JPH11176442A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11176442A
JPH11176442A JP9346040A JP34604097A JPH11176442A JP H11176442 A JPH11176442 A JP H11176442A JP 9346040 A JP9346040 A JP 9346040A JP 34604097 A JP34604097 A JP 34604097A JP H11176442 A JPH11176442 A JP H11176442A
Authority
JP
Japan
Prior art keywords
less
battery
negative electrode
secondary battery
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9346040A
Other languages
Japanese (ja)
Other versions
JP3663864B2 (en
Inventor
Atsushi Otsuka
敦 大塚
Toyoji Sugimoto
豊次 杉本
Norihiro Yamamoto
典博 山本
Shusaku Goto
周作 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34604097A priority Critical patent/JP3663864B2/en
Publication of JPH11176442A publication Critical patent/JPH11176442A/en
Application granted granted Critical
Publication of JP3663864B2 publication Critical patent/JP3663864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery, having superion cycle characteristics in a wide temperature range, from high temperatures to low temperatures by improving a negative electrode active material. SOLUTION: In a secondary battery comprising a positive electrode of lithium including oxide, and a negative electrode of mix of meso-phase graphite and vapor phase deposition carbon fibers, the meso-phase graphte in the mix has a volume average grain diameter of 3 μm or more and 15 μm or less, a specific surface of 0.7 m<2> /g or more and 5.0 m<2> /g or less as measured by BET method, and a face interval (d 002) of 3.36 Å or more and 3.40 Å or less for a face (002) by a wide-angle X-ray diffraction method, and the vapor phase deposition carbon fiber has a specific surface of 10 m<2> /g or more and 20 m<2> /g or less as measured in the BET method, an average fiber diameter of 0.1 μm or more and 0.3 μm or less, and a face interval (d 002) of 3.36 Å or more and 3.40 Åor less for a face 002 by the wide angle X-ray diffraction method, and a ratio of the meso-phase graphite and the vapor phase deposition carbon fibers is set at 97:3-80:20 by weight ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池、さらに詳しくは小型,軽量で新規な二次電池の負極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a small, lightweight and novel negative electrode for a secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化,
コードレス化が急速に進んでいる。これにつれて駆動用
電源を担う小型,軽量で、かつ高エネルギー密度を有す
る二次電池への要望も高まっている。このような観点か
ら、非水電解液二次電池、特にリチウム二次電池は、と
りわけ高電圧,高エネルギー密度を有する電池として期
待は大きく、開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices have become portable,
Cordless technology is rapidly advancing. Accordingly, there has been an increasing demand for a small, lightweight, and high energy density secondary battery serving as a driving power supply. From such a viewpoint, a non-aqueous electrolyte secondary battery, particularly a lithium secondary battery, is expected to be particularly high as a battery having a high voltage and a high energy density, and its development has been rushed.

【0003】従来、リチウム二次電池の正極活物質に
は、二酸化マンガン,五酸化バナジウム,二硫化チタン
等が用いられていた。これらの正極とリチウム負極およ
び有機電解液とで電池を構成し、充放電を繰り返してい
た。ところが、一般に負極にリチウム金属を用いた二次
電池では充電時に生成するデンドライト状リチウムによ
る内部短絡や活物質と電解液の副反応といった課題が二
次電池化への大きな障害となっている。さらには、高率
充放電特性や過放電特性においても満足するものが見い
出されていない。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, and the like have been used as a positive electrode active material of a lithium secondary battery. A battery was constituted by the positive electrode, the lithium negative electrode, and the organic electrolyte, and charging and discharging were repeated. However, in general, in a secondary battery using lithium metal for the negative electrode, problems such as an internal short circuit due to dendritic lithium generated at the time of charging and a side reaction between the active material and the electrolytic solution are major obstacles to the formation of the secondary battery. Further, no satisfactory charge / discharge characteristics or overdischarge characteristics have been found.

【0004】また昨今、リチウム電池の安全性が厳しく
指摘されており、負極にリチウム金属あるいはリチウム
合金を用いた電池系においては安全性の確保が非常に困
難な状態にある。
In recent years, the safety of lithium batteries has been strictly pointed out, and it is extremely difficult to ensure safety in battery systems using lithium metal or lithium alloy for the negative electrode.

【0005】最近になって、層状化合物のインターカレ
ーション反応を利用した新しいタイプの電極活物質が注
目を集めており、層間化合物が二次電池の電極材料とし
て考えられている。特に、Liイオンをインターカレー
トしたりデインターカレートし得る炭素材料はリチウム
二次電池の負極材料として有望であり、その開発が盛ん
に行われており、多くの報告がなされている。
[0005] Recently, a new type of electrode active material utilizing an intercalation reaction of a layered compound has attracted attention, and an interlayer compound has been considered as an electrode material for a secondary battery. In particular, a carbon material capable of intercalating or deintercalating Li ions is promising as a negative electrode material for a lithium secondary battery, and its development has been actively carried out and many reports have been made.

【0006】中でも、ピッチを350〜450℃で熱処
理することにより生じるメソフェーズ小球体を分離抽出
し、光学的に異方性で、単一の相からなるラメラ構造を
持った粒状物を黒鉛化して得た黒鉛粉末(以下、メソフ
ェーズ黒鉛という)は球状であるため、極板とした時の
充填性が良く高容量化が望め、リチウムをインターカレ
ートし得る量が多い。また、ラメラ構造を有しているた
め充放電時のリチウムの出入りが円滑に行われ、高率充
放電において有利であることが、特開平4−11545
7号公報,特開平4−115458号公報,特開平4−
280068号公報等に開示されている。また、メソフ
ェーズ黒鉛のみでは充放電に伴う黒鉛のc軸方向の結晶
の膨張収縮のため、充放電サイクルを繰り返すうちに極
板が膨潤してしまい、元の形状を維持できなくなり、容
量が低下するため、いわゆるサイクル特性が実使用上不
充分であることから、メソフェーズ黒鉛に気相成長炭素
繊維を混合し極板の強度を高めてサイクル特性を改良す
るという提案が特開平4−237971号公報,特開平
6−111818号公報等において開示されている。
Above all, mesophase microspheres generated by heat treatment at a pitch of 350 to 450 ° C. are separated and extracted, and optically anisotropic granules having a lamellar structure consisting of a single phase are graphitized. Since the obtained graphite powder (hereinafter, referred to as mesophase graphite) is spherical, it has good filling properties as an electrode plate, is expected to have a high capacity, and has a large amount of intercalation of lithium. Japanese Patent Application Laid-Open No. H11-15545 discloses that a lamella structure allows lithium to enter and exit smoothly during charging and discharging, which is advantageous in high-rate charging and discharging.
7, JP-A-4-115458, JP-A-4-115458
No. 280068, and the like. In addition, with only mesophase graphite, the expansion and contraction of the crystal in the c-axis direction of the graphite accompanying charge and discharge causes the electrode plate to swell during the repetition of the charge and discharge cycle, making it impossible to maintain the original shape and reducing the capacity. For this reason, since the so-called cycle characteristics are insufficient in practical use, a proposal to improve the cycle characteristics by increasing the strength of the electrode plate by mixing vapor-grown carbon fibers with mesophase graphite has been proposed in JP-A-4-237971, It is disclosed in JP-A-6-111818 and the like.

