JP2002241117A - Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery - Google Patents

Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery

Info

Publication number
JP2002241117A
JP2002241117A JP2001035421A JP2001035421A JP2002241117A JP 2002241117 A JP2002241117 A JP 2002241117A JP 2001035421 A JP2001035421 A JP 2001035421A JP 2001035421 A JP2001035421 A JP 2001035421A JP 2002241117 A JP2002241117 A JP 2002241117A
Authority
JP
Japan
Prior art keywords
graphite
carbon material
secondary battery
lithium secondary
based carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001035421A
Other languages
Japanese (ja)
Inventor
Katsuhisa Tokumitsu
勝久 徳満
Hiroyuki Fujimoto
宏之 藤本
Akihiro Mabuchi
昭弘 馬淵
Chinnasamy Natarajan
ナタラジャン・チンナサミィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001035421A priority Critical patent/JP2002241117A/en
Publication of JP2002241117A publication Critical patent/JP2002241117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon material for a lithium secondary battery, which has excellent initial efficiency and high discharge capacity even in the case of using an electrolyte containing propylene carbonate having excellent low temperature property in the lithium secondary battery, and to provide a manufacturing method therefor and a lithium secondary battery using the material as a negative electrode. SOLUTION: The graphite based carbon material is coated with a thermal decomposition carbon material on its surface. The negative electrode material for the lithium secondary battery consists of the graphite based carbon material coated with the thermal decomposition carbon on the surface. The lithium secondary battery uses the negative electrode material consisting of the graphite based carbon material coated with the thermal decomposition carbon on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、黒鉛系炭素材料に
関し、より詳しくはプロピレンカーボネートを含む電解
液との接触条件下においても優れた充放電効率を発揮す
るリチウム二次電池の負極用炭素材料として有用な黒鉛
系炭素材料、その製造方法、リチウム二次電池用負極材
料およびリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite-based carbon material, and more particularly, to a carbon material for a negative electrode of a lithium secondary battery which exhibits excellent charge / discharge efficiency even under conditions of contact with an electrolyte containing propylene carbonate. The present invention relates to a graphite-based carbon material useful as a material, a method for producing the same, a negative electrode material for a lithium secondary battery, and a lithium secondary battery.

【0002】[0002]

【従来の技術とその問題点】負極活物質としてリチウム
を用い、正極活物質として金属カルコゲン化物、金属酸
化物などを用い、電解液として非プロトン性有機溶媒に
種々の塩を溶解させた溶液を用いる、いわゆる「リチウ
ム二次電池」は、高エネルギー密度型二次電池の一種と
して注目されており、盛んに研究が行われている。
2. Description of the Related Art Lithium is used as a negative electrode active material, metal chalcogenides and metal oxides are used as a positive electrode active material, and a solution in which various salts are dissolved in an aprotic organic solvent is used as an electrolyte. The so-called “lithium secondary battery” to be used has attracted attention as a kind of high energy density secondary battery, and has been actively studied.

【0003】従来のリチウム二次電池においては、負極
活物質であるリチウムは、箔状などの単体形態で用いら
れることが多かった。しかしながら、この様な電池は、
充放電を繰り返すうちに、樹枝状リチウムが析出して、
両極が短絡するので、充放電のサイクル寿命が短いとい
う欠点を有する。
In conventional lithium secondary batteries, lithium as an anode active material is often used in a single form such as a foil. However, such batteries are
While repeating charge and discharge, dendritic lithium precipitates,
Since both electrodes are short-circuited, there is a disadvantage that the charge and discharge cycle life is short.

【0004】そこで、負極活物質として、アルミニウム
(あるいは鉛)、カドミウムおよびインジウムを含む可
融性合金(Al-Cd-In-Li系合金あるいはPb-Cd-In-Li系合
金)を用いることにより、充電時にリチウムを合金とし
て析出させ、放電時には合金からリチウムを溶解させる
技術によるリチウム二次電池が提案されている(米国特
許第4,002,492号(1977)参照)。しかしながら、この
様な材料を用いる電池においては、樹枝状リチウムの析
出は抑止できるものの、材料から電極への加工性が低下
するという新たな問題点が生じる。
Therefore, a fusible alloy containing aluminum (or lead), cadmium and indium (Al-Cd-In-Li alloy or Pb-Cd-In-Li alloy) is used as a negative electrode active material. There has been proposed a lithium secondary battery based on a technique of depositing lithium as an alloy during charging and dissolving lithium from the alloy during discharging (see US Pat. No. 4,002,492 (1977)). However, in a battery using such a material, although precipitation of dendritic lithium can be suppressed, a new problem arises in that workability from the material to the electrode is reduced.

