JP3824047B2 - Method for producing amorphous silicon oxide powder - Google Patents

Method for producing amorphous silicon oxide powder Download PDF

Info

Publication number
JP3824047B2
JP3824047B2 JP2000027583A JP2000027583A JP3824047B2 JP 3824047 B2 JP3824047 B2 JP 3824047B2 JP 2000027583 A JP2000027583 A JP 2000027583A JP 2000027583 A JP2000027583 A JP 2000027583A JP 3824047 B2 JP3824047 B2 JP 3824047B2
Authority
JP
Japan
Prior art keywords
powder
silicon oxide
raw material
silicon
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000027583A
Other languages
Japanese (ja)
Other versions
JP2001220122A (en
Inventor
宏文 福岡
進 上野
健 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000027583A priority Critical patent/JP3824047B2/en
Publication of JP2001220122A publication Critical patent/JP2001220122A/en
Application granted granted Critical
Publication of JP3824047B2 publication Critical patent/JP3824047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、包装用フィルム蒸着用、リチウムイオン2次電池負極活物質などとして好適に使用される非晶質酸化珪素粉末の製造方法に関する。
【0002】
【従来の技術】
従来、酸化珪素粉末の製造方法として、二酸化珪素系酸化物粉末からなる混合原料物を減圧非酸化性雰囲気中で熱処理し、SiO蒸気を発生させ、このSiO蒸気を気相中で凝縮させて、0.1μm以下の微細アモルファス状のSiO粉末を連続的に製造する方法(特開昭63−103815号公報)、及び原料珪素を加熱蒸発させて、表面組織を粗とした基体の表面に蒸着させる方法(特開平9−110412号公報)が知られており、いずれの方法においても、酸化珪素製造用原料は、二酸化珪素系酸化物粉末とそれを還元する物質、例えば金属珪素、炭素との混合物が用いられていた。
【0003】
【発明が解決しようとする課題】
上記酸化珪素粉末製造は、いずれにしても下記式に示すような固・固反応により酸化珪素を製造するものであり、反応には固体同士の接触面積を含む接触効率が重要である。
SiO2(s)+Si(s)→2SiO(g)
SiO2(s)+C(s) →SiO(g)+CO(g)
【0004】
しかしながら、上記方法に示された代表的な酸化珪素製造においては、原料の物性については明記されておらず、場合によっては反応速度が低下し、生産性が低下してしまったり、高温反応が必要となり、電力コストの上昇あるいは高温部材選定が制限されるといった問題があった。
【0005】
本発明は、上記事情に鑑みなされたもので、高純度の酸化珪素粉末を効率的に低コストで製造することができる非晶質酸化珪素粉末の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため鋭意検討を行った結果、原料の混合を十分に行い、後述するRoseの式による混合度を0.9以上とした混合度の高い混合原料粉末を用いること、しかも嵩密度を0.3g/cm3以上と大きくした混合原料粉末を用いることにより、反応性が高まり、低温反応を可能にし得て、高純度の非晶質酸化珪素粉末を効率よく低コストで製造し得ることを知見し、本発明をなすに至った。
【0007】
従って、本発明は、二酸化珪素粉末を含み、混合度が0.9以上であり、嵩密度が0.3g/cm3以上である混合原料粉末を不活性ガスもしくは減圧下に1100〜1600℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを冷却した基体表面に析出させ、この酸化珪素析出物を回収することを特徴とする非晶質酸化珪素粉末の製造方法を提供する。
【0008】
以下、本発明につき更に詳しく説明する。
本発明の酸化珪素粉末の製造方法において、原料としては、二酸化珪素粉末とこれを還元する粉末との混合物を用いる。具体的な還元粉末としては、金属珪素化合物、炭素含有粉末などが挙げられるが、特に金属珪素粉末を用いたものが、▲1▼反応性を高める、▲2▼収率を高めるといった点で効果的であり、好ましく用いられる。
【0009】
この場合、二酸化珪素粉末としては、特に限定されないが、比表面積の大きいヒュームドシリカを用いることが好ましい。二酸化珪素粉末のBET比表面積は50m2/g以上、特には80m2/g以上であることが好ましく、また、金属珪素粉末のBET比表面積は0.5m2/g以上、より好ましくは1.0m2/g以上であることが望ましい。二酸化珪素粉末の比表面積が50m2/g未満及び金属珪素粉末の比表面積が0.5m2/g未満では、両物質の接触面積が小さくなり、反応性が低下してしまうおそれがあるためである。なお、二酸化珪素粉末、金属珪素粉末のBET比表面積の上限は、特に制限されるものではないが、二酸化珪素粉末の場合は500m2/g以下、金属珪素粉末の場合は100m2/g以下とすることができる。
【0010】
本発明における原料は、二酸化珪素粉末とこれを還元する粉末(混合原料粉末)の混合度を0.9以上、より好ましくは0.93以上にすることが必要であり、このように混合度を0.9以上とすることにより、二酸化珪素粉末とこれを還元する粉末との反応性が向上し、低温反応が可能となる。これに対し、混合度が0.9より小さいと、著しく反応性が低下し、高温反応が必要となってしまう。
【0011】
なお、この混合度は、下記Roseの式から求めたものであり、混合を十分行うことで1に近づき、完全混合状態(下記式でxi=x0の場合)は1である。
【0012】
【数1】