【0007】一般に負極合剤の物性値は、特に比表面積
が電池特性に与える影響は極めて大きく、特に電池の高
率充放電特性,耐高温保存特性等が影響を受けるという
ことが知られているが、メソフェーズ黒鉛と、気相成長
炭素繊維の混合体の場合も例外ではない。高率充放電特
性,低温サイクル特性という点では、比表面積が大きい
ほど反応面積が大きくなるため分極が小さくなり有利で
ある。一方、高温サイクル特性,耐高温保存特性という
点では、比表面積が小さいほど反応面積が小さくなり、
副反応による電解液の分解等が少なくなり有利である。
In general, it is known that the physical properties of the negative electrode mixture have a particularly large effect on the battery characteristics, particularly the specific surface area, and particularly the high-rate charge / discharge characteristics and the high-temperature storage characteristics of the battery. However, the case of a mixture of mesophase graphite and vapor grown carbon fiber is no exception. In terms of high-rate charge / discharge characteristics and low-temperature cycle characteristics, the larger the specific surface area, the larger the reaction area, and the smaller the polarization, which is advantageous. On the other hand, in terms of high-temperature cycle characteristics and high-temperature storage characteristics, the smaller the specific surface area, the smaller the reaction area.
This is advantageous because the decomposition of the electrolytic solution due to side reactions is reduced.

【0008】そのため、従来よりメソフェーズ黒鉛を単
体で負極合剤に用いる場合に粒径,比表面積を制御し、
使用することが特開平7−134988号公報等に開示
されている。また、気相成長炭素繊維を単体で負極合剤
に用いるための物性値については特開平6−84517
号公報等に開示されているが、過去の開示技術ではメソ
フェーズ黒鉛と気相成長炭素繊維の混合体とした時の物
性値については細かく検討されていない。
For this reason, conventionally, when mesophase graphite is used alone as a negative electrode mixture, the particle size and specific surface area are controlled.
Its use is disclosed in JP-A-7-134988 and the like. Also, regarding the physical property values for using the vapor-grown carbon fiber alone as the negative electrode mixture, see JP-A-6-84517.
However, in the past disclosed technologies, physical properties of a mixture of mesophase graphite and vapor-grown carbon fiber have not been studied in detail.

【0009】一方、この電池の主要な用途である小型の
ラップトップコンピュータでの使用を考えた場合、機器
の回路より発生する熱により機器内部の温度が上昇し、
内蔵された電池は、およそ35〜45℃の高温で使用さ
れることになる。また、他の主要な用途である携帯電話
での使用を考えた場合、冬期における寒冷地では充電,
放電共に0℃程度の低温となることが想定される。
On the other hand, when the battery is used in a small laptop computer, which is a main use of the battery, the temperature inside the device rises due to the heat generated from the circuit of the device.
The built-in battery will be used at a high temperature of about 35-45 ° C. Also, considering the use of mobile phones, which is another major application, charging in cold regions in winter,
It is assumed that both discharges are at a low temperature of about 0 ° C.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、過去の
開示技術ではサイクル特性の評価において電池の雰囲気
温度については考察されていない。そのため前記のよう
な各種温度の実使用条件下では必ずしも充分なサイクル
特性を得られるものではなかった。
However, in the past disclosed techniques, the evaluation of the cycle characteristics does not consider the ambient temperature of the battery. Therefore, it was not always possible to obtain sufficient cycle characteristics under the actual use conditions at various temperatures as described above.

【0011】本発明は、このような課題を解決するため
のものであり、黒鉛粉末と黒鉛質炭素繊維の混合体を適
切な割合とすることにより、高温サイクル特性にも低温
サイクル特性にも優れた負極合剤、さらには非水電解液
二次電池を提供するものである。
The present invention has been made to solve such a problem, and has an excellent mixture of graphite powder and graphitic carbon fiber in an appropriate ratio to provide excellent high-temperature cycle characteristics and low-temperature cycle characteristics. And a non-aqueous electrolyte secondary battery.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するため
に本発明は、リチウム含有酸化物からなる正極と、黒鉛
粉末と黒鉛質炭素繊維の混合体よりなる負極と、非水電
解液を有していて、前記負極における黒鉛粉末と黒鉛質
炭素繊維の混合割合を重量比で97:3〜80:20と
したものを用いることにより、高温サイクル特性にも低
温サイクル特性にも優れた非水電解液二次電池を提供で
きるとしたものである。
In order to solve the above problems, the present invention comprises a positive electrode comprising a lithium-containing oxide, a negative electrode comprising a mixture of graphite powder and graphitic carbon fiber, and a non-aqueous electrolyte. By using a mixture of graphite powder and graphitic carbon fiber in a weight ratio of 97: 3 to 80:20 in the negative electrode, a non-aqueous material having excellent high-temperature cycle characteristics and low-temperature cycle characteristics can be obtained. It is intended to provide an electrolyte secondary battery.

【0013】[0013]

【発明の実施の形態】本発明は各請求項に記載した特定
条件とすることにより、実施できるものであるが、その
特定条件を導くに至った理由を以下に詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be carried out under specific conditions described in each claim, but the reason for leading to the specific conditions will be described in detail below.

【0014】本発明の請求項に特定した物性のメソフェ
ーズ黒鉛と気相成長炭素繊維を所定の割合で混合した負
極は、低温から高温までの幅広い温度において非常に優
れた特性を示す。この理由については、以下のように推
測される。
The negative electrode in which the mesophase graphite and the vapor grown carbon fiber having the physical properties specified in the claims of the present invention are mixed at a predetermined ratio exhibits extremely excellent characteristics at a wide temperature range from low to high temperatures. The reason is presumed as follows.

