JP2007123237A - Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2007123237A
JP2007123237A JP2006211008A JP2006211008A JP2007123237A JP 2007123237 A JP2007123237 A JP 2007123237A JP 2006211008 A JP2006211008 A JP 2006211008A JP 2006211008 A JP2006211008 A JP 2006211008A JP 2007123237 A JP2007123237 A JP 2007123237A
Authority
JP
Japan
Prior art keywords
battery
electrode
separator
porous layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211008A
Other languages
Japanese (ja)
Inventor
Yasunori Baba
泰憲 馬場
Naoki Imachi
直希 井町
Yuko Shibuya
優子 澁谷
Akira Mikami
朗 三上
Hiroyuki Fujimoto
洋行 藤本
Shigeki Matsuda
茂樹 松田
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006211008A priority Critical patent/JP2007123237A/en
Priority to EP06798109A priority patent/EP1947710A1/en
Priority to CN2006800362985A priority patent/CN101278421B/en
Priority to KR1020087007335A priority patent/KR20080049074A/en
Priority to US12/088,838 priority patent/US20090291355A1/en
Priority to PCT/JP2006/318498 priority patent/WO2007037145A1/en
Publication of JP2007123237A publication Critical patent/JP2007123237A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery or the like capable of improving such characteristics of a battery as high-rate charge/discharge characteristics, high-temperature cycle characteristics, and preservation characteristics while reducing manufacturing cost of a battery and satisfying request for higher capacity of the battery. <P>SOLUTION: A porous layer 14 with more excellent permeability of a nonaqueous electrolyte than at least a TD of a separator is arranged between an anode 13 and the separator, and at the same time, excess electrolyte solution is contained at least in a part of a site excluding an electrode body in an inside space of a battery container, and moreover, the excess electrolyte solution and at least a part of the porous layer 14 are in contact with each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン電池或いはポリマー電池などの非水電解質電池、非水電解質電池用電極、及びこの非水電解質電池用電極の製造方法に関し、特に電極内部への電解液の浸透性の改良及び含液性の向上、また電解液の浸透性に関係する電池特性(サイクル特性や保存特性、安全性)に優れ、高容量、高出力を特徴とする電池構成においても高い信頼性を発揮できる電池構造等に関するものである。   The present invention relates to a non-aqueous electrolyte battery such as a lithium ion battery or a polymer battery, a non-aqueous electrolyte battery electrode, and a method for producing the non-aqueous electrolyte battery electrode. Batteries with excellent liquid properties and battery characteristics (cycle characteristics, storage characteristics, safety) related to electrolyte permeability and high reliability even in battery configurations characterized by high capacity and high output It relates to the structure.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行う非水電解質電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。但し、現状ではその要求に十分に応えきれていない。
また、最近ではその特徴を利用して、携帯電話等のモバイル用途に限らず、電動工具や電気自動車、ハイブリッド自動車に至る中〜大型電池用途についても展開が進みつつあり、高容量化/高出力化と併せて、高安全性化の要求も非常に高まっている。
In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. A non-aqueous electrolyte battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and high capacity. As widely used. However, at present, the demand is not fully met.
Recently, using these features, not only mobile applications such as mobile phones, but also medium- to large-sized battery applications such as electric tools, electric vehicles, and hybrid vehicles are being developed. Along with this trend, the demand for higher safety is also increasing.

こうした背景の中で、電池の高容量化を図るために、電極材料の高充填化、発電に直接関与しない部材である集電体、セパレータ、或いは、電池収納ケースの薄型化(例えば、下記特許文献1参照)が図られており、また、電池の高出力化を図るために、電極面積の増加等が進められており、電池構成としては電極内部へ電解液の浸透、保液に関わる課題がリチウムイオン電池開発当初に比べて表面化しつつある。このため、電池の性能・信頼性を確保する上で、この問題を解決すべく、新規な電池構成の確立が必要となってきた。   Against this background, in order to increase the capacity of the battery, the electrode material is highly charged, and the current collector, separator, or battery storage case that is not directly involved in power generation is made thinner (for example, the following patents) In addition, in order to increase the output of the battery, the electrode area has been increased, and the battery configuration is a problem related to the penetration of the electrolyte into the electrode and the liquid retention. However, the surface is beginning to surface compared to the initial development of lithium-ion batteries. For this reason, it is necessary to establish a new battery configuration in order to solve this problem in securing the performance and reliability of the battery.

特開2002−141042号公報JP 2002-141042 A

従来の電池構成としては、正極と負極とがセパレータを介して対抗配置されるような電極体を備えるような構成であり、例えば電極体が巻取型の電極体である場合に、電極体内部への電解液の浸透、拡散は、以下に示す3つの経路で生じるものと考えられる。
1)電極内部の隙間
2)セパレータの空隙部
3)電極とセパレータとの間の隙間
しかしながら、上述の経路では、以下に示す理由により、電解液の浸透、拡散パスとして役割を十分に発揮しえない。
A conventional battery configuration includes an electrode body in which a positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween. For example, when the electrode body is a take-up electrode body, It is considered that the penetration and diffusion of the electrolytic solution into the film occur through the following three routes.
1) Gap inside the electrode 2) Gap of the separator 3) Gap between the electrode and the separator However, in the above-described path, it can sufficiently play a role as an electrolyte penetration and diffusion path for the following reasons. Absent.

・経路1)が電解液の浸透、拡散パスとして役割を十分に発揮しえない理由
前述したように、近年の電池では、電池の高容量化を達成すべく、活物質の高充填化が図られているため、電極内部の隙間は減少する傾向にあるという理由によるものと考えられる。
・ Reason why the path 1) cannot fully play the role of electrolyte penetration and diffusion path As described above, in recent batteries, the active material has to be highly filled in order to achieve higher battery capacity. This is probably because the gap inside the electrode tends to decrease.

・経路2)が電解液の浸透、拡散パスとして役割を十分に発揮しえない理由
現在使用されているポリオレフィン系のセパレータは、電極巻き取り幅方向(TD、Transverse direction)での電解液吸収能は製法上の関係から非常に遅く、また近年の高容量化によるセパレータ薄型化により、空隙部が減少傾向にあるという理由によるものと考えられる。
・ Reason that the path 2) cannot fully play the role of electrolyte penetration and diffusion path The currently used polyolefin-based separator is the ability to absorb electrolyte in the direction of electrode winding width (TD, Transverse direction). This is considered to be due to the reason that the gap portion tends to decrease due to the thinning of the separator due to the recent increase in capacity due to the manufacturing process.

・経路3)が電解液の浸透、拡散パスとして役割を十分に発揮しえない理由
近年、巻取電極体を用いた電池では、巻取りテンションが大きくなってきている等により電極体の緊迫性が高まる傾向にあり、電解液の浸透、拡散は起こり難い状態となっているという理由によるものと考えられる。
・ Reason why the path 3) cannot fully play a role as an electrolyte penetration and diffusion path. In recent years, in a battery using a winding electrode body, the winding tension has increased, and the tension of the electrode body has been increased. This is probably because the penetration and diffusion of the electrolyte solution is unlikely to occur.

ところで、電池の組立初期においては、電池の作製工程において、減圧処理や加圧処理が行なわれるので、それらの処理条件を最適化することにより電極内部への電解液の浸透はある程度確保されている。しかしながら、充放電サイクルを繰り返し行なったり、電池を長期間保存することにより電池内部の電解液が消費された場合は、もともと電極内部にあった電解液とセパレータが保持していた電解液とで充放電反応を保障する必要があるが、前述の如くセパレータの薄型化や、活物質塗布量の増加により、上記電解液だけでは充放電反応を十分に保障できず、電解液不足による電池性能の低下が益々加速される傾向となる。   By the way, in the initial stage of battery assembly, a decompression process and a pressurization process are performed in the battery manufacturing process, so that the penetration of the electrolyte into the electrode is ensured to some extent by optimizing the process conditions. . However, if the electrolyte in the battery is consumed by repeated charge / discharge cycles or by storing the battery for a long period of time, it is charged with the electrolyte that was originally in the electrode and the electrolyte retained by the separator. Although it is necessary to guarantee the discharge reaction, as described above, due to the thinning of the separator and the increase in the amount of active material applied, the above-mentioned electrolyte alone cannot adequately guarantee the charge / discharge reaction, and the battery performance deteriorates due to insufficient electrolyte. Will be increasingly accelerated.

また、電池の構成材料として用いられるコバルト酸リチウムや黒鉛材料は、充電で膨張し、放電で収縮するという挙動を示し、特に負極の膨張伸縮が大きくなる。これらの材料を電極材料として用いた場合には、充電での膨張に対してはセパレータが薄型化(縮む)という緩衝作用により電池膨れを抑制している。また、組立初期(放電状態)から充電にかけて電極内部の空隙が減少することから電極から電解液が放出されるが、当該電解液はセパレータの空隙部に吸収され、吸収しきれない電解液は電極体の系外に放出されることになる。しかしながら、充放電に伴う極板における電解液の吸収、放出に見合う電解液量をセパレータが保有していない場合や、電極上における副反応で電解液が消費されて不足した場合には、従来構造の電池ではセパレータにおけるTD方向(電解液の浸透方向)の浸透性に劣り、電極体の系外に放出された電解液を再度セパレータの全域に亘って迅速に浸透させるのが困難である等の理由により、巻取電極体で電解液が枯渇する方向に働き、その結果として充放電性能が低下するという問題があった。特に、高温サイクル試験や保存試験などの副反応で電解液を消費する傾向が強い試験環境や、ハイレート充放電などの電解液を電極が吸収するスピード変化が早い試験環境ではその傾向が顕著である。   In addition, lithium cobaltate and graphite materials used as battery constituent materials exhibit a behavior of expanding by charging and contracting by discharging, and in particular, expansion and contraction of the negative electrode are increased. When these materials are used as electrode materials, the expansion of the battery is suppressed by a buffering action that the separator is thinned (shrinks) against expansion due to charging. In addition, since the gap inside the electrode decreases from the initial assembly (discharged state) to charging, the electrolyte is released from the electrode. However, the electrolyte is absorbed by the gap of the separator, and the electrolyte that cannot be absorbed is the electrode. It will be released outside the body. However, if the separator does not have the amount of electrolyte suitable for the absorption and release of the electrolyte in the electrode plate due to charge and discharge, or if the electrolyte is consumed due to side reactions on the electrode and is insufficient, the conventional structure In the battery, the permeability in the TD direction (electrolyte permeation direction) in the separator is inferior, and it is difficult to rapidly permeate the electrolyte discharged outside the electrode body over the entire area of the separator. For the reason, there has been a problem that the winding electrode body works in the direction of exhaustion of the electrolyte, and as a result, the charge / discharge performance is lowered. This tendency is particularly noticeable in test environments where electrolytes are likely to be consumed in side reactions such as high-temperature cycle tests and storage tests, and in test environments where the electrode absorbs electrolytes such as high-rate charge / discharge, where the speed changes quickly. .

更に、電池の高容量化、高出力化を図るべく、電極幅を増加させた場合には、極板中央部への電解液の浸透性が特に劣る。このため、充放電サイクル中のみならず組立初期においても電解液の浸透性を確保する必要があり、長時間エージングを行なわなければならいが、これでは電池の製造コストが増大する。したがって、電池の製造工程を短縮してコストの低減を図るには、電極内部へ電解液の浸透、拡散を円滑に行なう浸透、拡散パスを確保し、更に電池の諸特性の向上を図るには、正負両極の活物質量に見合う電解液量の確保が必須であった。   Furthermore, when the electrode width is increased in order to increase the capacity and output of the battery, the permeability of the electrolytic solution into the center portion of the electrode plate is particularly inferior. For this reason, it is necessary to ensure the permeability of the electrolyte not only during the charge / discharge cycle but also at the initial stage of assembly, and aging must be performed for a long time, but this increases the manufacturing cost of the battery. Therefore, in order to shorten the manufacturing process of the battery and reduce the cost, in order to ensure the penetration and diffusion path for smooth penetration and diffusion of the electrolyte into the electrode, and to further improve the characteristics of the battery In addition, it was essential to secure an amount of electrolyte that was commensurate with the amount of positive and negative active materials.

また、近年、リチウム参照極電位に対して4.40V以上となるまで正極を充電することにより、電池の高容量、高出力化を可能にする技術があるが、正極をリチウム参照極電位に対し、4.40V以上となるまで充電すると、サイクル特性が著しく低下してしまう。   Further, in recent years, there is a technology that enables the battery to have a higher capacity and higher output by charging the positive electrode until it becomes 4.40 V or higher with respect to the lithium reference electrode potential. If the battery is charged to 4.40 V or more, the cycle characteristics are significantly deteriorated.

これは、上記電池設計とした場合には、従来のようにリチウム参照極電位に対して4.30Vとなるまで正極を充電した場合に比べ、負極の充電深度は変わらないので負極の膨張収縮率は変化しないが、正極は充電電位が高くなると更に膨張するため、電極としての膨張収縮率は、増加してしまう。このため、リチウム参照極電位に対して4.40V以上となるまで正極を充電すると、電極の膨張収縮が大きくなり、セパレータ中の電解液量が不足してしまう。また、高電位となるため、正極において電解液が酸化分解されやすくなり、電極内の電解液が著しく不足する。これらのことから、充放電電池特性が大きく低下してしまう。   In the case of the above battery design, since the negative electrode charging depth does not change as compared with the conventional case where the positive electrode is charged to 4.30 V with respect to the lithium reference electrode potential, the expansion and contraction rate of the negative electrode However, since the positive electrode further expands when the charge potential is increased, the expansion / contraction rate as an electrode increases. For this reason, if the positive electrode is charged to 4.40 V or more with respect to the lithium reference electrode potential, the electrode expands and contracts and the amount of electrolyte in the separator becomes insufficient. Further, since the potential is high, the electrolytic solution is easily oxidized and decomposed in the positive electrode, and the electrolytic solution in the electrode is remarkably insufficient. Therefore, the charge / discharge battery characteristics are greatly deteriorated.

上記正極にコバルト酸リチウムを用いた場合の電極の膨張収縮について、図20〔参考文献:T.Ozuku et.al,J.Electrochem.Soc.Vol.141,2972(1994)〕に基づいて、簡単に説明する。図20から明らかなように、リチウム参照極電位に対して4.40V〜4.50V(電池電圧はリチウム参照極電位より0.1V低いので4.30V〜4.40V)以上にまで正極を充電すると、a軸における結晶格子定数は殆ど変化しないが、c軸における結晶格子定数は増加する。このため、正極は一層膨張することとなって、充放電時における正極の膨張収縮率が高くなる一方、負極の膨張率は変化しない。このようなことに起因して、正極に浸透拡散する電解液量は増加する一方、負極に浸透拡散する電解液量は減少する(尚、このことは、後述の実施例の予備実験3に示すように、正極の方が電解液の拡散性、吸液性に優れるということに起因するものと考えられる。)。この結果、負極における電解液不足により、充放電電池特性が大きく低下する。   Regarding the expansion and contraction of the electrode when lithium cobaltate is used for the positive electrode, FIG. Ozuku et. al, J. et al. Electrochem. Soc. Vol. 141, 2972 (1994)]. As is apparent from FIG. 20, the positive electrode is charged to 4.40V to 4.50V with respect to the lithium reference electrode potential (4.30V to 4.40V because the battery voltage is 0.1V lower than the lithium reference electrode potential) or more. Then, the crystal lattice constant on the a-axis hardly changes, but the crystal lattice constant on the c-axis increases. For this reason, the positive electrode expands further, and the expansion / contraction rate of the positive electrode during charge / discharge increases, while the expansion rate of the negative electrode does not change. As a result, the amount of electrolyte solution that permeates and diffuses into the positive electrode increases, while the amount of electrolyte solution that permeates and diffuses into the negative electrode decreases (this is shown in Preliminary Experiment 3 of Examples described later). Thus, it is considered that the positive electrode is superior in diffusibility and liquid absorption of the electrolytic solution. As a result, the charge / discharge battery characteristics are greatly deteriorated due to insufficient electrolyte in the negative electrode.

尚、過去に提案されている電池構成では、この点に着目した出願は見られず、セパレータの空隙部を多くする手法や、セパレータ厚みを増加させて保液量と緩衝作用を確保する手法が一般的に知られているが、このような手法をとった場合には、発電に直接関与しない部材であるセパレータの占有体積が増加するので、電池の高容量化の要求を満たすことができないという課題がある。   In addition, in the battery configuration proposed in the past, there is no application focusing on this point, and there is a method for increasing the gap of the separator and a method for increasing the separator thickness to ensure the liquid retention amount and the buffering action. Although generally known, when such a method is taken, the occupied volume of the separator, which is a member that does not directly participate in power generation, increases, so that it is not possible to satisfy the demand for higher battery capacity. There are challenges.

したがって、本発明は、電池の製造コストを低減し、且つ、電池の高容量化の要求を満たしつつ、ハイレート充放電特性、高温サイクル特性、保存特性など電池諸特性を向上させることができる、非水電解質電池、非水電解質電池用電極、及びこの非水電解質電池用電極の製造方法の提供を目的としている。   Therefore, the present invention can improve various battery characteristics such as high-rate charge / discharge characteristics, high-temperature cycle characteristics, and storage characteristics while reducing the battery manufacturing cost and satisfying the demand for higher battery capacity. An object of the present invention is to provide a water electrolyte battery, a nonaqueous electrolyte battery electrode, and a method for producing the nonaqueous electrolyte battery electrode.

上記目的を達成するために本発明は、正極活物質層を備えた正極、負極活物質層を備えた負極、及びこれら両極間に介装されたセパレータから成る電極体と、この電極体に供給される非水電解質と、上記電極体及び非水電解質を収納する電池収納体と、を備え、且つ、上記セパレータにおいては、MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って上記電極体に供給される非水電解質電池において、上記正負両極のうち少なくとも一方の極と上記セパレータとの間には、少なくとも上記TDより非水電解質の浸透性に優れた多孔質層が配置されると共に、上記電池収納体の内部空間における上記電極体を除く部位の少なくとも一部には余剰電解液が含まれ、且つ、この余剰電解液と上記多孔質層の少なくとも一部とが接していることを特徴とする。   To achieve the above object, the present invention provides an electrode body comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a separator interposed between the two electrodes, and supplying the electrode body A non-aqueous electrolyte and a battery housing for housing the electrode body and the non-aqueous electrolyte, and in the separator, the separator is divided into two types, MD and TD, which is less permeable to the non-aqueous electrolyte than the MD. Directionality exists, and the nonaqueous electrolyte is supplied to the electrode body mainly along the TD. In the nonaqueous electrolyte battery, between at least one of the positive and negative electrodes and the separator, A porous layer having at least a non-aqueous electrolyte permeability than the TD is disposed, and at least a part of the portion excluding the electrode body in the internal space of the battery housing includes an excess electrolyte. One, characterized in that at least part is in contact of the excess electrolyte and the porous layer.

上記構成の如く、セパレータのTDより非水電解質の浸透性に優れた多孔質層が正負両極のうち少なくとも一方の極とセパレータとの間に形成されていれば、多孔質層の存在により電解液の浸透、拡散を円滑に行なう電解液の浸透、拡散パスを確保できるので、充電により電極内部の空隙が減少して、セパレータの空隙部に吸収できない電解液が電極体の系外に放出された場合であっても、電極体の系外に放出された電解液を再度セパレータの全域に亘って迅速に浸透させ、電極に供給することができる。したがって、短時間で電極内部へ電解液を浸透させることができるので、充放電性能が低下するのを抑制することができ、特に、電極が電解液を吸収するスピードの変化が早いハイレート充放電特性等の低下が飛躍的に抑制される。   As in the above configuration, if a porous layer having better non-aqueous electrolyte permeability than the TD of the separator is formed between at least one of the positive and negative electrodes and the separator, the presence of the porous layer causes an electrolyte solution. Electrolytic solution penetration and diffusion path that smoothly penetrates and diffuses can be secured, so that the void inside the electrode is reduced by charging, and the electrolytic solution that can not be absorbed in the gap of the separator is released out of the system of the electrode body Even if it is a case, the electrolyte solution discharged | emitted out of the system of the electrode body can osmose | permeate rapidly again over the whole region of a separator, and can be supplied to an electrode. Therefore, the electrolyte solution can be permeated into the electrode in a short time, so that the charge / discharge performance can be prevented from being deteriorated. In particular, the high-rate charge / discharge characteristics in which the electrode absorbs the electrolyte solution quickly changes. Etc. is drastically suppressed.

また、電池収納体の内部空間における上記電極体を除く部位の少なくとも一部には余剰電解液が含まれ、且つ、この余剰電解液と上記多孔質層の少なくとも一部とが接しているので、充放電サイクルを繰り返し行なったり、電池を長期間保存したりして、電池内部の電解液が消費されることにより、もともと電極内部にあった電解液とセパレータが保持していた電解液とで充放電反応を保障できなくなったりした場合であっても、余剰電解液が多孔質層に浸透して迅速に電極に供給されるので、この点からも充放電性能が低下するのを抑制できる。特に、副反応で電解液を消費する傾向が強い高温サイクル特性や保存特性等の低下が飛躍的に抑制される。   Moreover, since at least a part of the portion excluding the electrode body in the internal space of the battery housing body contains the surplus electrolyte solution, and the surplus electrolyte solution and at least a part of the porous layer are in contact with each other, By repeating the charge / discharge cycle or storing the battery for a long time, the electrolyte solution inside the battery is consumed, so that the electrolyte solution originally contained in the electrode is charged with the electrolyte solution held by the separator. Even when the discharge reaction cannot be ensured, the surplus electrolyte solution penetrates into the porous layer and is quickly supplied to the electrode, so that it is possible to suppress the deterioration of the charge / discharge performance from this point. In particular, a decrease in high-temperature cycle characteristics, storage characteristics, etc., which tend to consume the electrolyte solution due to side reactions, is greatly suppressed.

更に、電池の高容量化、高出力化を図るべく、電極幅を増加させた場合であっても、多孔質層の存在により、極板中央部への電解液の浸透性に優れる。したがって、充放電サイクル中のみならず組立初期においても電解液の浸透性が十分に確保されるので、長時間のエージングを行なう必要がなくなり、電池の製造コストを低減できる。   Furthermore, even when the electrode width is increased in order to increase the capacity and output of the battery, the presence of the porous layer provides excellent permeability of the electrolytic solution to the center of the electrode plate. Therefore, since the permeability of the electrolyte is sufficiently ensured not only during the charge / discharge cycle but also at the initial stage of assembly, it is not necessary to perform aging for a long time, and the manufacturing cost of the battery can be reduced.