Figure 0003824047
【0013】
但し、sは混合した採取サンプル中の酸素濃度の標準偏差値、σ0は混合前の完全分離状態における母集団の酸素濃度の標準偏差値を示し、以下の式により求められる。
【0014】
【数2】
Figure 0003824047
【0015】
ここで、Nはサンプル数、xiは各サンプルの酸素濃度、x0は混合物中の酸素濃度の平均濃度、即ち母平均値であり、既知である。
【0016】
この場合、上記Nの値(サンプル数)は、できるだけ多い方が正確な混合度を測定でき、好ましいが、本発明者の検討によれば、N≧20であれば有意差のないものであり、従って、本発明において、混合度はその混合物からスポットサンプリング法で棒状型又はミゼットスプーン型サンプラーを用いて1〜50gのサンプルを20個以上採取した場合の値を示す。
【0017】
なお、この際の混合条件は、混合機の種類及び操作条件(回転速度、粉体充填率など)によって異なるものであり、例えばボールミル混合機、高速剪断型混合機により混合条件を確立する必要がある。
【0018】
加えて、上記混合原料の嵩密度は0.3g/cm3以上、より好ましくは0.4g/cm3以上とすることが適当である。嵩密度を0.3g/cm3以上とすることで原料間の接触距離が近くなり、反応性が向上する。しかも、単位炉内容積に対する仕込み量が増加し、生産性が向上する。この場合、嵩密度を0.3g/cm3以上とする方法としては、混合度が0.9以上である混合原料を機械圧、ガス圧、水圧等で圧密化したり、混合度が0.9以上である混合原料に水を添加し、その吸着力により圧密化する方法がある。なお、嵩密度の上限も特に制限されないが、2.0g/cm3以下、特に1.0g/cm3以下とすることが作業性の点から好ましい。
【0019】
本発明では、上記混合原料粉末を反応室内において1100〜1600℃、好ましくは1200〜1500℃、更に好ましくは1200〜1350℃の温度に加熱、保持し、酸化珪素ガスを生成させる。反応温度が1100℃未満では、反応が進行し難く生産性が低下してしまうし、1600℃を超えると、混合原料粉末が熔融して逆に反応性が低下したり、炉材の選定が困難になるおそれがある。
【0020】
一方、炉内雰囲気は不活性ガスもしくは減圧下であるが、熱力学的に減圧下の方が反応性が高く、低温反応が可能となるため、減圧下で行うことが望ましい。
【0021】
本発明においては、この生成した酸化珪素ガスを冷却された基体に接触させるもので、上記酸化珪素ガスがこの冷却基体に接触、冷却されることにより、この基体上に酸化珪素粉末が析出する。ここで、基体を冷却する目的は、非晶質な酸化珪素を製造するためであり、無冷却の場合は、析出した酸化珪素が不均化反応により二酸化珪素と金属珪素に分かれてしまったり、一部結晶質の金属珪素が混入してしまう。冷媒の種類については特に限定しないが、水、熱媒といった液体、空気、窒素といった気体がその目的によって使われる。また、基体の種類も特に限定しないが、加工性の点でSUSやモリブデン、タングステンといった高融点金属が好適に用いられる。なお、基体の冷却温度は200〜500℃、特に300〜400℃が好ましい。
【0022】
上記基体上に析出した酸化珪素粉末は、掻き取り等の適宜な手段により回収する。
【0023】
上記方法に用いる装置は、特に制限されないが、例えば図1に示す装置を挙げることができる。ここで、図1において、1はアルミナ等により形成された炉芯管で、その外周にはヒーター2が配設され、このヒーターにより炉芯管1内が1100〜1600℃の温度に保持される。なお、3は断熱材である。上記炉芯管1内には、原料容器4が配置され、この容器4内に混合原料粉末5が入れられる。また、炉芯管1内には基体6が配置される。この基体6内には冷媒通路が形成され、冷媒導入管7から供給された冷媒により基体6が所定温度に冷却され、上記混合原料粉末5の反応により生成した酸化珪素ガスがこの冷却基体6に接触、冷却することにより、基体6上に酸化珪素粉末が析出する。なお、上記冷媒は、基体6の冷媒通路を通った後、冷媒排出管8より排出される。また、9は真空ポンプである。
【0024】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
【0025】
〔実施例〕
図1に示す横型炉を用いて酸化珪素粉末を製造した。原料は、ヒュームドシリカ粉末(BET比表面積200m2/g)300gと金属珪素粉末(BET比表面積3m2/g)140gを高速剪断型混合機を用いて粉体充填率30%,回転数500rpmの条件で30分混合した後、水300gを混合し、150℃で5時間乾燥、脱水した混合粉末であり、混合度は0.98、嵩密度は0.45g/cm3であった。この混合粉末5を原料容器4に100g仕込み、真空ポンプ9を用いて炉内を0.1Torr以下に減圧した後、ヒーター2に通電し、1300℃の温度に昇温して5時間保持した。発生した酸化珪素蒸気は、水を流出入し冷却されたSUS製の析出基体6上に析出された。その結果、反応率は98.5%であり、非晶質な純度99.9%以上の高純度酸化珪素粉末を得ることができた。
【0026】
〔比較例1〕
ヒュームドシリカ粉末(BET比表面積200m2/g)300gと金属珪素粉末(BET比表面積3m2/g)140gをビニール袋内で手混合した混合粉末を原料としたほかは、実施例と同じ条件で酸化珪素粉末製造実験を行った。なお、用いた混合原料粉末の混合度は0.87、嵩密度は0.22g/cm3であった。その結果、析出物は非晶質な純度99.9%以上の高純度酸化珪素粉末であったが、反応率は65%であり、明らかに上記実施例に比べ反応性に劣るものであった。
【0027】
〔比較例2〕
ヒュームドシリカ粉末(BET比表面積200m2/g)300gと金属珪素粉末(BET比表面積3m2/g)140gを高速剪断型混合機を用いて粉体充填率30%,回転数500rpmの条件で30分混合した混合粉末を原料としたほかは、実施例と同じ条件で酸化珪素粉末製造実験を行った。なお、用いた混合原料粉末の混合度は0.97、嵩密度は0.22g/cm3であった。析出物は上記例と同様に非晶質な純度99.9%以上の高純度酸化珪素粉末であったが、反応率は88%であった。
【0028】
〔比較例3〕
ヒュームドシリカ粉末(BET比表面積200m2/g)300gと金属珪素粉末(BET比表面積3m2/g)140gをビニール袋内で手混合した混合粉末に水300gを混合、撹拌した後、150℃で5時間乾燥、脱水した混合粉末を原料としたほかは、実施例と同じ条件で酸化珪素粉末製造実験を行った。なお、用いた混合原料粉末の混合度は0.85、嵩密度は0.45g/cm3であった。析出物は上記例と同様に非晶質な純度99.9%以上の高純度酸化珪素粉末であったが、反応率は78%であった。
【0029】
【発明の効果】
本発明の酸化珪素粉末の製造方法によれば、反応性が著しく向上するため、高純度な非晶質酸化珪素粉末を生産性よく効率的に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施に用いる装置の一例を示す概略断面図である。
【符号の説明】
1 炉芯管
2 ヒーター
3 断熱材
4 原料容器
5 混合原料粉末
6 基体
7 冷媒導入管
8 冷媒排出管
9 真空ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing amorphous silicon oxide powder suitably used for film deposition for packaging, as a negative electrode active material for lithium ion secondary batteries, and the like.
[0002]
[Prior art]