【0015】メソフェーズ黒鉛は平均粒子が3μm以上
15μm以下のものが良く、好ましくは5μm以上10
μm以下のものが良い。これよりも小さい場合、黒鉛の
結晶性が未発達となり、容量の低いものしか得られな
い。また、これより大きい場合には充放電に伴う個々の
粒子の膨張収縮が非常に大きく、それにより極板にかか
るストレスも大きくなるため、充放電を繰り返すうち極
板に合剤の剥がれ,割れ等により反応に関与できない合
剤が生じ、容量の低下の原因となる。また、比表面積は
0.7m2/g以上5.0m2/g以下が良く、好ましく
は2.5m2/g以上4m2/g以下が良い。これより小
さい場合には充放電反応時の分極が大きくなり、特に高
率放電時あるいは0℃以下の低温での放電時に容量が低
下する。一方、広角X線回折法による002面の面間隔
(d 002)は3.36Å以上3.40Å以下が良
い。これより小さいものは、低温での充電時にリチウム
イオンを黒鉛の層間にインターカレートし難くなり容量
が著しく低下し、これより大きいものは、黒鉛の結晶性
が未発達となり、容量の低いものしか得られない。
The mesophase graphite preferably has an average particle size of 3 μm to 15 μm, more preferably 5 μm to 10 μm.
Those having a size of μm or less are good. If it is smaller than this, the crystallinity of the graphite will be underdeveloped, and only a graphite having a low capacity will be obtained. On the other hand, if it is larger than this, the expansion and shrinkage of each particle due to charge and discharge is very large, which increases the stress applied to the electrode plate. As a result, a mixture that cannot participate in the reaction is produced, which causes a decrease in capacity. The specific surface area is preferably 0.7 m 2 / g or more and 5.0 m 2 / g or less, and more preferably 2.5 m 2 / g or more and 4 m 2 / g or less. If it is smaller than this, the polarization at the time of the charge / discharge reaction becomes large, and the capacity is reduced particularly at the time of high-rate discharge or at a low temperature of 0 ° C. or lower. On the other hand, the surface distance (d002) between the 002 planes by the wide-angle X-ray diffraction method is preferably from 3.36 ° to 3.40 °. If the battery is smaller than this, it is difficult to intercalate lithium ions between layers of graphite at the time of charging at a low temperature, and the capacity is remarkably reduced. I can't get it.

【0016】さらに、気相成長炭素繊維は比表面積が1
0m2/g以上20m2/g以下が良く、好ましくは14
2/g以上17m2/g以下のものが良い。これ以下で
あると、極板の抵抗が高くなり、低温時の充電におい
て、リチウムイオンを黒鉛の層間にインターカレートで
きず負極表面に金属リチウムが析出してしまうため、著
しい容量の低下が起こりサイクル特性が悪くなる。これ
より大きい場合には、低温では問題は生じないが、35
℃以上の高温で電解液との副反応を生じ易くなってしま
いガスが発生したり、極板表面が電解液との反応生成物
で被覆されてしまい反応面積が低下し容量劣化が生じて
しまう。
The vapor-grown carbon fiber has a specific surface area of 1%.
0 m 2 / g or more and 20 m 2 / g or less, preferably 14 m 2 / g or less.
Those having a range of m 2 / g to 17 m 2 / g are preferred. Below this value, the resistance of the electrode plate increases, and during charging at low temperatures, lithium ions cannot be intercalated between the graphite layers and metallic lithium precipitates on the negative electrode surface, causing a significant decrease in capacity. Cycle characteristics deteriorate. If it is larger than this, no problem occurs at low temperatures, but 35
At a high temperature of not less than ℃, a side reaction with the electrolyte is apt to occur and gas is generated, or the electrode plate surface is coated with a reaction product with the electrolyte, the reaction area is reduced and the capacity is deteriorated. .

【0017】平均繊維直径(走査電子顕微鏡でランダム
に観察した100本の平均値)は0.1μm以上0.3
μm以下が良い。これより細い場合は、メソフェーズ黒
鉛の粒子に対して細くなりすぎるため、気相成長炭素繊
維を混合することにより、極板の強度を向上させる、あ
るいはメソフェーズ黒鉛粒子間の導電性を向上させると
いった効果が充分でないため充放電サイクル特性が充分
なものは得られない。また、これより太い場合には極板
を作製した時の充填密度を上げることができず容量の低
いものしか得られない。また、広角X線回折法による0
02面の面間隔(d 002)は3.36Å以上3.4
0Å以下が良い。これより小さいものは、低温での充電
時にリチウムイオンを黒鉛の層間にインターカレートし
難くなり容量が著しく低下し、これより大きいものは、
黒鉛の結晶性が未発達となり、リチウムイオンをインタ
ーカレートし得る量が少なくなり、容量の低いものしか
得られなかったり、高温の雰囲気下で使用された時に電
解液との副反応を起こしてしまい、容量の低下や高率放
電特性の低下につながる。
The average fiber diameter (average value of 100 fibers randomly observed with a scanning electron microscope) is not less than 0.1 μm and not more than 0.3 μm.
μm or less is good. If the diameter is smaller than this, it becomes too fine for the mesophase graphite particles, so the effect of improving the strength of the electrode plate or improving the conductivity between the mesophase graphite particles by mixing the vapor grown carbon fiber is provided. Is not sufficient, so that those having sufficient charge / discharge cycle characteristics cannot be obtained. On the other hand, when the thickness is larger than this, the packing density at the time of manufacturing the electrode plate cannot be increased, and only a material having a low capacity can be obtained. In addition, 0 by the wide-angle X-ray diffraction method.
The plane interval (d002) of the 02 plane is 3.36 ° or more and 3.4.
0 ° or less is good. Those smaller than this make it difficult for lithium ions to intercalate between graphite layers during charging at low temperatures, resulting in a significant reduction in capacity.
The crystallinity of graphite is underdeveloped, the amount that can intercalate lithium ions decreases, and only low-capacity ones can be obtained, or when used in a high-temperature atmosphere, cause side reactions with the electrolyte. This leads to a decrease in capacity and a decrease in high-rate discharge characteristics.

【0018】また、メソフェーズ黒鉛と気相成長炭素繊
維の配合割合は重量比で97:3〜80:20、好まし
くは95:5〜90:10が良い。これより気相成長炭
素繊維が多い場合には極板を作製した時の充填密度を上
げることができず容量の低いものしか得られない。気相
成長炭素繊維がこれより少ない場合には極板の強度を向
上させるか、あるいはメソフェーズ黒鉛粒子間の導電性
を向上させるといった効果が充分に得られない。
The mixing ratio of the mesophase graphite and the vapor grown carbon fiber is 97: 3 to 80:20, preferably 95: 5 to 90:10, by weight. If the amount of vapor-grown carbon fiber is larger than this, the packing density at the time of manufacturing the electrode plate cannot be increased, and only a low-capacity carbon fiber can be obtained. If the number of vapor grown carbon fibers is less than this, the effect of improving the strength of the electrode plate or improving the conductivity between the mesophase graphite particles cannot be sufficiently obtained.