加えて、セパレータの空隙部を多くする手法や、セパレータ厚みを増加させて保液量と緩衝作用を確保する手法を用いることなく電解液の浸透、拡散を円滑に行なう電解液の浸透、拡散パスを確保できるので、発電に直接関与しない部材であるセパレータの占有体積を増加させることはない。したがって、電池の高容量化を実現できるものである。即ち、従来はセパレータに保液できる電解液量が少な過ぎるとサイクル特性等が低下するという理由により、セパレータの薄膜化が困難であったが、本発明の如く多孔質層を形成することにより、電解液の供給パスを確保することが可能となるため、セパレータに保液しなければならない電解液量を少なくでき、その結果として、セパレータの薄型化、即ち電池の高容量化が可能となるのである。尚、セパレータが薄型化されるとはいうものの、新たに多孔質層が必要となるため、電池の高容量化が十分に達成することができないのではないかとも考えられる。しかし、本発明の構成であれば、セパレータは大幅に薄型化できる一方、多孔質層の厚みは微々たるものである。したがって、全体としては、発電に直接関与しない部材の占有体積が減少するので、上述の如く電池の高容量化が可能となるのである。   In addition, electrolyte penetration and diffusion path that smoothly penetrates and diffuses electrolyte without using a method to increase the gap of the separator or a method to increase the separator thickness and ensure a liquid retention amount and a buffering action. Therefore, the occupied volume of the separator, which is a member not directly involved in power generation, is not increased. Therefore, the capacity of the battery can be increased. That is, when the amount of electrolyte solution that can be retained in the separator is too small, it has been difficult to reduce the thickness of the separator due to the deterioration of cycle characteristics and the like, but by forming a porous layer as in the present invention, Since it is possible to secure a supply path for the electrolytic solution, the amount of electrolytic solution that must be retained in the separator can be reduced. As a result, the separator can be made thinner, that is, the capacity of the battery can be increased. is there. Although the separator is thinned, a new porous layer is required, so it may be considered that the capacity of the battery cannot be sufficiently increased. However, with the configuration of the present invention, the separator can be significantly thinned, while the thickness of the porous layer is insignificant. Therefore, as a whole, the occupied volume of the members not directly involved in the power generation is reduced, so that the capacity of the battery can be increased as described above.

尚、少なくともセパレータのTDより非水電解質の浸透性に優れた多孔質層とあるが、積層型の電極体等を用いた電池では、TDのみならずMDよりも非水電解質の浸透性に優れた多孔質層であることが望ましい。これは、積層型の電極体等を用いた電池では、巻取電極体を用いた電池と異なり、TDのみならずMDからも(即ち、四方から)非水電解質が浸透するので、セパレータ本体部のMDより非水電解質の浸透性に優れた多孔質層を用いると、非水電解質の浸透、拡散がより円滑になるという理由によるものである。   In addition, although there is a porous layer that is more excellent in nonaqueous electrolyte permeability than TD of the separator, in a battery using a laminated electrode body, etc., the nonaqueous electrolyte is more permeable than MD as well as MD. A porous layer is desirable. This is because, in a battery using a laminated electrode body or the like, unlike a battery using a winding electrode body, nonaqueous electrolyte penetrates not only from TD but also from MD (that is, from four sides). This is because the use of a porous layer having better non-aqueous electrolyte permeability than the non-aqueous MD makes the non-aqueous electrolyte permeate and diffuse more smoothly.

また、上記MDとはMachine Direction(機械方向)を意味し、上記TDとはTransverse Direction(直角方向)を意味する。
更に、耐熱性を向上させる目的でセパレータにポリアミド微多孔層を形成することが、特開平10−6453号公報、特開平10−324758公報、特開2000−100408号公報、特開2001−266949号公報等で報告されている。更に、内部短絡を防止する目的で電極上への微多孔層を形成することが、特許3371301号公報、特開平7−20135号公報、特開平11−102730号公報、特開2005−174792号公報などで報告されている。しかしながら、これらの提案は、いずれも、樹脂層等を設けることにより、高温時にセパレータの収縮に伴う正負両極間のショートを防止するという安全性に着目した内容になっており、電解液の浸透、拡散パスとして電池構造を最適化した仕様になっていない。即ち、セパレータのTDより非水電解質の浸透性に優れた多孔質層を設けるという点、及び、余剰電解質を電池収納体内に配置するという点について、上記出願では全く記載されていない。これらのことから、本発明と上記出願とはその構成、作用、効果が全く異なるということを付言しておく。
The MD means Machine Direction (machine direction), and the TD means Transverse Direction (right angle direction).
Furthermore, it is possible to form a polyamide microporous layer on the separator for the purpose of improving heat resistance. JP-A-10-6453, JP-A-10-324758, JP-A2000-100408, JP-A-2001-266949. It is reported in gazettes. Furthermore, forming a microporous layer on the electrode for the purpose of preventing internal short circuit is disclosed in Japanese Patent No. 3371301, Japanese Patent Laid-Open No. 7-20135, Japanese Patent Laid-Open No. 11-102730, Japanese Patent Laid-Open No. 2005-174792. Have been reported. However, all of these proposals are focused on the safety of preventing a short circuit between the positive and negative electrodes due to the shrinkage of the separator at a high temperature by providing a resin layer, etc. The battery structure is not optimized for the diffusion path. That is, there is no description in the above application regarding the point of providing a porous layer that is more excellent in the permeability of the nonaqueous electrolyte than the TD of the separator and the point that the surplus electrolyte is disposed in the battery housing. From these facts, it is added that the present invention and the above-mentioned application are completely different in configuration, operation and effect.

上記電極体は、上記正負両極と上記セパレータとが捲回された巻取電極体であることが望ましい。
巻取電極体においては、近年、巻取りテンションが大きくなってきている等の理由により電極体の緊迫性が高まり、電解液の浸透、拡散は起こり難い状態となっているため、このような電池に本発明を適用すると、上述の作用、効果が一層発揮される。
The electrode body is preferably a wound electrode body in which the positive and negative electrodes and the separator are wound.
In the wound electrode body, since the tension of the electrode body has been increased due to the recent increase in winding tension and the penetration and diffusion of the electrolyte is difficult to occur, such a battery When the present invention is applied to the above, the above-mentioned actions and effects are further exhibited.

上記電池収納体が円筒型或いは角型であることが望ましい。
電池収納体が円筒型或いは角型の電池は、ラミネート電池等の電池収納体が薄型のものに比べて余剰空間が大きく、その分、電池内に余剰電解液を多量に充填することが可能であるので、上述の作用、効果が一層発揮される。
It is desirable that the battery housing is cylindrical or rectangular.
A battery with a cylindrical or square battery housing has a larger surplus space than a thin battery housing such as a laminated battery, and can be filled with a large amount of surplus electrolyte. As a result, the above-described actions and effects are further exhibited.

上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成されることが望ましい。
これらの材料を用いた場合には、多孔質層が無配向性で微粒子状の物質で構成されることになるので、電解液の浸透を確保しうる適度な空間(隙間)を確保できると共に、これらの材料は機械的強度が強く、熱安定性が高いので、電池内での変質を抑制することができる。
但し、アルミナ、チタニアに限定するものではなく、ジルコニア等の他のセラミック材料であっても良い。
It is desirable that the porous layer is composed of at least one selected from inorganic material-based fine particle groups composed of alumina and titania and a binder.
When these materials are used, the porous layer is composed of a non-oriented and particulate material, so that an appropriate space (gap) that can ensure the penetration of the electrolyte can be secured, Since these materials have high mechanical strength and high thermal stability, deterioration in the battery can be suppressed.
However, it is not limited to alumina and titania, and may be other ceramic materials such as zirconia.

上記多孔質層がポリアミド、ポリアミドイミドから成る樹脂系の材料群から選択される少なくとも1種で構成されることが望ましい。
これらの材料を用いた場合には、多孔質層が無配向性で繊維状の物質で構成されることになるので、電解液の浸透を確保しうる適度な空間(隙間)を確保できると共に、これらの材料は機械的強度が強く、熱安定性が高いので、電池内での変質を抑制することができる。
但し、ポリアミド、ポリアミドイミドに限定するものではなく、ポリイミド等であっても良い。
It is desirable that the porous layer is composed of at least one selected from a resin-based material group consisting of polyamide and polyamideimide.
When these materials are used, the porous layer is composed of a non-oriented and fibrous substance, so that an appropriate space (gap) that can ensure the permeation of the electrolyte can be secured, Since these materials have high mechanical strength and high thermal stability, deterioration in the battery can be suppressed.
However, it is not limited to polyamide or polyamideimide, but may be polyimide or the like.

リチウム参照極電位に対して4.40V未満となるまで上記正極が充電される構成の電池にも適用できるが、リチウム参照極電位に対して4.40V以上、好ましくは4.45V以上、特に好ましくは4.50V以上となるまで上記正極が充電されるような構成の電池に適用するのが望ましい。
これは、正極がリチウム参照極電位に対して4.40V未満で充電されるような構成の電池でも、多孔質層の有無によって高温でのサイクル特性や保存特性の差異は十分にあるが、正極がリチウム参照極電位に対して4.40V以上で充電されるような電池では、多孔質層の有無によって高温でのサイクル特性等の差異が顕著に現れるからである。特に、正極がリチウム参照極電位に対して4.45V以上、或いは4.50V以上で充電されるような電池では、この差異がより顕著に出現する。
Although it can be applied to a battery in which the positive electrode is charged until it becomes less than 4.40 V with respect to the lithium reference electrode potential, it is 4.40 V or more, preferably 4.45 V or more, particularly preferably with respect to the lithium reference electrode potential. Is preferably applied to a battery having a configuration in which the positive electrode is charged until it reaches 4.50 V or higher.
This is because even in a battery configured such that the positive electrode is charged at less than 4.40 V with respect to the lithium reference electrode potential, there are sufficient differences in cycle characteristics and storage characteristics at high temperatures depending on the presence or absence of the porous layer. This is because, in a battery that is charged at a voltage of 4.40 V or more with respect to the lithium reference electrode potential, a difference in cycle characteristics at a high temperature appears remarkably depending on the presence or absence of the porous layer. In particular, in a battery in which the positive electrode is charged at 4.45 V or more, or 4.50 V or more with respect to the lithium reference electrode potential, this difference appears more remarkably.

上記多孔質層が、充放電時の体積変化率の大きい電極とセパレータとの間にのみ配置されていることが望ましい。
充放電時の体積変化率の大きい電極側においては、放電による収縮でセパレータから電解液を吸収して極板内部に電解液を補充する必要性が大きくなるため、充放電時の体積変化率の大きい電極とセパレータとの間に多孔質層を設けた方が、上述の作用、効果が一層発揮される。
It is desirable that the porous layer is disposed only between an electrode and a separator having a large volume change rate during charging and discharging.
On the electrode side where the volume change rate during charging / discharging is large, it is necessary to replenish the electrolyte solution inside the electrode plate by absorbing the electrolyte solution due to contraction due to discharge. When the porous layer is provided between the large electrode and the separator, the above-described functions and effects are further exhibited.

上記多孔質層が、充放電時の体積変化率の大きい電極の表面に形成されていることが望ましい。
尚、多孔質層は、充放電時の体積変化率の大きい電極の表面に形成することに限定するものではなく、充放電時の体積変化率の大きい電極側のセパレータ表面に形成しても良い。
The porous layer is preferably formed on the surface of an electrode having a large volume change rate during charge / discharge.
The porous layer is not limited to being formed on the surface of the electrode having a large volume change rate at the time of charge / discharge, and may be formed on the separator surface on the electrode side having a large volume change rate at the time of charge / discharge. .

上記負極活物質として黒鉛を主体とするものを用い、且つ、上記多孔質層が負極とセパレータとの間にのみ配置されていることが望ましい。
負極活物質に黒鉛を用いた場合には、負極は正極よりも充放電時の体積変化率の大きくなることが多い。したがって、多孔質層が負極とセパレータとの間に形成されることで、上述の作用、効果が一層発揮される。
尚、黒鉛を主体とするとは、黒鉛が50質量%以上含まれていることを意味する。
It is desirable that the negative electrode active material is mainly composed of graphite, and the porous layer is disposed only between the negative electrode and the separator.
When graphite is used as the negative electrode active material, the negative electrode often has a larger volume change rate during charge / discharge than the positive electrode. Therefore, when the porous layer is formed between the negative electrode and the separator, the above-described functions and effects are further exhibited.
Note that “mainly composed of graphite” means that 50% by mass or more of graphite is contained.

上記多孔質層が負極の表面に形成されていることが望ましい。   It is desirable that the porous layer is formed on the surface of the negative electrode.

正極がリチウム参照極電位に対して4.40V以上で充電されるような電池では、上記多孔質層が負極とセパレータとの間のみならず、正極とセパレータとの間に配置されていることが望ましい。
充電終止電圧が4.40V以上の場合には、負極における電解液が不足するのみならず、正極の充電電位が高くなるため正極における膨張収縮率が増加すると共に、正極の充電状態が更に高い領域にあるため、電解液の酸化分解によって電解液の消費は非常に早くなる結果、正極での電解液不足も深刻なものとなるが、上記の如く、負極とセパレータとの間のみならず、正極とセパレータとの間にも多孔質層が配置されていれば、所望のサイクル特性を得ることができる。
In a battery in which the positive electrode is charged at 4.40 V or more with respect to the lithium reference electrode potential, the porous layer may be disposed not only between the negative electrode and the separator but also between the positive electrode and the separator. desirable.
In the case where the end-of-charge voltage is 4.40 V or more, not only the electrolyte in the negative electrode is insufficient, but also the charge potential of the positive electrode is increased, so that the expansion / contraction rate at the positive electrode is increased and the charged state of the positive electrode is higher. Therefore, as a result of the oxidative decomposition of the electrolytic solution, the consumption of the electrolytic solution becomes very fast. As a result, the shortage of the electrolytic solution at the positive electrode also becomes serious. If a porous layer is also arranged between the separator and the separator, desired cycle characteristics can be obtained.

また、上記正極活物質には、少なくともアルミニウム或いはマグネシウムが固溶されたコバルト酸リチウムが含まれており、且つ、このコバルト酸リチウム表面にはジルコニアが固着されていることが望ましい。
このような構造とするのは、以下に示す理由による。即ち、正極活物質としてコバルト酸リチウムを用いた場合には、充電深度が高まるにつれて、結晶構造は不安定になり、高温雰囲気ではより劣化が早まることになる。そこで、アルミニウム或いはマグネシウムを正極活物質(結晶内部)に固溶させることで、正極における結晶歪みの緩和を図っている。但し、これらの元素は結晶構造の安定化には大きく寄与するものの、初回充放電効率の低下や放電作動電圧の低下等を招来する。そこで、このような問題を緩和すべく、コバルト酸リチウム表面にジルコニアを固着している。
The positive electrode active material preferably contains at least lithium cobaltate in which aluminum or magnesium is dissolved, and zirconia is preferably fixed to the surface of the lithium cobaltate.
The reason for such a structure is as follows. That is, when lithium cobaltate is used as the positive electrode active material, the crystal structure becomes unstable as the charging depth increases, and the deterioration is accelerated in a high temperature atmosphere. Thus, aluminum or magnesium is dissolved in the positive electrode active material (inside the crystal) to reduce crystal distortion in the positive electrode. However, although these elements greatly contribute to the stabilization of the crystal structure, the initial charge / discharge efficiency is lowered and the discharge operating voltage is lowered. Therefore, in order to alleviate such a problem, zirconia is fixed to the lithium cobalt oxide surface.

また、上記目的を達成するために本発明は、MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って浸透するセパレータを介して正極と対向配置された非水電解質電池用負極において、上記TDより非水電解質の浸透性に優れた多孔質層が表面に形成されていることを特徴とする。
このような構成の負極を用いた電池では、上述の作用、効果と同様の作用、効果が発揮される。
In order to achieve the above object, the present invention has two directions, MD and TD, which is less permeable to the nonaqueous electrolyte than MD, and the nonaqueous electrolyte mainly follows the TD. A negative electrode for a non-aqueous electrolyte battery disposed opposite to a positive electrode through a permeating separator is characterized in that a porous layer having a non-aqueous electrolyte that is more permeable than the TD is formed on the surface.
In the battery using the negative electrode having such a configuration, the same operations and effects as those described above are exhibited.

上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成されることが望ましい。
このような構成の負極を用いた電池では、上述の作用、効果と同様の作用、効果が発揮される。
It is desirable that the porous layer is composed of at least one selected from inorganic material-based fine particle groups composed of alumina and titania and a binder.
In the battery using the negative electrode having such a configuration, the same operations and effects as those described above are exhibited.

また、上記目的を達成するために本発明は、MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って浸透するセパレータを介して負極と対向配置された非水電解質電池用正極において、上記TDより非水電解質の浸透性に優れた多孔質層が表面に形成されていることを特徴とする。
このような構成の正極を用いた電池では、上述の作用、効果と同様の作用、効果が発揮される。
In order to achieve the above object, the present invention has two directions, MD and TD, which is less permeable to the nonaqueous electrolyte than MD, and the nonaqueous electrolyte mainly follows the TD. A positive electrode for a non-aqueous electrolyte battery disposed opposite to a negative electrode through a permeating separator is characterized in that a porous layer having a non-aqueous electrolyte that is more permeable than the TD is formed on the surface.
In the battery using the positive electrode having such a configuration, the same operations and effects as those described above are exhibited.

上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成されることが望ましい。
このような構成の正極を用いた電池では、上述の作用、効果と同様の作用、効果が発揮される。
It is desirable that the porous layer is composed of at least one selected from inorganic material-based fine particle groups composed of alumina and titania and a binder.
In the battery using the positive electrode having such a configuration, the same operations and effects as those described above are exhibited.

また、上記目的を達成するために本発明は、負極集電体の表面に負極活物質層を形成する第1ステップと、上記負極活物質層の表面に、無機材料の微粒子を含むスラリーを塗布する第2ステップと、上記スラリーを乾燥させる第3ステップと、を有することを特徴とする。
上記方法であれば、上述の負極を容易に作製することができる。
In order to achieve the above object, the present invention provides a first step of forming a negative electrode active material layer on the surface of a negative electrode current collector, and a slurry containing fine particles of an inorganic material on the surface of the negative electrode active material layer. And a third step of drying the slurry.
If it is the said method, the above-mentioned negative electrode can be produced easily.

また、上記目的を達成するために本発明は、正極集電体の表面に正極活物質層を形成する第1ステップと、上記正極活物質層の表面に、無機材料の微粒子を含むスラリーを塗布する第2ステップと、上記スラリーを乾燥させる第3ステップと、を有することを特徴とする。
上記方法であれば、上述の正極を容易に作製することができる。
In order to achieve the above object, the present invention provides a first step of forming a positive electrode active material layer on the surface of a positive electrode current collector, and a slurry containing fine particles of an inorganic material on the surface of the positive electrode active material layer. And a third step of drying the slurry.
If it is the said method, the above-mentioned positive electrode can be produced easily.

本発明によれば、多孔質層により新規な電解液の浸透、拡散パスを形成し、且つ、電極体内部に供給可能な余剰電解液を電極体外部に確保することによって、高温充放電サイクルや高温保存による電解液消費時に電解液が不足することを抑制できるので、過酷な環境下であっても電池性能を維持することができる。また、従来は、活物質の塗布量や、活物質の充填密度とセパレータの保液量とが一致しない場合はサイクル寿命の低下を招き易い等の問題があり、セパレータの薄型化は困難であったが、本発明による多孔質層の毛細管現象は非常に電解液の浸透、拡散スピードが速く、且つ、セパレータの緩衝部分をあまり必要とせず、電極体外部からの電解液を正負両極に迅速に調達することが可能であるので、電池の高容量化、高出力化を容易に達成できる。   According to the present invention, a high-temperature charge / discharge cycle can be achieved by forming a novel electrolyte solution permeation and diffusion path with a porous layer, and securing an excess electrolyte solution that can be supplied to the inside of the electrode body. Since it is possible to suppress the shortage of the electrolytic solution during consumption of the electrolytic solution due to high temperature storage, the battery performance can be maintained even in a harsh environment. Further, conventionally, when the active material coating amount or the active material filling density does not match the liquid retention amount of the separator, there is a problem that the cycle life is likely to be reduced, and it is difficult to reduce the thickness of the separator. However, the capillary phenomenon of the porous layer according to the present invention has a very high penetration rate and diffusion speed of the electrolyte solution, and does not require a buffer portion of the separator so quickly that the electrolyte solution from the outside of the electrode body can be rapidly applied to both the positive and negative electrodes. Since it is possible to procure, it is possible to easily achieve higher capacity and higher output of the battery.

更に、毛細管現象による特徴上、電池の組立工程においても電解液の浸透、拡散スピードが速く、工程が短縮できるので、製造コストの低減を図ることができるという効果もあり、更には、電解液を十分に電極各部に行き渡らせることができることから、充放電性能に関する均一性を高めることが可能で、サイクル、保存、安全性をはじめとする全ての電池性能を向上させることができる。
加えて、リチウム参照極電位に対して正極が4.40V以上充電された場合でも、電極の膨張や、電解液の酸化分解に起因して電極内の電解液不足が生じるのを抑制することができるので、安定した充放電電池特性を維持することができるという優れた効果を奏する。
Furthermore, due to the characteristics due to the capillary phenomenon, the penetration and diffusion speed of the electrolytic solution is also high in the battery assembly process, and the process can be shortened, so that there is an effect that the manufacturing cost can be reduced. Since it can be sufficiently distributed to each part of the electrode, it is possible to improve the uniformity regarding the charge / discharge performance, and it is possible to improve all battery performance including cycle, storage, and safety.
In addition, even when the positive electrode is charged 4.40 V or more with respect to the lithium reference electrode potential, it is possible to suppress the shortage of the electrolyte in the electrode due to the expansion of the electrode or the oxidative decomposition of the electrolyte. Therefore, an excellent effect that stable charge / discharge battery characteristics can be maintained is obtained.

以下、本発明をさらに詳細に説明するが、本発明は以下の最良の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail. However, the present invention is not limited to the following best modes, and can be appropriately modified and implemented without departing from the scope of the present invention.

〔正極の作製〕
先ず、正極活物質であるコバルト酸リチウム(以下、LCOと略すときがある)と、炭素導電剤としてのSP300及びアセチレンブラック(以下、ABと略すときがある)とを、92:3:2の質量比で混合して正極合剤粉末を作製した。次に、当該粉末を混合装置〔例えば、ホソカワミクロン製メカノフュージョン装置(AM―15F)〕内に200g充填した後、混合装置を回転数1500rpmで10分間作動させて、圧縮・衝撃・せん断作用を起こさせつつ混合して混合正極活物質合剤を作製した。次いで、この混合正極活物質合剤とフッ素系樹脂結着剤(PVDF)との質量比が97:3になるようにN−メチル−2−ピロリドン(NMP)溶剤中で両者を混合して正極スラリーを作製した後、正極集電体であるアルミ箔の両面に正極スラリーを塗着し、更に、乾燥、圧延することにより、正極を形成した。
[Production of positive electrode]
First, lithium cobaltate (hereinafter sometimes abbreviated as LCO) as a positive electrode active material, SP300 and acetylene black (hereinafter also abbreviated as AB) as a carbon conductive agent, and 92: 3: 2 A positive electrode mixture powder was prepared by mixing at a mass ratio. Next, after 200 g of the powder is filled into a mixing apparatus [for example, meso-fusion apparatus (AM-15F) manufactured by Hosokawa Micron], the mixing apparatus is operated at a rotation speed of 1500 rpm for 10 minutes to cause compression, impact, and shearing action. The mixed positive electrode active material mixture was prepared by mixing. Subsequently, both were mixed in an N-methyl-2-pyrrolidone (NMP) solvent so that the mass ratio of the mixed positive electrode active material mixture to the fluorine-based resin binder (PVDF) was 97: 3. After preparing the slurry, the positive electrode slurry was applied to both surfaces of the aluminum foil as the positive electrode current collector, and further dried and rolled to form a positive electrode.