【0005】近年、新しい負極材料を使用して、従来技
術における問題点を解決しようとする試みがなされてい
る。その様な試みの一つとして、リチウムを各種の炭素
材料に担持させる研究が盛んに行われている。リチウム
二次電池用負極として、黒鉛にリチウムを担持させた炭
素材料を用いる場合には、電池の充電時にリチウムが黒
鉛の層間に挿入(インターカレーション)され、放電時
に黒鉛層間よりリチウムが放出(デインターカレーショ
ン)される。一般に、この場合LiC6という組成から求め
られる理論的な容量は、372Ah/kg(炭素べ一ス)であ
る。しかしながら、黒鉛材料をリチウム二次電池の負極
材料として用いる場合には、電解液として低温特性に優
れたプロピレンカーボネートを含む電解液が使用できな
いという問題がある。これは、黒鉛表面において、プロ
ピレンカーボネートが電気化学的に分解されて、充電が
行えないからである。この様な問題に対処すべく、プロ
ピレンカーボネートを含まない、エチレンカーボネート
系電解液を用いる場合には、黒鉛系炭素材料を負極に用
いても、充電できることが発表されている(Journal of
Electrochemical Society, 137, p2009(1990))が、この
場合には、電池としての低温特性が低下するという新た
な問題を生じる。また、前述した通り、黒鉛の理論容量
は372Ah/kgであるが、有限な結晶子を有する黒鉛粒子中
には多くの結晶欠陥が含まれているので、粒子全体がLi
C6構造を形成することはできない。その結果、多くの黒
鉛系炭素材料では、放電容量が372Ah/kgを大きく下回る
性能しか発現されないという問題もある。
In recent years, attempts have been made to solve the problems in the prior art by using a new negative electrode material. As one of such attempts, research on supporting lithium on various carbon materials has been actively conducted. When a carbon material in which graphite is supported on lithium is used as a negative electrode for a lithium secondary battery, lithium is inserted (intercalated) between graphite layers when the battery is charged, and lithium is released from the graphite layer when discharged ( Deintercalation). Generally, in this case, the theoretical capacity obtained from the composition of LiC 6 is 372 Ah / kg (carbon base). However, when a graphite material is used as a negative electrode material of a lithium secondary battery, there is a problem that an electrolyte containing propylene carbonate having excellent low-temperature characteristics cannot be used as an electrolyte. This is because propylene carbonate is electrochemically decomposed on the graphite surface and cannot be charged. In order to deal with such a problem, it has been announced that when an ethylene carbonate-based electrolyte solution containing no propylene carbonate is used, it can be charged even if a graphite-based carbon material is used for the negative electrode (Journal of
In this case, the Electrochemical Society, 137, p2009 (1990)) raises a new problem that the low-temperature characteristics of the battery deteriorate. Further, as described above, the theoretical capacity of graphite is 372 Ah / kg, but graphite particles having finite crystallites contain many crystal defects, so that the entire particle is Li
C 6 structures cannot be formed. As a result, there is also a problem that many graphite-based carbon materials exhibit only a performance with a discharge capacity significantly lower than 372 Ah / kg.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は、リ
チウム二次電池において、低温特性の優れたプロピレン
カーボネートを含む電解液を用いる場合においても、初
期効率が良好でかつかつ放電容量が高いリチウム二次電
池用黒鉛系炭素材料、その製造方法、およびこの材料を
負極として用いたリチウム二次電池を提供することを主
な目的とする。
Accordingly, the present invention provides a lithium secondary battery which has a good initial efficiency and a high discharge capacity even when an electrolyte containing propylene carbonate having excellent low-temperature characteristics is used. It is a main object of the present invention to provide a graphite-based carbon material for a secondary battery, a method for producing the same, and a lithium secondary battery using the material as a negative electrode.

【0007】[0007]

【課題を解決するための手段】本発明者は、リチウム二
次電池の負極用材料における従来技術の問題点に鑑み
て、研究を重ねた結果、黒鉛系炭素材料の表面を熱分解
炭素で被覆した後、被覆処理時の温度よりも高い温度で
熱処理する場合には、炭素材料の表面にアモルファス炭
素層が形成されること、このアモルファス炭素層からな
る被覆層が、炭素材料によるプロピレンカーボネートの
電気化学的分解反応を抑制するとともに、高い充電容量
の発現に寄与することを見出した。
Means for Solving the Problems The present inventor has conducted various studies in view of the problems of the prior art in the negative electrode material of a lithium secondary battery, and as a result, coated the surface of a graphite-based carbon material with pyrolytic carbon. After that, when heat treatment is performed at a temperature higher than the temperature at the time of the coating process, an amorphous carbon layer is formed on the surface of the carbon material, and the coating layer made of the amorphous carbon layer is used for the electric power of propylene carbonate by the carbon material. It has been found that it suppresses the chemical decomposition reaction and contributes to the development of a high charge capacity.