【0019】なお、気相成長炭素繊維の製造方法として
は、特開平5−221622号公報に開示されているよ
うにベンゼン,メタン,一酸化炭素等の炭素化合物と触
媒である鉄,ニッケル等を含有する有機遷移金属化合物
とを水素等のキャリアガス中で、800〜1300℃に
加熱すること等により得られる。この際の温度と時間に
より得られる気相成長炭素繊維の繊維直径と長さが変化
する。また、これを不活性雰囲気中で2400〜300
0℃、好ましくは2600〜2900℃で熱処理し黒鉛
化するが、その熱処理時間によって比表面積を変化させ
ることができる。
As a method for producing a vapor-grown carbon fiber, as disclosed in JP-A-5-221622, a carbon compound such as benzene, methane or carbon monoxide and a catalyst such as iron or nickel are used. It can be obtained by heating the contained organic transition metal compound to 800 to 1300 ° C. in a carrier gas such as hydrogen. At this time, the diameter and length of the obtained vapor grown carbon fiber change depending on the temperature and time. Further, this is carried out in an inert atmosphere at 2400 to 300
Graphite is formed by heat treatment at 0 ° C., preferably 2600 to 2900 ° C., but the specific surface area can be changed by the heat treatment time.

【0020】この理由としては、次のように推測され
る。すなわち、気相成長炭素繊維の黒鉛化は、10分間
以上熱処理することにより広角X線回折法による002
面の面間隔(d 002)は3.40Å以下となり必要
充分な程度まで進行する。これより長時間高温雰囲気に
さらすと、気相成長炭素繊維の表面より炭素の蒸発が生
じたり、微細な亀裂が生じたりといったことが起こり比
表面積が徐々に増加するのではないかと考えられる。
The reason is presumed as follows. That is, the graphitization of the vapor-grown carbon fiber is carried out by a heat treatment for 10 minutes or more to obtain 002 by wide-angle X-ray diffraction.
The plane spacing (d 002) of the planes becomes 3.40 ° or less, and proceeds to a necessary and sufficient extent. When exposed to a high-temperature atmosphere for a longer period of time, it is considered that carbon evaporates from the surface of the vapor-grown carbon fiber, fine cracks occur, and the specific surface area gradually increases.

【0021】以下本発明の実施例を図面を参照しながら
説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】[0022]

【実施例】(実施例1)図1に本実施例で用いた円筒形
電池の縦断面図を示す。図1において、1は耐有機電解
液性の鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極および負極がセパレータを介して複数回渦巻状
に巻回されて電池ケース1内に挿入されている。そし
て、前記正極からは正極リード5が引き出されて封口板
2に接続され、負極からは負極リード6が引き出されて
電池ケース1の底部に接続されている。7は絶縁リング
で極板群4の上下部にそれぞれ設けられている。以下、
正極板,負極板等について説明する。
(Embodiment 1) FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In FIG. 1, reference numeral 1 denotes a battery case formed by processing a steel plate having resistance to an organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and inserted into the battery case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Less than,
The positive electrode plate, the negative electrode plate and the like will be described.

【0023】正極はLi2Co3 とCo34 とを混合
し、900℃で焼成して合成したLiCoO2 の粉末
に、アセチレンブラック,ポリ四フッ化エチレンディス
パージョンを混合し、カルボキシメチルセルロース水溶
液に懸濁させてペースト状にした。このペーストを厚さ
0.03mmのアルミニウム箔の両面に塗着し、乾燥
後、圧延して厚さ0.19mm,幅40mm,長さ25
0mmの極板とした。負極は次のように作製した。
For the positive electrode, acetylene black and polytetrafluoroethylene dispersion are mixed with LiCoO 2 powder synthesized by mixing Li 2 Co 3 and Co 3 O 4 and calcining at 900 ° C. to form a carboxymethyl cellulose aqueous solution. Into a paste. This paste is applied on both sides of an aluminum foil having a thickness of 0.03 mm, dried, and rolled to obtain a thickness of 0.19 mm, a width of 40 mm, and a length of 25.
A 0 mm electrode plate was used. The negative electrode was manufactured as follows.

【0024】メソフェーズ黒鉛と気相成長炭素繊維を重
量比で93:7の割合で配合したものを混合機(例えば
ハイブリダイザー:昇奈良機械製)で混合した後にスチ
レン/ブタジエンゴムディスパージョンを混合し、カル
ボキシメチルセルロース水溶液に懸濁させてペースト状
にした。
A mixture of mesophase graphite and vapor-grown carbon fiber in a weight ratio of 93: 7 is mixed by a mixer (for example, a hybridizer: manufactured by Noboru Nara Machinery Co., Ltd.), and then styrene / butadiene rubber dispersion is mixed. And suspended in an aqueous solution of carboxymethyl cellulose to form a paste.

【0025】そして、このペーストを厚さ0.02mm
の銅箔の両面に塗着し、乾燥後、圧延して厚さ0.20
〜0.22mm,幅42mm,長さ285mmの極板と
した。
Then, this paste is applied to a thickness of 0.02 mm.
Coated on both sides of copper foil, dried and rolled to a thickness of 0.20
It was an electrode plate having a width of 0.22 mm, a width of 42 mm, and a length of 285 mm.

【0026】そして、正極板,負極板それぞれにリード
を取り付け、ポリエチレン製セパレータを介して渦巻状
に巻回し、直径14.0mm,高さ50mmの電池ケー
ス1に挿入した。電解液にはエチレンカーボネート(以
下、ECと略す)と、ジエチレンカーボネート(以下、
DECと略す)とを40:60の体積比で混合した溶媒
に1モル/リットルのLiPF6 を溶解したものを注液
した後、封口した。
A lead was attached to each of the positive electrode plate and the negative electrode plate, spirally wound through a polyethylene separator, and inserted into a battery case 1 having a diameter of 14.0 mm and a height of 50 mm. The electrolytic solution includes ethylene carbonate (hereinafter abbreviated as EC) and diethylene carbonate (hereinafter abbreviated as EC).
DEC) at a volume ratio of 40:60, and a solution prepared by dissolving 1 mol / L of LiPF 6 in the solvent was injected, and the container was sealed.