〔負極の作製〕
炭素材料(黒鉛)と、CMC(カルボキシメチルセルロースナトリウム)と、SBR(スチレンブタジエンゴム)とを、98:1:1の質量比で水溶液中にて混合して負極スラリーを作製した後、負極集電体である銅箔の両面に負極スラリーを塗着し、更に、乾燥、圧延することにより負極を作製した。
(Production of negative electrode)
A negative electrode current collector was prepared by mixing a carbon material (graphite), CMC (carboxymethylcellulose sodium), and SBR (styrene butadiene rubber) in an aqueous solution at a mass ratio of 98: 1: 1 to prepare a negative electrode slurry. A negative electrode slurry was applied to both surfaces of a copper foil as a body, and further, dried and rolled to prepare a negative electrode.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが容積比で3:7の割合で混合された混合溶媒に、主としてLiPFを1.0モル/リットルの割合で溶解させて調製した。尚、非水電解液の量は、充放電に必要な電解液の他に余剰電解液をも含ませるということで、約2.5ccとした。
(Preparation of non-aqueous electrolyte)
LiPF 6 was mainly dissolved at a rate of 1.0 mol / liter in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7. Note that the amount of the non-aqueous electrolyte was about 2.5 cc by including an excess electrolyte in addition to the electrolyte required for charging and discharging.

〔樹脂積層型セパレータの作製〕
セパレータとしては、セパレータ本体部を構成するポリエチレン(以下、PEと略すことがある)製微多孔膜(膜厚:12μm)から成るセパレータ本体部の一方の面に、ポリアミド(以下、PAと略すことがある)から成る多孔質層(膜厚:4μm)が形成されているものを用いた。尚、上記セパレータの空孔率は50%である。
[Production of resin laminated separator]
As a separator, a polyamide (hereinafter abbreviated as PA) is formed on one surface of a separator body made of a microporous membrane (film thickness: 12 μm) made of polyethylene (hereinafter abbreviated as PE) constituting the separator body. In which a porous layer (thickness: 4 μm) is formed is used. The separator has a porosity of 50%.

ここで、上記PAから成る多孔質層を、以下のようにして作製した。
先ず、PAの原料を水溶性の極性溶媒(NMP溶液)に溶解し、溶液中で低温縮合重合を行い、ポリアミドドープ液を作製する。これを基材(セパレータ本体部)となるPE製微多孔膜の一方の面に塗工し、水溶液中に含浸することで、溶媒を抽出することにより、樹脂積層型セパレータを作製した。尚、上記溶媒の抽出時には、耐熱性材料(PA)は水溶液に溶解しないので基材上に析出・凝固し、これにより微多孔化することができる。また、この方法では、ポリアミドドープ液の溶液濃度により多孔質膜の数や大きさを調整することができる。
Here, the porous layer made of PA was prepared as follows.
First, a PA raw material is dissolved in a water-soluble polar solvent (NMP solution), and low-temperature condensation polymerization is performed in the solution to prepare a polyamide dope solution. This was coated on one surface of a PE microporous membrane that became a substrate (separator body) and impregnated in an aqueous solution to extract a solvent, thereby producing a resin laminated separator. At the time of extraction of the solvent, the heat-resistant material (PA) does not dissolve in the aqueous solution, so that it can be precipitated and solidified on the substrate, thereby making it microporous. In this method, the number and size of the porous membranes can be adjusted by the solution concentration of the polyamide dope solution.

〔電池の組立〕
正、負極それぞれにリード端子を取り付け、セパレータを介して渦巻状に巻き取ったものをプレスして、扁平状に押し潰した電極体を作製した後、電池外装体としてのアルミニウムラミネートフィルムの収納空間内に電極体を装填し、更に、当該空間内に非水電解液を注液した後に、アルミニウムラミネートフィルム同士を溶着して封止することにより電池を作製した。
[Battery assembly]
A lead terminal is attached to each of the positive and negative electrodes, and a spiral wound electrode is pressed through a separator to produce a flattened electrode body, and then a storage space for an aluminum laminate film as a battery exterior body An electrode body was loaded therein, and a non-aqueous electrolyte was poured into the space, and then an aluminum laminate film was welded and sealed to prepare a battery.

尚、上記電池では、多孔質層は負極と接するようにして配置されている。また、アルミニウムラミネートフィルムから成る電池収納体の内部空間における上記電極体を除く部位一部には余剰電解液が含まれ、且つ、この余剰電解液と多孔質層の少なくとも一部とが接しているような構造となっている。更に、上記電池の設計容量は780mAhである。   In the battery, the porous layer is disposed so as to be in contact with the negative electrode. Further, a part of the internal space of the battery housing made of the aluminum laminate film excluding the electrode body contains an excess electrolyte solution, and the excess electrolyte solution is in contact with at least a part of the porous layer. It has a structure like this. Furthermore, the design capacity of the battery is 780 mAh.

〔予備実験1〕
電池の注液条件を変更して(電解液注入後に加圧、減圧することなく)巻取電極体の電解液浸透状況を確認し、実電池での電解液の浸透、拡散状況評価を行なったので、その結果を表1に示す。
[Preliminary experiment 1]
We changed the injection conditions of the battery (without pressurization and pressure reduction after injection of the electrolyte), confirmed the electrolyte penetration of the winding electrode body, and evaluated the penetration and diffusion of the electrolyte in the actual battery The results are shown in Table 1.

(使用した電池)
ここで、この実験をするにあたり、18650型円筒型電池(ラミネート電池の如く巻取電極体が扁平型のものではなく、円柱型のものであって、巻取電極体の最大高さは59.5mm)を用い、且つ、以下のような正極とセパレータとを用いた以外は、上記発明を実施するための最良の形態(以下、最良の形態と略す)で示した電池と同様の構造の電池を用いた。尚、両電極としては、現在市販されている円筒型電池に搭載される高充填タイプの電極を用いている。具体的には、正極活物質の塗布量は532mg/10cmであり、正極活物質の充填密度3.57g/ccである。また、負極活物質の塗布量は225mg/10cmであり、負極活物質の充填密度1.67g/ccである。
(Battery used)
Here, in carrying out this experiment, the 18650 type cylindrical battery (the winding electrode body is not a flat type like a laminate battery but a cylindrical type, and the maximum height of the winding electrode body is 59. 5 mm) and a battery having the same structure as the battery shown in the best mode for carrying out the invention (hereinafter abbreviated as the best mode) except that the following positive electrode and separator are used. Was used. In addition, as both electrodes, the high filling type electrode mounted in the cylindrical battery currently marketed is used. Specifically, the coating amount of the positive electrode active material is 532 mg / 10 cm 2 and the packing density of the positive electrode active material is 3.57 g / cc. The coating amount of the negative electrode active material is 225 mg / 10 cm 2 , and the packing density of the negative electrode active material is 1.67 g / cc.

・正極
炭素導電剤としてのSP300を用いず、且つ、LCOとABとPVDFとを94:3:3の質量比としたこと以外は、最良の形態と同様にして作製した。
・セパレータ
通常用いられているPE製の微多孔膜(膜厚:23μm、空孔率48%)を用いた。
-Positive electrode It produced similarly to the best form except not using SP300 as a carbon electrically conductive agent, and having made LCO, AB, and PVDF into the mass ratio of 94: 3: 3.
Separator A PE microporous film (film thickness: 23 μm, porosity 48%) that is usually used was used.

(具体的な実験内容)
[1]生産工程の注液途中段階の電池を解体し、電極への電解液の浸透状況を確認した。
[2]次いで、この巻取電極体の一端を電解液(電解液の液面高さは7mmである)中に浸漬し、電解液の浸透状況を確認した(電極等への吸い上げ高さの比較)。
尚、[2]の実験をするにあたり、電池構成上、最内周部と最外周部は巻取りテンションが弱く、隙間が存在し、この隙間を伝う電解液により実測値の定量が困難となるため、電池解体後、最外周部の電極端から20cmの箇所(帯状の電極の長さ方向における中央部付近)の電解液吸い上げ高さを測定して比較した。
(Details of the experiment)
[1] The battery in the middle of injection in the production process was disassembled, and the state of penetration of the electrolyte into the electrode was confirmed.
[2] Next, one end of the wound electrode body was immersed in an electrolytic solution (the liquid surface height of the electrolytic solution is 7 mm), and the state of penetration of the electrolytic solution was confirmed (the height of the sucked-up electrode) Comparison).
In carrying out the experiment [2], due to the battery configuration, the innermost peripheral portion and the outermost peripheral portion have a weak winding tension, and there is a gap, and it is difficult to determine the measured value by the electrolytic solution that passes through this gap. Therefore, after the battery was disassembled, the electrolyte uptake height at a position 20 cm from the end of the electrode on the outermost periphery (near the center in the length direction of the belt-like electrode) was measured and compared.

(実験結果)
[1]の実験結果
図1(本図は巻取電極体4を展開した図であり、図中、Aは長さ方向であり、Bは幅方向である)に示すように、巻取電極体4においては、注液後に幅方向Bの上下端(巻取り上下方向)から電解液5が同時に巻取電極体4の内部方向へ浸透していき、巻取電極体4の中央には電解液未浸透部6が存在していることが認められる。尚、最外周端部7と最内周端部8とでは巻取りテンションが弱いために長さ方向Aでの浸透、拡散が一部見られるが、この浸透、拡散は主たる拡散等ではない。
したがって、巻取電極体4では幅方向Bにおける電解液の浸透性を確保することが必要になる。
尚、角型電池やラミネート型電池でも同様の試験を行ったが、略同じ傾向であった。
(Experimental result)
Experimental Results of [1] As shown in FIG. 1 (this figure is a developed view of the winding electrode body 4, in which A is the length direction and B is the width direction) In the body 4, the electrolyte 5 simultaneously penetrates from the upper and lower ends (winding up and down direction) in the width direction B into the inside of the winding electrode body 4 after the injection, and the center of the winding electrode body 4 is electrolyzed. It is recognized that the liquid non-penetrating part 6 exists. In addition, since the winding tension is weak at the outermost peripheral end portion 7 and the innermost peripheral end portion 8, some penetration and diffusion in the length direction A are seen, but this penetration and diffusion are not the main diffusion or the like.
Therefore, it is necessary for the winding electrode body 4 to ensure the permeability of the electrolyte solution in the width direction B.
In addition, although the same test was done also with the square-type battery or the laminate-type battery, the same tendency was observed.

[2]の実験結果
表1及び図2から明らかなように、時間経過により高さは上昇するものの、180分経過時点でも35.0mmで、巻取電極体の高さ(59.5mm)の略半分までしか浸透しておらず、電解液の浸透状況としてはかなり遅いことがわかる。
2. Experimental results of [2] As is apparent from Table 1 and FIG. 2, although the height increases with time, it is 35.0 mm even after 180 minutes, and the height of the winding electrode body (59.5 mm). It can be seen that only about half of the electrolyte has penetrated, and the electrolyte penetration is quite slow.

尚、実際の電池の作製工程では、減圧や加圧等の手法により、巻取電極体内部への電解液の浸透を加速させることが可能であるので、電解液の浸透、拡散が遅くなるという問題は大きな問題ではない。しかし、電池の使用時において、巻取電極体内部で電解液が消費されるような反応が起きた場合は、初期段階で巻取電極体に含浸させた電解液の他に、巻取電極体外から新たな電解液を供給する必要がある。この場合には、上記減圧や加圧等の手法を用いることができず、上記実験結果からすると、その速度は非常に小さいと考えることができるので、後述する問題が生じることになる。   In the actual battery manufacturing process, it is possible to accelerate the penetration of the electrolytic solution into the winding electrode body by a technique such as pressure reduction or pressurization, so that the penetration and diffusion of the electrolytic solution is delayed. The problem is not a big problem. However, when a reaction that consumes the electrolytic solution occurs inside the winding electrode body during use of the battery, in addition to the electrolytic solution impregnated in the winding electrode body in the initial stage, the outside of the winding electrode body Therefore, it is necessary to supply a new electrolyte solution. In this case, the above-described methods such as depressurization and pressurization cannot be used, and based on the experimental results, it can be considered that the speed is very low, resulting in problems described later.

〔予備実験2〕
上記予備実験1に示す円筒型電極体の電解液の浸透結果を受けて、電解液の浸透、拡散パスの特定を目的として、先ずセパレータにおける電解液の吸液状況についての比較を行った。具体的には、セパレータの吸液性評価とセパレータの透気度測定とを行なった。
[Preliminary experiment 2]
Based on the results of permeation of the electrolyte solution of the cylindrical electrode body shown in the preliminary experiment 1, first, comparison of the electrolyte solution absorption state in the separator was performed for the purpose of permeation of the electrolyte solution and specification of the diffusion path. Specifically, the separator was evaluated for liquid absorbency and the air permeability of the separator was measured.

(使用したセパレータ)
この実験をするにあたり、PE製のセパレータ(大孔径タイプのものと小孔径タイプのもの)、PP(ポリプロピレン)/PE/PP積層構造セパレータ(PP膜/PE膜/PP膜を熱圧着したもの)、及び、PE製のセパレータ上にPAから成る多孔質層を形成した多孔質樹脂積層セパレータ(前記最良の形態で示したセパレータと同様のセパレータ)を用いた。尚、セパレータの幅は1.5cm、長さは5.0cmの形状に切り取り、評価を行った。
(Separator used)
In this experiment, PE separators (large pore type and small pore type), PP (polypropylene) / PE / PP laminated structure separator (PP membrane / PE membrane / PP membrane thermocompression bonded) In addition, a porous resin laminated separator (a separator similar to the separator shown in the best mode) in which a porous layer made of PA was formed on a PE separator was used. The separator was cut into a shape having a width of 1.5 cm and a length of 5.0 cm for evaluation.

(具体的な実験内容)
[1]セパレータの透気度測定
本測定は、JIS P8177に準じて測定し、また測定装置としてはB型ガーレーデンソーメータ(東洋精機社製)を用いた。
具体的には、内筒(質量567g)の円孔(直径28.6mm、面積645mm)に試料片を締め付け、外筒内の空気(100cc)が試験管円孔部から筒外へ透過させるのに要する時間を測定し、これを透気度とした。
(Details of the experiment)
[1] Measurement of air permeability of separator This measurement was performed according to JIS P8177, and a B-type Gurley densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device.
Specifically, a sample piece is fastened to a circular hole (diameter 28.6 mm, area 645 mm 2 ) of the inner cylinder (mass 567 g), and air (100 cc) in the outer cylinder is transmitted from the test tube circular hole portion to the outside of the cylinder. The time required for this was measured, and this was taken as the air permeability.

[2]セパレータの吸液性評価
一般にセパレータ作製時には延伸工程があり、製法上MD(Machine Direction:機械方向)とTD(Transverse Direction:直角方向)とが存在する。通常、帯状の電極体を巻き取る際には、セパレータの長さ方向がMDと一致し、幅方向がTDと一致する。このため、電池に巻取電極体を用いた場合には、その構造上、巻取電極体の上下部からの電解液の浸透がメインとなり、セパレータとしてはTDの吸液性が高いことが必要となる。
[2] Evaluation of Liquid Absorption of Separator Generally, there is a stretching process when manufacturing a separator, and there are MD (Machine Direction: machine direction) and TD (Transverse Direction: right angle direction) due to the manufacturing method. Usually, when winding a strip-shaped electrode body, the length direction of the separator coincides with MD, and the width direction coincides with TD. For this reason, when the winding electrode body is used for the battery, the penetration of the electrolytic solution from the upper and lower portions of the winding electrode body is the main because of the structure, and the separator needs to have high TD liquid absorption. It becomes.

この物性を評価する目的で、図3に示すように、前記最良の形態で用いた電解液5中にセパレータ3の端部を浸漬し、電解液の吸い上げ高さを10分後に比較した。また、電池の組立工程では円筒型電池は巻取りテンションの関係で伸びによる厚み減少、角型電池やラミネート電池では巻き潰し工程のホットプレスによる厚み減少が認められる。この状況を模擬する上で、円筒型電池でのセパレータの厚み変化と角型電池でのセパレータの厚み変化の実測値からプレス条件を算出し、更に、実電池内のセパレータの状況も模擬して、プレス後セパレータについても同様の評価試験を行った。尚、上記プレス後セパレータとしては、80×170mmの面積のシートを下記プレス条件でプレスしたものを用いた。これにより、角型電池内のセパレータと略同一の条件のセパレータを再現することができる。 For the purpose of evaluating the physical properties, as shown in FIG. 3, the end portion of the separator 3 was immersed in the electrolytic solution 5 used in the best mode, and the suction height of the electrolytic solution was compared after 10 minutes. In the battery assembly process, the cylindrical battery has a thickness reduction due to elongation due to the winding tension, and the square battery and the laminate battery have a thickness reduction by hot pressing in the rolling process. In simulating this situation, the press conditions are calculated from the measured values of the separator thickness change in the cylindrical battery and the separator thickness change in the square battery, and the situation of the separator in the actual battery is also simulated. The same evaluation test was performed on the post-press separator. The post-press separator used was a sheet having an area of 80 × 170 mm 2 pressed under the following press conditions. Thereby, the separator of the conditions substantially the same as the separator in a square battery is reproducible.

・プレス条件
圧力:15MPa
温度:50℃
時間:15秒
(実験結果)
・ Pressing conditions Pressure: 15 MPa
Temperature: 50 ° C
Time: 15 seconds (experimental result)

[1]の実験結果
表2及び表3から明らかなように、試料1〜試料6の全ての試料において、プレス処理後はプレス処理前よりも透気度が低下している(空気の透過時間が長くなる)ことが認められ、特に、PE大孔径タイプのセパレータである試料1〜試料3では、透気度が非常に低下していることがわかる。
Experimental results of [1] As is apparent from Tables 2 and 3, in all the samples 1 to 6, the air permeability is lower after the press treatment than before the press treatment (air permeation time). In particular, it can be seen that Sample 1 to Sample 3 which are PE large pore size type separators have a very low air permeability.

[2]の実験結果
表2及び表3から明らかなように、試料1〜試料4においては、MDは吸液性がある程度高いが、TDは吸液性が低い(表2及び表3では、MDは吸液高さがある程度大きいが、TDは吸液高さが小さい)ことが認められる。これは図4及び図5に示すように、繊維状のポリオレフィン(ポリエチレン)においては、オレフィンの繊維が延伸の関係上MDに伸び易い構造にあり、その結果MDに高分子繊維が配列する傾向にあるため、TDはその繊維状のポリオレフィンが壁のような役割をして電解液の浸透、拡散を妨げるためと考えられる。
Experimental results of [2] As is clear from Tables 2 and 3, in Samples 1 to 4, MD has a certain level of liquid absorbency, but TD has a low liquid absorbency (in Tables 2 and 3, It is recognized that the liquid absorption height of MD is somewhat large, but the liquid absorption height of TD is small. As shown in FIGS. 4 and 5, in the case of fibrous polyolefin (polyethylene), the olefin fiber has a structure that tends to extend in the MD due to stretching, and as a result, the polymer fibers tend to be arranged in the MD. For this reason, TD is considered to be because the fibrous polyolefin acts like a wall and prevents the penetration and diffusion of the electrolyte.

また、試料1〜試料4の試料においては、プレスによりセパレータの空孔部が減少するため、プレス後においては電解液の浸透、拡散が更に起こり難い状況となって、TDの吸液性がより低くなる。尚、セパレータの厚みと吸液性との間には、依存性は殆ど無いと考えられる。   Further, in the samples 1 to 4, the pores of the separator are reduced by pressing, so that the penetration and diffusion of the electrolytic solution are less likely to occur after pressing, and the TD absorbability is higher. Lower. In addition, it is thought that there is almost no dependence between the thickness of a separator and a liquid absorptivity.

これに対して、ポリオレフィン微多孔膜から成るセパレータ本体部の表面に、ポリアミド樹脂から成る多孔質層を設けた試料6では、試料1〜試料4と比べて、MD、TD共に吸液性が向上していることが認められる。これは、図6(図6において、3はセパレータ、31はセパレータ本体部、32は多孔質層である)に示すように、その製法上、多孔質層32が無配向性の多孔質構造となっているため、MD、TDに関わらず電解液の浸透、拡散がセパレータ本体部31に比べて優位に作用する。特に、セパレータ本体部31において吸液性に劣るTDにおける吸液性を飛躍的に向上させることができるので、巻取り方向とMDとが一致する巻取電極体における電解液の吸液性が飛躍的に向上する。   In contrast, sample 6 in which a porous layer made of polyamide resin is provided on the surface of the separator main body made of polyolefin microporous membrane has improved liquid absorbency in both MD and TD compared to samples 1 to 4. It is recognized that This is because, as shown in FIG. 6 (in FIG. 6, 3 is a separator, 31 is a separator main body, and 32 is a porous layer), the porous layer 32 has a non-oriented porous structure due to its manufacturing method. Therefore, regardless of the MD and TD, the permeation and diffusion of the electrolyte acts more preferentially than the separator body 31. In particular, the separator main body 31 can drastically improve the liquid absorbency at TD, which is inferior in liquid absorbency, so that the liquid absorbency of the electrolytic solution in the winding electrode body in which the winding direction and MD coincide with each other is dramatically increased. Improve.

また、この種の樹脂は強度が強く、オレフィンに比べて潰れにくいために、プレス後も電解液の吸液高さを低下させることが殆どない。したがって、電解液の吸液性を向上させるためにはセパレータ本体部に多孔質層を設け、毛細管現象を利用して浸透、拡散を助長することが効果的であると考えることができる。
尚、試料5は、プレス前後を問わず、MD、TD共に吸液性が低いことが認められる。
In addition, since this type of resin has a high strength and is not easily crushed as compared with an olefin, the liquid absorption height of the electrolytic solution is hardly lowered even after pressing. Therefore, it can be considered effective to provide a porous layer in the separator main body and promote permeation and diffusion using the capillary phenomenon in order to improve the liquid absorption of the electrolytic solution.
In addition, it is recognized that sample 5 has low liquid absorbency in both MD and TD regardless of before and after pressing.

〔予備実験3〕
上記予備実験1に示す円筒型電極体の電解液の浸透結果を受けて、電解液の浸透、拡散パスの特定を目的として、電極における電解液の吸液状況についての比較を行った。
[Preliminary experiment 3]
In response to the result of the electrolyte solution permeation of the cylindrical electrode body shown in Preliminary Experiment 1, a comparison was made of the electrolyte solution absorption state in the electrodes for the purpose of permeating the electrolyte solution and specifying the diffusion path.

(使用した電極)
前記予備実験1で示した電極(18650円筒型電池用の電極)と同様の電極(正極と負極であって、表4の試料11と試料12)、及び、当該負極の表面に多孔質層を形成した電極(表4の試料13〜試料15)を用いた。尚、電極の幅は1.5cm、長さは5.0cmである。
尚、多孔質層の作製方法は、先ず、チタニア(TiO、平均粒子径31nm)とPVDFとを95:5の質量比で混合した後、NMPを溶剤として粘度調整したスラリーを調製し、次いで、このスラリーを負極の表面にドクターブレード法で塗工し、更に、乾燥することにより作製した(表4の試料13)。このようにして作製した負極の厚みは、6μmであった。また、チタニア(平均粒子径31nm)に代えて、チタニア(平均粒子径500nm)又はアルミナ(平均粒子径200nm)を用いた他は、上記と同様にして負極を作製した(前者は表4の試料14であって、負極の厚みは40μm、後者は表4の試料15であって、負極の厚みは6μm)。
(Electrode used)
Electrodes (positive electrode and negative electrode, sample 11 and sample 12 in Table 4) similar to the electrode shown in the preliminary experiment 1 (electrode for 18650 cylindrical battery), and a porous layer on the surface of the negative electrode The formed electrodes (Sample 13 to Sample 15 in Table 4) were used. The electrode has a width of 1.5 cm and a length of 5.0 cm.
The porous layer was prepared by first mixing titania (TiO 2 , average particle diameter 31 nm) and PVDF at a mass ratio of 95: 5, and then preparing a slurry whose viscosity was adjusted using NMP as a solvent, This slurry was applied to the surface of the negative electrode by the doctor blade method and further dried (Sample 13 in Table 4). The negative electrode thus produced had a thickness of 6 μm. Moreover, it replaced with titania (average particle diameter 31nm), and produced the negative electrode similarly to the above except having used titania (average particle diameter 500nm) or alumina (average particle diameter 200nm) (the former is a sample of Table 4). 14 and the thickness of the negative electrode is 40 μm, the latter is the sample 15 of Table 4 and the thickness of the negative electrode is 6 μm).