Conventionally, as a method for producing silicon oxide powder, a mixed raw material made of silicon dioxide-based oxide powder is heat-treated in a reduced pressure non-oxidizing atmosphere to generate SiO vapor, and this SiO vapor is condensed in the gas phase, A method of continuously producing a fine amorphous SiO powder of 0.1 μm or less (Japanese Patent Laid-Open No. 63-103815), and evaporating raw material silicon by heating to deposit it on the surface of a substrate having a rough surface structure In any method, the raw material for producing silicon oxide is a mixture of silicon dioxide-based oxide powder and a substance that reduces it, such as metal silicon and carbon. Was used.
[0003]
[Problems to be solved by the invention]
In any case, the silicon oxide powder is produced by a solid / solid reaction represented by the following formula, and contact efficiency including a contact area between solids is important for the reaction.
SiO 2 (s) + Si (s) → 2SiO (g)
SiO 2 (s) + C (s) → SiO (g) + CO (g)
[0004]
However, in the typical silicon oxide production shown in the above method, the physical properties of the raw materials are not specified, and in some cases, the reaction rate is lowered, the productivity is lowered, or a high temperature reaction is required. Thus, there has been a problem that the increase in power cost or the selection of high temperature members is limited.
[0005]
This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the amorphous silicon oxide powder which can manufacture high purity silicon oxide powder efficiently at low cost.
[0006]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have sufficiently mixed the raw materials, and obtained a mixed raw material powder having a high mixing degree with a mixing degree of 0.9 or more according to the Rose equation described later. By using a mixed raw material powder having a bulk density of 0.3 g / cm 3 or higher, the reactivity can be increased and a low-temperature reaction can be achieved, and a high-purity amorphous silicon oxide powder can be efficiently produced. It has been found that it can be produced at a low cost, and the present invention has been made.
[0007]
Accordingly, the present invention provides a mixed raw material powder containing silicon dioxide powder having a mixing degree of 0.9 or more and a bulk density of 0.3 g / cm 3 or more at 1100 to 1600 ° C. under an inert gas or reduced pressure. There is provided a method for producing an amorphous silicon oxide powder characterized by heating to generate silicon oxide gas, depositing the silicon oxide gas on a cooled substrate surface, and collecting the silicon oxide precipitate.
[0008]
Hereinafter, the present invention will be described in more detail.
In the method for producing silicon oxide powder of the present invention, a mixture of silicon dioxide powder and powder for reducing it is used as a raw material. Specific reduction powders include metal silicon compounds, carbon-containing powders, etc., but those using metal silicon powders are particularly effective in terms of (1) increasing the reactivity and (2) increasing the yield. And is preferably used.
[0009]
In this case, the silicon dioxide powder is not particularly limited, but fumed silica having a large specific surface area is preferably used. The BET specific surface area of the silicon dioxide powder is preferably 50 m 2 / g or more, particularly 80 m 2 / g or more, and the BET specific surface area of the metal silicon powder is 0.5 m 2 / g or more, more preferably 1. It is desirable that it is 0 m 2 / g or more. If the specific surface area of the silicon dioxide powder is less than 50 m 2 / g and the specific surface area of the metal silicon powder is less than 0.5 m 2 / g, the contact area between the two substances may be small and the reactivity may be reduced. is there. The upper limit of the BET specific surface area of the silicon dioxide powder and the metal silicon powder is not particularly limited, but is 500 m 2 / g or less in the case of silicon dioxide powder and 100 m 2 / g or less in the case of metal silicon powder. can do.
[0010]
The raw material in the present invention requires that the degree of mixing of the silicon dioxide powder and the powder (mixed raw material powder) for reducing it is 0.9 or more, more preferably 0.93 or more. By setting it as 0.9 or more, the reactivity between the silicon dioxide powder and the powder for reducing it is improved, and a low temperature reaction is possible. On the other hand, when the degree of mixing is less than 0.9, the reactivity is remarkably lowered and a high temperature reaction is required.
[0011]
This degree of mixing is obtained from the following Rose equation, and approaches 1 when mixing is sufficiently performed, and is 1 in the complete mixing state (when x i = x 0 in the following equation).
[0012]
[Expression 1]
Figure 0003824047
[0013]
Here, s represents the standard deviation value of the oxygen concentration in the mixed sample collected, and σ 0 represents the standard deviation value of the oxygen concentration of the population in the completely separated state before mixing, and is obtained by the following equation.
[0014]
[Expression 2]
Figure 0003824047
[0015]
Here, N is the number of samples, x i is the oxygen concentration of each sample, x 0 is the average concentration of oxygen concentration in the mixture, that is, the population average value, and is known.
[0016]
In this case, it is preferable that the value of N (number of samples) is as large as possible so that accurate mixing can be measured. However, according to the study of the present inventor, there is no significant difference if N ≧ 20. Therefore, in the present invention, the degree of mixing indicates a value when 20 or more samples of 1 to 50 g are collected from the mixture by a spot sampling method using a rod-shaped or midget spoon type sampler.
[0017]
The mixing conditions at this time differ depending on the type of mixer and the operating conditions (rotation speed, powder filling rate, etc.). For example, it is necessary to establish the mixing conditions using a ball mill mixer or a high-speed shear mixer. is there.
[0018]
In addition, the bulk density of the mixed raw material is suitably 0.3 g / cm 3 or more, more preferably 0.4 g / cm 3 or more. When the bulk density is 0.3 g / cm 3 or more, the contact distance between the raw materials is reduced, and the reactivity is improved. In addition, the amount charged to the unit furnace internal volume is increased, and the productivity is improved. In this case, as a method of setting the bulk density to 0.3 g / cm 3 or more, a mixed raw material having a degree of mixing of 0.9 or more is consolidated by mechanical pressure, gas pressure, water pressure, or the like. There is a method in which water is added to the mixed raw material as described above and compacted by its adsorption power. The upper limit of the bulk density is not particularly limited, but is preferably 2.0 g / cm 3 or less, particularly 1.0 g / cm 3 or less from the viewpoint of workability.
[0019]
In the present invention, the mixed raw material powder is heated and held at a temperature of 1100 to 1600 ° C., preferably 1200 to 1500 ° C., and more preferably 1200 to 1350 ° C. in the reaction chamber to generate silicon oxide gas. If the reaction temperature is less than 1100 ° C., the reaction does not proceed easily and the productivity is lowered. If the reaction temperature exceeds 1600 ° C., the mixed raw material powder is melted and the reactivity is lowered, and it is difficult to select a furnace material. There is a risk of becoming.
[0020]
On the other hand, the atmosphere in the furnace is an inert gas or under reduced pressure, but it is desirable to carry out under reduced pressure because thermoreactive under reduced pressure has higher reactivity and enables low temperature reaction.
[0021]
In the present invention, the generated silicon oxide gas is brought into contact with a cooled substrate, and the silicon oxide gas is brought into contact with the cooling substrate and cooled, whereby silicon oxide powder is deposited on the substrate. Here, the purpose of cooling the substrate is to produce amorphous silicon oxide. In the case of non-cooling, the deposited silicon oxide is separated into silicon dioxide and metal silicon by a disproportionation reaction, Some crystalline metallic silicon is mixed. The type of the refrigerant is not particularly limited, but a liquid such as water or a heat medium, a gas such as air or nitrogen is used depending on the purpose. Also, the type of the substrate is not particularly limited, but a high melting point metal such as SUS, molybdenum, or tungsten is preferably used in terms of workability. The substrate cooling temperature is preferably 200 to 500 ° C, particularly 300 to 400 ° C.
[0022]
The silicon oxide powder deposited on the substrate is recovered by an appropriate means such as scraping.
[0023]
Although the apparatus used for the said method is not restrict | limited in particular, For example, the apparatus shown in FIG. 1 can be mentioned. Here, in FIG. 1, 1 is a furnace core tube made of alumina or the like, and a heater 2 is disposed on the outer periphery thereof, and the inside of the furnace core tube 1 is maintained at a temperature of 1100 to 1600 ° C. by this heater. . In addition, 3 is a heat insulating material. A raw material container 4 is disposed in the furnace core tube 1, and mixed raw material powder 5 is placed in the container 4. A base 6 is disposed in the furnace core tube 1. A refrigerant passage is formed in the substrate 6, the substrate 6 is cooled to a predetermined temperature by the refrigerant supplied from the refrigerant introduction pipe 7, and silicon oxide gas generated by the reaction of the mixed raw material powder 5 is supplied to the cooling substrate 6. By contact and cooling, silicon oxide powder is deposited on the substrate 6. The refrigerant passes through the refrigerant passage of the base 6 and is then discharged from the refrigerant discharge pipe 8. Reference numeral 9 denotes a vacuum pump.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.
[0025]
〔Example〕