【0027】なお、メソフェーズ黒鉛は以下のようにし
て得た。石炭ピッチを390℃で熱熔融処理を行い、遠
心分離によりピッチマトリックス中から分離抽出し、メ
ソフェーズ小球体を生成した。次いで不活性ガス雰囲気
下、1000℃で炭化し、さらに2800℃で黒鉛化を
行った。その後、風力分級装置により平均粒径を6μm
(粒度分布の測定はレーザー回折式粒度分布測定装置:
島津(株)製SALD−2000で行った)とした。得
られたメソフェーズ黒鉛の比表面積は3.2m2/g
(比表面積の測定はBETの1点法測定装置:日機装
(株)製4200型マイクロトラックベータソープ自動
表面積計で行った)、広角X線回折法による002面の
面間隔(d 002)は3.363Åであった。
The mesophase graphite was obtained as follows. The coal pitch was heat-melted at 390 ° C. and separated and extracted from the pitch matrix by centrifugation to produce mesophase microspheres. Next, carbonization was performed at 1000 ° C. in an inert gas atmosphere, and graphitization was performed at 2800 ° C. After that, the average particle size was 6 μm using an air classifier.
(The particle size distribution is measured by a laser diffraction particle size distribution analyzer:
(Performed by Shimadzu SALD-2000). The specific surface area of the obtained mesophase graphite is 3.2 m 2 / g.
(The specific surface area was measured by a BET one-point method measuring apparatus: Nikkiso Co., Ltd. Model 4200 Microtrac Betasoap automatic surface area meter), and the surface spacing (d002) of 002 by wide-angle X-ray diffraction method was 3 .363 °.

【0028】また、気相成長炭素繊維は次のようにして
得た。ベンゼンの炭素化合物と、触媒である鉄を含有す
る有機遷移金属化合物とを水素のキャリアガス中で、1
000℃に加熱し、気相成長炭素繊維を得た。これを不
活性雰囲気中で2800℃で熱処理し黒鉛化した。この
際、熱処理する時間を変化させることにより比表面積を
8m2/gから25m2/gのものを得た。また、得られ
た気相成長炭素繊維の繊維直径は走査型電子顕微鏡で1
00本を観察しその平均を取った結果0.2μm、広角
X線回折法による002面の面間隔(d002)は3.
385Åであった。
The vapor grown carbon fiber was obtained as follows. A carbon compound of benzene and an organic transition metal compound containing iron as a catalyst are mixed in a hydrogen carrier gas in a hydrogen carrier gas.
The mixture was heated to 000 ° C. to obtain a vapor grown carbon fiber. This was heat-treated at 2800 ° C. in an inert atmosphere to be graphitized. In this case, the specific surface area by changing the time for heat treatment to obtain those from 8m 2 / g of 25 m 2 / g. The fiber diameter of the obtained vapor-grown carbon fiber was 1 with a scanning electron microscope.
As a result of observing 00 lines and taking the average, 0.2 μm was obtained.
385.

【0029】これらのメソフェーズ黒鉛と気相成長炭素
繊維の混合体を用いて前記方法により電池を作製し、比
表面積が8m2/gのものを電池A、10m2/gのもの
を電池B、14m2/gのものを電池C、17m2/gの
ものを電池D、20m2/gのものを電池E、25m2
gのものを電池Fとした。次にこれらの電池を用い、以
下の条件で試験を行った。
Using the mixture of mesophase graphite and vapor-grown carbon fiber, a battery was prepared by the above-described method. A battery having a specific surface area of 8 m 2 / g was designated as Battery A, and a battery having a specific surface area of 10 m 2 / g was designated as Battery B. 14m cell C things 2 / g, the battery D things 17m 2 / g, 20m 2 / g cell E things, 25 m 2 /
g was designated as battery F. Next, tests were performed using these batteries under the following conditions.

【0030】充電を定電流定電圧方式で、電圧を4.1
V,最大電流を350mAに制限して3時間行い、放電
を定電流方式で100mAで3.0Vまで行う充放電サ
イクルを45℃,20℃,0℃の環境下で繰り返し実施
した。45℃の環境下で実施した結果を図2に、20℃
の環境下で実施した結果を図3に、0℃の環境下で実施
した結果を図4に示す。
The charging is performed by a constant current and constant voltage method, and the voltage is set to 4.1.
V and the maximum current were limited to 350 mA for 3 hours, and a charge / discharge cycle in which discharging was performed at 100 mA to 3.0 V by a constant current method was repeatedly performed in an environment of 45 ° C, 20 ° C, and 0 ° C. FIG. 2 shows the results of the test performed under the environment of 45 ° C.
FIG. 3 shows the results obtained under the environment of FIG. 3, and FIG. 4 shows the results obtained under the environment of 0 ° C.

【0031】図3に示したように、20℃の環境下では
何れの気相成長炭素繊維を用いてもサイクル特性にほと
んど差は見られない。しかしながら、図2に示したよう
に45℃の環境下では電池Fにおいて電池A〜電池Eよ
り早くサイクル劣化している。サイクル終了後の電池の
内部抵抗を測定すると、電池Fでは他の電池に比べ増加
していた。これらの電池を分解したところ、電池Fでは
充放電サイクル中に電解液の分解により発生したと思わ
れるガスが内部より噴出した。また、電池Fでは電解液
の分解生成物と思われるものが負極板とセパレータの間
に付着しており、負極板とセパレータを分離することが
できず負極合剤と銅箔が剥離してしまった。また、図4
に示したように、0℃の環境下では気相成長炭素繊維の
比表面積が減少するに従い初期容量が低くなっており、
特に電池Aでは他の電池に比べて初期容量が著しく低
く、またサイクル特性が悪くなっている。また、試験終
了後の電池を分解し負極板表面を観察したところ電池A
では金属リチウムが全面に析出していた。
As shown in FIG. 3, under the environment of 20 ° C., there is almost no difference in the cycle characteristics with any of the vapor grown carbon fibers. However, as shown in FIG. 2, in the environment of 45 ° C., the cycle deterioration of the battery F is earlier than that of the batteries A to E. When the internal resistance of the battery after the end of the cycle was measured, it was found that the battery F increased in comparison with the other batteries. When these batteries were disassembled, in battery F, gas presumably generated by the decomposition of the electrolytic solution during the charge / discharge cycle was ejected from the inside. In the battery F, what is considered to be a decomposition product of the electrolytic solution is attached between the negative electrode plate and the separator, and the negative electrode plate and the separator cannot be separated, and the negative electrode mixture and the copper foil are separated. Was. FIG.
As shown in the figure, under the environment of 0 ° C., the initial capacity becomes lower as the specific surface area of the vapor grown carbon fiber decreases,
In particular, the initial capacity of the battery A is significantly lower than that of the other batteries, and the cycle characteristics are poor. After the test, the battery was disassembled and the surface of the negative electrode plate was observed.
In this case, metallic lithium was deposited on the entire surface.