(具体的な実験内容)
予備実験1の[2]セパレータの吸液性評価と同様にして行った。具体的には、図7に示すように、前記最良の形態で用いた電解液中に、活物質層11と集電体12とを有する電極(正極及び負極)13を浸漬し、電解液5の吸い上げ高さを所定時間毎に調べた。尚、試料13〜試料15については、活物質層11の表面に多孔質層14が形成されている。
(実験結果)
(Details of the experiment)
It was carried out in the same manner as the liquid absorption evaluation of [2] separator in Preliminary Experiment 1. Specifically, as shown in FIG. 7, an electrode (positive electrode and negative electrode) 13 having an active material layer 11 and a current collector 12 is immersed in the electrolytic solution used in the best mode, and the electrolytic solution 5 The suction height of each was checked every predetermined time. For samples 13 to 15, the porous layer 14 is formed on the surface of the active material layer 11.
(Experimental result)

前記表2、表3及び上記表4から明らかなように、セパレータとの比較の結果ではむしろ電極は同等レベルもしくはそれ以上の吸液性を示す。
そこで、どのようにして電極に電解液が浸透、拡散しているかについて調べたので、その結果を図7に基づいて説明する。
As is apparent from Tables 2, 3 and 4 above, the results of the comparison with the separator show that the electrodes rather have the same level of absorption or higher.
Therefore, how the electrolyte solution permeates and diffuses into the electrode was examined, and the result will be described with reference to FIG.

具体的には、電解液5が浸透した活物質層11は集電体12から剥離し易いという前提の下で、活物質層11における電解液5の浸透部分を加圧して剥離操作をしたところ、電解液5に浸漬された部分やその近傍では大部分の活物質層11は集電体12から剥離していることが認められたが、中央部近傍(電解液の浸透部分の上端近傍)では、表面の活物質層11aは剥離するが、集電体12近傍の活物質層11bは剥離しないことが認められた。このことから、電解液5は、電極(活物質層11)13の内部から浸透、拡散するのではなく、電極13の表面の隙間を伝って毛細管現象により浸透、拡散するものと考えられる。   Specifically, the active material layer 11 infiltrated with the electrolytic solution 5 is subjected to a peeling operation by pressurizing the permeated portion of the electrolytic solution 5 in the active material layer 11 on the assumption that the active material layer 11 is easily peeled off from the current collector 12. In the portion immersed in the electrolytic solution 5 and in the vicinity thereof, it was confirmed that most of the active material layer 11 was peeled off from the current collector 12, but in the vicinity of the central portion (near the upper end of the portion where the electrolytic solution penetrated) Then, it was observed that the active material layer 11a on the surface peels off, but the active material layer 11b near the current collector 12 does not peel off. From this, it is considered that the electrolytic solution 5 does not permeate and diffuse from the inside of the electrode (active material layer 11) 13 but permeates and diffuses by a capillary phenomenon through a gap on the surface of the electrode 13.

即ち、電解液5は、電極13の表面を電極の高さ方向(図中C方向)に浸透、拡散しながら電極の厚み方向(図中D方向)へゆっくりと浸透、拡散するため、集電体12近傍の電解液5の浸透高さは、電極表面の電解液5の浸透高さよりも小さくなっているものと考えられる。尚、電極13の表面の濡れ性は、極板の凹凸性や隙間に依存するということを確認している。   That is, the electrolytic solution 5 slowly permeates and diffuses in the electrode thickness direction (D direction in the figure) while permeating and diffusing the surface of the electrode 13 in the electrode height direction (C direction in the figure). The penetration height of the electrolyte solution 5 near the body 12 is considered to be smaller than the penetration height of the electrolyte solution 5 on the electrode surface. It has been confirmed that the wettability of the surface of the electrode 13 depends on the unevenness and gaps of the electrode plate.

また、表4から明らかなように、正極(試料11)と負極(試料12)とを比較した場合には、正極の方が吸液性に優れる傾向にあることが認められる。これは、一般的に、負極活物質である炭素粒子は割れるのではなく潰れ易いことから負極は鏡面体になり易く、その意味では凹凸面も少なくて、毛細管現象は起こり難いのに対して、正極活物質であるコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、オリビン型燐酸リチウム等は負極活物質に比べて粒子径が小さく、力が加わることで粒子は割れて応力を分散するため、表面は比較的凹凸が残り易い傾向にあることに起因するものと考えられる。   Further, as is clear from Table 4, when the positive electrode (sample 11) and the negative electrode (sample 12) are compared, it is recognized that the positive electrode tends to be superior in liquid absorbency. This is because, in general, the carbon particles that are the negative electrode active material are easy to be crushed rather than cracked, so the negative electrode is likely to be a mirror surface, and in that sense, there are few uneven surfaces, and capillary action is unlikely to occur. The positive electrode active materials such as lithium cobaltate, lithium manganate, lithium nickelate, and olivine-type lithium phosphate have a smaller particle size than the negative electrode active material, and when force is applied, the particles crack and disperse the stress. This is considered to be caused by the tendency that unevenness tends to remain relatively.

更に、電極(負極)の表面上に多孔質層を設けた場合(試料13〜試料15)は、多孔質層を設けていない場合(試料12)に比べて吸液性が飛躍的に向上する傾向にあることが認められる。
これは、毛細管現象により、電解液5は多孔質層を通って迅速に電極の高さ方向(図中C方向)に、迅速に、浸透、拡散しながら電極の厚み方向(図中D方向)へゆっくりと浸透、拡散することに起因するものと考えられる。
Furthermore, when the porous layer is provided on the surface of the electrode (negative electrode) (sample 13 to sample 15), the liquid absorbency is dramatically improved as compared with the case where the porous layer is not provided (sample 12). It is recognized that there is a tendency.
This is because of the capillary phenomenon, the electrolytic solution 5 rapidly penetrates and diffuses through the porous layer in the height direction of the electrode (C direction in the figure), and in the thickness direction of the electrode (D direction in the figure). This is thought to be due to the slow penetration and diffusion of water.

上記結果では、使用した粒子の種類やサイズ、多孔質層の厚みの違いによって、特に吸液性に差となって現れていない。この結果より、多孔質層に隙間があれば本発明の作用効果は発揮されるものと考えることができ、そうであるとすれば、多孔質層の材料としては、上記アルミナやチタニアに限定するものではなく、多孔質層を形成できうるものであれば如何なるものであっても良いと考えられる。但し、電池内の充放電反応に不利に作用しないこと等、電気的・化学的に安定であることが必要であり、その意味では、アルミナ、チタニア、ジルコニア等の無機粒子、ポリアミド、ポリイミド、ポリアミドイミド等の有機粒子もしくはその多孔質体が好ましいと考えられる。場合によっては、コバルト酸リチウムや炭素等の活物質も対象とできる。但し、コスト面を考慮した場合には、アルミナ、チタニアが特に好ましい。   In the above results, there is no particular difference in liquid absorbency due to differences in the type and size of the particles used and the thickness of the porous layer. From this result, it can be considered that if there is a gap in the porous layer, the effect of the present invention can be exhibited. If so, the material of the porous layer is limited to the above-mentioned alumina and titania. Any material can be used as long as it can form a porous layer. However, it must be electrically and chemically stable, such as not adversely affecting the charge / discharge reaction in the battery. In that sense, inorganic particles such as alumina, titania, zirconia, polyamide, polyimide, polyamide Organic particles such as imide or a porous body thereof is considered preferable. In some cases, active materials such as lithium cobaltate and carbon can also be targeted. However, alumina and titania are particularly preferable in view of cost.

また、本予備実験3ではバインダーとしてPVDF系のものを用いたため、正極上への多孔質層の形成は検討していないが、後述の第5実施例で示す如く、バインダーや溶剤の選択を適正化すれば、同様に正極上でも毛細管現象による吸液性の向上は期待できるものと推測される。具体的には、電極活物質層がNMP系の溶剤で塗布されていれば、多孔質層は水系の溶剤を用いるのが好ましく、電極活物質層が水系の溶剤で塗布されていれば、多孔質層はNMP系等の溶剤を用いるのが好ましい。但し、多孔質層の形成条件によっては、同一の溶剤系でも対応可能と考えられる。   In this preliminary experiment 3, since a PVDF-based binder was used, the formation of a porous layer on the positive electrode was not examined. However, as shown in the fifth embodiment described later, the selection of the binder and the solvent is appropriate. If this is the case, it is presumed that an improvement in liquid absorbency due to capillary action can be expected on the positive electrode as well. Specifically, if the electrode active material layer is coated with an NMP-based solvent, the porous layer preferably uses an aqueous solvent, and if the electrode active material layer is coated with an aqueous solvent, the porous layer is preferably porous. It is preferable to use a solvent such as NMP for the quality layer. However, depending on the formation conditions of the porous layer, it is considered that the same solvent system can be used.

更に、多孔質層の形成方法としては、スプレー、グラビアコート、ダイコート、インクジェット、ディップコート等の手法が好ましいが、薄膜を形成することが可能であればその他の手法であっても良い。また、多孔質層の厚みに関しては特に規定はないが、毛細管現象を有効に作用できる範囲であれば問題なく、電池の高容量化を図るとすれば5μm以下であり、好ましくは3μm以下である。更に、多孔質層の充填率は粒子サイズや種類にもよるが、本実験条件で基材となる電極よりも電解液の浸透性が高ければいくらでも良い。   Furthermore, as a method for forming the porous layer, techniques such as spray, gravure coating, die coating, ink jet, and dip coating are preferable, but other techniques may be used as long as a thin film can be formed. Further, the thickness of the porous layer is not particularly limited, but there is no problem as long as the capillary phenomenon can be effectively applied, and if the capacity of the battery is increased, it is 5 μm or less, preferably 3 μm or less. . Furthermore, although the filling rate of the porous layer depends on the particle size and type, any amount may be used as long as the permeability of the electrolytic solution is higher than that of the electrode serving as the base material under the experimental conditions.

〔予備実験4〕
上記予備実験3の結果を受けて、電解液の浸透、拡散パスの特定を目的として、電極内部方向(電極厚み方向)における電解液の浸透速度についての比較を行った。
[Preliminary experiment 4]
Based on the result of the preliminary experiment 3, the penetration rate of the electrolyte solution in the electrode internal direction (electrode thickness direction) was compared for the purpose of specifying the penetration of the electrolyte solution and the diffusion path.

(使用した電極)
前記予備実験1で示した電極(18650円筒型電池用の電極)と同様の電極を用いた。
(Electrode used)
An electrode similar to the electrode shown in the preliminary experiment 1 (electrode for 18650 cylindrical battery) was used.

(具体的な実験内容)
電極表面に電解液を滴下し、液滴の消失時間を測定したので、その結果を表5に示す。尚、電解液としては、前記最良の形態で示す電解液には、揮発性の高い鎖状カーボネート(DEC)を含んでいるということから、PC(3μl)のみを用いた。
(実験結果)
(Details of the experiment)
The electrolytic solution was dropped on the electrode surface, and the disappearance time of the droplet was measured. The results are shown in Table 5. As the electrolytic solution, only the PC (3 μl) was used because the electrolytic solution shown in the best mode contains a highly volatile chain carbonate (DEC).
(Experimental result)

上記表5から明らかなように、正負極共に、充填密度が大きくなるほど、極板内部への電解液の浸透速度は遅くなり、特に、負極では前述したようにその表面が鏡面体に成り易いため、一定密度以上にまで充填すると吸液性が極端に低下することが認められる。この意味では正極よりも負極の方が、一般的に、吸液速度は遅いと考えることができる。尚、本特性は電池の設計思想やバランスによるところもあり、電池種によって異なる可能性もあるが、通常市販されるレベルでは、正極の方が吸液性は優れるものと推測される。   As is clear from Table 5 above, as the packing density increases for both the positive and negative electrodes, the rate of penetration of the electrolyte into the electrode plate becomes slower. In particular, as described above, the surface of the negative electrode tends to become a mirror body. In addition, it is recognized that the liquid absorbency is extremely lowered when filling to a certain density or more. In this sense, it can be considered that the negative electrode generally has a lower liquid absorption rate than the positive electrode. Although this characteristic depends on the design concept and balance of the battery and may vary depending on the battery type, it is presumed that the positive electrode is superior in liquid absorbency at the level that is usually marketed.

(予備実験3と予備実験4とのまとめ)
前記予備実験3より、電極高さ方向の電解液の浸透速度は正極の方が速く、且つ、電極厚み方向の電解液の浸透速度も正極の方が速い。このことから、正極の方が負極よりも電解液の吸液性に優れる可能性が高いものと考えられる。
ここで、上記予備実験1〜4の結果を踏まえ、実際の電池を作製して実験を行ったので、その結果を以下に示す。
(Summary of preliminary experiment 3 and preliminary experiment 4)
From Preliminary Experiment 3, the positive electrode has a higher permeation rate of the electrolyte solution in the electrode height direction, and the positive electrode has a faster permeation rate of the electrolyte solution in the electrode thickness direction. From this, it is considered that the positive electrode is more likely to have better electrolyte absorbability than the negative electrode.
Here, based on the results of the preliminary experiments 1 to 4, an actual battery was manufactured and the experiment was performed. The results are shown below.

〔第1実施例〕
(実施例1)
実施例1としては、前記最良の形態で示した電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
[First embodiment]
Example 1
As Example 1, the battery shown in the best mode was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
セパレータ本体部の表面に形成された多孔質層を正極側に配置した他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that the porous layer formed on the surface of the separator body was disposed on the positive electrode side.
The battery thus produced is hereinafter referred to as the present invention battery A2.

(比較例1)
セパレータとして、PE製微多孔膜のみからなるもの(厚み:16μm、空孔率50%)を用いた他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z1と称する。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that a separator composed of only a PE microporous film (thickness: 16 μm, porosity 50%) was used.
The battery thus manufactured is hereinafter referred to as a comparative battery Z1.

(比較例2)
セパレータとして、PE製微多孔膜のみからなるもの(厚み:12μm、空孔率41%)を用いた他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z2と称する。
尚、上記本発明電池A1、A2及び比較電池Z1、Z2の主要構成を下記表6に示す。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that a separator composed only of a PE microporous film (thickness: 12 μm, porosity 41%) was used.
The battery thus produced is hereinafter referred to as a comparative battery Z2.
The main configurations of the present invention batteries A1 and A2 and comparative batteries Z1 and Z2 are shown in Table 6 below.

(実験)
本発明電池A1、A2及び比較電池Z1、Z2のサイクル特性について調べたので、その結果を図8に示す。尚、充放電条件は、下記の通りである。
(Experiment)
Since the cycle characteristics of the inventive batteries A1 and A2 and the comparative batteries Z1 and Z2 were examined, the results are shown in FIG. The charge / discharge conditions are as follows.

[充放電条件]
・充電条件
1.0It(750mA)の電流で、電池電圧4.20Vまで定電流充電を行なった後、電圧4.20Vで電流値が1/20It(37.5mA)になるまで定電圧充電を行うという条件。
・放電条件
1.0It(750mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分であり、充放電温度は60℃である。
[Charging / discharging conditions]
-Charging conditions After constant current charging to a battery voltage of 4.20 V at a current of 1.0 It (750 mA), constant voltage charging is performed until the current value reaches 1/20 It (37.5 mA) at a voltage of 4.20 V. The condition to do.
-Discharge condition The condition that constant current discharge is performed up to a battery voltage of 2.75 V at a current of 1.0 It (750 mA).
The charge / discharge interval is 10 minutes, and the charge / discharge temperature is 60 ° C.

図8から明らかなように、本発明電池A1、A2は、比較電池Z1、Z2に比べて、60℃でのサイクル特性(以下、単に、サイクル特性と称するときがある)に優れていることが認められる。また、本発明電池A1と本発明電池A2とを比較した場合には、本発明電池A1は本発明電池A2よりサイクル特性に優れ、更に、比較電池Z1と比較電池Z2とを比較した場合には、比較電池Z1は比較電池Z2よりサイクル特性に優れていることが認められる。これらの理由を、項目を別けて以下に説明する。   As is clear from FIG. 8, the batteries A1 and A2 of the present invention are superior in cycle characteristics at 60 ° C. (hereinafter sometimes simply referred to as cycle characteristics) compared to the comparative batteries Z1 and Z2. Is recognized. Further, when the present invention battery A1 and the present invention battery A2 are compared, the present invention battery A1 has better cycle characteristics than the present invention battery A2, and further, when the comparison battery Z1 and the comparison battery Z2 are compared, It can be seen that the comparative battery Z1 has better cycle characteristics than the comparative battery Z2. These reasons will be described below separately for each item.

(1)比較電池Z1、Z2が本発明電池A1、A2よりもサイクル特性に劣る理由
・比較電池Z1、Z2がサイクル特性に劣る理由
通常、電極反応で必要な電解液は、電池の組立初期に電極内部及びセパレータに充填された状態とされているが、60℃サイクル試験や保存試験など、電解液の消費が激しい条件下に晒されると、電解液量の不足や反応物の堆積等により電池容量が低下する傾向にある。特に、電池容量の低下は電解液量の不足による影響が大きい。
(1) Reason why the comparative batteries Z1 and Z2 are inferior to the cycle characteristics of the batteries A1 and A2 of the present invention. ・ The reason why the comparative batteries Z1 and Z2 are inferior in the cycle characteristics. Although it is in a state filled in the electrode and in the separator, if it is exposed to a condition where the consumption of the electrolytic solution is severe, such as a 60 ° C. cycle test or a storage test, the battery may be insufficient due to insufficient amount of electrolyte or deposition of reactants. The capacity tends to decrease. In particular, a decrease in battery capacity is greatly affected by a shortage of electrolyte.

ここで、前述の予備実験2に示したように、セパレータには、製法上、MD(Machine Direction:機械方向)とTD(Transverse Direction:直角方向)とが存在し、通常、帯状の電極体を巻き取る際には、セパレータの長さ方向がMDと一致し、幅方向がTDと一致する。その一方、巻取電極体を用いた電池では、その構造上、巻取電極体の上下部からの電解液の浸透がメインとなり、セパレータとしてはTDの吸液性が高いことが必要となる。   Here, as shown in the preliminary experiment 2, the separator has MD (Machine Direction: machine direction) and TD (Transverse Direction: right angle direction) due to the manufacturing method. When winding, the length direction of the separator coincides with MD, and the width direction coincides with TD. On the other hand, in a battery using a winding electrode body, the penetration of the electrolyte from the upper and lower portions of the winding electrode body is the main because of its structure, and the separator needs to have a high TD liquid absorption.

ところが、PEのみから成るセパレータを用いた比較電池Z1、Z2においては、PEの繊維が延伸の関係上MDに伸び易い構造にあり、その結果MDに高分子繊維が配列する傾向にあるため、TDはその繊維状のポリオレフィンが壁のような役割をして電解液の浸透、拡散を妨げる。この結果、比較電池Z1、Z2と本発明電池A1、A2とは電池内に充填された電解液量は略同じであるにも拘らず、比較電池Z1、Z2は放電時におけるセパレータに含まれる電解液量が減少し、正負両極に円滑に電解液を補充できなくなって、正負両極内で電解液が枯渇するため、所謂ドライアウト現象が生じてサイクル特性が低下する。   However, in the comparative batteries Z1 and Z2 using the separator made of only PE, the PE fibers tend to extend in the MD due to the stretching, and as a result, the polymer fibers tend to be arranged in the MD. The fibrous polyolefin acts like a wall, preventing the electrolyte from penetrating and diffusing. As a result, although the comparative batteries Z1 and Z2 and the batteries A1 and A2 of the present invention have substantially the same amount of electrolyte filled in the batteries, the comparative batteries Z1 and Z2 are electrolyzed contained in the separator during discharge. The amount of the liquid decreases, and the positive and negative electrodes cannot be smoothly replenished with electrolyte, and the electrolyte is depleted in both the positive and negative electrodes, so that a so-called dry-out phenomenon occurs and cycle characteristics deteriorate.

具体的に、図9に基づいて説明する。尚、図9においては、正負両極1,2及びセパレータ3内の電解液量に応じて、その濃度を異ならしめている(正負両極1,2及びセパレータ3内の電解液量が多い場合には濃く、正負両極1,2及びセパレータ3内の電解液量が少ない場合には薄くなるように画いている)。また、電解液の放出、浸透については、円滑に行なわれる場合には通常の矢印で示し、円滑に行なわれない場合には破線の矢印で示している。尚、これらのことは、後に示す図10においても同様である。   Specifically, a description will be given based on FIG. In FIG. 9, the concentrations are made different according to the amount of electrolyte in the positive and negative electrodes 1 and 2 and the separator 3 (in the case where the amount of electrolyte in the positive and negative electrodes 1 and 2 and the separator 3 is large, the concentration is high). When the amount of electrolyte in the positive and negative electrodes 1 and 2 and the separator 3 is small, it is drawn to be thin). Moreover, about discharge | release and osmosis | permeation of electrolyte solution, when performing smoothly, it shows with the normal arrow, and when not performing smoothly, it shows with the arrow of the broken line. These are the same in FIG. 10 shown later.

先ず、注液の初期段階では、同図(a)に示すように、減圧、加圧等の強制操作により、比較的、正負両極1、2の隅々にまで電解液が浸透、拡散している。次いで、同図(b)に示すように、電池の充電を行なうと、正負両極1、2が膨張(例えば正極としてLCOを用いた場合には1体積%程度、負極として黒鉛を用いた場合には10体積%程度膨張)して、内部より電解液を放出する(特に、負極内部から電解液が多量に放出される)。この場合、セパレータ3はその膨張分を吸収しつつ(即ち、セパレータ3の厚みが小さくなりつつ)、セパレータ3で保持できない電解液は巻取電極体20外に放出される。その後、放電を行なって正負両極1、2が収縮する際には、セパレータ3に保持されている電解液は正負両極1、2に供給され、且つ、巻取電極体20外に放出された電解液は、正負両極1、2とセパレータ3との隙間や、セパレータ3のTDの浸透、拡散により電解液はセパレータ3に浸透、拡散し、その後セパレータ3から正負両極1、2に供給される。   First, at the initial stage of the injection, as shown in FIG. 5A, the electrolytic solution penetrates and diffuses to both corners of the positive and negative electrodes 1 and 2 by forced operation such as decompression and pressurization. Yes. Next, as shown in FIG. 4B, when the battery is charged, the positive and negative electrodes 1 and 2 expand (for example, about 1% by volume when LCO is used as the positive electrode, and when graphite is used as the negative electrode). Is expanded by about 10% by volume), and the electrolyte solution is released from the inside (particularly, a large amount of electrolyte solution is released from the inside of the negative electrode). In this case, the separator 3 absorbs the expansion (that is, the thickness of the separator 3 is reduced), and the electrolytic solution that cannot be held by the separator 3 is discharged out of the winding electrode body 20. Thereafter, when the positive and negative electrodes 1 and 2 are contracted by discharging, the electrolytic solution held in the separator 3 is supplied to the positive and negative electrodes 1 and 2 and the electrolysis discharged to the outside of the winding electrode body 20. The liquid is permeated and diffused into the separator 3 by the gap between the positive and negative electrodes 1 and 2 and the separator 3 and the penetration and diffusion of TD in the separator 3, and then supplied from the separator 3 to the positive and negative electrodes 1 and 2.