Silicon oxide powder was produced using the horizontal furnace shown in FIG. Raw material, fumed silica powder (BET specific surface area 200m 2 / g) 300g and the metal silicon powder (BET specific surface area of 3m 2 / g) 140g of using a high shear mixer powder filling rate of 30%, rotational speed 500rpm After mixing for 30 minutes under the above conditions, 300 g of water was mixed, dried at 150 ° C. for 5 hours, and dehydrated, and the degree of mixing was 0.98 and the bulk density was 0.45 g / cm 3 . 100 g of this mixed powder 5 was charged in the raw material container 4 and the inside of the furnace was depressurized to 0.1 Torr or less using a vacuum pump 9. Then, the heater 2 was energized, heated to a temperature of 1300 ° C. and held for 5 hours. The generated silicon oxide vapor was deposited on the precipitation substrate 6 made of SUS cooled by flowing in and out of water. As a result, the reaction rate was 98.5%, and an amorphous high-purity silicon oxide powder having a purity of 99.9% or more could be obtained.
[0026]
[Comparative Example 1]
Fumed silica powder in addition to the mixed powder was hand mixed (BET specific surface area 200m 2 / g) 300g and the metal silicon powder (BET specific surface area of 3m 2 / g) 140g in a plastic bag and a raw material, the same conditions as in Example The silicon oxide powder production experiment was conducted. The mixed raw material powder used had a degree of mixing of 0.87 and a bulk density of 0.22 g / cm 3 . As a result, the precipitate was an amorphous high-purity silicon oxide powder having a purity of 99.9% or more, but the reaction rate was 65%, which was clearly inferior to the above examples in terms of reactivity. .
[0027]
[Comparative Example 2]
Fumed silica powder (BET specific surface area 200m 2 / g) 300g and the metal silicon powder (BET specific surface area of 3m 2 / g) 140g of using a high shear mixer the powder filling rate of 30% at a rotational speed 500rpm A silicon oxide powder production experiment was conducted under the same conditions as in the Examples except that the mixed powder mixed for 30 minutes was used as a raw material. The mixed raw material powder used had a degree of mixing of 0.97 and a bulk density of 0.22 g / cm 3 . The precipitate was an amorphous high-purity silicon oxide powder having a purity of 99.9% or more as in the above example, but the reaction rate was 88%.
[0028]
[Comparative Example 3]
300 g of fumed silica powder (BET specific surface area 200 m 2 / g) and metal silicon powder (BET specific surface area 3 m 2 / g) 140 g were mixed in a plastic bag and 300 g of water were mixed and stirred, and then 150 ° C. The silicon oxide powder production experiment was conducted under the same conditions as in the example except that the mixed powder dried and dehydrated for 5 hours was used as a raw material. The mixed raw material powder used had a degree of mixing of 0.85 and a bulk density of 0.45 g / cm 3 . The precipitate was an amorphous high-purity silicon oxide powder having a purity of 99.9% or more as in the above example, but the reaction rate was 78%.
[0029]
【The invention's effect】
According to the method for producing a silicon oxide powder of the present invention, since the reactivity is remarkably improved, a high-purity amorphous silicon oxide powder can be produced efficiently with high productivity.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an apparatus used for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace core pipe 2 Heater 3 Heat insulating material 4 Raw material container 5 Mixed raw material powder 6 Base body 7 Refrigerant introduction pipe 8 Refrigerant discharge pipe 9 Vacuum pump

Claims (4)

二酸化珪素粉末を含み、混合度が0.9以上であり、嵩密度が0.3g/cm3以上である混合原料粉末を不活性ガスもしくは減圧下に1100〜1600℃に加熱して酸化珪素ガスを発生させ、この酸化珪素ガスを冷却した基体表面に析出させ、この酸化珪素析出物を回収することを特徴とする非晶質酸化珪素粉末の製造方法。A mixed raw material powder containing silicon dioxide powder with a degree of mixing of 0.9 or more and a bulk density of 0.3 g / cm 3 or more is heated to 1100 to 1600 ° C. under an inert gas or reduced pressure to produce silicon oxide gas A method for producing an amorphous silicon oxide powder, wherein the silicon oxide gas is deposited on a cooled substrate surface and the silicon oxide precipitate is recovered. 混合原料粉末が二酸化珪素粉末と金属珪素粉末との混合物である請求項1記載の製造方法。  The method according to claim 1, wherein the mixed raw material powder is a mixture of silicon dioxide powder and metal silicon powder. 二酸化珪素粉末のBET比表面積が50m2/g以上であり、金属珪素粉末のBET比表面積が0.5m2/g以上である請求項2記載の製造方法。The method according to claim 2, wherein the silicon dioxide powder has a BET specific surface area of 50 m 2 / g or more, and the metal silicon powder has a BET specific surface area of 0.5 m 2 / g or more. 基体表面が200〜500℃に冷却されたものである請求項1,2又は3記載の製造方法。  The manufacturing method according to claim 1, wherein the substrate surface is cooled to 200 to 500 ° C.
JP2000027583A 2000-02-04 2000-02-04 Method for producing amorphous silicon oxide powder Expired - Lifetime JP3824047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027583A JP3824047B2 (en) 2000-02-04 2000-02-04 Method for producing amorphous silicon oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027583A JP3824047B2 (en) 2000-02-04 2000-02-04 Method for producing amorphous silicon oxide powder