【0032】(実施例2)気相成長炭素繊維を得るに際
し、ベンゼンの炭素化合物と、触媒である鉄を含有する
有機遷移金属化合物とを水素のキャリアガス中で加熱す
る時間を変化させ繊維径が0.06μm,0.2μmお
よび1.0μmの気相成長炭素繊維を得た。それ以外
は、実施例1と同様の方法で電池を作製しそれぞれ電池
G,電池H,電池Iとし、実施例1と同様な条件で充放
電サイクル特性を20℃で評価した結果を図5に示す。
Example 2 In obtaining vapor-grown carbon fibers, the heating time of a carbon compound of benzene and an organic transition metal compound containing iron as a catalyst in a carrier gas of hydrogen was changed to change the fiber diameter. Of 0.06 μm, 0.2 μm and 1.0 μm. Other than that, batteries were prepared in the same manner as in Example 1, and were designated as Battery G, Battery H, and Battery I, respectively. The results of evaluating the charge / discharge cycle characteristics at 20 ° C. under the same conditions as in Example 1 are shown in FIG. Show.

【0033】図5に示したように電池Iは、電池G,電
池Hに比べて負極合剤の充填性が低かったため充放電サ
イクルの初期から容量が低くなっている。また、電池G
の初期容量は電池Hとほぼ同等であったがサイクルを繰
り返すうちに容量の低下が大きかった。
As shown in FIG. 5, the capacity of the battery I was low from the beginning of the charge / discharge cycle because the chargeability of the negative electrode mixture was lower than that of the batteries G and H. Battery G
The initial capacity of the battery H was almost the same as that of the battery H, but the capacity was significantly reduced as the cycle was repeated.

【0034】(実施例3)メソフェーズ黒鉛を平均粒径
2.3μmで比表面積7.3m2/g、平均粒径20μ
mで比表面積0.6m2/gのものを用いる以外は、実
施例1の電池Dと同様の方法で電池を作製しそれぞれ電
池J,電池Kとし、実施例1と同様な条件で充放電サイ
クル特性を45℃で評価した結果を図6に、0℃で評価
した結果を図7に示す。
Example 3 A mesophase graphite having an average particle size of 2.3 μm, a specific surface area of 7.3 m 2 / g and an average particle size of 20 μm was used.
m and a specific surface area of 0.6 m 2 / g except that a battery was prepared in the same manner as the battery D of Example 1 to obtain a battery J and a battery K, respectively, and charged and discharged under the same conditions as in Example 1. FIG. 6 shows the results of evaluating the cycle characteristics at 45 ° C., and FIG. 7 shows the results of the evaluation at 0 ° C.

【0035】図7に示したように、電池Jでは電池Kと
比べて0℃の充放電サイクル特性は良くなっているもの
の、図6に示したように、45℃のサイクル特性がかな
り低下している。また、電池Kでは0℃の充放電サイク
ル特性が初期より容量が低下している。
As shown in FIG. 7, although the charge / discharge cycle characteristics at 0 ° C. are improved in the battery J as compared with the battery K, the cycle characteristics at 45 ° C. are considerably reduced as shown in FIG. ing. In the battery K, the charge / discharge cycle characteristics at 0 ° C. are lower in capacity than in the initial stage.

【0036】前記の実施例よりメソフェーズ黒鉛として
体積平均粒子径を3μm以上15μm以下で、かつBE
T法による比表面積測定において0.7m2/g以上
5.0m2/g以下で、広角X線回折法による002面
の面間隔(d 002)が3.36Å以上3.40Å以
下、気相成長炭素繊維としてBET法による比表面積測
定において10m2/g以上20m2/g以下、かつ平均
繊維直径が0.1μm以上0.3μm以下で、広角X線
回折法による002面の面間隔(d 002)が3.3
6Å以上3.40Å以下のものの混合体を用い、メソフ
ェーズ黒鉛と気相成長炭素繊維の配合割合を重量比で9
7:3〜80:20とすることで低温でも高温でも良好
なサイクル特性が得られる。
From the above examples, the volume average particle diameter of the mesophase graphite is 3 μm or more and 15 μm or less, and BE
The specific surface area measured by the T method is 0.7 m 2 / g or more and 5.0 m 2 / g or less, the 002 plane spacing (d 002) is 3.36 ° or more and 3.40 ° or less by the wide-angle X-ray diffraction method, The grown carbon fiber has a surface area of 10 m 2 / g or more and 20 m 2 / g or less and a mean fiber diameter of 0.1 μm or more and 0.3 μm or less measured by a BET method, and has a 002 plane spacing (d) obtained by wide-angle X-ray diffraction. 002) is 3.3
Using a mixture of not less than 6 ° and not more than 3.40 °, the mixing ratio of mesophase graphite and vapor-grown carbon fiber is 9 by weight.
By setting the ratio to 7: 3 to 80:20, good cycle characteristics can be obtained both at low and high temperatures.

【0037】電解液としては、本実施例ではECとDE
Cを40:60の体積比で混合した溶媒に1モル/リッ
トルのLiPF6 を溶解したものを用いたが、これに限
定されるものではなく従来より公知のものが使用でき
る。ただし、本発明のように黒鉛材料を負極に使用した
場合、プロピレンカーボネート(以下、PCと略す)は
充電時に分解反応を起こし、ガス発生を伴う傾向がある
ために好ましくなく、同様な環状カーボネートであるE
CがPCの場合のような副反応をほとんど伴わないため
に適しているといえる。しかしながら、ECは非常に高
融点であり、常温では固体であるために単独溶媒での使
用は困難である。従って、低融点でありかつ低粘性の溶
媒である1,2−ジメトキシエタンやDEC等の脂肪族
カルボン酸エステルを混合した混合溶媒を用いることが
好ましい。また、これらの溶媒に溶解するLiの塩とし
ては六フッ化リン酸リチウム,ホウフッ化リチウム,六
フッ化ヒ酸リチウム,過塩素酸リチウム等、従来より公
知のものが何れも使用できる。
In this embodiment, EC and DE are used as electrolytes.
A solution in which 1 mol / liter of LiPF 6 was dissolved in a solvent in which C was mixed at a volume ratio of 40:60 was used. However, the present invention is not limited to this, and a conventionally known one can be used. However, when a graphite material is used for the negative electrode as in the present invention, propylene carbonate (hereinafter abbreviated as PC) is not preferable because it undergoes a decomposition reaction at the time of charging and tends to accompany gas generation. An E
It can be said that C is suitable because it hardly involves side reactions as in the case of PC. However, EC has a very high melting point and is solid at room temperature, so that it is difficult to use it with a single solvent. Therefore, it is preferable to use a mixed solvent in which an aliphatic carboxylic acid ester such as 1,2-dimethoxyethane or DEC which is a solvent having a low melting point and a low viscosity is mixed. As the Li salt dissolved in these solvents, any conventionally known ones such as lithium hexafluorophosphate, lithium borofluoride, lithium hexafluoroarsenate and lithium perchlorate can be used.