しかしながら、同図(c)に示すように、巻取電極体20外に放出された電解液のセパレータへの浸透、拡散速度は、非常に遅いため、60℃サイクル試験や保存試験など、電解液の消費が激しい試験では電解液の浸透、拡散が追いつかないこともある。このため、正負両極1、2において電解液が不足し、特に、中央部近傍40で電解液が不足し易くなる。この結果、正負両極1、2内での電解液の枯渇により、所謂ドライアウト現象が生じるものである。尚、巻取電極体20外に放出された電解液が正負両極1、2の端部から内部に浸透、拡散する速度は、前記予備実験3で示した如く、非常に遅いため、期待できない。   However, as shown in FIG. 2C, the electrolyte solution discharged out of the winding electrode body 20 has a very slow penetration and diffusion rate into the separator. In the test where the consumption of the electrolyte is intense, the penetration and diffusion of the electrolyte may not catch up. For this reason, the electrolyte solution is insufficient in the positive and negative electrodes 1 and 2, and in particular, the electrolyte solution tends to be insufficient in the vicinity of the central portion 40. As a result, the so-called dry-out phenomenon occurs due to the depletion of the electrolyte in the positive and negative electrodes 1 and 2. Note that the rate at which the electrolyte discharged outside the winding electrode body 20 penetrates and diffuses from the ends of the positive and negative electrodes 1 and 2 is very slow as shown in the preliminary experiment 3, and thus cannot be expected.

・本発明電池A1、A2がサイクル特性に優れる理由
多孔質層を積層したセパレータを用いる本発明電池A1、A2では、当該多孔質層が電解液の吸液パスとして作用するため、放電時においても十分な量の電解液がセパレータに浸透、拡散し、正負両極に円滑に電解液を補充できる。したがって、正負両極内で電解液が枯渇するのを抑制できるので、所謂ドライアウト現象が生じることによるサイクル特性の低下を抑えることができるものと考えられる。
-Reason why the present invention batteries A1 and A2 are excellent in cycle characteristics In the present invention batteries A1 and A2 using separators in which a porous layer is laminated, the porous layer acts as a liquid absorption path for the electrolytic solution. A sufficient amount of electrolytic solution permeates and diffuses into the separator, and the positive and negative electrodes can be smoothly replenished with the electrolytic solution. Therefore, it is possible to suppress the electrolyte from being depleted in both the positive and negative electrodes, and it is considered that the deterioration of the cycle characteristics due to the so-called dry-out phenomenon can be suppressed.

具体的に、図10に基づいて説明する。先ず、注液の初期段階では、同図(a)に示すように、減圧、加圧等の強制操作により、比較的、正負両極1、2の隅々にまで電解液が浸透、拡散しており、また、同図(b)に示すように、電池の充電を行なうと、正負両極1、2が膨張して、内部より電解液を放出し、セパレータ3はその膨張分を吸収しつつ、セパレータ3で保持できない電解液は巻取電極体20外に放出されることについては、比較電池Z1、Z2と同様である。また、放電を行なって正負両極1、2が収縮する際には、セパレータ3に保持されている電解液は正負両極1、2に供給される点も、比較電池Z1、Z2と同様である。   Specifically, a description will be given based on FIG. First, at the initial stage of the injection, as shown in FIG. 5A, the electrolytic solution penetrates and diffuses to both corners of the positive and negative electrodes 1 and 2 by forced operation such as decompression and pressurization. In addition, as shown in FIG. 5B, when the battery is charged, the positive and negative electrodes 1 and 2 expand to discharge the electrolyte from the inside, and the separator 3 absorbs the expansion, The electrolyte solution that cannot be held by the separator 3 is released from the winding electrode body 20 in the same manner as the comparative batteries Z1 and Z2. In addition, when the positive and negative electrodes 1 and 2 contract due to discharge, the electrolyte held in the separator 3 is supplied to the positive and negative electrodes 1 and 2 in the same manner as the comparative batteries Z1 and Z2.

しかしながら、巻取電極体20外に放出された電解液は、同図(c)に示すように、多孔質層32に浸透、拡散し、その後多孔質層32及びセパレータ本体部31から正負両極1、2に供給されるのであるが、巻取電極体20外に放出された電解液(余剰電解液も含む)の多孔質層32への浸透、拡散速度は非常に速いため、60℃サイクル試験や保存試験など、電解液の消費が激しい試験であっても電解液が正負両極1、2に十分浸透、拡散する。このため、正負両極1、2において電解液が不足することはなく、中央部近傍であっても電解液が不足するのを抑制できる。この結果、正負両極1、2内での電解液の枯渇により、所謂ドライアウト現象が生じるのを抑制できることになる。尚、巻取電極体20外に放出された電解液が正負両極1、2の端部から内部に浸透、拡散する速度は、前記予備実験3で示した如く、非常に遅いため、期待できないことについては、比較電池Z1、Z2と同様である。   However, as shown in FIG. 3C, the electrolytic solution discharged to the outside of the take-up electrode body 20 penetrates and diffuses into the porous layer 32, and then positive and negative electrodes 1 from the porous layer 32 and the separator main body 31. 2, but the electrolyte solution (including surplus electrolyte solution) discharged out of the take-up electrode body 20 penetrates into the porous layer 32 and has a very high diffusion rate. Even in tests that consume a lot of electrolyte, such as storage tests and storage tests, the electrolyte sufficiently penetrates and diffuses into both the positive and negative electrodes 1 and 2. For this reason, there is no shortage of electrolyte in the positive and negative electrodes 1 and 2, and it is possible to suppress the shortage of electrolyte even in the vicinity of the central portion. As a result, it is possible to suppress the so-called dry-out phenomenon due to the depletion of the electrolyte in the positive and negative electrodes 1 and 2. The rate at which the electrolyte discharged outside the take-up electrode body 20 penetrates and diffuses from the ends of the positive and negative electrodes 1 and 2 is very slow as shown in the preliminary experiment 3 and cannot be expected. Is the same as the comparative batteries Z1 and Z2.

(2)比較電池Z2が比較電池Z1よりサイクル特性に劣る理由
セパレータに含まれる電解液量は、膜厚×空孔率で算出される空隙体積と略比例関係にある。ここで、セパレータの膜厚が小さくなると、その分だけセパレータに含まれる電解液量が減少するのみならず、強度確保のために空孔率を小さくする必要が生じるため、より一層セパレータに含まれる電解液量が減少する。この結果、セパレータの膜厚が小さく、且つ、強度確保のために空孔率を小さくせざるを得ない比較電池Z2は、セパレータの膜厚が大きく、且つ、空孔率をある程度大きくできる比較電池Z1に比べてサイクル特性が低下する。
尚、角型電池やラミネート電池では、巻取り電極体のプレス工程を含むため、初期のセパレータよりも更に空隙は小さいと推測される。
(2) Reason why the comparative battery Z2 is inferior in cycle characteristics to the comparative battery Z1 The amount of the electrolyte contained in the separator is substantially proportional to the void volume calculated by the film thickness × the porosity. Here, when the film thickness of the separator becomes small, not only does the amount of electrolyte contained in the separator decrease, but also the porosity needs to be reduced to ensure strength, so it is further included in the separator. The amount of electrolyte decreases. As a result, the comparative battery Z2 in which the separator film thickness is small and the porosity must be reduced in order to ensure strength is the comparative battery in which the separator film thickness is large and the porosity can be increased to some extent. Cycle characteristics are degraded compared to Z1.
In addition, in a square battery and a laminate battery, since the winding electrode body pressing process is included, it is estimated that the void is smaller than the initial separator.

(3)本発明電池A1が本発明電池A2よりサイクル特性に優れている理由
本発明電池A1は多孔質層を負極側に配置しているのに対して、本発明電池A2では多孔質層を正極側に配置していることに起因するものと考えられる。具体的には、以下の通りである。
(3) Reason why the present invention battery A1 has better cycle characteristics than the present invention battery A2 The present invention battery A1 has a porous layer disposed on the negative electrode side, whereas the present invention battery A2 has a porous layer. This is probably due to the arrangement on the positive electrode side. Specifically, it is as follows.

即ち、60℃でのサイクル特性試験の如く、高温で充電を行なうと、特に、正極活物質の酸化作用により電解液が分解される頻度が高くなる。従来から実施されている高温保存試験の結果を見る限りでも、正極起因で電解液が分解し、ガス発生する傾向が強く見られている。これにより、正極内部では電解液は消費されることになるが、この場合には、セパレータに含まれる余剰電解液が円滑に正極に補充されるので、正極内部の電解液量は確保される。なぜなら、予備実験3で示したように、正極の方が負極より大きな速度で電解液を吸収することができるので、正極で電解液が消費された場合には、正極側に多孔質層が存在していなくても、セパレータに含まれる余剰電解液が円滑に正極に供給されるからである。但し、このことは、充電終止電圧が4.2V程度の電池での挙動であって、それを超える充電終止電圧の電池であれば、後述のような挙動となる。尚、これと同様の反応が負極でも起こっているものと推測される。   That is, when charging is performed at a high temperature as in a cycle characteristic test at 60 ° C., the frequency of decomposition of the electrolytic solution due to the oxidizing action of the positive electrode active material increases. As far as the results of high-temperature storage tests that have been carried out conventionally are seen, there is a strong tendency for the electrolyte to decompose and generate gas due to the positive electrode. As a result, the electrolytic solution is consumed inside the positive electrode. In this case, the excess electrolytic solution contained in the separator is smoothly replenished to the positive electrode, so that the amount of the electrolytic solution inside the positive electrode is secured. This is because, as shown in Preliminary Experiment 3, the positive electrode can absorb the electrolytic solution at a higher rate than the negative electrode, so that when the electrolytic solution is consumed at the positive electrode, there is a porous layer on the positive electrode side. This is because the excess electrolyte contained in the separator is smoothly supplied to the positive electrode even if it is not. However, this is a behavior in a battery having a charge end voltage of about 4.2 V, and if the battery has a charge end voltage exceeding that, the behavior will be as described later. In addition, it is estimated that the same reaction is occurring also in the negative electrode.

一方、充電終止電圧が4.2V程度の電池において、実測の電極測定の結果では、充放電前後の極板の厚み変化率は、正極は2%以内、負極は10%程度であることが解かっている。このように、充放電で正極の厚みは殆ど変化しないため、高温での保存や充放電サイクル等によって電解液が消費されない限り、初期に極板内に注入した電解液量から殆ど変化は無いものと考えることができる。これに対して負極は10%程度変移があるため、充電による膨張で極板内部から電解液が搾り出されるかたちとなって、放電時にはセパレータから電解液を吸収して極板内部の電解液量を補充するものと考えられる。セパレータはこの緩衝作用を果たしているのであり、セパレータ内の電解液は主として負極と交互作用をしながら存在していることになる。
したがって、本発明電池A1の如く、多孔質層が負極側に配置されている場合には、負極にも円滑に電解液を供給できるので、サイクル特性に優れる一方、本発明電池A2の如く、多孔質層が正極側に配置されている場合には、負極は次第に電解液が不足することになり、結果として充放電反応の不均一化等によりサイクル特性に劣るものと考えられる。
On the other hand, in a battery having a charge end voltage of about 4.2 V, the results of actual measurement of electrodes show that the rate of change in the thickness of the electrode plate before and after charge / discharge is within 2% for the positive electrode and about 10% for the negative electrode. I'm crazy. As described above, since the thickness of the positive electrode hardly changes due to charging / discharging, there is almost no change from the amount of the electrolytic solution initially injected into the electrode plate unless the electrolytic solution is consumed due to storage at a high temperature or charging / discharging cycle. Can be considered. On the other hand, since the negative electrode has a change of about 10%, the electrolyte is squeezed out from the inside of the electrode plate due to expansion due to charging, and the amount of electrolyte in the electrode plate is absorbed by the separator during discharge. It is thought that it supplements. The separator fulfills this buffering action, and the electrolytic solution in the separator exists mainly while interacting with the negative electrode.
Therefore, when the porous layer is disposed on the negative electrode side as in the present invention battery A1, the electrolyte can be smoothly supplied to the negative electrode, so that the cycle characteristics are excellent. On the other hand, as in the present invention battery A2, the porous layer is porous. When the porous layer is disposed on the positive electrode side, the negative electrode is gradually deficient in the electrolytic solution, and as a result, it is considered that the cycle characteristics are inferior due to non-uniform charge / discharge reactions and the like.

尚、本発明電池A2の場合にも、多孔質層に浸透した電解液がセパレータ本体部を通って負極に供給されるのではないか、と考えることもできる。しかし、多孔質層を構成するPA樹脂とセパレータ本体部を構成するPEとの界面には、少なからずとも、孔接触面に電解液浸透の抵抗(バリア)が存在することになるので、多孔質層に浸透した電解液は、必ずしもセパレータ本体部に供給されないと推測される。したがって、本発明電池A2では、負極は次第に電解液が不足することになってサイクル特性が低下することになる。   In the case of the battery A2 of the present invention, it can also be considered that the electrolyte solution that has permeated the porous layer may be supplied to the negative electrode through the separator body. However, there is at least an electrolyte penetration resistance (barrier) on the pore contact surface at the interface between the PA resin constituting the porous layer and the PE constituting the separator main body. It is presumed that the electrolyte solution penetrating the layer is not necessarily supplied to the separator body. Therefore, in the battery A2 of the present invention, the negative electrode gradually becomes deficient in the electrolyte solution, resulting in deterioration of cycle characteristics.

このように、電解液の不足になりがちな電極面に多孔質層を優先して配置することによりサイクル寿命は改善できるものと推測される。これはコバルト酸リチウム/黒鉛の組合せ電極では黒鉛の方が充放電に伴う体積変化が大きいことに起因する。したがって、膨張伸縮の大きく電解液の内部への出入りの大きい電極へ多孔質層を配置することが望ましい。シリコンやスズ等を負極活物質として用いた場合も充放電時の体積変化が大きく、黒鉛と同様に負極側に多孔質層を配置することが好ましいと考えられる(劣化のモードにも依存するが、コバルト酸リチウムと黒鉛との組合せでは負極面に多孔質層を形成、配置することが、この結果から望ましいと考えられる)。   Thus, it is presumed that the cycle life can be improved by preferentially disposing the porous layer on the electrode surface that tends to be insufficient in the electrolytic solution. This is because, in the lithium cobaltate / graphite combination electrode, graphite has a larger volume change due to charge / discharge. Therefore, it is desirable to dispose the porous layer on an electrode that is large in expansion and contraction and large in and out of the electrolyte. Even when silicon or tin is used as the negative electrode active material, the volume change during charging and discharging is large, and it is considered preferable to dispose a porous layer on the negative electrode side in the same way as graphite (although depending on the mode of deterioration) From this result, it is considered desirable to form and dispose a porous layer on the negative electrode surface in the combination of lithium cobaltate and graphite.

(第2実施例)
(実施例)
セパレータとして、樹脂積層型セパレータの代わりに、下記のようにして作製した無機微粒子積層型セパレータ(多孔質層が無機微粒子とスラリーとで構成されるセパレータ)を用い、且つ、この多孔質層をセパレータ本体部の正極側と負極側とに配置(両多孔質層の総厚みは4μmで、片側2μm)した他は、上記第1実施例の実施例1と同様にして電池を作製した。
(Second embodiment)
(Example)
As the separator, instead of the resin laminated separator, an inorganic fine particle laminated separator (a separator in which the porous layer is composed of inorganic fine particles and slurry) prepared as described below is used, and this porous layer is used as the separator. A battery was fabricated in the same manner as in Example 1 of the first example except that it was disposed on the positive electrode side and the negative electrode side of the main body (total thickness of both porous layers was 4 μm and one side was 2 μm).

溶剤としてのアセトンに、無機微粒子であるTiO〔ルチル型であって粒径0.38μm、チタンエ業(株)製KR380〕をアセトンに対して10質量%、アクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子であるバインダー)を上記TiOに対して5質量%混合し、特殊機化製Filmicsを用いて混合分散処理を行い、TiOが分散されたスラリーを調製した。次に、セパレータ本体部(厚み12μm、空孔率41%)の両面に、上記スラリーをディップコート方式を用いて塗布した後、溶剤を乾燥、除去して、セパレータ本体部の両面にTiO(無機微粒子)を主体とする多孔質層(無機微粒子層、総厚み:4μm〔片側2μm〕)を形成した。
このようにして作製した電池を、以下、本発明電池Bと称する。
尚、上記本発明電池B及びこの本発明電池Bの比較対象である前記比較電池Z1、Z2の主要構成を下記表7に示す。
Copolymer containing TiO 2 (rutile type, particle size 0.38 μm, KR380 manufactured by Titanium Industrial Co., Ltd.), which is inorganic fine particles, in acetone as a solvent, 10 mass% with respect to acetone, and an acrylonitrile structure (unit) A coalescence (binder which is a rubber-like polymer) was mixed in an amount of 5% by mass with respect to TiO 2 and mixed and dispersed using Special Mechanics Films to prepare a slurry in which TiO 2 was dispersed. Next, after applying the slurry to both sides of the separator body (thickness 12 μm, porosity 41%) using the dip coating method, the solvent is dried and removed, and TiO 2 ( A porous layer (inorganic fine particle layer, total thickness: 4 μm [one side 2 μm]) mainly composed of inorganic fine particles) was formed.
The battery thus produced is hereinafter referred to as the present invention battery B.
Table 7 below shows the main configurations of the present invention battery B and the comparison batteries Z1 and Z2 that are comparison objects of the present invention battery B.

(実験)
本発明電池Bのサイクル特性について調べたので、その結果を図11に示す。尚、図11には比較電池Z1、Z2のサイクル特性についても記載している。また、充放電条件は、前記第1実施例の実験と同様の条件である。
(Experiment)
Since the cycle characteristics of the battery B of the present invention were examined, the results are shown in FIG. FIG. 11 also shows the cycle characteristics of the comparative batteries Z1 and Z2. The charge / discharge conditions are the same as those in the experiment of the first embodiment.

図11から明らかなように、無機微粒子を主体とする多孔質層がセパレータ本体部と正負両極との間に配置された本発明電池Bは、多孔質層が配置されていない比較電池Z2(セパレータの厚み[多孔質層が設けられていないので、セパレータ本体部の厚みと同じ]が本発明電池Bのセパレータ厚みと同一)、及び、比較電池Z1(セパレータの厚み[多孔質層が設けられていないので、セパレータ本体部の厚みと同じ]が本発明電池Bのセパレータ本体部の厚みと同一である)に比べて、サイクル特性に優れていることが認められる。これは、本発明電池Bは、多孔質層が樹脂から成る前記本発明電池A1、A2と同様、巻取電極体外の電解液(余剰電解液も含む)の多孔質層への浸透、拡散速度が非常に速いため、60℃サイクル試験や保存試験など、電解液の消費が激しい試験であっても正負両極に電解液が十分浸透、拡散するという理由によるものと考えられる。
以上の結果から、無機微粒子を主体とする多孔質層であっても樹脂から成る多孔質層と同等の作用効果を発揮することがわかる。
As is clear from FIG. 11, the battery B of the present invention in which the porous layer mainly composed of inorganic fine particles is arranged between the separator main body and the positive and negative electrodes is a comparative battery Z2 (separator) in which no porous layer is arranged. Thickness [same as the thickness of the separator body of the present invention B because the porous layer is not provided] and the comparative battery Z1 (separator thickness [the porous layer is provided. Therefore, it is recognized that the same as the thickness of the separator main body of the battery B of the present invention is superior in cycle characteristics. This is because the battery B of the present invention is similar to the batteries A1 and A2 of the present invention in which the porous layer is made of resin, and the penetration and diffusion rate of the electrolyte solution (including the excess electrolyte solution) outside the winding electrode body into the porous layer. This is considered to be due to the fact that the electrolyte sufficiently penetrates and diffuses into both the positive and negative electrodes even in a test where the consumption of the electrolyte is intense, such as a 60 ° C. cycle test and a storage test.
From the above results, it can be seen that even a porous layer mainly composed of inorganic fine particles exhibits the same effects as a porous layer made of resin.

(第3実施例)
(実施例)
多孔質層を正極表面(正極活物質層の表面)に形成すると共に、セパレータとして、厚みが23μm、空孔率が52%のものを用い、且つ、電池形状が円筒型のもの(設計容量が2100mAhの円筒型電池)を用いた他は、上記第2実施例の実施例と同様にして電池作製を行った。
尚、正極表面の多孔質層の作製は、以下のようにして行った。先ず、溶剤としてのNMP(N−メチル−2−ピロリドン)に、無機微粒子であるTiO〔チタンエ業(株)製KR380(ルチル型)であって、粒径0.38μm〕をNMPに対して20質量%、アクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)を上記TiOに対して5質量%混合し、特殊機化製Filmicsを用いて混合分散処理を行い、TiOが分散されたスラリーを調製した。次に、正極活物質層の表面に、上記スラリーをリバース法を用いて塗布した後、溶剤を乾燥、除去して、正極活物質層の表面にTiO(無機微粒子)を主体とする多孔質層(無機微粒子層、厚み:4μm)を形成した。
(Third embodiment)
(Example)
A porous layer is formed on the positive electrode surface (the surface of the positive electrode active material layer), and a separator having a thickness of 23 μm and a porosity of 52% is used, and the battery shape is cylindrical (design capacity is A battery was fabricated in the same manner as in the second embodiment except that a 2100 mAh cylindrical battery) was used.
The porous layer on the positive electrode surface was produced as follows. First, NMP (N-methyl-2-pyrrolidone) as a solvent is mixed with TiO 2 which is an inorganic fine particle [KR380 (rutile type) manufactured by Titanium Industry Co., Ltd., particle size 0.38 μm] with respect to NMP. 20 wt%, a copolymer containing acrylonitrile structures (units) (the rubber-polymer) was mixed 5 wt% with respect to the TiO 2, it performs mixing and dispersing treatment using a Tokushu Kika made Filmics, TiO 2 is A dispersed slurry was prepared. Next, after applying the slurry to the surface of the positive electrode active material layer using the reverse method, the solvent is dried and removed, and the surface of the positive electrode active material layer is porous mainly composed of TiO 2 (inorganic fine particles). A layer (inorganic fine particle layer, thickness: 4 μm) was formed.

また、円筒型電池の製造方法は、以下の通りである。先ず、ラミネート型電池と同様にして正負極とセパレータとを作製した後、正負極両面にそれぞれリード端子を取り付ける。次に、正負両極を、セパレータを介して渦巻状に巻き取り、渦巻状の電極体を作製する。次いで、この電極体を有底円筒状の電池外装缶に入れて、更に電解液を電池外装缶内に注液する。最後に封ロ体を電池外装缶の開ロ部に封口することにより作製した。
このようにして作製した電池を、以下、本発明電池Cと称する。
Moreover, the manufacturing method of a cylindrical battery is as follows. First, the positive and negative electrodes and the separator are prepared in the same manner as in the laminate type battery, and then lead terminals are attached to both the positive and negative electrodes. Next, the positive and negative electrodes are wound in a spiral shape via a separator to produce a spiral electrode body. Next, this electrode body is put into a bottomed cylindrical battery outer can, and further an electrolyte is injected into the battery outer can. Finally, the sealing body was produced by sealing the opening of the battery outer can.
The battery thus produced is hereinafter referred to as the present invention battery C.

(比較例)
正極活物質層の表面に多孔質層を設けない他は、上記実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Yと称する。
尚、上記本発明電池C及び比較電池Yの主要構成を下記表8に示す。
(Comparative example)
A battery was fabricated in the same manner as in the above example except that the porous layer was not provided on the surface of the positive electrode active material layer.
The battery thus produced is hereinafter referred to as comparative battery Y.
The main structures of the present invention battery C and comparative battery Y are shown in Table 8 below.

(実験)
本発明電池Cと比較電池Yとのサイクル特性について調べたので、その結果を図12に示す。尚、充放電条件は、下記の通りである。
(Experiment)
Since the cycle characteristics of the battery C of the present invention and the comparative battery Y were examined, the results are shown in FIG. The charge / discharge conditions are as follows.

[充放電条件]
・充電条件
1.0It(2100mA)の電流で、電池電圧4.20Vまで定電流充電を行なった後、電圧4.20Vで電流値が1/50It(42.0mA)になるまで定電圧充電を行うという条件。
・放電条件
1.0It(2100mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分であり、充放電温度は60℃である。
[Charging / discharging conditions]
-Charging conditions After constant current charging to a battery voltage of 4.20 V at a current of 1.0 It (2100 mA), constant voltage charging is performed until the current value reaches 1/50 It (42.0 mA) at a voltage of 4.20 V. The condition to do.
-Discharge conditions Conditions under which a constant current discharge is performed until the battery voltage reaches 2.75 V at a current of 1.0 It (2100 mA).
The charge / discharge interval is 10 minutes, and the charge / discharge temperature is 60 ° C.

図12から明らかなように、無機微粒子を主体とする多孔質層がセパレータと正極活物質層との間に配置された本発明電池Cは、多孔質層が配置されていない比較電池Yに比べて、サイクル特性に優れていることが認められる。
これは、上記第2実施例の実験で示した理由と同様の理由によるものと考えられる。
また、本実験より、多孔質層はセパレータ(セパレータ本体部)の表面に形成するような構造に限定されず、正極(正極活物質層)の表面に形成しても良いことがわかる。
As is clear from FIG. 12, the battery C of the present invention in which the porous layer mainly composed of inorganic fine particles is disposed between the separator and the positive electrode active material layer is compared with the comparative battery Y in which the porous layer is not disposed. Thus, it is recognized that the cycle characteristics are excellent.
This is considered to be due to the same reason as shown in the experiment of the second embodiment.
Moreover, this experiment shows that a porous layer is not limited to the structure formed in the surface of a separator (separator main-body part), You may form in the surface of a positive electrode (positive electrode active material layer).

(下記第4実施例〜第7実施例の実験を行う前提)
一般に電池の充電終止電圧は4.20Vであるため、上記第1実施例〜第3実施例においては、電池の充電終止電圧が4.20Vのものを用いたが、現在は充電終止が4.40Vであるコバルト酸リチウム/黒鉛系のリチウムイオン電池も販売されている。この系では、上述の如く負極における電解液が不足するのみならず、正極の充電電位が高くなるため正極における膨張収縮率が増加すると共に、正極の充電状態が更に高い領域にあるため、電解液の酸化分解によって電解液の消費は非常に早くなる結果、正極での電解液不足も深刻なものとなる。そこで、本発明者らは、電池の充電終止電圧が4.30V以上のものについて、上記第1実施例〜第3実施例と同様の実験を行った。
(Assumptions for conducting experiments in the following fourth to seventh embodiments)
In general, since the end-of-charge voltage of the battery is 4.20V, in the first to third embodiments, the end-of-charge voltage of the battery is 4.20V. A lithium cobalt battery of lithium cobaltate / graphite based on 40V is also on the market. In this system, not only the electrolyte solution in the negative electrode is insufficient as described above, but also the charge potential of the positive electrode is increased so that the expansion / contraction rate of the positive electrode is increased and the charged state of the positive electrode is in a higher region. As a result of the oxidative decomposition of the electrolyte, the consumption of the electrolytic solution becomes very fast, and the shortage of the electrolytic solution at the positive electrode becomes serious. Therefore, the present inventors conducted experiments similar to those in the first to third embodiments with respect to batteries having a charge end voltage of 4.30 V or more.

(第4実施例)
(実施例)
セパレータ本体部として、厚みが16μm、空孔率が50%のものを用い、且つ、充電終止電圧が4.40V(リチウム参照極電位に対する正極電位が4.50V)となるように電池設計を行った他は、上記第2実施例の実施例と同様にして電池を作製した。尚、多孔質層を正極側と負極側とに配置する際には、ディップコート法を用いた。
このようにして作製した電池を、以下、本発明電池Dと称する。
(Fourth embodiment)
(Example)
The separator is designed to have a thickness of 16 μm, a porosity of 50%, and a battery design so that the end-of-charge voltage is 4.40 V (the positive electrode potential is 4.50 V with respect to the lithium reference electrode potential). Otherwise, a battery was fabricated in the same manner as in the second embodiment. In addition, when arrange | positioning a porous layer in the positive electrode side and the negative electrode side, the dip coating method was used.
The battery thus produced is hereinafter referred to as the present invention battery D.

(比較例)
セパレータとして、PE製微多孔膜のみからなるもの(厚み:16μm、空孔率50%)を用いた他は、上記実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Xと称する。
尚、上記本発明電池D及び比較電池Xの主要構成を下記表9に示す。
(Comparative example)
A battery was fabricated in the same manner as in the above example except that a separator composed only of a PE microporous film (thickness: 16 μm, porosity 50%) was used.
The battery thus produced is hereinafter referred to as comparative battery X.
The main structures of the present invention battery D and comparative battery X are shown in Table 9 below.

(実験)
本発明電池Dと比較電池Xとのサイクル特性について調べたので、その結果を図13に示す。尚、充放電条件は、下記の通りである。
(Experiment)
Since the cycle characteristics of the battery D of the present invention and the comparative battery X were examined, the results are shown in FIG. The charge / discharge conditions are as follows.

[充放電条件]
・充電条件
1.0It(750mA)の電流で、電池電圧4.40Vまで定電流充電を行なった後、電圧4.40Vで電流値が1/20It(37.5mA)になるまで定電圧充電を行うという条件。
・放電条件
1.0It(750mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分であり、充放電温度は45℃である。
[Charging / discharging conditions]
-Charging conditions After constant current charging to a battery voltage of 4.40 V at a current of 1.0 It (750 mA), constant voltage charging is performed until the current value reaches 1/20 It (37.5 mA) at a voltage of 4.40 V. The condition to do.
-Discharge condition The condition that constant current discharge is performed up to a battery voltage of 2.75 V at a current of 1.0 It (750 mA).
The charge / discharge interval is 10 minutes, and the charge / discharge temperature is 45 ° C.

図13から明らかなように、無機微粒子を主体とする多孔質層がセパレータ本体部と正極及び負極との間に配置された本発明電池Dは、多孔質層が配置されていない比較電池X(セパレータの厚み[多孔質層が設けられていないので、セパレータ本体部の厚みと同じ]が本発明電池Dのセパレータ本体部の厚みと同一である)に比べて、サイクル特性に優れていることが認められる。特に、充電終止電圧が共に4.40Vの本発明電池Dと比較電池Xとのサイクル特性の差異は、充電終止電圧が共に4.20Vの前記本発明電池Bと比較電池Z1、Z2とのサイクル特性の差異よりも、大きくなっていることが認められる。   As is clear from FIG. 13, the battery D of the present invention in which the porous layer mainly composed of inorganic fine particles is disposed between the separator main body, the positive electrode, and the negative electrode is a comparative battery X ( Compared to the thickness of the separator (the same as the thickness of the separator body of the battery D of the present invention is the same as the thickness of the separator body of the present invention D because no porous layer is provided), the cycle characteristics are excellent. Is recognized. In particular, the difference in cycle characteristics between the present invention battery D and the comparison battery X, both of which have a charge end voltage of 4.40 V, is the cycle between the present invention battery B and the comparison batteries Z1, Z2 both of which have a charge end voltage of 4.20 V. It is recognized that it is larger than the difference in characteristics.

これは、充電終止電圧が4.40Vの場合には、充電終止電圧が4.20Vの場合よりも、電極の膨張収縮が更に大きくなって、セパレータ中の電解液が更に不足すると共に、正極電位が一層高電位となるため、電解液が酸化分解されやすくなり、電極内の電解液が更に不足する。このため、多孔質層が配置されていない比較電池Xでは、正負両極において電解液が著しく不足する。これに対して、正負両極とセパレータとの間に多孔質層が配置された本発明電池Dでは、巻取電極体外の電解液(余剰電解液も含む)の多孔質層への浸透、拡散速度が非常に速いため、充電終止電圧が4.40Vであって電解液の消費が激しい試験であっても正負両極に電解液が十分浸透、拡散するという理由によるものと考えられる。   This is because, when the end-of-charge voltage is 4.40 V, the expansion and contraction of the electrode is further increased and the electrolyte in the separator is further insufficient and the positive electrode potential is higher than when the end-of-charge voltage is 4.20 V. Therefore, the electrolytic solution is easily oxidized and decomposed, and the electrolytic solution in the electrode is further insufficient. For this reason, in the comparative battery X in which the porous layer is not disposed, the electrolyte solution is remarkably insufficient in both positive and negative electrodes. On the other hand, in the battery D of the present invention in which the porous layer is disposed between the positive and negative electrodes and the separator, the penetration and diffusion rate of the electrolyte solution (including the excess electrolyte solution) outside the winding electrode body into the porous layer. This is considered to be because the electrolyte solution sufficiently penetrates and diffuses into both the positive and negative electrodes even in a test where the end-of-charge voltage is 4.40 V and the consumption of the electrolyte solution is severe.

また、前述の如く、充電終止電圧が4.40Vの場合には、負極における電解液が不足するのみならず、正極の充電電位が高くなるため正極における膨張収縮率が増加すると共に、正極の充電状態が更に高い領域にあるため、電解液の酸化分解によって電解液の消費は非常に早くなる結果、正極での電解液不足も深刻なものとなる。そこで、本発明電池Dの如く、負極とセパレータとの間のみならず、正極とセパレータとの間にも多孔質層が配置されていれば、正負両極における電解液不足を解消できるので、所望のサイクル特性を得ることができるということも理解できる。
尚、正極の充電電位が高くなるため正極における膨張収縮率が増加するということを裏付けるべく、充電終止電圧が4.20V(リチウム参照極電位に対する正極電位が4.30V)、4.30V(リチウム参照極電位に対する正極電位が4.40V)、4.35V(リチウム参照極電位に対する正極電位が4.45V)、4.40V(リチウム参照極電位に対する正極電位が4.50V)の場合において、正極の膨張収縮量と、負極の膨張収縮量とについて調べたので、その結果を表10に示す。
Further, as described above, when the end-of-charge voltage is 4.40 V, not only the electrolyte in the negative electrode becomes insufficient, but also the positive electrode has a higher charging potential, which increases the expansion / contraction rate at the positive electrode and charges the positive electrode. Since the state is in a higher region, the consumption of the electrolytic solution becomes very fast due to the oxidative decomposition of the electrolytic solution, resulting in a serious shortage of the electrolytic solution at the positive electrode. Therefore, as in the present invention battery D, if a porous layer is disposed not only between the negative electrode and the separator but also between the positive electrode and the separator, the shortage of electrolyte in both the positive and negative electrodes can be resolved. It can also be understood that cycle characteristics can be obtained.
In order to support the increase in the expansion / contraction rate of the positive electrode because the charge potential of the positive electrode is increased, the end-of-charge voltage is 4.20 V (the positive electrode potential is 4.30 V with respect to the lithium reference electrode potential), and 4.30 V (lithium In the case of positive electrode potential with respect to reference electrode potential of 4.40V), 4.35V (positive electrode potential with respect to lithium reference electrode potential of 4.45V), 4.40V (positive electrode potential with respect to lithium reference electrode potential of 4.50V) The amount of expansion / contraction and the amount of expansion / contraction of the negative electrode were examined, and the results are shown in Table 10.

表10から明らかなように、負極においては、充電終止電圧の高低に関わらず膨張収縮量は一定であるのに対して、正極においては、充電終止電圧が高くなると膨張収縮量が大きくなっていることが認められる。したがって、上述のことが裏づけられる。   As is clear from Table 10, the expansion and contraction amount is constant in the negative electrode regardless of the level of the end-of-charge voltage, whereas in the positive electrode, the expansion and contraction amount increases as the end-of-charge voltage increases. It is recognized that Therefore, the above is supported.

また、充電終止電圧が4.2Vの場合に、通常の使用状態で電池温度が60℃まで上昇することは稀であるため、第1実施例〜第3実施例における実験(充電終止電圧4.2V、温度60℃でのサイクル特性試験)は、非常に厳しい条件での加速試験として意味合いが強い。これに対して、充電終止電圧が4.38V又は4.40Vの場合には、通常の使用状態で電池温度が45℃程度まで上昇することがあるため、本実施例、後述の第5実施例〜第7実施例における実験(充電終止電圧4.38V又は4.40V、温度45℃でのサイクル特性試験)では、非常に厳しい条件での加速試験として意味合いは弱い。したがって、第1実施例〜第3実施例における実験は、特殊な環境下で電池が使用された場合の電池特性実験であるのに対して、本実施例及び後述の第5実施例〜第7実施例における実験は、通常の環境下で電池が使用された場合の電池特性実験であるということがいえる。   In addition, when the end-of-charge voltage is 4.2 V, the battery temperature rarely rises to 60 ° C. in a normal use state. Therefore, experiments in the first to third examples (the end-of-charge voltage of 4. The cycle characteristic test at 2 V and a temperature of 60 ° C. has a strong meaning as an accelerated test under very severe conditions. On the other hand, when the end-of-charge voltage is 4.38 V or 4.40 V, the battery temperature may rise to about 45 ° C. in a normal use state. In the experiment in the seventh embodiment (cycle characteristic test at a charge end voltage of 4.38 V or 4.40 V and a temperature of 45 ° C.), the meaning is weak as an accelerated test under very severe conditions. Therefore, the experiments in the first to third examples are battery characteristic experiments in the case where the battery is used in a special environment, whereas this example and the fifth to seventh examples described later are used. It can be said that the experiment in the example is a battery characteristic experiment when the battery is used under a normal environment.

(第5実施例)
(実施例1)
セパレータ本体部として、厚みが18μm、空孔率が50%のものを用い、且つ、電池形状が角型のもの(設計容量が820mAhの角型電池)を用いると共に、充電終止電圧が4.38V(リチウム参照極電位に対する正極電位が4.48V)となるように電池設計を行った他は、上記第4実施例の実施例と同様にして電池を作製した。尚、角型電池の製造方法は、以下の通りである。
(5th Example)
Example 1
As the separator body, a separator having a thickness of 18 μm and a porosity of 50% is used, and a battery having a square shape (a square battery having a design capacity of 820 mAh) and a charge end voltage of 4.38 V are used. A battery was fabricated in the same manner as in the example of the fourth example except that the battery was designed so that the positive electrode potential with respect to the lithium reference electrode potential was 4.48 V. In addition, the manufacturing method of a square battery is as follows.

先ず、ラミネート型電池と同様にして正負両極とセパレータとを作製した後、正負両極にそれぞれリード端子を取り付ける。次に、正負両極をセパレータを介して渦巻状に巻き取った後、これをプレスして扁平状の電極体を作製する。次いで、この電極体を電池外装缶内に入れて、更に電解液を電池外装缶内に注液する。最後に、封口蓋を電池外装缶の開口端部にレーザー溶接することにより作製した。
このようにして作製した電池を、以下、本発明電池E1と称する。
First, the positive and negative electrodes and the separator are prepared in the same manner as in the laminated battery, and then lead terminals are attached to the positive and negative electrodes, respectively. Next, after winding both the positive and negative electrodes in a spiral shape via a separator, this is pressed to produce a flat electrode body. Next, this electrode body is put into a battery outer can, and further an electrolyte is injected into the battery outer can. Finally, the sealing lid was produced by laser welding to the open end of the battery outer can.
The battery thus produced is hereinafter referred to as the present invention battery E1.

(実施例2)
セパレータ本体部として、厚みが16μm、空孔率が46%のものを用いた他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池E2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that a separator body having a thickness of 16 μm and a porosity of 46% was used.
The battery thus produced is hereinafter referred to as the present invention battery E2.

(比較例1、2)
多孔質層を設けない他は、それぞれ、上記実施例1、2と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、比較電池W1、W2と称する。
(Comparative Examples 1 and 2)
Batteries were prepared in the same manner as in Examples 1 and 2 except that the porous layer was not provided.
The batteries thus produced are hereinafter referred to as comparative batteries W1 and W2.

(実験)
本発明電池E1、E2と比較電池W1、W2とのサイクル特性について調べたので、その結果を表11に示す。尚、充放電条件は、下記の通りである。
(Experiment)
Since the cycle characteristics of the inventive batteries E1 and E2 and the comparative batteries W1 and W2 were examined, the results are shown in Table 11. The charge / discharge conditions are as follows.

[充放電条件]
・充電条件
1.0It(800mA)の電流で、電池電圧4.38Vまで定電流充電を行なった後、電圧4.38Vで電流値が1/20It(40.0mA)になるまで定電圧充電を行うという条件。
・放電条件
1.0It(800mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分であり、充放電温度は45℃である。
[Charging / discharging conditions]
-Charging conditions After constant current charging to a battery voltage of 4.38 V at a current of 1.0 It (800 mA), constant voltage charging is performed until the current value reaches 1/20 It (40.0 mA) at a voltage of 4.38 V. The condition to do.
-Discharge conditions Conditions under which a constant current discharge is performed up to a battery voltage of 2.75 V at a current of 1.0 It (800 mA).
The charge / discharge interval is 10 minutes, and the charge / discharge temperature is 45 ° C.

表11から明らかなように、無機微粒子を主体とする多孔質層がセパレータ本体部と正極及び負極との間に配置された本発明電池E1、E2は、多孔質層が配置されていない比較電池W1、W2(セパレータの厚み[多孔質層が設けられていないので、セパレータ本体部の厚みと同じ]が、それぞれ、本発明電池E1、E2のセパレータ本体部の厚みと同一である)に比べて、サイクル特性に優れていることが認められる。
これは、上記第4実施例の実験で示した理由と同様の理由によるものと考えられる。
また、本実験より、本発明はラミネート型の電池のみならず、角型の電池にも適応できることがわかる。
As is clear from Table 11, the batteries E1 and E2 of the present invention in which the porous layer mainly composed of inorganic fine particles is disposed between the separator main body and the positive and negative electrodes are comparative batteries in which the porous layer is not disposed. Compared to W1 and W2 (the thickness of the separator [the same as the thickness of the separator main body because no porous layer is provided] is the same as the thickness of the separator main body of the present invention batteries E1 and E2 respectively) It is recognized that the cycle characteristics are excellent.
This is considered to be due to the same reason as shown in the experiment of the fourth embodiment.
Further, this experiment shows that the present invention can be applied not only to a laminate type battery but also to a square type battery.

(第6実施例)
(実施例)
多孔質層を正極表面(正極活物質層の表面)に形成すると共に、セパレータとして、厚みが23μm、空孔率が52%のものを用い、且つ、電池形状がラミネート型のもの(設計容量が780mAhのラミネート型電池)を用いた他は、上記第5実施例の実施例1と同様にして電池を作製した。尚、正極表面に多孔質層を形成する方法は、上記第3実施例の実施例と同様である。
このようにして作製した電池を、以下、本発明電池Fと称する。
(Sixth embodiment)
(Example)
A porous layer is formed on the positive electrode surface (the surface of the positive electrode active material layer), and a separator having a thickness of 23 μm and a porosity of 52% is used, and the battery shape is a laminate type (design capacity is A battery was fabricated in the same manner as in Example 1 of the fifth example except that a 780 mAh laminate type battery) was used. The method for forming the porous layer on the positive electrode surface is the same as in the third embodiment.
The battery thus produced is hereinafter referred to as the present invention battery F.

(比較例)
正極活物質層の表面に多孔質層を設けない他は、上記実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Vと称する。
尚、上記本発明電池F及び比較電池Vの主要構成を下記表12に示す。
(Comparative example)
A battery was fabricated in the same manner as in the above example except that the porous layer was not provided on the surface of the positive electrode active material layer.
The battery thus produced is hereinafter referred to as a comparative battery V.
The main configurations of the present invention battery F and comparative battery V are shown in Table 12 below.

(実験)
本発明電池Fと比較電池Vとのサイクル特性について調べたので、その結果を図14に示す。尚、充放電条件は、上記第4実施例の実験と同様の条件である。
(Experiment)
Since the cycle characteristics of the battery F of the present invention and the comparative battery V were examined, the results are shown in FIG. The charge / discharge conditions are the same as those in the experiment of the fourth embodiment.

図14から明らかなように、無機微粒子を主体とする多孔質層がセパレータと正極活物質層との間に配置された本発明電池Fは、多孔質層が配置されていない比較電池Vに比べて、サイクル特性に優れていることが認められる。
これは、上記第4実施例の実験で示した理由と同様の理由によるものと考えられる。
また、本実験より、多孔質層はセパレータ(セパレータ本体部)の表面に形成するような構造に限定されず、正極(正極活物質層)の表面に形成しても良いことがわかる。
As is clear from FIG. 14, the battery F of the present invention in which the porous layer mainly composed of inorganic fine particles is disposed between the separator and the positive electrode active material layer is compared with the comparative battery V in which the porous layer is not disposed. Thus, it is recognized that the cycle characteristics are excellent.
This is considered to be due to the same reason as shown in the experiment of the fourth embodiment.
Moreover, this experiment shows that a porous layer is not limited to the structure formed in the surface of a separator (separator main-body part), You may form in the surface of a positive electrode (positive electrode active material layer).

(第7実施例)
(実施例)
多孔質層を正極表面(正極活物質層の表面)に形成する他は、上記第5実施例の実施例1と同様にして電池を作製した。尚、正極表面に多孔質層を形成する方法は、上記第3実施例の実施例と同様である。
このようにして作製した電池を、以下、本発明電池Gと称する。
(Seventh embodiment)
(Example)
A battery was fabricated in the same manner as in Example 1 of the fifth example except that the porous layer was formed on the positive electrode surface (the surface of the positive electrode active material layer). The method for forming the porous layer on the positive electrode surface is the same as in the third embodiment.
The battery thus produced is hereinafter referred to as the present invention battery G.

(比較例)
正極活物質層の表面に多孔質層を設けない他は、上記実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Uと称する。
(Comparative example)
A battery was fabricated in the same manner as in the above example except that the porous layer was not provided on the surface of the positive electrode active material layer.
The battery thus manufactured is hereinafter referred to as a comparative battery U.

(実験)
本発明電池Gと比較電池Uとのサイクル特性について調べたので、その結果を表13に示す。尚、充放電条件は、上記第5実施例の実験と同様の条件である。
(Experiment)
Since the cycle characteristics of the battery G of the present invention and the comparative battery U were examined, the results are shown in Table 13. The charge / discharge conditions are the same as those in the experiment of the fifth embodiment.

表13から明らかなように、無機微粒子を主体とする多孔質層がセパレータと正極活物質層との間に配置された本発明電池Gは、多孔質層が配置されていない比較電池Uに比べて、サイクル特性に優れていることが認められる。
これは、上記第4実施例の実験で示した理由と同様の理由によるものと考えられる。
また、本実験より、多孔質層はセパレータ(セパレータ本体部)の表面に形成するような構造に限定されず、正極(正極活物質層)の表面に形成しても良いことがわかる。
As is apparent from Table 13, the battery G of the present invention in which the porous layer mainly composed of inorganic fine particles is disposed between the separator and the positive electrode active material layer is compared with the comparative battery U in which the porous layer is not disposed. Thus, it is recognized that the cycle characteristics are excellent.
This is considered to be due to the same reason as shown in the experiment of the fourth embodiment.
Moreover, this experiment shows that a porous layer is not limited to the structure formed in the surface of a separator (separator main-body part), You may form in the surface of a positive electrode (positive electrode active material layer).

〔追加実験〕
円筒型電池、角型電池、及びラミネート型電池における電池の余剰空間を算出したので、その結果を表14に示す。尚、円筒型電池としては18650円筒型電池を用い、角型電池としては553450角型電池、553436角型電池を用い、ラミネート型電池としては383562ラミネート型電池を用いた。
先ず、電池缶内の総体積、巻取電極体の体積、その他部材(スペーサ、タブ等)の体積を算出し、次いで、下記数1より余剰空間の体積を算出すると共に、下記数2より余剰空間の割合を算出した。
[Additional experiment]
Since the surplus space of the battery in the cylindrical battery, the square battery, and the laminate battery was calculated, the results are shown in Table 14. A 18650 cylindrical battery was used as the cylindrical battery, a 553450 rectangular battery and a 553436 rectangular battery were used as the rectangular batteries, and a 383562 laminated battery was used as the laminated battery.
First, the total volume in the battery can, the volume of the winding electrode body, and the volume of other members (spacers, tabs, etc.) are calculated. Then, the volume of the surplus space is calculated from the following formula 1, and the surplus is calculated from the following formula 2. The percentage of space was calculated.

上記電池では、表14のような結果となったが、一般に市販されている電池を基に余剰空間の割合を算出すると、円筒型電池では6〜15%程度、角型電池では10〜20%程度、ラミネート型電池では1〜8%程度であることが認められたことから、下記数3で示す順に余剰空間が多く存在する。尚、現在検討中のHEV(ハイブリッド)用リチウムイオン電池では、余剰空間がこれよりも増加する傾向にあるが、空間部分の序列としては同一の傾向である。   In the above battery, the results shown in Table 14 were obtained. However, when the ratio of the surplus space was calculated based on a battery that is generally commercially available, it is about 6 to 15% for a cylindrical battery and 10 to 20% for a prismatic battery. In the case of a laminate type battery, it was found to be about 1 to 8%, so that there is a lot of surplus space in the order shown by the following formula 3. In addition, in the lithium ion battery for HEV (hybrid) currently under examination, the surplus space tends to increase more than this, but the order of the space portion is the same.

ここで、上記余剰空間には余剰電解液を充填することが可能であり、本発明のように余剰電解液を注液しておくことで、電極とセパレータ本体部との間の多孔質層を通って電極内部へ電解液を供給することが可能となる。したがって、この余剰空間が大きいほど余剰電解液の充填量も多くなるため、電池のサイクル寿命は長くなる。したがって、余剰空間の大きい角型電池や円筒型電池であれば、本発明の作用、効果が一層発揮される。
ラミネート電池はソフトケースであるため、電極の膨張伸縮に併せてある程度の電池形状の変化に対応できるが、電解液量は初期の注液段階である程度支配されるため(余剰電解液の量を余り多くすることができないため)、本発明の効果としては円筒型、角型電池と比較して小さいものと推測される。
Here, it is possible to fill the surplus space with surplus electrolyte, and by pouring the surplus electrolyte as in the present invention, the porous layer between the electrode and the separator body is formed. It is possible to supply the electrolytic solution into the electrode through. Therefore, the larger the surplus space, the larger the amount of surplus electrolyte solution filled, and the longer the cycle life of the battery. Therefore, the functions and effects of the present invention can be further demonstrated if the rectangular battery or the cylindrical battery has a large surplus space.
Since the laminated battery is a soft case, it can cope with a certain amount of battery shape change along with the expansion and contraction of the electrode, but the amount of electrolyte is controlled to some extent at the initial injection stage (the amount of excess electrolyte is excessive). The effect of the present invention is presumed to be smaller than that of a cylindrical or rectangular battery.

但し、充電時の電極膨張によるセパレータの圧縮とそれに伴う電解液の巻取り体外部への吐き出しを繰り返すことで、電極体内部の電解液は拡散律速により不足気味になるが、本構成では浸透、拡散速度が大きく、系外に放出された電解液も電池内部に比較的早く浸透、拡散可能であるため、ラミネート電池等の余剰電解液の少ない電池であっても十分な優位性を発揮できるものと考えられる。   However, by repeating the compression of the separator due to the electrode expansion during charging and the discharge of the electrolyte solution to the outside of the winding body, the electrolyte solution inside the electrode body seems to be insufficient due to diffusion control, Because the diffusion rate is high and the electrolyte released outside the system can penetrate and diffuse into the battery relatively quickly, even a battery with little excess electrolyte such as a laminate battery can exhibit sufficient advantages it is conceivable that.

また、円筒型電池と、角型電池及びラミネート型電池とを比較した場合、角型電池等は電池の最内周部分には意図的に設けた空間が存在せず、余剰電解液の存在部分が巻取電極体の上下部分に集約されるために、多孔質層の端面が余剰電解液に接し易くなっている。これに対して、円筒型電池は巻取りの関係上、図15に示すように、中心部に巻取り冶具の脱挿入スペース50が存在する。このスペース50は余剰電解液が存在しうる余剰空間であるため、巻取電極体52の上下部分に電解液を接するためにはかなりの電解液量を必要とする。また、電池の向きによっては巻取電極体52の上下部分が電解液に浸る場合もあるが、基本的には巻取電極体52の一部分或いは片側のみが電解液に浸ることになり、本構成による電解液の吸上げ効果は減少する。このような点からは、円筒型電池よりも角型電池、或いはラミネート型電池の方が本発明の効果を十分に発揮しうる。   In addition, when a cylindrical battery is compared with a square battery and a laminate battery, the square battery does not have an intentionally provided space in the innermost peripheral portion of the battery, and a surplus electrolyte solution exists. Are concentrated on the upper and lower portions of the winding electrode body, the end surface of the porous layer is easily in contact with the excess electrolyte. On the other hand, in the cylindrical battery, as shown in FIG. 15, there is a space 50 for inserting and removing the winding jig in the center as shown in FIG. Since this space 50 is a surplus space where surplus electrolyte can exist, a considerable amount of electrolyte is required to contact the electrolyte with the upper and lower portions of the winding electrode body 52. Further, depending on the direction of the battery, the upper and lower portions of the winding electrode body 52 may be immersed in the electrolytic solution, but basically only a part or one side of the winding electrode body 52 is immersed in the electrolytic solution. The effect of sucking up the electrolyte is reduced. From such a point, the prismatic battery or the laminated battery can sufficiently exhibit the effects of the present invention rather than the cylindrical battery.

但し、円筒型電池であっても、巻取り冶具の直径が小さくて最内周部の空間体積を小さくしたり、この体積を減少させる目的で、図16に示すように、電池反応に関与しない物質51をスペース50に挿入して余剰空間を減少させたりすることにより、本作用効果が十分に発揮できるような構成とすることが可能である。   However, even in the case of a cylindrical battery, it is not involved in the battery reaction as shown in FIG. 16 for the purpose of reducing the volume of the innermost peripheral part by reducing the diameter of the winding jig and reducing the volume. By inserting the substance 51 into the space 50 and reducing the surplus space, it is possible to achieve a configuration that can fully exhibit this effect.

加えて、上記概念から考えると、電池内部の電解液量については多いことが望ましいが、高容量化や多量の電解液の存在による液漏れの危険性などを考えると、現状で市販されている電池の最大のものを考慮した場合であっても、電解液量は電池収納体内部の総量で8.00cc/Ah以下にするのが望ましい。   In addition, considering the above concept, it is desirable that the amount of electrolyte in the battery is large, but considering the increase in capacity and the risk of liquid leakage due to the presence of a large amount of electrolyte, it is currently marketed. Even when the maximum battery is taken into account, the total amount of the electrolyte is desirably 8.00 cc / Ah or less in the total amount inside the battery housing.

〔その他の事項〕
(1)上述の如く本作用効果は電池の形状によって効果の大小が異なる。また、前述の如く、セパレータはTDでの電解液の浸透性、拡散性に劣り、且つ、巻取電極体は巻取り上下部からの電解液の浸透パスに制限されることもあり、電解液の浸透、拡散は最も悪い電池系と言える。
[Other matters]
(1) As described above, the effect of this effect varies depending on the shape of the battery. Further, as described above, the separator is inferior in the permeability and diffusibility of the electrolytic solution in TD, and the winding electrode body may be limited to the electrolytic solution penetrating path from the upper and lower portions of the winding. Penetration and diffusion are the worst battery systems.

ここで、現状では、高容量化では電極充填密度の増加により、電極表面の凹凸部は少なくなり、毛細管現象での電解液の浸透、拡散は起こり難い傾向にある。加えて、高出力化電極では、出力確保のために電極は民生用電池に比べて低充填密度ではあるが、HEVをはじめとして電池は大型化する傾向にあり、電極幅や巻取り長さの増加により、電解液は浸透、拡散し難い傾向にある。したがって、本構成は、このように巻取り電極体を使用する電池系で、充填密度が高い高容量タイプや電極幅の広い高出力タイプの電池に特に有効であると考えられる。また、電解液の吸液速度や、電解液の浸透、拡散速度が飛躍的に向上することからも、比較的高いレートで充放電する用途の電池にも好適であると考えられる。具体的には、以下の通りである。   Here, at present, when the capacity is increased, the unevenness of the electrode surface is reduced due to an increase in the electrode packing density, and the penetration and diffusion of the electrolytic solution due to the capillary phenomenon tend not to occur. In addition, with high-power electrodes, the electrodes have a lower packing density than that for consumer batteries in order to ensure output, but batteries such as HEVs tend to be larger, with electrode widths and winding lengths being reduced. Due to the increase, the electrolytic solution tends to hardly penetrate and diffuse. Therefore, this configuration is considered to be particularly effective for a high capacity type battery having a high packing density and a high output type having a wide electrode width in a battery system using the winding electrode body as described above. Further, since the liquid absorption rate of the electrolytic solution and the penetration and diffusion rate of the electrolytic solution are remarkably improved, it is considered suitable for a battery for charging and discharging at a relatively high rate. Specifically, it is as follows.

即ち、上述の各種実験で得られた結果を総合すると、セパレータTDの空間を伝わる電解液の浸透、拡散経路は前記予備実験2よりさほど期待できず、且つ、電極表面を伝わる浸透、拡散経路は予備実験3よりさほど効果として期待できない。したがって、電極内部への電解液の浸透、拡散パスは図17に示すように、正負両極1、2とセパレータ3との間の隙間を伝う経路が最も有力であり、本構成のように電解液の浸透、拡散経路である多孔質層32を新規に設けることによって、正負両極1、2の内部への電解液の浸透性と、拡散性とを飛躍的に向上させることが可能となる。したがって、充填密度が高い高容量タイプの電池、電極幅の広い高出力タイプの電池、或いは、比較的高いレートで充放電する用途の電池に本発明は特に有効であると考えられる。   That is, when the results obtained in the various experiments described above are combined, the penetration and diffusion path of the electrolyte that travels through the space of the separator TD cannot be expected as much as in the preliminary experiment 2, and the penetration and diffusion paths that travel through the electrode surface are It cannot be expected as much as the effect from the preliminary experiment 3. Therefore, as shown in FIG. 17, the path through the gap between the positive and negative electrodes 1 and 2 and the separator 3 is the most promising for the penetration and diffusion path of the electrolyte into the electrode. By newly providing a porous layer 32 which is a permeation / diffusion path of the electrolyte, it is possible to dramatically improve the permeability and diffusion of the electrolyte into the positive and negative electrodes 1 and 2. Therefore, it is considered that the present invention is particularly effective for a high capacity type battery having a high filling density, a high output type battery having a wide electrode width, or a battery for charging / discharging at a relatively high rate.

また、電極内部への浸透、拡散は図1で示したが、更に状況を詳細に解析したところ、図18(図18においては、電解液の浸透度合いが大きい部分は濃くなるように画いている)に示すようになっているものと考えることができる。即ち、最内周部7と最外周部8とは巻取りテンションが緩く、また塗布面の未塗布部との段差も存在するため、その隙間を伝って電解液が浸透、拡散し易い。ここにセパレータのMDでの浸透、拡散が加わって幾分かは電解液が浸透する。他の部分は、図17に示した経路での電解液の浸透、拡散になるものと推測される。実際の電池を解体した場合でも、電解液の浸透部には色の濃淡が見られ、表面のみ浸透している部分と電極内部まで浸透している部分とがはっきりとわかる。これは予備実験3で見られた現象と一致するものと考えられる。   Further, the penetration and diffusion into the electrode are shown in FIG. 1, but when the situation is further analyzed in detail, FIG. 18 (in FIG. 18, the portion where the degree of penetration of the electrolytic solution is large is depicted to be darker). ). That is, the innermost peripheral portion 7 and the outermost peripheral portion 8 have a loose winding tension, and there is a step with the uncoated portion of the coated surface, so that the electrolyte easily penetrates and diffuses through the gap. Here, permeation and diffusion in the MD of the separator are added, and some of the electrolyte solution permeates. The other part is presumed to be the penetration and diffusion of the electrolyte in the route shown in FIG. Even when an actual battery is disassembled, color intensities are seen in the infiltrating portion of the electrolytic solution, so that the portion penetrating only the surface and the portion penetrating to the inside of the electrode can be clearly seen. This is considered to be consistent with the phenomenon seen in preliminary experiment 3.

(2)本作用効果は全般的に電極の幅方向への浸透、拡散を助長するための構成となっており、電極奥方向への浸透、拡散を助長する構成と組み合わせることによって、更に効果的に機能を発揮させることができる。特に、負極活物質である黒鉛は圧延により鏡面体になり易く、電極表面は電解液が浸透し難い状況になっている。したがって電極表面に凹凸を形成するような処理、或いは粒径、形状の異なる活物質を電極層に用いる処理等を実施することにより内部への浸透、拡散を補助的に加速することが可能であり、これらとの組合せによって電解液浸透性の向上が期待できる。 (2) This effect is generally configured to promote penetration and diffusion in the width direction of the electrode, and is more effective when combined with a configuration that promotes penetration and diffusion in the back direction of the electrode. Can exert its functions. In particular, graphite, which is a negative electrode active material, tends to become a mirror body by rolling, and the electrode surface is difficult to permeate the electrolyte. Therefore, it is possible to assist in accelerating penetration and diffusion into the interior by performing treatments such as forming irregularities on the electrode surface or treatments using active materials with different particle sizes and shapes in the electrode layer. In combination with these, an improvement in electrolyte permeability can be expected.

(3)上記樹脂製の多孔質層の製造方法としては、最良の形態で示した方法に限定するものではなく、図19(a)〜(c)に示すように、ロブ・スリラーヤン法と類似の方法で作製することも可能である。具体的には、先ず、同図(a)に示すように、セパレータ本体部31の表面に、ポリアミド、ポリアミドイミドから成る樹脂系の材料を含むキャスト液70をスキージ71等によって塗布した後、同図(b)に示すように、これを水を含む溶液に浸漬する。そうすると、キャスト液70内に水72が浸入して、膜内部が層分離固化する。尚、この際、水中の溶媒濃度が初期と末期とで大きく異なるようなことを抑制すべく、通常、溶媒濃度の異なる溶液(水+溶媒)に順次浸漬して、徐々に溶媒を抜くような製法を用いることが望ましい。その後、同図(c)に示すように、水内から取出した後、乾燥することにより、セパレータ本体部31の表面に多孔質層32が形成されることになる。
また、樹脂製の多孔質層としては上記ポリアミドに限定するものではなく、ポリアミドイミド、ポリイミド等のその他の樹脂系の材料を用いても良い。また、多孔質層を作製する際の水溶性の極性溶媒としては、N−メチル−2−ピロリドンに限定するものではなく、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等を用いることもできる。
(3) The method for producing the resin-made porous layer is not limited to the method shown in the best mode. As shown in FIGS. 19 (a) to 19 (c), the Rob-Srilleryan method and A similar method can also be used. Specifically, as shown in FIG. 1A, first, a casting liquid 70 containing a resin material made of polyamide or polyamideimide is applied to the surface of the separator main body 31 with a squeegee 71 or the like. As shown in the figure (b), this is immersed in the solution containing water. Then, the water 72 enters the casting liquid 70 and the inside of the membrane is separated into layers and solidified. At this time, in order to prevent the solvent concentration in water from greatly differing between the initial stage and the final stage, it is usually soaked in solutions (water + solvent) having different solvent concentrations, and the solvent is gradually removed. It is desirable to use a manufacturing method. Thereafter, as shown in FIG. 3C, the porous layer 32 is formed on the surface of the separator main body 31 by taking out from the water and then drying.
Further, the resin porous layer is not limited to the above polyamide, and other resin materials such as polyamideimide and polyimide may be used. The water-soluble polar solvent for producing the porous layer is not limited to N-methyl-2-pyrrolidone, and N, N-dimethylformamide, N, N-dimethylacetamide, etc. may be used. it can.

(4)上記セパレータに形成する無機微粒子製の多孔質層の製造方法としては、ダイコート法、ディップコート法に限定するものではなく、グラビアコート法、転写法、或いはスプレーコート法を採用しても良い。また、電極に形成する無機微粒子製の多孔質層の製造方法としては、上記リバース法に限定するものではなく、上記グラビアコート法等であっても良い。
また、無機微粒子製の多孔質層としては、上記TiOに限定するものではなく、アルミナ、ジルコニア等であっても良い。
(4) The method for producing the porous layer made of inorganic fine particles to be formed on the separator is not limited to the die coating method and the dip coating method, and a gravure coating method, a transfer method, or a spray coating method may be adopted. good. Further, the method for producing the porous layer made of inorganic fine particles formed on the electrode is not limited to the reverse method, and may be the gravure coating method or the like.
Further, the porous layer made of inorganic fine particles is not limited to the above TiO 2 but may be alumina, zirconia or the like.

(5)樹脂製の多孔質層を用いる場合には、電池の加工工程に耐えうる強度、接着性があるので、より信頼性の高い電池を作製することができるという利点がある一方、無機微粒子製の多孔質層を用いる場合には、多孔質層の空隙が多くなり、電解液の浸透性がより向上するため、電極内への電解液の拡散がよりスムーズとなるという利点がある。 (5) In the case of using a resin-made porous layer, there is an advantage that a battery with higher reliability can be produced because it has strength and adhesiveness that can withstand the processing steps of the battery. In the case of using the porous layer made of the product, the voids in the porous layer are increased, and the permeability of the electrolytic solution is further improved. Therefore, there is an advantage that the diffusion of the electrolytic solution into the electrode becomes smoother.

(6)上記実施例ではセパレータ(セパレータに多孔質層が設けられたものについては、セパレータ本体)の厚みは12〜23μmとしたが、充電終止電圧に依存するとはいうものの、更なる薄型化が可能である。 (6) In the above embodiment, the thickness of the separator (the separator body for the separator provided with the porous layer) is 12 to 23 μm. However, although it depends on the end-of-charge voltage, the thickness can be further reduced. Is possible.

(7)最良の形態で示した如くセパレータに多孔質層を形成するという構造に限定するものではなく、実施例の予備実験3及び第3実施例等で示した如く、電極(正極、或いは負極、又は正負両極)の表面に形成しても良く、更に、正負両極やセパレータとは別途に作製し、これを電極とセパレータとの間に配置するような構成であっても良い。樹脂製の多孔質層を、正負両極やセパレータとは別途に作製する方法としては、上記ロブ・スリラーヤン法と類似の方法において、セパレータ本体部の表面に多孔質層を形成するのではなく、ガラスの表面に多孔質層を形成し、これをガラスから剥離する方法が例示できる。 (7) It is not limited to the structure in which the porous layer is formed on the separator as shown in the best mode, but as shown in the preliminary experiment 3 and the third example of the example, the electrode (positive electrode or negative electrode) Alternatively, it may be formed on the surface of the positive and negative electrodes), and may be formed separately from the positive and negative electrodes and the separator and disposed between the electrode and the separator. As a method for producing the resin porous layer separately from the positive and negative electrodes and the separator, in a method similar to the Rob-Srilleryan method, instead of forming a porous layer on the surface of the separator body, The method of forming a porous layer on the surface of glass and peeling this from glass can be illustrated.

尚、セパレータ本体部に多孔質層を形成する場合には、上述の如く、セパレータ本体部の片面或いは両面に形成すれば良い。但し、両面に形成すると、セパレータの厚みが大きくなって、電池容量が低下することがあるので、セパレータ本体部の一方の面に形成するか、或いは、必要性が少ない部位の多孔質層の厚みを小さくする等の手段を用いて電池容量の低下を抑制するのが望ましい。
また、セパレータ本体部に多孔質層を形成する場合には、セパレータの幅は負極の幅より大きいことが好ましい。このような構成であれば、セパレータと電池缶内の余剰空間に存在する電解液との接触面積が大きくなるので、巻取電極体の上部及び下部から電極内部への浸透、拡散が一層促進されるからである。以上のことを考慮すれば、電極(正極、或いは負極)上に多孔質層を積層するよりも、セパレータ上に多孔質層を形成する方が、より電解液の浸透、拡散の効果が期待できる。
In addition, when forming a porous layer in a separator main-body part, what is necessary is just to form in the single side | surface or both surfaces of a separator main-body part as mentioned above. However, if formed on both sides, the thickness of the separator increases, and the battery capacity may decrease. Therefore, it is formed on one side of the separator main body, or the thickness of the porous layer at a less necessary part. It is desirable to suppress a decrease in battery capacity by using a means such as reducing the battery capacity.
Moreover, when forming a porous layer in a separator main-body part, it is preferable that the width | variety of a separator is larger than the width | variety of a negative electrode. With such a configuration, since the contact area between the separator and the electrolyte existing in the excess space in the battery can increases, the penetration and diffusion from the upper and lower parts of the winding electrode body into the electrode are further promoted. This is because that. Considering the above, it is possible to expect the effect of the penetration and diffusion of the electrolytic solution by forming the porous layer on the separator rather than laminating the porous layer on the electrode (positive electrode or negative electrode). .

(8)上記実施例では、多孔質層の厚み(2つ設けている場合には総厚み)は全て4μmとしたが、この厚みに限定するものではない。但し、多孔質層の厚みを余り小さくすると、電解液の浸透、拡散パスの効果が十分に発揮されない。一方、多孔質層の厚みを余り大きくすると、発電に直接関与しない部材の占有体積が増加して、電池の高容量化の要求を満たすことができず、且つ、電池の負荷特性の低下やエネルギー密度の低下を招来する。これらのことを考慮すると、多孔質層の総厚みは、1μm以上5μm以下、特に1μm以上3μm以下に規制することが好ましい。尚、多孔質層の総厚みとは、多孔質層がセパレータと正極、又はセパレータと負極との間にのみ配置されている場合には当該多孔質層の厚みをいい、セパレータと正負両極との間に形成されている場合には、両多孔質層の合計厚みをいうものである。 (8) In the above embodiment, the thickness of the porous layer (total thickness when two porous layers are provided) is 4 μm, but is not limited to this thickness. However, if the thickness of the porous layer is too small, the effects of electrolyte penetration and diffusion path are not sufficiently exhibited. On the other hand, if the thickness of the porous layer is too large, the occupied volume of the members that are not directly involved in power generation increases, the demand for higher capacity of the battery cannot be met, and the load characteristics of the battery are reduced and the energy is reduced. Incurs a decrease in density. Considering these matters, the total thickness of the porous layer is preferably regulated to 1 μm to 5 μm, particularly 1 μm to 3 μm. The total thickness of the porous layer means the thickness of the porous layer when the porous layer is disposed only between the separator and the positive electrode or between the separator and the negative electrode. When formed between, it means the total thickness of both porous layers.

(9)無機微粒子製の多孔質層である場合に、電解液の吸液性を高めるためには、電解液が浸透する余剰空間が存在するように、無機微粒子同士がバインダーで適度に接合されていることが望ましい。そのためには、無機微粒子に対するバインダーの濃度は30質量%以下であることが好ましく、特に20質量%以下、その中でも10質量%未満であることが好ましい。 (9) In the case of a porous layer made of inorganic fine particles, in order to increase the liquid absorbency of the electrolytic solution, the inorganic fine particles are appropriately bonded with a binder so that there is an excess space through which the electrolytic solution penetrates. It is desirable that For that purpose, the concentration of the binder with respect to the inorganic fine particles is preferably 30% by mass or less, particularly 20% by mass or less, and more preferably less than 10% by mass.

(10)上記実施例では、充電終止電圧が各4.38V、4.40V、(リチウム参照極電位に対する正極電位は各4.48V、4.50V)で実験を行なったが、本発明者らが調査したところ、充電終止電圧が4.30V以上であればセパレータと正負両極との間に多孔質層を配置することが好ましく、特に4.35V以上、その中でも4.40V以上の場合にセパレータと正負両極との間に多孔質層が存在するのが好ましいことがわかった。 (10) In the above embodiment, the experiment was performed with the end-of-charge voltage being 4.38 V and 4.40 V, respectively (the positive electrode potential was 4.48 V and 4.50 V with respect to the lithium reference electrode potential). As a result, it is preferable to dispose a porous layer between the separator and the positive and negative electrodes if the end-of-charge voltage is 4.30 V or more, particularly 4.35 V or more, and in particular, if the voltage is 4.40 V or more, the separator It has been found that a porous layer is preferably present between the positive and negative electrodes.

(11)正極活物質としては、上記コバルト酸リチウムに限定するものではなく、オリビン型燐酸リチウム化合物(LiFePO)、スピネル型マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)に代表されるリチウムニッケル複合酸化物、LiNiCoMn(x+y+z=1)で表されるリチウム遷移金属複合酸化物や他のオリビン型リン酸化合物等でも良いことは勿論である。また、これらの混合物を用いても良い。 (11) The positive electrode active material is not limited to the above lithium cobaltate, but may be olivine type lithium phosphate compound (LiFePO 4 ), spinel type lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ). Of course, a lithium nickel composite oxide, a lithium transition metal composite oxide represented by LiNi x Co y Mn z O 2 (x + y + z = 1), another olivine-type phosphate compound, or the like may be used. Moreover, you may use these mixtures.

(12)正極合剤の混合方法としては、上記メカノフュージョン法に限定するものではなく、らいかい式で磨り潰しながら乾式混合する方法、または湿式にて直接スラリー中で混合/分散する方法等を用いても良い。 (12) The method of mixing the positive electrode mixture is not limited to the above-mentioned mechano-fusion method, and a method of dry mixing while grinding with a rough method or a method of mixing / dispersing directly in a slurry in a wet manner, etc. It may be used.

(13)負極活物質としては、上記黒鉛に限定されるものではなく、グラファイト、コークス、酸化スズ、金属リチウム、珪素、及びそれらの混合物等、リチウムイオンを挿入脱離できうるものであればその種類は問わない。 (13) The negative electrode active material is not limited to the above graphite, and any material that can insert and desorb lithium ions, such as graphite, coke, tin oxide, metallic lithium, silicon, and a mixture thereof. Any type.

(14)電解液のリチウム塩としては、上記LiPFに限定されるものではなく、LiBF、LiN(SOCF、LiN(SO、LiPF6−X(C2n+1[但し、1<x<6、n=1or2]等でも良く、又は、これら2種以上を混合して使用することもできる。リチウム塩の濃度は特に限定されないが、電解液1リットル当り0.8〜1.5モルに規制するのが望ましい。また、電解液の溶媒としては上記エチレンカーボネート(EC)やジエチルカーボネート(DEC)に限定するものではないが、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等のカーボネート系溶媒が好ましく、更に好ましくは環状カーボネートと鎖状カーボネートの組合せが望ましい。 (14) The lithium salt of the electrolytic solution is not limited to the above LiPF 6 , and LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-X ( C n F 2n + 1) X [ where, 1 <x <6, n = 1or2] may be such, or may be used as a mixture of two or more thereof. The concentration of the lithium salt is not particularly limited, but is preferably regulated to 0.8 to 1.5 mol per liter of the electrolyte. The solvent of the electrolytic solution is not limited to ethylene carbonate (EC) or diethyl carbonate (DEC), but propylene carbonate (PC), γ-butyrolactone (GBL), ethyl methyl carbonate (EMC), dimethyl carbonate. A carbonate-based solvent such as (DMC) is preferable, and a combination of a cyclic carbonate and a chain carbonate is more preferable.

(15)本発明は液系の電池に限定するものではなく、ゲル系のポリマー電池にも適用することができる。この場合のポリマー材料としては、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、オキセタン系ポリマー、エポキシ系ポリマー及びこれらの2種以上からなる共重合体もしくは架橋した高分子若しくはPVDFが例示され、このポリマー材料とリチウム塩と電解質を組合せてゲル状にした固体電解質を用いることができる。 (15) The present invention is not limited to a liquid battery, but can be applied to a gel polymer battery. Examples of the polymer material in this case include polyether solid polymer, polycarbonate solid polymer, polyacrylonitrile solid polymer, oxetane polymer, epoxy polymer, a copolymer composed of two or more of these, or a crosslinked polymer. A molecule or PVDF is exemplified, and a solid electrolyte in which this polymer material, a lithium salt, and an electrolyte are combined into a gel can be used.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源のみならず、電気自動車やハイブリッド自動車の車載用電源等の大型電池に適用することもできる。   The present invention can be applied not only to a driving power source of a mobile information terminal such as a mobile phone, a notebook computer, and a PDA, but also to a large battery such as an in-vehicle power source of an electric vehicle or a hybrid vehicle.

円筒型電池の注液途中段階における電解液の浸透状況を示す説明図(電極解体図)である。It is explanatory drawing (electrode disassembly figure) which shows the osmosis | permeation state of the electrolyte solution in the middle of liquid injection of a cylindrical battery. 円筒型電池の電解液吸い上げ高さ経時変化を示すグラフである。It is a graph which shows a time-dependent change of the electrolyte solution suction height of a cylindrical battery. セパレータの吸液試験の状態を示す説明図である。It is explanatory drawing which shows the state of the liquid absorption test of a separator. オレフィン系セパレータの模式図である。It is a schematic diagram of an olefin separator. オレフィン系セパレータを電子顕微鏡でみたときの写真である。It is a photograph when an olefin type separator is seen with an electron microscope. 多孔質層を積層したセパレータの電解液浸透、拡散イメージを示す説明図である。It is explanatory drawing which shows the electrolyte solution osmosis | permeation and the diffusion image of the separator which laminated | stacked the porous layer. 電極の吸液試験の状態を示す説明図である。It is explanatory drawing which shows the state of the liquid absorption test of an electrode. 本発明電池A1、A2及び比較電池Z1、Z2におけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristics in this invention battery A1, A2 and comparative battery Z1, Z2. 従来電池の充放電時における電解液の動きを示す説明図である。It is explanatory drawing which shows the motion of the electrolyte solution at the time of charging / discharging of a conventional battery. 本発明電池の充放電時における電解液の動きを示す説明図である。It is explanatory drawing which shows the motion of the electrolyte solution at the time of charging / discharging of this invention battery. 本発明電池B及び比較電池Z1、Z2におけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in this invention battery B and comparative battery Z1, Z2. 本発明電池C及び比較電池Yにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in this invention battery C and the comparison battery Y. 本発明電池D及び比較電池Xにおけるサイクル特性を示すグラフである。4 is a graph showing cycle characteristics of the present invention battery D and comparative battery X. 本発明電池F及び比較電池Vにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in this invention battery F and the comparison battery V. FIG. 円筒型電池の巻取電極体の斜視図である。It is a perspective view of the winding electrode body of a cylindrical battery. 円筒型電池の改良型巻取電極体の斜視図である。It is a perspective view of the improved winding electrode body of a cylindrical battery. 電解液の浸透、拡散経路のイメージを示す説明図である。It is explanatory drawing which shows the image of the osmosis | permeation of electrolyte solution, and a diffusion path. 電極内部への電解液の浸透、拡散状況のイメージを示す説明図である。It is explanatory drawing which shows the image of the osmosis | permeation of the electrolyte solution inside an electrode, and a diffusion condition. ロブ・スリラーヤン法による樹脂積層セパレータの作製フローを示す工程図である。It is process drawing which shows the preparation flow of the resin lamination separator by the Rob thrilleryan method. コバルト酸リチウムの結晶構造の変化と電位との関係を示すグラフである。It is a graph which shows the relationship between the change of the crystal structure of lithium cobaltate, and electric potential.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
31 セパレータ本体部
32 多孔質層
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 31 Separator main-body part 32 Porous layer

Claims (21)

正極活物質層を備えた正極、負極活物質層を備えた負極、及びこれら両極間に介装されたセパレータから成る電極体と、この電極体に供給される非水電解質と、上記電極体及び非水電解質を収納する電池収納体と、を備え、且つ、上記セパレータにおいては、MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って上記電極体に供給される非水電解質電池において、
上記正負両極のうち少なくとも一方の極と上記セパレータとの間には、少なくとも上記TDより非水電解質の浸透性に優れた多孔質層が配置されると共に、上記電池収納体の内部空間における上記電極体を除く部位の少なくとも一部には余剰電解液が含まれ、且つ、この余剰電解液と上記多孔質層の少なくとも一部とが接していることを特徴とする非水電解質電池。
An electrode body comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a separator interposed between the two electrodes, a nonaqueous electrolyte supplied to the electrode body, the electrode body, And the separator has two directions, MD and TD, which is less permeable to the non-aqueous electrolyte than MD. In the nonaqueous electrolyte battery in which the electrolyte is mainly supplied to the electrode body along the TD,
Between at least one of the positive and negative electrodes and the separator, at least a porous layer having better nonaqueous electrolyte permeability than the TD is disposed, and the electrode in the internal space of the battery housing is provided. A nonaqueous electrolyte battery characterized in that a surplus electrolyte solution is contained in at least a part of a portion excluding the body, and the surplus electrolyte solution is in contact with at least a part of the porous layer.
上記電極体は、上記正負両極と上記セパレータとが捲回された巻取電極体である、請求項1記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the electrode body is a wound electrode body in which the positive and negative electrodes and the separator are wound. 上記電池収納体が円筒型或いは角型である、請求項2記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 2, wherein the battery housing is cylindrical or rectangular. 上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成される、請求項1〜3記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the porous layer is composed of at least one selected from a group of fine particles of inorganic material composed of alumina and titania and a binder. 上記多孔質層がポリアミド、ポリアミドイミドから成る樹脂系の材料群から選択される少なくとも1種で構成される、請求項1〜3記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the porous layer is composed of at least one selected from a resin-based material group consisting of polyamide and polyamideimide. リチウム参照極電位に対して4.40V未満となるまで上記正極が充電される、請求項1〜5記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged until it becomes less than 4.40 V with respect to a lithium reference electrode potential. リチウム参照極電位に対して4.40V以上となるまで上記正極が充電される、請求項1〜5記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged to 4.40 V or more with respect to a lithium reference electrode potential. リチウム参照極電位に対して4.45V以上となるまで上記正極が充電される、請求項1〜5記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged to 4.45 V or more with respect to a lithium reference electrode potential. リチウム参照極電位に対して4.50V以上となるまで上記正極が充電される、請求項1〜5記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged until it becomes 4.50 V or more with respect to a lithium reference electrode potential. 上記多孔質層が充放電時の体積変化率の大きい電極と上記セパレータとの間に配置されている、請求項6〜9記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 6, wherein the porous layer is disposed between an electrode having a large volume change rate during charge and discharge and the separator. 上記多孔質層が充放電時の体積変化率の大きい電極の表面に形成されている、請求項10記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 10, wherein the porous layer is formed on a surface of an electrode having a large volume change rate during charge and discharge. 上記負極活物質として黒鉛を主体とするものを用い、且つ、上記多孔質層が上記負極と上記セパレータとの間に配置されている、請求項6〜9記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 6, wherein the negative electrode active material is mainly composed of graphite, and the porous layer is disposed between the negative electrode and the separator. 上記多孔質層が上記負極の表面に形成されている、請求項12記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 12, wherein the porous layer is formed on a surface of the negative electrode. 上記多孔質層が、上記負極と上記セパレータとの間及び上記正極と上記セパレータとの間に配置されている、請求項7〜9記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 7, wherein the porous layer is disposed between the negative electrode and the separator and between the positive electrode and the separator. 上記正極活物質には、少なくともアルミニウム或いはマグネシウムが固溶されたコバルト酸リチウムが含まれており、且つ、このコバルト酸リチウム表面にはジルコニアが固着されている、請求項1〜14記載の非水電解質電池。   The non-aqueous solution according to claim 1, wherein the positive electrode active material contains at least lithium cobaltate in which aluminum or magnesium is dissolved, and zirconia is fixed to the surface of the lithium cobaltate. Electrolyte battery. MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って浸透するセパレータを介して正極と対向配置された非水電解質電池用負極において、
上記TDより非水電解質の浸透性に優れた多孔質層が表面に形成されていることを特徴とする非水電解質電池用負極。
There are two directions, MD and TD, which is inferior in permeability of the nonaqueous electrolyte than MD, and the nonaqueous electrolyte is mainly arranged so as to face the positive electrode through a separator that penetrates along the TD. In the negative electrode for water electrolyte batteries,
A negative electrode for a nonaqueous electrolyte battery, wherein a porous layer having a nonaqueous electrolyte permeability superior to that of the TD is formed on the surface.
上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成される、請求項16記載の非水電解質電池用負極。   The negative electrode for a non-aqueous electrolyte battery according to claim 16, wherein the porous layer is composed of at least one selected from a group of fine particles of inorganic material composed of alumina and titania and a binder. MDと、このMDより非水電解質の浸透性に劣るTDという2つの方向性が存在しており、上記非水電解質は主として上記TDに沿って浸透するセパレータを介して負極と対向配置された非水電解質電池用正極において、
上記TDより非水電解質の浸透性に優れた多孔質層が表面に形成されていることを特徴とする非水電解質電池用正極。
There are two directions, MD and TD, which is inferior to the permeability of the non-aqueous electrolyte than MD, and the non-aqueous electrolyte is disposed in a non-opposite manner facing the negative electrode through a separator that penetrates mainly along the TD. In the positive electrode for water electrolyte battery,
A positive electrode for a non-aqueous electrolyte battery, wherein a porous layer having a non-aqueous electrolyte permeability superior to that of the TD is formed on the surface.
上記多孔質層がアルミナ、チタニアから成る無機材料系の微粒子群から選択される少なくとも1種とバインダーとから構成される、請求項18記載の非水電解質電池用正極。   The positive electrode for a non-aqueous electrolyte battery according to claim 18, wherein the porous layer is composed of at least one selected from a group of fine particles of inorganic material composed of alumina and titania and a binder. 負極集電体の表面に負極活物質層を形成する第1ステップと、
上記負極活物質層の表面に、無機材料の微粒子を含むスラリーを塗布する第2ステップと、
上記スラリーを乾燥させる第3ステップと、
を有することを特徴とする非水電解質電池用負極の製造方法。
A first step of forming a negative electrode active material layer on the surface of the negative electrode current collector;
A second step of applying a slurry containing fine particles of an inorganic material to the surface of the negative electrode active material layer;
A third step of drying the slurry;
The manufacturing method of the negative electrode for nonaqueous electrolyte batteries characterized by having.
正極集電体の表面に正極活物質層を形成する第1ステップと、
上記正極活物質層の表面に、無機材料の微粒子を含むスラリーを塗布する第2ステップと、
上記スラリーを乾燥させる第3ステップと、
を有することを特徴とする非水電解質電池用正極の製造方法。
A first step of forming a positive electrode active material layer on the surface of the positive electrode current collector;
A second step of applying a slurry containing fine particles of an inorganic material to the surface of the positive electrode active material layer;
A third step of drying the slurry;
The manufacturing method of the positive electrode for nonaqueous electrolyte batteries characterized by having.
JP2006211008A 2005-09-29 2006-08-02 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery Pending JP2007123237A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006211008A JP2007123237A (en) 2005-09-29 2006-08-02 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
EP06798109A EP1947710A1 (en) 2005-09-29 2006-09-19 Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
CN2006800362985A CN101278421B (en) 2005-09-29 2006-09-19 Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using them
KR1020087007335A KR20080049074A (en) 2005-09-29 2006-09-19 Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
US12/088,838 US20090291355A1 (en) 2005-09-29 2006-09-19 Positive electrode for non-aqueous electrolyte battery, negative electrode for non-aqueous electrolyte battery, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using them
PCT/JP2006/318498 WO2007037145A1 (en) 2005-09-29 2006-09-19 Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005285279 2005-09-29
JP2006211008A JP2007123237A (en) 2005-09-29 2006-08-02 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2007123237A true JP2007123237A (en) 2007-05-17

Family

ID=38146828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211008A Pending JP2007123237A (en) 2005-09-29 2006-08-02 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2007123237A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218749A (en) * 2009-03-13 2010-09-30 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011065538A1 (en) * 2009-11-30 2011-06-03 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
US8512898B2 (en) 2007-09-27 2013-08-20 Sanyo Electronics Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US8518577B2 (en) 2008-06-13 2013-08-27 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
JP2014135253A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Electricity storage element and electricity storage element pack
WO2014208454A1 (en) * 2013-06-27 2014-12-31 旭化成イーマテリアルズ株式会社 Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JP2016009651A (en) * 2014-06-26 2016-01-18 株式会社豊田自動織機 Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2016152116A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Power storage device
JP2017152199A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Manufacturing method for lithium ion secondary battery
US9966635B2 (en) 2011-03-16 2018-05-08 Gs Yuasa International Ltd. Electric storage device
JP2019129029A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020057522A (en) * 2018-10-02 2020-04-09 トヨタ自動車株式会社 Winding electrode body for non-aqueous electrolyte secondary battery
CN114527178A (en) * 2022-03-17 2022-05-24 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, and battery and preparation method thereof
CN115149215A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Lithium ion secondary battery
WO2024043145A1 (en) * 2022-08-24 2024-02-29 パナソニックエナジー株式会社 Nonaqueous electrolyte secondary battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319260A (en) * 1991-04-17 1992-11-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH10106545A (en) * 1996-09-26 1998-04-24 Japan Storage Battery Co Ltd Organic electrolyte secondary battery and manufacture of electrode thereof
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2004146190A (en) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd Separator for lithium ion secondary battery and lithium ion secondary battery provided with same
JP2004349146A (en) * 2003-05-23 2004-12-09 Sumitomo Chem Co Ltd Manufacturing method of lithium secondary battery
JP2004363048A (en) * 2003-06-06 2004-12-24 Sony Corp Separator and non-aqueous electrolyte battery
JP2005314635A (en) * 2004-03-31 2005-11-10 Toyobo Co Ltd Porous membrane, method for manufacturing the same and secondary lithium-ion battery using the same
JP2006179432A (en) * 2004-12-24 2006-07-06 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2006093049A1 (en) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and manufacturing method thereof
JP2006294597A (en) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
JP2006351386A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp Battery and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319260A (en) * 1991-04-17 1992-11-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH10106545A (en) * 1996-09-26 1998-04-24 Japan Storage Battery Co Ltd Organic electrolyte secondary battery and manufacture of electrode thereof
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2001135314A (en) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2004146190A (en) * 2002-10-24 2004-05-20 Tomoegawa Paper Co Ltd Separator for lithium ion secondary battery and lithium ion secondary battery provided with same
JP2004349146A (en) * 2003-05-23 2004-12-09 Sumitomo Chem Co Ltd Manufacturing method of lithium secondary battery
JP2004363048A (en) * 2003-06-06 2004-12-24 Sony Corp Separator and non-aqueous electrolyte battery
JP2005314635A (en) * 2004-03-31 2005-11-10 Toyobo Co Ltd Porous membrane, method for manufacturing the same and secondary lithium-ion battery using the same
JP2006179432A (en) * 2004-12-24 2006-07-06 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
WO2006093049A1 (en) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and manufacturing method thereof
JP2006294597A (en) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
JP2006351386A (en) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp Battery and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512898B2 (en) 2007-09-27 2013-08-20 Sanyo Electronics Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US8518577B2 (en) 2008-06-13 2013-08-27 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
US8795871B2 (en) 2008-06-13 2014-08-05 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
JP2010218749A (en) * 2009-03-13 2010-09-30 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2011065538A1 (en) * 2009-11-30 2011-06-03 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery
US9966635B2 (en) 2011-03-16 2018-05-08 Gs Yuasa International Ltd. Electric storage device
JP2014135253A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Electricity storage element and electricity storage element pack
WO2014208454A1 (en) * 2013-06-27 2014-12-31 旭化成イーマテリアルズ株式会社 Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JPWO2014208454A1 (en) * 2013-06-27 2017-02-23 旭化成株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
US10276849B2 (en) 2013-06-27 2019-04-30 Asahi Kasei E-Materials Corporation Separator including polyolefin microporous membrane and inorganic porous layer, and nonaqueous electrolyte battery using the same
KR101932317B1 (en) 2013-06-27 2018-12-24 아사히 가세이 이-매터리얼즈 가부시키가이샤 Separator for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JP2016009651A (en) * 2014-06-26 2016-01-18 株式会社豊田自動織機 Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2016152116A (en) * 2015-02-17 2016-08-22 株式会社Gsユアサ Power storage device
JP2017152199A (en) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 Manufacturing method for lithium ion secondary battery
JP2019129029A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7059644B2 (en) 2018-01-23 2022-04-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020057522A (en) * 2018-10-02 2020-04-09 トヨタ自動車株式会社 Winding electrode body for non-aqueous electrolyte secondary battery
CN115149215A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Lithium ion secondary battery
CN115149215B (en) * 2021-03-31 2024-04-12 丰田自动车株式会社 Lithium ion secondary battery
CN114527178A (en) * 2022-03-17 2022-05-24 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, and battery and preparation method thereof
CN114527178B (en) * 2022-03-17 2024-03-29 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, battery and preparation method thereof
WO2024043145A1 (en) * 2022-08-24 2024-02-29 パナソニックエナジー株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2007123238A (en) Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2007123237A (en) Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
WO2007037145A1 (en) Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
EP2696391B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
EP2980907B1 (en) Non-aqueous electrolyte secondary battery
EP2696393B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
EP2696392B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US20200127290A1 (en) Non-Aqueous Electrolyte Secondary Battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
EP1401037A2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP5397711B2 (en) Method for manufacturing battery electrode
JP5196982B2 (en) Non-aqueous electrolyte battery
KR102264739B1 (en) Negative electrode active material, preparing method of the same, negative electrode and lithium secondary battery including the same
JP5800208B2 (en) Nonaqueous electrolyte secondary battery
JP3705801B1 (en) Lithium ion secondary battery
JPWO2010050028A1 (en) Metal-air battery and metal-air battery manufacturing method
JP4414165B2 (en) Electronic component separator and electronic component
JPWO2014021291A1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4352972B2 (en) Electrode and battery using the same
JP2005019156A (en) Separator for electronic component, and electronic component
JP2019029393A (en) Alkali metal ion-doping method
JP2008027879A (en) Lithium secondary battery and electrode therefor
JP2009135540A (en) Nonaqueous lithium power storage element and manufacturing method
JP4259121B2 (en) Battery separator and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120912