【0008】即ち、本発明は、以下に示す黒鉛系炭素材
料、その製造方法、リチウム二次電池用負極材料および
リチウム二次電池を提供するものである。 1.表面が熱分解アモルファス状炭素により被覆された
黒鉛系炭素材料であって、広角X線回折測定において、
回折角(2θ)15度近傍での被覆処理後の黒鉛系炭素材料
の回折強度(a)と同角度近傍における被覆処理前の黒鉛
系炭素材料の回折強度(b)との比(a/b)が3.7以上である
黒鉛系炭素材料。 2.表面が熱分解アモルファス状炭素により被覆された
黒鉛系炭素材料の製造方法において、熱分解炭素源とな
る原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素
被覆層を生成させた後、蒸着温度よりも高い温度で熱処
理することを特徴とする黒鉛系炭素材料の製造方法。 3.熱分解炭素源が、エチレン、プロピレン、トルエ
ン、ベンゼンおよびメタンからなる群から選ばれた少な
くとも1種である上記項2に記載の黒鉛系炭素材料の製
造方法。 4.表面が熱分解アモルファス状炭素によって被覆され
ている黒鉛系炭素材料からなるリチウム二次電池用負極
材料。 5.表面が熱分解アモルファス状炭素によって被覆され
ている黒鉛系炭素材料からなる負極材料を用いたリチウ
ム二次電池。
That is, the present invention provides the following graphite-based carbon material, a method for producing the same, a negative electrode material for a lithium secondary battery, and a lithium secondary battery. 1. A graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, and in wide-angle X-ray diffraction measurement,
The diffraction intensity (a) of the graphite-based carbon material after coating near the diffraction angle (2θ) of 15 degrees (a) and the diffraction intensity of the graphite-based carbon material before coating near the same angle (b) (a / b) ) Is 3.7 or more graphite-based carbon material. 2. In a method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, a raw material serving as a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material to form a pyrolytic carbon coating layer, and then deposited. A method for producing a graphite-based carbon material, comprising heat-treating at a temperature higher than the temperature. 3. Item 3. The method for producing a graphite-based carbon material according to Item 2, wherein the pyrolytic carbon source is at least one selected from the group consisting of ethylene, propylene, toluene, benzene, and methane. 4. A negative electrode material for a lithium secondary battery comprising a graphite-based carbon material whose surface is covered with pyrolytic amorphous carbon. 5. A lithium secondary battery using a negative electrode material made of a graphite-based carbon material whose surface is covered with pyrolytic amorphous carbon.

【0009】[0009]

【発明の実施の形態】本発明において出発原料として粒
子形態で使用される黒鉛系炭素材料は、特に限定される
ものではなく、天然黒鉛、人造黒鉛、黒鉛化されたメソ
カーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊
維などが例示される。その平均粒径は、0.1〜100μm程
度であり、より好ましくは5〜50μm程度である。なお、
本明細書において、原料である黒鉛系炭素材料および生
成物(熱分解炭素によって被覆されている黒鉛系炭素材
料)のいずれにおいても、平均粒径とは、乾式レーザー
回折測定法によって得られた体積粒度分布における中心
粒径を意味する。また、比表面積は、BET法により測定
した数値を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The graphite-based carbon material used in the form of particles as a starting material in the present invention is not particularly limited, and natural graphite, artificial graphite, graphitized mesocarbon microbeads, graphitized carbon And the like. The average particle size is about 0.1 to 100 μm, more preferably about 5 to 50 μm. In addition,
In the present specification, in any of the raw material graphite-based carbon material and product (graphite-based carbon material coated with pyrolytic carbon), the average particle size is the volume obtained by dry laser diffraction measurement. It means the central particle size in the particle size distribution. The specific surface area indicates a value measured by the BET method.

【0010】本発明においては、700〜1300℃程度の温
度で、上記の様な黒鉛系炭素材料粒子と熱分解により炭
素を生成するガス状炭化水素とを接触させることによ
り、炭素材料粒子表面に炭素を化学的に蒸着させ、熱分
解させた後、該粒子を不活性雰囲気中で化学蒸着温度よ
りも高い温度で熱処理する。その結果、アモルファス状
炭素により被覆されて、比表面積が低下した黒鉛系炭素
材料が得られる。黒鉛系炭素粒子素材に対する化学蒸着
/熱分解反応は、通常700〜1300℃程度、より好ましく
は800〜1000℃程度で行う。化学蒸着/熱分解時の温度
が高すぎる場合には、析出する炭素が繊維状になった
り、すす状になったりするために、炭素粒子表面を十分
に被覆することができず、高い充放電効率が得られな
い。これに対し、温度が低すぎる場合には、ガス状炭化
水素の熱分解反応が十分に進行しないので、やはり表面
が均一に被覆されない。
In the present invention, the above-mentioned graphite-based carbon material particles are brought into contact with a gaseous hydrocarbon which forms carbon by thermal decomposition at a temperature of about 700 to 1300 ° C. After chemically depositing and pyrolyzing the carbon, the particles are heat treated in an inert atmosphere at a temperature above the chemical vapor deposition temperature. As a result, a graphite-based carbon material coated with amorphous carbon and having a reduced specific surface area is obtained. The chemical vapor deposition / pyrolysis reaction on the graphite-based carbon particle material is usually performed at about 700 to 1300 ° C, more preferably at about 800 to 1000 ° C. If the temperature at the time of chemical vapor deposition / pyrolysis is too high, the deposited carbon becomes fibrous or soot-like, so that the surface of the carbon particles cannot be sufficiently coated, resulting in high charge / discharge. Efficiency cannot be obtained. On the other hand, when the temperature is too low, the thermal decomposition reaction of the gaseous hydrocarbon does not sufficiently proceed, so that the surface is not uniformly coated.

【0011】化学蒸着反応に使用する炭化水素として
は、エチレン、プロピレン、メタン、トルエン、ベンゼ
ンなどがあげられる。化学蒸着/熱分解温度でガス状を
呈するこれらの炭化水素は、濃度100%でも使用できる
が、反応をコントロールするためには、アルゴン、窒
素、へリウムなどの不活性ガスにより、濃度0.01〜80%
程度、好ましくは1〜60%程度、より好ましくは5〜50%
程度に希釈して使用することが望ましい。ガス状炭化水
素の濃度が低すぎる場合には、反応が十分に進行しな
い。これらの炭化水素は、単独で使用しても良く、ある
いは2種以上を混合して使用しても良い。
[0011] Examples of the hydrocarbon used in the chemical vapor deposition reaction include ethylene, propylene, methane, toluene and benzene. These hydrocarbons that are gaseous at the chemical vapor deposition / pyrolysis temperature can be used at a concentration of 100%. However, in order to control the reaction, an inert gas such as argon, nitrogen, or helium is used. %
Degree, preferably about 1-60%, more preferably 5-50%
It is desirable to use it after diluting it. If the concentration of the gaseous hydrocarbon is too low, the reaction will not proceed sufficiently. These hydrocarbons may be used alone or as a mixture of two or more.

【0012】上記の化学蒸着/熱分解反応後に引き続い
て行う被覆炭素粒子の熱処理は、化学蒸着温度よりも高
い温度であって、かつ1500℃以下の温度で行うことが好
ましい。1500℃を上回る高い温度で熱処理を行う場合に
は、被覆粒子の表面が黒鉛化されて、内部の黒鉛粒子の
表面と類似することになり、充放電効率の改善効果が小
さくなってしまう。被覆炭素粒子の熱処理は、アルゴ
ン、窒素、ヘリウムなどの不活性ガス中で行う。熱処理
は、蒸着/熱分解反応終了後に、被覆炭素材料粒子を反
応器から取り出すことなく、雰囲気ガスを不活性ガスに
置換し、次いで昇温させる手法を採用しても良く、ある
いは蒸着/熱分解反応終了後、被覆炭素粒子を室温まで
下げ、反応器から取り出した後、別の反応器内で不活性
ガス雰囲気下に熱処理を行っても良い。この様にして得
られる本発明による黒鉛系炭素材料粒子(アモルファス
状炭素層により被覆された黒鉛系炭素材料粒子)は、広
角X線回折測定において、回折角(2θ)15度近傍での被覆
処理後の黒鉛系炭素材料の回折強度(a)と同角度近傍に
おける被覆処理前の黒鉛系炭素材料の回折強度(b)との
比(a/b)が3.7以上である黒鉛系炭素材料である。
The subsequent heat treatment of the coated carbon particles after the chemical vapor deposition / thermal decomposition reaction is preferably performed at a temperature higher than the chemical vapor deposition temperature and at 1500 ° C. or lower. When the heat treatment is performed at a high temperature exceeding 1500 ° C., the surface of the coated particles is graphitized and becomes similar to the surface of the internal graphite particles, and the effect of improving the charge / discharge efficiency is reduced. The heat treatment of the coated carbon particles is performed in an inert gas such as argon, nitrogen, and helium. For the heat treatment, after the vapor deposition / pyrolysis reaction is completed, a method may be adopted in which the atmosphere gas is replaced with an inert gas without removing the coated carbon material particles from the reactor and then the temperature is raised. After completion of the reaction, the coated carbon particles may be cooled to room temperature, taken out of the reactor, and then heat-treated in another reactor under an inert gas atmosphere. The graphite-based carbon material particles (graphite-based carbon material particles covered with an amorphous carbon layer) obtained in this manner are subjected to coating treatment at a diffraction angle (2θ) of around 15 degrees in wide-angle X-ray diffraction measurement. Graphite-based carbon material whose ratio (a / b) between the diffraction intensity (a) of the graphite-based carbon material after and the diffraction intensity (b) of the graphite-based carbon material before coating near the same angle is 3.7 or more .

【0013】この様な黒鉛系炭素材料は、プロピレンカ
ーボネートを分解させないので、これを含む電解液中で
も充放電反応を行うことができ、かつ初期効率が80%以
上に達し、更に放電容量も向上する。これは、化学蒸着
による被覆処理後の熱分解処理により、被覆粒子の表面
状態が改善されるためであろうと推測される。
[0013] Since such a graphite-based carbon material does not decompose propylene carbonate, a charge / discharge reaction can be performed even in an electrolytic solution containing the same, the initial efficiency reaches 80% or more, and the discharge capacity is further improved. . This is presumably because the thermal decomposition treatment after the coating treatment by chemical vapor deposition improves the surface state of the coated particles.

【0014】上記の様な特性を有する本発明の炭素材料
は、リチウム二次電池の負極用材料として有用である。
The carbon material of the present invention having the above characteristics is useful as a material for a negative electrode of a lithium secondary battery.

【0015】また、本発明による炭素材料を負極材料と
し、公知の正極材料、電解液(通常の黒鉛系負極材料表
面で電気化学的分解を生じやすいプロピレンカーボネー
ト系電解液であっても良い)、多孔質セパレータ、集電
体、ガスケット、封口板、ケースなどと組み合わせて、
常法により、リチウム二次電池を作成することができ
る。
The carbon material according to the present invention is used as a negative electrode material, and a known positive electrode material and electrolytic solution (a propylene carbonate-based electrolytic solution which is liable to undergo electrochemical decomposition on the surface of a normal graphite-based negative electrode material). In combination with a porous separator, current collector, gasket, sealing plate, case, etc.,
A lithium secondary battery can be prepared by a conventional method.

【0016】正極活物質としては、LiNiO2、LiCoO2、Li
Mn2O4などを単独であるいは混合して用いることができ
る。
As the positive electrode active material, LiNiO 2 , LiCoO 2 , Li
Mn 2 O 4 or the like can be used alone or as a mixture.

【0017】電解液としては、プロピレンカーボネー
ト、エチレンカーボネート、γ-ブチロラクトン、テト
ラヒドロフラン、2-メチルテトラヒドロフラン、ジオキ
ソラン、4-メチルジオキソラン、スルホラン、1,2-ジメ
トキシエタン、ジメチルスルホキシド、アセトニトリ
ル、N,N-ジメチルホルムアミド、ジエチレングリコー
ル、ジメチルエーテルなどの非プロトン性溶媒などにア
ニオン生成塩を溶解したものが例示される。これらの中
では、テトラヒドロフラン、2-メチルテトラヒドロフラ
ン、ジオキソラン、4-メチルジオキソランなどの強い還
元雰囲気でも安定なエーテル系溶媒あるいは前記した溶
媒中の2種類以上の混合溶媒に、LiPF6、LiClO4、LiB
F4、LiAsF6、LiSbF6、LiAlO4、LiAlCl4、LiCl、LiIなど
の溶媒和しにくいアニオンを生成する塩を溶解させたも
のを用いることが好ましい。
Examples of the electrolytic solution include propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyldioxolan, sulfolane, 1,2-dimethoxyethane, dimethyl sulfoxide, acetonitrile, N, N- Examples thereof include those in which an anion-forming salt is dissolved in an aprotic solvent such as dimethylformamide, diethylene glycol, and dimethyl ether. Among them, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, a stable ether solvent even in a strong reducing atmosphere such as 4-methyldioxolane or a mixed solvent of two or more kinds of the above-mentioned solvents, LiPF 6 , LiClO 4 , LiB
It is preferable to use a solution in which a salt that generates an anion that is difficult to solvate, such as F 4 , LiAsF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI, is dissolved.

【0018】リチウム二次電池を製造する場合には、上
記の負極材料、正極材料および電解液とともに、常用の
多孔質ボリプロピレン製不繊布をはじめとするポリオレ
フィン系の多孔質膜のセパレータ、集電体、ガスケッ
ト、封口板、ケースなどの電池構成要素を使用して、常
法に従って、円筒型,角型あるいはボタン型などの任意
形態のリチウム二次電池を組み立てることができる。
In the case of manufacturing a lithium secondary battery, a separator of a porous polyolefin-based membrane such as a commonly used porous non-woven fabric made of polypropylene, together with the above-mentioned negative electrode material, positive electrode material and electrolytic solution, Using a battery component such as a body, a gasket, a sealing plate, and a case, a lithium secondary battery of any form such as a cylindrical type, a square type or a button type can be assembled according to a conventional method.

【0019】[0019]

【発明の効果】本発明によれば、黒鉛系炭素材料粒子表
面に熱分解性炭素を化学蒸着させた後、熱処理すること
により、アモルファス化被覆層を有し、比表面積を低減
化した新規な改質炭素材料が得られる。この炭素材料を
リチウムイオン電池の負極材料として使用する場合に
は、電解液として低温特性の優れたプロピレンカーボネ
ートを含む電解液が使用でき、かつ、プロピレンカーボ
ネートを含む電解液中での初回の充放電効率を80%以上
に向上させ、かつ放電容量が向上するという顕著な効果
が達成される。
According to the present invention, a novel carbonized material having a non-amorphous coating layer and a reduced specific surface area is obtained by subjecting pyrolytic carbon to chemical vapor deposition on the surface of graphite-based carbon material particles and then performing heat treatment. A modified carbon material is obtained. When this carbon material is used as a negative electrode material of a lithium ion battery, an electrolyte containing propylene carbonate having excellent low-temperature characteristics can be used as an electrolyte, and the first charge / discharge in an electrolyte containing propylene carbonate can be used. The remarkable effects of improving the efficiency to 80% or more and improving the discharge capacity are achieved.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明をさらに詳しく
説明する。 実施例1 *黒鉛の表面処理 炭素粒子素材として、平均粒度23.5μm、比表面積4.35m
2/gの人造黒鉛粒子を用いた。この人造黒鉛粒子100gを
反応器に入れ、エチレン/アルゴン=5/95(体積比)の混
合ガスを流通させながら、800℃まで昇温した後、同温
度で6時間保持することにより化学蒸着/熱分解反応を行
った。その後、被覆炭素粒子を取り出し、他の反応器内
に収容し、アルゴン雰囲気中1100℃で1時間熱処理を行
った。熱処理反応後の被覆炭素粒子の比表面積は11.23m
2/gであった。 *炭素極(作用極)の作成 上記の様にして得られた表面改質後の黒鉛粒子92重量部
とPVdF(アルドリッチケミカル社製)8重量部とを混合
し、N-メチルピロリドン80重量部を用いて液相で均一に
撹拝した後、ペースト状とした。得られたペースト状混
合物をドクタープレードにより用いて鋼箔に塗布し、乾
燥し、圧着させることにより、炭素極を作製した後、20
0℃で6時間真空乾燥した。 *試験セルの組立 上記で得られた炭素極を1cm2の大きさに切り出したもの
に対して、対極として充分量のリチウム金属を使用し
た。また、電解液として1mol/1の濃度にLiClO4を溶解さ
せたプロピレンカーボネート/エチレンカーボネート/ジ
エチルカーボネート混合溶媒(体積比1:1:2)を用
い、セパレータとしてポリプロピレン不織布を用いて、
リチウム二次電池を作製した。 *電極特性の測定 得られたリチウム二次電池の充放電特性を以下の様にし
て、測定した。
The present invention will be described in more detail with reference to the following examples. Example 1 * Surface treatment of graphite As a carbon particle material, average particle size 23.5 μm, specific surface area 4.35 m
2 / g artificial graphite particles were used. 100 g of the artificial graphite particles were put into a reactor, and while flowing a mixed gas of ethylene / argon = 5/95 (volume ratio), the temperature was raised to 800 ° C., and the temperature was maintained at the same temperature for 6 hours to perform chemical vapor deposition / A pyrolysis reaction was performed. Thereafter, the coated carbon particles were taken out, housed in another reactor, and heat-treated at 1100 ° C. for 1 hour in an argon atmosphere. Specific surface area of coated carbon particles after heat treatment reaction is 11.23m
2 / g. * Preparation of carbon electrode (working electrode) 92 parts by weight of the surface-modified graphite particles obtained as described above and 8 parts by weight of PVdF (manufactured by Aldrich Chemical Co.) were mixed, and 80 parts by weight of N-methylpyrrolidone was mixed. The mixture was uniformly stirred in a liquid phase by using, and then made into a paste. The resulting paste-like mixture was applied to a steel foil using a doctor blade, dried, and pressed to form a carbon electrode.
Vacuum dried at 0 ° C. for 6 hours. * Assembly of test cell A sufficient amount of lithium metal was used as a counter electrode with respect to the carbon electrode obtained above cut out into a size of 1 cm 2 . Also, using a mixed solvent of propylene carbonate / ethylene carbonate / diethyl carbonate (volume ratio 1: 1: 2) in which LiClO 4 was dissolved at a concentration of 1 mol / 1 as an electrolytic solution, and using a polypropylene nonwoven fabric as a separator,
A lithium secondary battery was manufactured. * Measurement of electrode characteristics The charge / discharge characteristics of the obtained lithium secondary battery were measured as follows.

【0021】充電は、1.0mA/cm2の定電流により1mVまで
充電を行った後、1mVの電位に保持することにより行
い、充電時間は充電開始直後から12時間とした。放電
は、1.0mA/cm2の定電流で、2Vまで放電させた。放電容
量および効率は、カット電圧が1.3Vの時の容量および効
率を測定した。 実施例2 実施例1と同様にして被覆処理を行った黒鉛粒子材料を
用い、かつ試験セルの組立時に電解液として、1mol/1の
濃度にLiClO4を溶解させたエチレンカーボネート/ジエ
チルカーボネート混合溶媒(体積比1:1)を用いた以外
は実施例1と同様にしてリチウム二次電池を作製して、
その電極特性の測定を行った。 比較例1 実施例1で用いた人造黒鉛粒子をそのまま使用する以外
は実施例1と同様にしてリチウム二次電池を作製して、
その電極特性の測定を行った。 比較例2 実施例1で用いた人造黒鉛粒子(実施例1と同じ材料)
をそのまま使用する以外は実施例2と同様にしてリチウ
ム二次電池を作製して、その電極特性の測定を行った。
The charging was performed by charging the battery to 1 mV with a constant current of 1.0 mA / cm 2 and then maintaining the potential at 1 mV. The charging time was set to 12 hours immediately after the start of charging. Discharge was performed at a constant current of 1.0 mA / cm 2 to 2 V. The discharge capacity and efficiency were measured when the cut voltage was 1.3 V. Example 2 A mixed solvent of ethylene carbonate / diethyl carbonate in which LiClO 4 was dissolved at a concentration of 1 mol / 1 was used as an electrolyte at the time of assembling a test cell, using a graphite particle material coated in the same manner as in Example 1. A lithium secondary battery was prepared in the same manner as in Example 1 except that (volume ratio 1: 1) was used.
The electrode characteristics were measured. Comparative Example 1 A lithium secondary battery was produced in the same manner as in Example 1, except that the artificial graphite particles used in Example 1 were used as they were.
The electrode characteristics were measured. Comparative Example 2 Artificial graphite particles used in Example 1 (the same material as in Example 1)
A lithium secondary battery was prepared in the same manner as in Example 2 except that the above was used as it was, and its electrode characteristics were measured.

【0022】実施例1〜2および比較例1〜2で得られ
た電極測定結果をまとめて表1に示す。
Table 1 summarizes the electrode measurement results obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

【0023】[0023]

【表1】 表1に示す結果から、本発明により改質された黒鉛系炭
素材料の優れた性能が明らかである。 試験例1 本発明において、熱分解アモルファス状炭素による被覆
効果を定量化するために、黒鉛粒子の未処理品(比較例
1で用いた人造黒鉛粒子)と本発明による表面処理を行
った被覆黒鉛粒子材料(実施例1による処理材料)につい
て、広角X線回折測定を行った結果を図1に示す。図1に
おいて、表面処理材料では、15〜25度付近にブロードな
ショルダーピーク(バンド)が見られる。これは、黒鉛
粒子表面にアモルファスな炭素層が堆積したことを示し
ており、黒鉛粒子の表面構造が改質されていることが明
らかである。
[Table 1] From the results shown in Table 1, the excellent performance of the graphite-based carbon material modified according to the present invention is apparent. Test Example 1 In the present invention, an untreated graphite particle (artificial graphite particle used in Comparative Example 1) and a coated graphite that had been subjected to a surface treatment according to the present invention were used to quantify the coating effect of the pyrolytic amorphous carbon. FIG. 1 shows the result of wide-angle X-ray diffraction measurement of the particle material (the processing material according to Example 1). In FIG. 1, a broad shoulder peak (band) is observed around 15 to 25 degrees in the surface treatment material. This indicates that an amorphous carbon layer was deposited on the surface of the graphite particles, and it is clear that the surface structure of the graphite particles has been modified.

【0024】アモルファス層の割合は、化学蒸着反応に
使用するガスの種類、蒸着処理温度および時間などによ
り、任意に選択することができるが、本発明の効果を発
現する割合を実験的に定量化した結果、被覆処理後の黒
鉛系炭素材料における回折角(2θ)15度近傍での回折強
度(a)と、被覆前の黒鉛系炭素材料における同角度近傍
におけるの回折強度(b)の比(a/b)に関して、4時間被覆
処理後のa/b比は3.7であり、そのプロピレンカーボネー
トを含む電解液中での初期効率は50.1%まで向上した。
これに対し、被覆処理未実施の黒鉛系炭素材料の初期効
率は、21.0%にとどまっていた。
The proportion of the amorphous layer can be arbitrarily selected depending on the type of gas used in the chemical vapor deposition reaction, the temperature and time of the vapor deposition treatment, and the like, but the proportion that exhibits the effects of the present invention is experimentally quantified. As a result, the diffraction intensity (a) of the graphite-based carbon material after coating at a diffraction angle (2θ) of around 15 degrees and the diffraction intensity (b) of the graphite-based carbon material before coating at a near-the same angle (b) ( Regarding a / b), the a / b ratio after the coating treatment for 4 hours was 3.7, and the initial efficiency in the electrolyte solution containing propylene carbonate was improved to 50.1%.
On the other hand, the initial efficiency of the non-coated graphite-based carbon material was only 21.0%.

【0025】同様に、6時間被覆処理後のa/b比は5.6で
あり、同条件での初期効率は80.9%まで向上した。
Similarly, the a / b ratio after the coating treatment for 6 hours was 5.6, and the initial efficiency under the same conditions was improved to 80.9%.

【0026】上記の結果から、黒鉛系炭素材料の初期効
率は、アモルファス炭素による被覆量にほぼ比例すると
言える。よって、初期効率を50%以上とするためには、
黒鉛系炭素材料表面への被覆量は、a/b比において3.7以
上となる量が好ましく、初期効率をさらに改善するため
には、a/b比が5.6以上となる量がより好ましい。
From the above results, it can be said that the initial efficiency of the graphite-based carbon material is almost proportional to the coating amount of the amorphous carbon. Therefore, to make the initial efficiency 50% or more,
The amount of coating on the surface of the graphite-based carbon material is preferably such that the a / b ratio is at least 3.7, and in order to further improve the initial efficiency, the amount at which the a / b ratio is at least 5.6 is more preferable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】黒鉛粒子の未処理品と本発明による表面処理を
行った被覆黒鉛粒子材料について、広角X線回折測定を
行った結果を示すチャートである。
FIG. 1 is a chart showing the results of wide-angle X-ray diffraction measurement of untreated graphite particles and a coated graphite particle material that has been surface-treated according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬淵 昭弘 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 ナタラジャン・チンナサミィ 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 4G046 EA05 EB02 EB06 EC02 EC06 5H029 AJ03 AK03 AL07 AL08 AM03 AM04 AM05 AM07 CJ02 CJ22 CJ24 EJ12 HJ13 5H050 AA06 AA08 BA17 CA08 CA09 CB08 CB09 EA22 EA24 FA18 GA02 GA22 GA24 HA13  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akihiro Mabuchi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. F-term (reference) No. 1-2, Osaka Gas Co., Ltd. (reference) 4G046 EA05 EB02 EB06 EC02 EC06 5H029 AJ03 AK03 AL07 AL08 AM03 AM04 AM05 AM07 CJ02 CJ22 CJ24 EJ12 HJ13 5H050 AA06 AA08 BA17 CA08 CA09 CB08 GA22 EA0922

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】表面が熱分解アモルファス状炭素により被
覆された黒鉛系炭素材料であって、広角X線回折測定に
おいて、回折角(2θ)15度近傍での被覆処理後の黒鉛系
炭素材料の回折強度(a)と同角度近傍における被覆処理
前の黒鉛系炭素材料の回折強度(b)との比(a/b)が3.7以
上である黒鉛系炭素材料。
1. A graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, and in a wide-angle X-ray diffraction measurement, the graphite-based carbon material after coating at a diffraction angle (2θ) of around 15 degrees. A graphite-based carbon material having a ratio (a / b) of 3.7 or more between the diffraction intensity (a) and the diffraction intensity (b) of the graphite-based carbon material before coating at around the same angle.
【請求項2】表面が熱分解アモルファス状炭素により被
覆された黒鉛系炭素材料の製造方法において、熱分解炭
素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱
分解炭素被覆層を生成させた後、蒸着温度よりも高い温
度で熱処理することを特徴とする黒鉛系炭素材料の製造
方法。
2. A method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, wherein a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material to form a pyrolytic carbon coating layer. A method of producing a graphite-based carbon material, wherein the heat treatment is performed at a temperature higher than a deposition temperature after the heat treatment.
【請求項3】熱分解炭素源が、エチレン、プロピレン、
トルエン、ベンゼンおよびメタンからなる群から選ばれ
た少なくとも1種である請求項2に記載の黒鉛系炭素材
料の製造方法。
3. The pyrolytic carbon source is ethylene, propylene,
The method for producing a graphite-based carbon material according to claim 2, wherein the carbon material is at least one selected from the group consisting of toluene, benzene, and methane.
【請求項4】表面が熱分解アモルファス状炭素によって
被覆されている黒鉛系炭素材料からなるリチウム二次電
池用負極材料。
4. A negative electrode material for a lithium secondary battery comprising a graphite-based carbon material whose surface is covered with pyrolytic amorphous carbon.
【請求項5】表面が熱分解アモルファス状炭素によって
被覆されている黒鉛系炭素材料からなる負極材料を用い
たリチウム二次電池。
5. A lithium secondary battery using a negative electrode material made of a graphite-based carbon material whose surface is covered with pyrolytic amorphous carbon.
JP2001035421A 2001-02-13 2001-02-13 Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery Pending JP2002241117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035421A JP2002241117A (en) 2001-02-13 2001-02-13 Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035421A JP2002241117A (en) 2001-02-13 2001-02-13 Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2002241117A true JP2002241117A (en) 2002-08-28

Family

ID=18898859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035421A Pending JP2002241117A (en) 2001-02-13 2001-02-13 Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2002241117A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
WO2013018181A1 (en) * 2011-07-29 2013-02-07 トヨタ自動車株式会社 Lithium ion secondary battery
JP2013542559A (en) * 2011-09-03 2013-11-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Negative electrode material and manufacturing method thereof
KR20140041887A (en) * 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 Lithium ion secondary battery and production method therefor
JPWO2013018181A1 (en) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 Lithium ion secondary battery
WO2016021737A1 (en) * 2014-08-08 2016-02-11 株式会社クレハ Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH09293511A (en) * 1995-06-27 1997-11-11 Toray Ind Inc Electrode and nonaqueous secondary battery using it
JPH10172566A (en) * 1996-12-12 1998-06-26 Denso Corp Electrode for secondary battery, its manufacture, and nonaqueous electrolyte secondary battery
JPH1111919A (en) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JPH11199211A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
JP2001345122A (en) * 2000-06-01 2001-12-14 Asahi Glass Co Ltd Secondary power source and method of manufacturing secondary power source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275076A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH09293511A (en) * 1995-06-27 1997-11-11 Toray Ind Inc Electrode and nonaqueous secondary battery using it
JPH10172566A (en) * 1996-12-12 1998-06-26 Denso Corp Electrode for secondary battery, its manufacture, and nonaqueous electrolyte secondary battery
JPH1111919A (en) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JPH11199211A (en) * 1998-01-20 1999-07-27 Hitachi Chem Co Ltd Graphite particle, its production, lithium secondary battery and negative pole thereof
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
JP2001345122A (en) * 2000-06-01 2001-12-14 Asahi Glass Co Ltd Secondary power source and method of manufacturing secondary power source

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
KR101630997B1 (en) * 2011-07-29 2016-06-15 도요타지도샤가부시키가이샤 Lithium ion secondary battery and production method therefor
US9929398B2 (en) 2011-07-29 2018-03-27 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery and method of manufacturing the same
KR20140041887A (en) * 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 Lithium ion secondary battery and production method therefor
CN103718353A (en) * 2011-07-29 2014-04-09 丰田自动车株式会社 Lithium ion secondary battery
JPWO2013018181A1 (en) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 Lithium ion secondary battery
US9337490B2 (en) 2011-07-29 2016-05-10 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
WO2013018181A1 (en) * 2011-07-29 2013-02-07 トヨタ自動車株式会社 Lithium ion secondary battery
CN103718353B (en) * 2011-07-29 2016-09-07 丰田自动车株式会社 Lithium rechargeable battery
JP2013542559A (en) * 2011-09-03 2013-11-21 シェンヅェン ビーティーアール ニュー エナジー マテリアルズ インコーポレイテッド Negative electrode material and manufacturing method thereof
WO2016021737A1 (en) * 2014-08-08 2016-02-11 株式会社クレハ Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JPWO2016021737A1 (en) * 2014-08-08 2017-05-25 株式会社クレハ Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
EP3179542A1 (en) 2014-08-08 2017-06-14 Kureha Corporation Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US20170237070A1 (en) * 2014-08-08 2017-08-17 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
CN106663810A (en) * 2014-08-08 2017-05-10 株式会社吴羽 Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
EP3686975A1 (en) * 2014-08-08 2020-07-29 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
EP3179542B1 (en) * 2014-08-08 2022-03-02 Kureha Corporation Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US8748036B2 (en) Non-aqueous secondary battery
KR101038637B1 (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CA2205767C (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JP3481063B2 (en) Non-aqueous secondary battery
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JPH05190209A (en) Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode
KR20140103376A (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
KR101763478B1 (en) Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2017520892A (en) Positive electrode for lithium battery
JP2001185147A (en) Secondary battery using nonaqueous electrolytic solution
JPH0785888A (en) Lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP2001143691A (en) Graphite carbon material, method for manufacturing the same, negative electrode material for lithium secondary cell and lithium secondary cell
JPH11176442A (en) Nonaqueous electrolyte secondary battery
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH0896852A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914