【0038】一方、正極にはリチウムイオンを含む化合
物であるLiCoO2 ,LiNiO 2 ,LiNiCoO
2 ,LiFeO2 ,LiMn24 等が使用可能であ
る。前記複合酸化物は、例えばリチウムやコバルトの炭
酸塩あるいは酸化物を原料として、目的組成に応じてこ
れらを混合し焼成することによって容易に得ることがで
きる。勿論、他の原料を用いた場合においても同様に合
成できる。中でもLiCoO2 が充放電可能容量が比較
的大きく、かつ前記電解液中において化学的に安定であ
る。通常、その焼成温度は650〜1200℃の間で設
定される。
On the other hand, the cathode contains a compound containing lithium ions.
LiCoOTwo, LiNiO Two, LiNiCoO
Two, LiFeOTwo, LiMnTwoOFourEtc. are available
You. The composite oxide is, for example, charcoal of lithium or cobalt.
Salts or oxides as raw materials, depending on the desired composition
They can be easily obtained by mixing and firing.
Wear. Of course, the same applies when other raw materials are used.
Can be achieved. Among them, LiCoOTwoAre compared for chargeable / dischargeable capacity
Large and chemically stable in the electrolyte.
You. Usually, the firing temperature is set between 650 and 1200 ° C.
Is determined.

【0039】なお、本実施例では正極にLiCoO2
用いたが、前記の他、LiNiO2,LiNiCo
2 ,LiFeO2 ,LiMn24 を用いた場合も若
干の容量の差は見られるもののほぼ同様な効果が得られ
た。
Although LiCoO 2 was used for the positive electrode in this embodiment, other than the above, LiNiO 2 , LiNiCo
When O 2 , LiFeO 2 , and LiMn 2 O 4 were used, almost the same effect was obtained although a slight difference in capacity was observed.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、負極に
用いる黒鉛粉末として、メソフェーズ黒鉛の体積平均粒
子径を3μm以上15μm以下で、かつBET法による
比表面積測定において0.7m2/g以上5.0m2/g
以下で、広角X線回折法による002面の面間隔(d
002)が3.36Å以上3.40Å以下とし、気相成
長炭素繊維がBET法による比表面積測定において10
2/g以上20m2/g以下、好ましくは14m2/g
以上17m2/g以下とし、かつ平均繊維直径が0.1
μm以上0.3μm以下、かつ広角X線回折法による0
02面の面間隔(002)が3.36Å以上3.40Å
以下のものとし、メソフェーズ黒鉛と気相成長炭素繊維
の配合割合を重量比で97:3〜80:20とした混合
体を用いることにより低温充電時の分極および高温サイ
クル時における電解液の分解等の副反応を少なくするこ
とができるため高容量,高エネルギー密度を有し、実使
用におけるサイクル特性に優れた非水電解液二次電池を
提供することができる。
As is apparent from the above description, as the graphite powder used for the negative electrode, the volume average particle diameter of mesophase graphite is 3 μm or more and 15 μm or less, and 0.7 m 2 / g or more in the specific surface area measurement by the BET method. 5.0 m 2 / g
In the following, the plane distance (d) of the 002 plane by the wide-angle X-ray diffraction method will be described.
002) is not less than 3.36 ° and not more than 3.40 °, and the vapor grown carbon fiber has a specific surface area of 10
m 2 / g or more 20 m 2 / g or less, preferably 14m 2 / g
Not less than 17 m 2 / g and an average fiber diameter of 0.1
μm or more and 0.3 μm or less, and 0 according to the wide-angle X-ray diffraction method.
The plane spacing (002) of the 02 planes is 3.36 ° or more and 3.40 °
By using a mixture in which the mixing ratio of mesophase graphite and vapor-grown carbon fiber is 97: 3 to 80:20 by weight, polarization during low temperature charging and decomposition of electrolyte during high temperature cycling, etc. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity, a high energy density, and excellent cycle characteristics in actual use because the side reaction can be reduced.

【0041】なお、気相成長炭素繊維の比表面積の制御
は、実施例では黒鉛化の時間で行っているが必ずしもこ
の方法に限ったことではなく、例えば分級等による粒度
の変化等の方法でも良い。
The control of the specific surface area of the vapor grown carbon fiber is performed during the graphitization time in the examples, but is not necessarily limited to this method. For example, a method of changing the particle size by classification or the like may be used. good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例1において45℃の環境下のサイクル特
性を示す図
FIG. 2 is a diagram showing cycle characteristics in an environment of 45 ° C. in Example 1.

【図3】実施例1において20℃の環境下のサイクル特
性を示す図
FIG. 3 is a diagram showing cycle characteristics under an environment of 20 ° C. in Example 1.

【図4】実施例1において0℃の環境下のサイクル特性
を示す図
FIG. 4 is a diagram showing cycle characteristics in an environment of 0 ° C. in Example 1.

【図5】実施例2において20℃の環境下のサイクル特
性を示す図
FIG. 5 is a diagram showing cycle characteristics under an environment of 20 ° C. in Example 2.

【図6】実施例3において45℃の環境下のサイクル特
性を示す図
FIG. 6 is a view showing cycle characteristics in an environment of 45 ° C. in Example 3.

