) Processing temperature: 3000 ° C Continuous operation time: 30 days Average residence time in tray heating pipe: 20 hours Graphitized graphite After cooling the granular material, five samples were taken, and ash content, iron content, X-ray parameters, BET specific surface area, B, N, discharge capacity, and discharge efficiency were measured.
Table 1 shows the results.

【0036】なお、測定は以下のようにして行った。 [各種測定法] (a)結晶化度の測定(格子定数Coおよび結晶子の大
きさLc) 試料をメノウ乳鉢で粉砕し、試料に対して約15質量%
のX線高純度シリコン粉末を加えて混合し、試料セルに
詰め、グラファイトモノクロメーターで単色化したCu
Kα線を線源とし、反射式ディフラクトメーター法によ
って広角X線回折で測定した。 (b)比表面積 窒素ガス吸着によるBET1点法によって測定した。 (c)B、Nの定量方法 (1)Niカプセルに乾燥試料を10mg入れた。 (2)分析用黒鉛ルツボにSnを0.5g入れた。 (3)Niカプセルを2700℃に加熱して、BNで存在
するホウ素は、Nをキャリアガスの熱伝導度の変化によ
り定量し、計算により求めた。またB23で存在するホ
ウ素は、黒鉛(C)と反応して生成するCOを赤外線吸
収により定量し、計算により求めた。 (d)放電容量、放電効率の測定 電解液を含浸させたセパレーター(ポリエチレン製多孔
性フィルム)を挟み、リチウム金属電極に対向させたコ
イン型セルを作製し、充放電試験を行なった。電解液に
は、エチレンカーボネートとジメチルカーボネートを質
量比1:1で混合したLiPF6を1mol/リットル
の割合で溶解させたものを用いた。充放電試験は、電流
値1.54mAとし、両電極間の電位差が0Vとなるま
で充電を行い、1.5Vまで放電を行った。
The measurement was performed as follows. [Various measurement methods] (a) Measurement of crystallinity (lattice constant Co and crystallite size Lc) A sample was ground in an agate mortar, and about 15% by mass based on the sample.
X-ray high-purity silicon powder was added and mixed, packed in a sample cell, and made monochromatic with a graphite monochromator.
The measurement was performed by wide-angle X-ray diffraction using a Kα ray as a radiation source and a reflection type diffractometer method. (B) Specific surface area Measured by the BET one-point method by nitrogen gas adsorption. (C) Method for quantifying B and N (1) 10 mg of a dry sample was put in a Ni capsule. (2) 0.5 g of Sn was put in a graphite crucible for analysis. (3) The Ni capsule was heated to 2700 ° C., and boron present in the BN was determined by calculation by quantifying N by the change in the thermal conductivity of the carrier gas. The amount of boron present in B 2 O 3 was determined by calculating the amount of CO generated by reacting with graphite (C) by infrared absorption and calculating the amount. (D) Measurement of Discharge Capacity and Discharge Efficiency A coin-shaped cell having a separator (polyethylene porous film) impregnated with an electrolyte interposed therebetween and facing a lithium metal electrode was prepared, and a charge / discharge test was performed. The electrolyte used was one in which LiPF 6 in which ethylene carbonate and dimethyl carbonate were mixed at a mass ratio of 1: 1 was dissolved at a rate of 1 mol / liter. In the charge / discharge test, a current value was set to 1.54 mA, charging was performed until the potential difference between both electrodes became 0 V, and discharging was performed to 1.5 V.

【0037】[0037]

【表1】 [Table 1]

【0038】図1に示す黒鉛連続製造装置を用いて得ら
れた黒鉛質粉粒体を負極材として評価したとき、BNの
生成が確認されないために、放電容量および放電効率は
良好であった。
When the graphite powder obtained using the continuous graphite production apparatus shown in FIG. 1 was evaluated as a negative electrode material, no BN was found to be produced, and the discharge capacity and discharge efficiency were good.

【0039】比較例1 実施例1で用いたのと同じ被処理物を黒鉛製容器(直径
600mm、長さ2000mm)に装填し、アチソン炉
で熱処理した。熱処理工程には28日を要した。
Comparative Example 1 The same workpiece as used in Example 1 was loaded into a graphite container (diameter 600 mm, length 2000 mm) and heat-treated in an Acheson furnace. The heat treatment step required 28 days.

【0040】操業条件を以下に示す。 被処理物:ホウ素化合物(炭化ホウ素)を添加した炭素
質粉粒体(ニードルコークス) 処理温度:3000℃ 加熱通電時間:4日 冷却時間:21日(3000℃→室温) 炉詰め、炉出し日数:3日 黒鉛製容器の外周部から中心に向かって5つのサンプル
を取り、灰分、鉄分、X線パラメーター、BET比表面
積、B、N、放電容量および放電効率を測定した。その
結果を表2に示す。
The operating conditions are shown below. Material to be treated: Carbonaceous powder (needle coke) to which boron compound (boron carbide) is added Treatment temperature: 3000 ° C Heating time: 4 days Cooling time: 21 days (3000 ° C to room temperature) : 3 days Five samples were taken from the outer periphery of the graphite container toward the center, and ash content, iron content, X-ray parameters, BET specific surface area, B, N, discharge capacity, and discharge efficiency were measured. Table 2 shows the results.

【0041】[0041]

【表2】 [Table 2]

【0042】表2から、窒素分が、実施例1より100
倍近くも大きな値となっていることが判る。負極材とし
て評価したとき、BNの生成が認められるために、放電
容量および放電効率が悪かった。
From Table 2, it was found that the nitrogen content was 100
It can be seen that the value is almost twice as large. When evaluated as a negative electrode material, generation of BN was recognized, so that the discharge capacity and discharge efficiency were poor.

【0043】実施例2 図1に示す黒鉛連続製造装置を用いて、黒鉛を連続的に
製造した。ガス導入管6からは塩素ガスを、ガス導入管
7からは窒素ガスを、ガス導入管10からは窒素ガスを
導入して、装置内の雰囲気を調整した。
Example 2 Graphite was continuously produced using the continuous graphite production apparatus shown in FIG. Chlorine gas was introduced from the gas introduction tube 6, nitrogen gas was introduced from the gas introduction tube 7, and nitrogen gas was introduced from the gas introduction tube 10 to adjust the atmosphere in the apparatus.

【0044】操業条件を以下に示す。 被処理物:天然黒鉛 ガス導入管6からのガス:塩素ガス(流速50リットル
/分) ガス導入管7からのガス:窒素ガス(流速50リットル
/分) ガス導入管10からのガス:窒素ガス(流速50リット
ル/分) 処理温度:2000℃ 連続操業時間:30日 トレイの加熱管における平均滞留時間:10時間 高純度化処理した天然黒鉛粉を冷却した後、5つのサン
プルを取り、灰分、鉄分、X線パラメーター、放電容量
および放電効率を測定した。その結果を表3に示す。
The operating conditions are shown below. Material to be treated: natural graphite Gas from gas inlet pipe 6: chlorine gas (flow rate 50 liter / min) Gas from gas inlet pipe 7: nitrogen gas (flow rate 50 liter / minute) Gas from gas inlet pipe 10: nitrogen gas (Flow rate: 50 liters / min.) Processing temperature: 2000 ° C. Continuous operating time: 30 days Average residence time in the heating tube of the tray: 10 hours After cooling the highly purified natural graphite powder, five samples were taken, and ash, The iron content, X-ray parameters, discharge capacity and discharge efficiency were measured. Table 3 shows the results.

【0045】[0045]

【表3】 [Table 3]

【0046】図1に示す黒鉛連続製造装置を使用するこ
とにより、高純度黒鉛質粉粒体を効率よく得ることがで
きた。この高純度黒鉛質粉粒体を負極材として評価した
とき、電池性能も良かった。
By using the continuous graphite production apparatus shown in FIG. 1, high-purity graphite-like particles could be efficiently obtained. When the high-purity graphite powder was evaluated as a negative electrode material, the battery performance was also good.

【0047】比較例2 実施例2で用いたのと同じ被処理物を黒鉛製容器(直径
600mm、長さ2000mm)に装填し、アチソン炉
で塩素ガスを用いて高純度化処理した。高純度化工程に
は26日を要した。
Comparative Example 2 An object to be treated which was the same as that used in Example 2 was loaded into a graphite container (diameter 600 mm, length 2000 mm) and subjected to a high-purification treatment using chlorine gas in an Acheson furnace. The purification process required 26 days.

【0048】操業条件を以下に示す。 被処理物:天然黒鉛 処理温度:2000℃ 加熱通電時間:4日 冷却時間:19日(2000℃→室温) 炉詰め、炉出し日数:3日 黒鉛製容器の外周部から中心に向かって5つのサンプル
を取り、灰分、鉄分、X線パラメーター、放電容量およ
び放電効率を測定した。その結果を表4に示す。
The operating conditions are shown below. Object to be treated: Natural graphite Treatment temperature: 2000 ° C Heating and energizing time: 4 days Cooling time: 19 days (2000 ° C to room temperature) Number of days for packing and taking out the furnace: 3 days Samples were taken and ash, iron, X-ray parameters, discharge capacity and discharge efficiency were measured. Table 4 shows the results.

【0049】[0049]

【表4】 [Table 4]

【0050】表4から、鉄分などの不純物が、実施例2
より100倍以上も大きな値となっていることが判る。
負極材として評価したとき、電池性能も悪かった。
From Table 4, it can be seen that impurities such as iron were found to be in Example 2.
It can be seen that the value is more than 100 times larger.
When evaluated as a negative electrode material, the battery performance was also poor.

【0051】[0051]

【発明の効果】本発明の黒鉛製造装置によれば、各種ガ
ス雰囲気の調整が可能なので、不純物の極めて少ない高
純度の黒鉛質粉粒体を連続的に効率よく得ることができ
る。
According to the graphite production apparatus of the present invention, since various gas atmospheres can be adjusted, it is possible to continuously and efficiently obtain high-purity graphitic powder having very few impurities.

【0052】本発明の黒鉛製造方法によれば、不純物の
極めて少ない高純度の黒鉛質粉粒体を連続的に効率よく
得ることができる。
According to the method for producing graphite of the present invention, it is possible to continuously and efficiently obtain high-purity graphitic powder having very few impurities.

【0053】また、本発明の黒鉛製造方法により得られ
るリチウムイオン二次電池負極用黒鉛材料は、優れた負
極材である。
The graphite material for a negative electrode of a lithium ion secondary battery obtained by the method for producing graphite of the present invention is an excellent negative electrode material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の黒鉛製造装置の一例を示す概略側面図
である。
FIG. 1 is a schematic side view showing an example of a graphite manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…黒鉛管 2…加熱管 3…導入部 4…導出部 5…冷却・解砕部 6,7…ガス導入管 8,9…排気管 10…ガス導入管 DESCRIPTION OF SYMBOLS 1 ... Graphite tube 2 ... Heating tube 3 ... Introducing part 4 ... Outgoing part 5 ... Cooling / disintegration part 6, 7 ... Gas introduction pipe 8, 9 ... Exhaust pipe 10 ... Gas introduction pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝田 恒彦 京都府福知山市長田野町3丁目26番地 株 式会社エスイーシー京都工場内 (72)発明者 中島 耐 京都府福知山市長田野町3丁目26番地 株 式会社エスイーシー京都工場内 Fターム(参考) 4G046 EA01 EB02 EB04 EB09 EC02 EC06 5H050 AA19 BA17 CB08 FA17 GA02 GA27 GA29  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsunehiko Shibata 3-26, Nagano-cho, Fukuchiyama-shi, Kyoto Co., Ltd. Inside the SCC Kyoto Plant (72) Inventor Nakashima, withstand 3-26, Nagatano-cho, Fukuchiyama-shi, Kyoto Co., Ltd. F-term (reference) in SCC Kyoto factory 4G046 EA01 EB02 EB04 EB09 EC02 EC06 5H050 AA19 BA17 CB08 FA17 GA02 GA27 GA29

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加熱部として円筒状の黒鉛管を複数本連
接した加熱管を用いた黒鉛製造装置であって、加熱管内
の不活性ガス雰囲気または不活性ガス雰囲気とハロゲン
ガス雰囲気とを調整する手段を有する黒鉛製造装置。
1. A graphite production apparatus using a heating tube formed by connecting a plurality of cylindrical graphite tubes as a heating unit, wherein an inert gas atmosphere or an inert gas atmosphere and a halogen gas atmosphere in the heating tube are adjusted. Graphite production equipment having means.
【請求項2】 円筒状の黒鉛管を複数本連接して加熱管
を形成し、この加熱管の一端部に原料の導入部を設ける
とともに、この加熱管の他端部に製品黒鉛の導出部を設
け、上記加熱管を加熱手段により加熱することにより、
上記原料を加熱し、上記製品黒鉛を製造する請求項1に
記載の黒鉛製造装置。
2. A heating tube is formed by connecting a plurality of cylindrical graphite tubes to each other, a heating material introduction portion is provided at one end of the heating tube, and a product graphite lead-out portion is provided at the other end of the heating tube. By heating the heating tube by a heating means,
The graphite production apparatus according to claim 1, wherein the raw material is heated to produce the product graphite.
【請求項3】 加熱管内、または、導入部、加熱管およ
び導出部内に、同時に複数のガス雰囲気帯を形成する手
段を有する請求項2に記載の黒鉛製造装置。
3. The graphite production apparatus according to claim 2, further comprising means for simultaneously forming a plurality of gas atmosphere zones in the heating pipe or in the introduction section, the heating pipe and the outlet section.
【請求項4】 加熱部として円筒状の黒鉛管を複数本連
接した加熱管を用いた黒鉛製造装置を用いて、上記加熱
管を加熱することにより上記加熱管内の原料を加熱して
製品黒鉛を製造する方法であって、上記加熱管内の不活
性ガス雰囲気または不活性ガス雰囲気とハロゲンガス雰
囲気とを調整する黒鉛製造方法。
4. A graphite production apparatus using a heating tube in which a plurality of cylindrical graphite tubes are connected as a heating section, and heating the heating tube to heat the raw material in the heating tube to produce product graphite. A method for producing graphite, comprising adjusting an inert gas atmosphere or an inert gas atmosphere and a halogen gas atmosphere in the heating tube.
【請求項5】 請求項4に記載の黒鉛製造方法により得
られるリチウムイオン二次電池負極用黒鉛材料。
5. A graphite material for a negative electrode of a lithium ion secondary battery obtained by the method for producing graphite according to claim 4.
JP2000213023A 2000-07-13 2000-07-13 Device and method for producing graphite Pending JP2002029721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213023A JP2002029721A (en) 2000-07-13 2000-07-13 Device and method for producing graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213023A JP2002029721A (en) 2000-07-13 2000-07-13 Device and method for producing graphite

Publications (1)

Publication Number Publication Date
JP2002029721A true JP2002029721A (en) 2002-01-29

Family

ID=18708843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213023A Pending JP2002029721A (en) 2000-07-13 2000-07-13 Device and method for producing graphite

Country Status (1)

Country Link
JP (1) JP2002029721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
JP2006143573A (en) * 2004-10-21 2006-06-08 Nippon Steel Chem Co Ltd Furnace for highly purifying graphite material and method of highly purifying graphite material
JP2006307017A (en) * 2005-04-28 2006-11-09 Polyplastics Co Conductive resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533220A (en) * 1991-07-23 1993-02-09 Nikkiso Co Ltd Device for producing fine carbon fiber
JPH08198612A (en) * 1995-01-20 1996-08-06 S Ii C:Kk Graphite powder producing device
JPH08208210A (en) * 1995-02-06 1996-08-13 S Ii C:Kk Production of graphite powder and production unit therefor
JPH1017312A (en) * 1996-06-27 1998-01-20 Ngk Insulators Ltd Carbonizing device
JPH10162829A (en) * 1996-11-28 1998-06-19 Petoca:Kk Negative electrode material for lithium ion secondary battery and manufacture thereof
JPH10284062A (en) * 1997-04-04 1998-10-23 Nippon Steel Corp Backing method of carbon material for negative electrode of lithium secondary battery
JP2000211909A (en) * 1999-01-22 2000-08-02 Sec Corp Apparatus for producing graphite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533220A (en) * 1991-07-23 1993-02-09 Nikkiso Co Ltd Device for producing fine carbon fiber
JPH08198612A (en) * 1995-01-20 1996-08-06 S Ii C:Kk Graphite powder producing device
JPH08208210A (en) * 1995-02-06 1996-08-13 S Ii C:Kk Production of graphite powder and production unit therefor
JPH1017312A (en) * 1996-06-27 1998-01-20 Ngk Insulators Ltd Carbonizing device
JPH10162829A (en) * 1996-11-28 1998-06-19 Petoca:Kk Negative electrode material for lithium ion secondary battery and manufacture thereof
JPH10284062A (en) * 1997-04-04 1998-10-23 Nippon Steel Corp Backing method of carbon material for negative electrode of lithium secondary battery
JP2000211909A (en) * 1999-01-22 2000-08-02 Sec Corp Apparatus for producing graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
JP2006143573A (en) * 2004-10-21 2006-06-08 Nippon Steel Chem Co Ltd Furnace for highly purifying graphite material and method of highly purifying graphite material
JP2006307017A (en) * 2005-04-28 2006-11-09 Polyplastics Co Conductive resin composition

Similar Documents

Publication Publication Date Title
KR102593874B1 (en) Method, device and system for producing silicon-containing products using silicon sludge, a by-product produced by cutting silicon with a diamond wire
US4642207A (en) Process for producing ultrafine particles of ceramics
KR101193422B1 (en) A method of calcining an electrode material using a rotary kiln
EP1236682B1 (en) Silicon oxide powder and its manufacture
AU755289B2 (en) Niobium powder and a process for the production of niobium and/or tantalum powders
JP2013075816A (en) Lithium sulfide, method for producing the lithium sulfide, and method for producing inorganic solid electrolyte
JP2009520678A (en) Crystalline compositions, devices and related methods
US20130195746A1 (en) Method and system for production of silicon and devicies
JP2002029721A (en) Device and method for producing graphite
Zhu et al. High‐purity graphitic carbon for energy storage: sustainable electrochemical conversion from petroleum coke
US20230101574A1 (en) Method for producing carbon-coated silicon particles
WO2019221157A1 (en) Silicon fine particles and method for producing same
EP2209925A1 (en) Method and devices for producing air sensitive electrode materials for lithium ion battery applications
EP0453516B1 (en) Process for preparing silicon carbide
JP3951107B2 (en) Porous silicon oxide powder
CN102808091A (en) Method for preparing high-purity titanium
US20240076192A1 (en) Methods and apparatus of producing silicon nanoparticles
JP4518278B2 (en) Method for producing porous silicon oxide powder
JP2021183550A (en) Lithium disilicate-containing lithium-containing silicon oxide and method for producing the same
JP2006306724A (en) Graphite carbon powder and method and apparatus for producing the same
Liu et al. Low temperature electrochemical synthesis of nanostructured ZrC powder in molten salt
WO2020213472A1 (en) Method for producing silicon microparticles
JP5383573B2 (en) Reactor for producing polycrystalline silicon and method for producing polycrystalline silicon using the same
TW202028113A (en) Silicon fine particles and method for producing the same
JP5033948B2 (en) Method for producing aluminum nitride powder and method for producing aluminum nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308