Publications (2)

Publication Number Publication Date
JP2001220122A JP2001220122A (en) 2001-08-14
JP3824047B2 true JP3824047B2 (en) 2006-09-20

Family

ID=18553133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027583A Expired - Lifetime JP3824047B2 (en) 2000-02-04 2000-02-04 Method for producing amorphous silicon oxide powder

Country Status (1)

Country Link
JP (1) JP3824047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049826A1 (en) 2010-10-15 2012-04-19 株式会社大阪チタニウムテクノロジーズ Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
KR20200009943A (en) 2018-07-20 2020-01-30 대주전자재료 주식회사 Silicon-silicon dioxide-based sintered body, Method of manufacturing thereof and gas barrer film using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252452B2 (en) * 2001-09-17 2009-04-08 株式会社大阪チタニウムテクノロジーズ Silicon monoxide vapor deposition material and method for producing the same
CN1331744C (en) * 2005-06-08 2007-08-15 德固赛嘉联白炭黑(南平)有限公司 Process for producing white carbon black and sodium sulphite by sodium sulfate method
US20080202387A1 (en) * 2005-06-08 2008-08-28 Yuanjian Lu Process For Producing Silica and Sodium Sulfite With Sodium Sulfate
JP6352917B2 (en) * 2013-07-30 2018-07-04 東京印刷機材トレーディング株式会社 SiOX powder manufacturing method and SiOX powder manufacturing apparatus
CN104261415B (en) * 2014-09-30 2016-01-13 沈阳远大科技园有限公司 A kind of method reclaiming silicon-dioxide in discarded SCR catalyst completely
JPWO2022059316A1 (en) * 2020-09-16 2022-03-24
WO2023282136A1 (en) 2021-07-05 2023-01-12 信越化学工業株式会社 Method for manufacturing silicon monoxide
JP2023036398A (en) 2021-09-02 2023-03-14 信越化学工業株式会社 Silicon monoxide powder, and negative electrode active material for lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049826A1 (en) 2010-10-15 2012-04-19 株式会社大阪チタニウムテクノロジーズ Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor
JP5600354B2 (en) * 2010-10-15 2014-10-01 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
KR20200009943A (en) 2018-07-20 2020-01-30 대주전자재료 주식회사 Silicon-silicon dioxide-based sintered body, Method of manufacturing thereof and gas barrer film using the same

Also Published As

Publication number Publication date
JP2001220122A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP3865033B2 (en) Continuous production method and continuous production apparatus for silicon oxide powder
US7794681B2 (en) Method for producing silicon oxide powder
US6759160B2 (en) Silicon oxide powder and making method
US7507289B2 (en) Electroconductive 12CaO—7Al2O3 and compound of same type, and method for preparation thereof
JP3824047B2 (en) Method for producing amorphous silicon oxide powder
KR20160142863A (en) Method and material for lithium ion battery anodes
JP2002533289A (en) Agglomeration of silicon powder
TW201014790A (en) High purity crystalline silicon, high purity tetrachlorosilane and method of fabricating the same
US20120171848A1 (en) Method and System for Manufacturing Silicon and Silicon Carbide
JP2001226112A (en) Highly active silicon oxide powder and its manufacturing method
JP5392695B2 (en) Aluminum metal manufacturing method and manufacturing apparatus
JP3951107B2 (en) Porous silicon oxide powder
JP2002154819A (en) Method for manufacturing nanowire of silicon oxide
KR101561182B1 (en) Silicon oxide-based sintered body used in the preparation of silicon oxide and method for preparing same
RU2155158C1 (en) METHOD OF PREPARING MONOISOTOPIC SILICON Si28
JP2009078949A (en) Manufacturing method and manufacturing apparatus for sio powder
EP2805915A1 (en) Silicon purification apparatus and silicon purification method
JPS5926909A (en) Preparation of powder
JP4518278B2 (en) Method for producing porous silicon oxide powder
JPH11106212A (en) Production unit for silicon carbide powder and production of silicon carbide powder using the same
JPH0438801B2 (en)
JP3921539B2 (en) Method for producing zinc nanosheets by reduction of zinc sulfide
JPH0755813B2 (en) Method for removing impurities from silicon
JPH0214312B2 (en)
RU2077482C1 (en) Method of producing silicon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Ref document number: 3824047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150707

Year of fee payment: 9

EXPY Cancellation because of completion of term