【図7】実施例3において0℃の環境下のサイクル特性
を示す図
FIG. 7 is a diagram showing cycle characteristics in an environment of 0 ° C. in Example 3.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 周作 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shusaku Goto 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有酸化物からなる正極と、黒
鉛粉末と黒鉛質炭素繊維の混合体よりなる負極と、非水
電解液を有していて、前記負極における黒鉛粉末と黒鉛
質炭素繊維の混合割合を重量比で97:3〜80:20
としたことを特徴とする非水電解液二次電池。
A positive electrode comprising a lithium-containing oxide, a negative electrode comprising a mixture of graphite powder and graphitic carbon fibers, and a non-aqueous electrolyte, wherein the negative electrode comprises graphite powder and graphitic carbon fibers. The mixing ratio is 97: 3 to 80:20 by weight.
A non-aqueous electrolyte secondary battery characterized by the following.
【請求項2】 黒鉛粉末はピッチを熱処理することによ
り生じるメソフェーズ小球体を黒鉛化したもので、体積
平均粒子径が3μm以上15μm以下で、かつBET法
による比表面積測定において0.7m2/g以上5.0
2/g以下であり、広角X線回折法による002面の
面間隔(d 002)が3.36Å以上3.40Å以下
であることを特徴とする請求項1記載の非水電解液二次
電池。
2. Graphite powder is obtained by graphitizing mesophase spheres produced by heat-treating pitch, has a volume average particle diameter of 3 μm to 15 μm, and is 0.7 m 2 / g in specific surface area measurement by BET method. 5.0
2. The non-aqueous electrolyte secondary according to claim 1, wherein the distance between the 002 planes (d 002) measured by wide-angle X-ray diffraction is not less than 3.36 ° and not more than 3.40 °. battery.
【請求項3】 黒鉛質炭素繊維は炭化水素ガスを熱分解
することにより得られる気相成長炭素繊維を黒鉛化した
ものでBET法による比表面積測定において10m2
g以上20m2/g以下で、かつ平均繊維直径が0.1
μm以上0.3μm以下であり、広角X線回折法による
002面の面間隔(d 002)が3.36Å以上3.
40Å以下であることを特徴とする請求項1または2記
載の非水電解液二次電池。
3. The graphitic carbon fiber is obtained by graphitizing a vapor-grown carbon fiber obtained by pyrolyzing a hydrocarbon gas, and has a specific surface area of 10 m 2 / b measured by a BET method.
g to 20 m 2 / g and the average fiber diameter is 0.1
μm or more and 0.3 μm or less, and the plane spacing (d 002) of the 002 plane by wide angle X-ray diffraction is 3.36 ° or more and
The non-aqueous electrolyte secondary battery according to claim 1, wherein the angle is 40 ° or less.
JP34604097A 1997-12-16 1997-12-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3663864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34604097A JP3663864B2 (en) 1997-12-16 1997-12-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34604097A JP3663864B2 (en) 1997-12-16 1997-12-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11176442A true JPH11176442A (en) 1999-07-02
JP3663864B2 JP3663864B2 (en) 2005-06-22

Family

ID=18380734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34604097A Expired - Fee Related JP3663864B2 (en) 1997-12-16 1997-12-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3663864B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027902A1 (en) * 2002-09-19 2004-04-01 Sharp Kabushiki Kaisha Lithium polymer battery and method for manufacturing same
WO2005067081A1 (en) * 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
KR20060095367A (en) * 2005-02-28 2006-08-31 삼성에스디아이 주식회사 Negative active material composition for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2006528408A (en) * 2003-07-22 2006-12-14 ビーワイディー カンパニー リミテッド Rechargeable battery negative electrode
WO2007004728A1 (en) * 2005-07-04 2007-01-11 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
JP2008016456A (en) * 2004-01-05 2008-01-24 Showa Denko Kk Negative electrode material for lithium battery and lithium battery
CN100438145C (en) * 2005-05-29 2008-11-26 比亚迪股份有限公司 Negative electrode of lithium ion secondary battery and lithium ion secondary battery containing the negative electrode
CN100466364C (en) * 2005-12-15 2009-03-04 中国电子科技集团公司第十八研究所 Safety lithium-ion battery
JP2009110972A (en) * 2001-08-10 2009-05-21 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method
KR101276145B1 (en) * 2005-07-04 2013-06-18 쇼와 덴코 가부시키가이샤 Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110972A (en) * 2001-08-10 2009-05-21 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery and its manufacturing method
WO2004027902A1 (en) * 2002-09-19 2004-04-01 Sharp Kabushiki Kaisha Lithium polymer battery and method for manufacturing same
JP2006528408A (en) * 2003-07-22 2006-12-14 ビーワイディー カンパニー リミテッド Rechargeable battery negative electrode
WO2005067081A1 (en) * 2004-01-05 2005-07-21 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
JP2008016456A (en) * 2004-01-05 2008-01-24 Showa Denko Kk Negative electrode material for lithium battery and lithium battery
KR100855595B1 (en) * 2004-01-05 2008-09-01 쇼와 덴코 가부시키가이샤 Method for producing a composition for forming a negative electrode material for a lithium battery, composition for forming a negative electrode material for a lithium battery, and negative electrode material sheet for a lithium battery
US8388922B2 (en) 2004-01-05 2013-03-05 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
KR20060095367A (en) * 2005-02-28 2006-08-31 삼성에스디아이 주식회사 Negative active material composition for rechargeable lithium battery and rechargeable lithium battery comprising same
CN100438145C (en) * 2005-05-29 2008-11-26 比亚迪股份有限公司 Negative electrode of lithium ion secondary battery and lithium ion secondary battery containing the negative electrode
WO2007004728A1 (en) * 2005-07-04 2007-01-11 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8003257B2 (en) 2005-07-04 2011-08-23 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US20110269016A1 (en) * 2005-07-04 2011-11-03 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
KR101276145B1 (en) * 2005-07-04 2013-06-18 쇼와 덴코 가부시키가이샤 Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8685362B2 (en) 2005-07-04 2014-04-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US9276257B2 (en) 2005-07-04 2016-03-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
CN100466364C (en) * 2005-12-15 2009-03-04 中国电子科技集团公司第十八研究所 Safety lithium-ion battery

Also Published As

Publication number Publication date
JP3663864B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
US8158282B2 (en) Method of producing prelithiated anodes for secondary lithium ion batteries
KR20170075661A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
EP3754763B1 (en) Negative electrode active material for lithium secondary battery, method of preparing the same, and negative electrode for lithium secondary battery and lithium secondary battery including the same
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2017520892A (en) Positive electrode for lithium battery
JPH06318459A (en) Lithium secondary battery
KR102595883B1 (en) Positive electrode active material precursor for secondary battery, positive electrode active material and lithium secondary battery comprising the same
KR20210006869A (en) Method for preparing positive electrode active material for secondary battery, positive electrode active material manufactured through the method and lithium secondary battery comprising the same
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
JP3663864B2 (en) Non-aqueous electrolyte secondary battery
JPH0927314A (en) Nonaqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
CN116210102A (en) Negative electrode material, and negative electrode and secondary battery comprising same
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JP3082116B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH11111297A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees