JP2000030686A - Non-aqueous electrolyte battery separator and lithium secondary battery - Google Patents

Non-aqueous electrolyte battery separator and lithium secondary battery

Info

Publication number
JP2000030686A
JP2000030686A JP11118004A JP11800499A JP2000030686A JP 2000030686 A JP2000030686 A JP 2000030686A JP 11118004 A JP11118004 A JP 11118004A JP 11800499 A JP11800499 A JP 11800499A JP 2000030686 A JP2000030686 A JP 2000030686A
Authority
JP
Japan
Prior art keywords
electrolyte battery
aqueous electrolyte
separator
battery separator
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11118004A
Other languages
Japanese (ja)
Other versions
JP3175730B2 (en
Inventor
Yasuo Shinohara
泰雄 篠原
Yoshifumi Tsujimoto
佳史 辻本
Tsuyoshi Nakano
強 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11800499A priority Critical patent/JP3175730B2/en
Publication of JP2000030686A publication Critical patent/JP2000030686A/en
Application granted granted Critical
Publication of JP3175730B2 publication Critical patent/JP3175730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe battery with a high shorting temperature by using a separator containing a base material made of fabric, nonwoven fabric, paper or porous film, heat resistant nitrogen-containing aromatic polymer, and ceramic powder. SOLUTION: A base material contains organic fiber and/or inorganic fiber and is 40 g/m2 or less in weight per a unit area and 70 μm or less in thickness. Organic fiber is formed of thermoplastic polymer, while inorganic fiber is made of glass fiber. A separator contains 10 weight % or more of thermoplastic polymer melting at 260 deg.C or less, and the thermoplastic polymer is melted according to the increase of temperature so as to close cavities in the separator. Heat resistant nitrogen-containing aromatic polymer is aromatic polyimide or aromatic polyamide, while ceramic powder is metal oxide metal nitride, or metal carbide with a primary mean grain size of 1.0 μm or less. A slurry solution, in which ceramic powder is dispersed in a polar organic solvent solution containing heat resistant nitrogen-containing aromatic polymer, is prepared so as to be applied to the base material and dried then.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性含窒素芳香
族重合体およびセラミック粉末を含む非水電解質電池セ
パレーターおよびリチウム二次電池に関する。
The present invention relates to a non-aqueous electrolyte battery separator containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder, and a lithium secondary battery.

【0002】[0002]

【従来の技術】非水系の電解液を用いるリチウム一次電
池またはリチウム二次電池は、その高容量および高エネ
ルギー密度が得られるといった特性から大いに期待され
ている。これらの電池は、正・負極の電極間に電気絶縁
性の多孔質のフィルムからなるセパレーターを介在さ
せ、フィルムの空隙内にリチウム塩を溶解した電解液を
含浸し、それらの正・負極とセパレーターを積層した
り、または渦巻式に巻付けた構造が主である。リチウム
二次電池は、その高容量、高エネルギー密度に起因する
問題点、例えば電池内外での短絡により電池温度の上昇
が大きいことに対して、種々の安全策を講じる必要があ
る。このような問題点を解決するために、セパレーター
に種々の工夫を加える試みがなされている。
2. Description of the Related Art A lithium primary battery or a lithium secondary battery using a non-aqueous electrolyte is expected to have high capacity and high energy density. In these batteries, a separator made of an electrically insulating porous film is interposed between positive and negative electrodes, and an electrolyte solution in which a lithium salt is dissolved is impregnated in the gaps of the film, and the positive and negative electrodes and the separator are separated. Are mainly laminated or spirally wound. Lithium secondary batteries require various safety measures against problems due to their high capacity and high energy density, for example, a large rise in battery temperature due to short circuits inside and outside the batteries. In order to solve such problems, attempts have been made to add various devices to the separator.

【0003】特に、セパレーターが寄与できる安全対策
としては、シャットダウン特性とショート特性が注目さ
れている。ここに、過充電、外部または内部短絡などの
トラブルにより電池温度が上がり、セパレーターの一部
が溶融して空隙が閉塞され、電流が遮断されることをシ
ャットダウン(ヒューズともいう)といい、そのときの
温度をシャットダウン温度という。さらに温度が上が
り、セパレーターが溶融して大きく穴があき、再び短絡
することをショートといい、そのときの温度をショ−ト
温度という。シャットダウン温度を低くし、ショ−ト温
度を高くすることが非水電解質電池用セパレーターに求
められている。
[0003] In particular, as safety measures to which a separator can contribute, attention has been paid to shutdown characteristics and short-circuit characteristics. Here, when the battery temperature rises due to troubles such as overcharging or external or internal short circuit, a part of the separator melts, the void is closed, and the current is cut off is called a shutdown (also called a fuse). This temperature is called the shutdown temperature. When the temperature rises further, the separator melts, a large hole is formed, and a short circuit occurs again, a short circuit is called, and the temperature at that time is called a short temperature. It is required for a separator for a non-aqueous electrolyte battery to have a low shutdown temperature and a high short temperature.

【0004】従来、リチウム二次電池のセパレーターと
しては、厚みの薄い多孔質フィルムが使用されており、
例えば、ヘキスト社製のCelgard(登録商標)が
リチウム二次電池のセパレーターとして好適に用いられ
ている。しかし、さらに耐熱性が良好でショート温度が
高い非水電解質電池用セパレーターが望まれていた。
Conventionally, a porous film having a small thickness has been used as a separator for a lithium secondary battery.
For example, Celgard (registered trademark) manufactured by Hoechst is preferably used as a separator of a lithium secondary battery. However, a separator for a non-aqueous electrolyte battery having better heat resistance and a higher short-circuit temperature has been desired.

【0005】このような非水電解質電池用セパレーター
の素材として、耐熱性に優れた全芳香族ポリアミド系重
合体を使用することが検討されている。例えば、特公昭
59−36939号公報には、芳香族重合体である、芳
香族ポリアミドおよび芳香族ポリイミドの多孔質フィル
ムの製造方法が記載され、特公昭59−14494号公
報には、芳香族ポリアミドの多孔質フィルムの製造方法
が記載されており、電池用セパレーターとして使用でき
ることが記載されている。また、特開平5−33500
5号公報には、du Pont社製のノーメックス(登
録商標)紙(メタアラミド紙)をリチウム二次電池のセ
パレーターとして使用することが記載されている。同じ
く、特開平7−78608号公報と特開平7−3757
1号公報にも、メタアラミドからなる不織布または紙状
シートを電池用セパレーターに使用することが記載され
ている。また、ポリイミドについては、特開昭62−3
7871号公報と特開平2−46649号公報に、非水
電解液電池のセパレーターに使用することが記載されて
いる。これらについては、耐熱性を維持しつつ、さらに
イオン透過性が良好で電池特性が良いものが望まれてい
た。
As a material for such a separator for a non-aqueous electrolyte battery, the use of a wholly aromatic polyamide polymer having excellent heat resistance has been studied. For example, Japanese Patent Publication No. 59-36939 describes a method for producing a porous film of an aromatic polymer, an aromatic polyamide and an aromatic polyimide, and Japanese Patent Publication No. 59-14494 discloses an aromatic polyamide. And a method for producing a porous film, which can be used as a battery separator. Further, Japanese Patent Application Laid-Open No. 5-33500
No. 5 describes that Nomex (registered trademark) paper (metaramid paper) manufactured by du Pont is used as a separator of a lithium secondary battery. Similarly, JP-A-7-78608 and JP-A-7-3775
No. 1 also discloses that a non-woven fabric or paper-like sheet made of meta-aramid is used for a battery separator. For polyimide, see JP-A-62-3
No. 7871 and Japanese Patent Application Laid-Open No. 2-46649 describe the use of the polymer as a separator for a non-aqueous electrolyte battery. With respect to these, it has been demanded that those having good ion permeability and good battery characteristics be maintained while maintaining heat resistance.

【0006】一方、シャットダウン特性とショート特性
の観点では、電池内外で短絡した場合に、電池の安全性
を確保する点では、特開平3−291848号公報、特
公平4−1692号公報には、熱可塑性樹脂の多孔フィ
ルムに、加熱溶融可能な閉塞材を付設し、この閉塞材が
加熱溶融されることにより微多孔膜表面を覆うことによ
り、電流を遮断するシャットダウン機能を電池用セパレ
ーターに持たせることが提案されている。また、特開昭
60−52号公報、特開昭60−136161号公報に
は、ポリプロピレン不織布にポリエチレン系樹脂粉末を
付着させ、該粉末を加熱溶融させて不織布の穴を塞い
で、電池用セパレーターにシャットダウン機能を持たせ
ることが提案されている。しかし、これらはいずれも熱
可塑性樹脂を用いており、耐熱性が十分でなく、ショー
ト温度が低く安全性の面で用途が限定される。本発明者
らは、上記したような問題点がないセパレーターについ
て鋭意検討を重ねた結果、耐熱性含窒素芳香族重合体に
セラミック粉末を含有してなるセパレーターが、高耐熱
性でショート温度が高く、さらにイオン透過性も良好で
あることを見い出した。
On the other hand, from the viewpoint of the shutdown characteristics and the short-circuit characteristics, Japanese Patent Application Laid-Open Nos. 3-291848 and 4-1692 disclose that in the event of a short circuit inside and outside the battery, the safety of the battery is ensured. A sealing material that can be heated and melted is attached to the porous film of the thermoplastic resin, and the sealing material is heated and melted to cover the surface of the microporous membrane, thereby providing the battery separator with a shutdown function of interrupting current. It has been proposed. Also, JP-A-60-52 and JP-A-60-136161 disclose a polyethylene-based resin powder adhered to a polypropylene non-woven fabric, and the powder is heated and melted to close the holes of the non-woven fabric. It has been proposed to have a shutdown function in the CAM. However, all of them use a thermoplastic resin, have insufficient heat resistance, are low in short-circuit temperature, and are limited in use in terms of safety. The present inventors have conducted intensive studies on a separator having no problems as described above, and as a result, a separator containing ceramic powder in a heat-resistant nitrogen-containing aromatic polymer has a high heat resistance and a high short-circuit temperature. It was also found that the ion permeability was good.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、高耐
熱性でショート温度が高いという耐熱性含窒素芳香族重
合体の特長を生かしつつ、さらにイオン透過性が良好で
電池特性が良い非水電解質電池用セパレーターを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to make use of the features of a heat-resistant nitrogen-containing aromatic polymer having high heat resistance and a high short-circuit temperature, and to further improve the ion permeability and the battery characteristics. An object of the present invention is to provide a separator for a water electrolyte battery.

【0008】また、本発明の他の目的は、過熱時にシャ
ットダウンする安全性を備え、さらに加熱されても溶融
しない、ショート温度の高い、さらに安全性に優れた非
水電解質電池用セパレーターを提供することにある。さ
らに本発明の目的は、該セパレーターを使用することに
より、ショート温度の高い、さらに安全性に優れたリチ
ウム二次電池を提供することにある。
Another object of the present invention is to provide a separator for a non-aqueous electrolyte battery which has the safety of shutting down when overheated, does not melt even when heated, has a high short-circuit temperature, and is excellent in safety. It is in. Still another object of the present invention is to provide a lithium secondary battery having a high short-circuit temperature and excellent safety by using the separator.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、(1)
耐熱性含窒素芳香族重合体およびセラミック粉末を含む
非水電解質電池セパレーターに関するものである。
That is, the present invention provides (1)
The present invention relates to a non-aqueous electrolyte battery separator containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.

【0010】また、本発明は、(2)織物、不織布、紙
または多孔質のフィルムからなる基材、耐熱性含窒素芳
香族重合体およびセラミック粉末を含む非水電解質電池
セパレーターに関するものである。
[0010] The present invention also relates to (2) a non-aqueous electrolyte battery separator comprising a substrate made of woven fabric, nonwoven fabric, paper or a porous film, a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.

【0011】次に、本発明は、(3)非水電解質電池用
セパレーターが、260℃以下で溶融する熱可塑性ポリ
マーをセパレーター全体に対して10重量%以上含み、
該熱可塑性ポリマーは、温度上昇時に溶融し、該セパレ
ーターの空隙を閉塞するポリマーである(1)または
(2)に記載の非水電解質電池セパレーターに関するも
のである。
Next, the present invention provides (3) a separator for a non-aqueous electrolyte battery, which contains at least 10% by weight of a thermoplastic polymer which melts at 260 ° C. or less, based on the entire separator;
The thermoplastic polymer is a polymer that melts when the temperature rises and closes the voids of the separator, and relates to the nonaqueous electrolyte battery separator according to (1) or (2).

【0012】さらに、本発明は、(4)下記(a)〜
(e)の工程を含む方法により製造された塗工膜からな
る非水電解質電池セパレーターに関するものである。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に、該耐熱性含窒素芳香族重合体100重量部に対し
セラミック粉末を1〜1500重量部分散した、260
℃以下で溶融する熱可塑性樹脂を含んでいてもよいスラ
リー溶液を調製する。 (b)該スラリー溶液を塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
させる。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
Further, the present invention provides (4)
The present invention relates to a non-aqueous electrolyte battery separator comprising a coating film produced by a method including the step (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of the heat-resistant nitrogen-containing aromatic polymer.
Prepare a slurry solution that may contain a thermoplastic resin that melts at or below 0 ° C. (B) applying the slurry solution to form a coating film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;

【0013】次いで、本発明は、(5)下記(a)〜
(e)の工程を含む方法により製造された塗工膜からな
る非水電解質電池セパレーターに関するものである。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に、該耐熱性含窒素芳香族重合体100重量部に対し
セラミック粉末を1〜1500重量部分散した、260
℃以下で溶融する熱可塑性樹脂を含んでいてもよいスラ
リー溶液を調製する。 (b)該スラリー溶液を織物、不織布、紙または多孔質
のフィルムからなる基材に塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
させる。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
Next, the present invention provides (5)
The present invention relates to a non-aqueous electrolyte battery separator comprising a coating film produced by a method including the step (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of the heat-resistant nitrogen-containing aromatic polymer.
Prepare a slurry solution that may contain a thermoplastic resin that melts at or below 0 ° C. (B) The slurry solution is applied to a substrate made of woven fabric, nonwoven fabric, paper or a porous film to form a coated film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;

【0014】また、本発明は、(6)本発明(1)〜
(5)に記載の非水電解質電池セパレーターを含むリチ
ウム二次電池に関するものである。
Further, the present invention provides (6) the present invention (1) to
It relates to a lithium secondary battery including the nonaqueous electrolyte battery separator according to (5).

【0015】[0015]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明の非水電解質電池セパレーターは、耐熱性
含窒素芳香族重合体およびセラミック粉末を含むことを
特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The non-aqueous electrolyte battery separator of the present invention is characterized by containing a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.

【0016】本発明における耐熱性含窒素芳香族重合体
とは、主鎖に窒素原子と芳香族環を含む重合体であり、
例えば、芳香族ポリアミド(以下、「アラミド」という
ことがある)、芳香族ポリイミド(以下、「ポリイミド」
ということがある)、芳香族ポリアミドイミドなどがあ
げられる。
The heat-resistant nitrogen-containing aromatic polymer in the present invention is a polymer having a main chain containing a nitrogen atom and an aromatic ring,
For example, aromatic polyamide (hereinafter, sometimes referred to as “aramid”), aromatic polyimide (hereinafter, “polyimide”)
In some cases) and aromatic polyamideimide.

【0017】アラミドとしては、例えばメタ配向芳香族
ポリアミド(以下、「メタアラミド」ということがあ
る。)とパラ配向芳香族ポリアミド(以下、「パラアラ
ミド」ということがある)があげられ、多孔質になりや
すい点でパラアラミドが好ましい。
The aramid includes, for example, a meta-oriented aromatic polyamide (hereinafter, sometimes referred to as “meta-aramid”) and a para-oriented aromatic polyamide (hereinafter, sometimes referred to as “para-aramid”). Para-aramid is preferred because of its ease.

【0018】ここに、パラアラミドとは、パラ配向芳香
族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮
合重合により得られるものであり、アミド結合が芳香族
環のパラ位またはそれに準じた配向位(例えば、4、
4’−ビフェニレン、1、5−ナフタレン、2、6−ナ
フタレン等のような反対方向に同軸または平行に延びる
配向位)で結合される繰り返し単位から実質的になるも
のである。
Here, the para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond has a para-position of an aromatic ring or an alignment position similar thereto (for example, 4,
It consists essentially of recurring units linked in opposite directions, such as 4'-biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc.).

【0019】具体的には、ポリ(パラフェニレンテレフ
タルアミド)、ポリ(パラベンズアミド、ポリ(4、
4’−ベンズアニリドテレフタルアミド)、ポリ(パラ
フェニレン−4、4’−ビフェニレンジカルボン酸アミ
ド)、ポリ(パラフェニレン−2、6−ナフタレンジカ
ルボン酸アミド)、ポリ(2−クロロ−パラフェニレン
テレフタルアミド)、パラフェニレンテレフタルアミド
/2、6−ジクロロパラフェニレンテレフタルアミド共
重合体等のパラ配向型またはパラ配向型に準じた構造を
有するパラアラミドが例示される。
Specifically, poly (paraphenylene terephthalamide), poly (parabenzamide, poly (4,
4'-benzanilide terephthalamide), poly (paraphenylene-4,4'-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide) And para-aramid having a para-oriented or para-oriented structure such as paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer.

【0020】本発明におけるパラアラミドは、極性有機
溶媒に溶けて低粘度の溶液とすることができ、塗工性が
優れるので固有粘度1.0dl/g〜2.8dl/gのパ
ラアラミドであることが好ましく、さらには固有粘度
1.7dl/g〜2.5dl/gであることが好ましい。
また、固有粘度が1.0dl/g未満では十分なフィル
ム強度が得られない場合がある。固有粘度が2.8dl
/gを越えると安定なパラアラミド溶液となりにくく、
パラアラミドが析出しフィルム化が困難となる場合があ
る。
The para-aramid in the present invention can be dissolved in a polar organic solvent to form a low-viscosity solution, and is excellent in coating properties, so that para-aramid having an intrinsic viscosity of 1.0 dl / g to 2.8 dl / g may be used. Preferably, the intrinsic viscosity is 1.7 dl / g to 2.5 dl / g.
If the intrinsic viscosity is less than 1.0 dl / g, sufficient film strength may not be obtained. 2.8 dl intrinsic viscosity
/ G is difficult to become a stable para-aramid solution,
In some cases, para-aramid precipitates and it is difficult to form a film.

【0021】ここに、極性有機溶媒としては、例えば極
性アミド系溶媒または極性尿素系溶媒であり、具体的に
は、N,N−ジメチルホルムアミド、N,N−ジメチル
アセトアミド、N−メチル−2−ピロリドン、テトラメ
チルウレア等があげられるが、これらに限定されるもの
ではない。
Here, the polar organic solvent is, for example, a polar amide-based solvent or a polar urea-based solvent. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-methyl-2-amide Examples include, but are not limited to, pyrrolidone and tetramethylurea.

【0022】本発明におけるパラアラミドは、多孔質で
あり、フィブリル状ポリマーであることが好ましい。該
フィブリル状ポリマーは、微視的には、不織布状であ
り、層状で多孔状の空隙を有するものであり、いわゆる
パラアラミド多孔質樹脂を形成している。
The para-aramid in the present invention is porous and is preferably a fibril-like polymer. The fibril-like polymer is microscopically non-woven, has layered and porous voids, and forms a so-called para-aramid porous resin.

【0023】本発明に用いられるポリイミドとしては、
芳香族の二酸無水物とジアミンの縮重合で製造される全
芳香族ポリイミドが好ましい。該二酸無水物の具体例と
しては、ピロメリット酸二無水物、3、3’、4、4’
−ジフェニルスルホンテトラカルボン酸二無水物、3、
3’、4、4’−ベンゾフェノンテトラカルボン酸二無
水物、2、2’−ビス(3、4―ジカルボキシフェニ
ル)ヘキサフルオロプロパン、3、3’、4、4’−ビ
フェニルテトラカルボン酸二無水物などがあげられる。
該ジアミンの具体例としては、オキシジアニリン、パラ
フェニレンジアミン、ベンゾフェノンジアミン、3、
3’−メチレンヂアニリン、3、3’−ジアミノベンソ
フェノン、3、3’−ジアミノジフェニルスルフォン、
1、5’―ナフタレンジアミンなどがあげられるが、本
発明は、これらに限定されるものではない。本発明にお
いては、ポリイミド溶液から直接的に多孔質フィルムを
作成する場合には、溶媒に可溶なポリイミドが好適に使
用できる。このポリイミドとしては、例えば、3、
3’、4、4’−ジフェニルスルホンテトラカルボン酸
二無水物と、芳香族ジアミンとの重縮合物のポリイミド
があげられる。
The polyimide used in the present invention includes:
A wholly aromatic polyimide produced by condensation polymerization of an aromatic dianhydride and a diamine is preferred. Specific examples of the dianhydride include pyromellitic dianhydride, 3, 3 ′, 4, 4 ′
-Diphenylsulfonetetracarboxylic dianhydride, 3,
3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,3', 4,4'-biphenyltetracarboxylic dianhydride Anhydrides and the like.
Specific examples of the diamine include oxydianiline, paraphenylenediamine, benzophenone diamine, 3,
3′-methylenedianiline, 3,3′-diaminobensophenone, 3,3′-diaminodiphenylsulfone,
Examples thereof include 1,5′-naphthalenediamine, but the present invention is not limited to these. In the present invention, when a porous film is prepared directly from a polyimide solution, a solvent-soluble polyimide can be suitably used. As this polyimide, for example, 3,
Examples of the polyimide include a polycondensate of 3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.

【0024】ポリイミドに用いる極性有機溶媒として
は、アラミドのところで例示したもののほか、ジメチル
スルホキサイド、クレゾール、およびo−クロロフェノ
ール等が好適に使用できる。
As the polar organic solvent used for polyimide, in addition to those exemplified for aramid, dimethyl sulfoxide, cresol, o-chlorophenol and the like can be suitably used.

【0025】また、本発明において、ポリイミドとして
は、多孔質のものが好ましい。例えば中実フィルムを機
械加工、またはレーザー加工等により穴あけして多孔質
にすることができる。また、溶液流延法でポリイミドフ
ィルムを作成する際、塗工時のポリマー濃度等のポリイ
ミドの成形条件の制御により、多孔質のものを作成でき
る。また、セラミック粉末を複合化することにより、任
意のポリマー濃度の溶液で、均一で、かつ微細な多孔質
を形成することができる。またセラミック粉末の添加量
により、透気度を制御することができる。
In the present invention, the polyimide is preferably a porous one. For example, a solid film can be made porous by drilling by machining or laser processing. When a polyimide film is prepared by a solution casting method, a porous film can be prepared by controlling polyimide molding conditions such as a polymer concentration at the time of coating. Further, by forming a composite of the ceramic powder, a uniform and fine porous material can be formed with a solution having an arbitrary polymer concentration. The air permeability can be controlled by the amount of the ceramic powder added.

【0026】本発明の非水電解質電池用セパレーター
は、セラミック粉末を含むことが必要である。該セラミ
ック粉末は、耐熱性含窒素芳香族重合体と絡まって、捕
捉され、非水電解質電池用セパレーター中の全体、また
は部分的に分散して配置している。
The separator for a non-aqueous electrolyte battery of the present invention needs to contain ceramic powder. The ceramic powder is trapped by being entangled with the heat-resistant nitrogen-containing aromatic polymer, and is disposed in whole or in part in the non-aqueous electrolyte battery separator.

【0027】本発明におけるセラミック粉末は、非水電
解質電池用セパレーター強度に与える影響、塗工面の平
滑性の点より、一次粒子の平均粒径が1.0μm以下で
あることが好ましく、0.5μm以下の粉末であること
がより好ましく、0.1μm以下であることがさらに好
ましい。該一次粒子の平均粒径は、電子顕微鏡により得
た写真を、粒子径計測器で解析する方法により測定す
る。セラミック粉末の一次粒子の平均粒径が1.0μm
を超えるとき、該セパレーターは、脆くなり、塗工面も
粗くなる場合がある。また、セラミック粉末の含有量
は、好ましくは非水電解質電池用セパレーター重量の1
重量%以上95重量%以下であり、さらに好ましくは5
重量%以上50重量%以下である。セラミック粉末の含
有量が、非水電解質電池用セパレーター重量の1重量%
未満のとき、イオン透過性および電池特性の促進効果が
十分でない場合があり、95重量%を超えるときは、該
セパレーターは、脆くなり、取り扱いが難しくなる場合
がある。該セラミック粉末の形状は、特に限定はなく、
球状でもランダムな形状でも使用できる。
The average particle size of the primary particles of the ceramic powder in the present invention is preferably 1.0 μm or less, from the viewpoint of the effect on the strength of the separator for nonaqueous electrolyte batteries and the smoothness of the coated surface. The powder is more preferably the following powder, and further preferably 0.1 μm or less. The average particle size of the primary particles is measured by a method in which a photograph obtained by an electron microscope is analyzed by a particle size measuring device. Average primary particle size of ceramic powder is 1.0μm
When it exceeds, the separator may be brittle and the coated surface may be rough. Further, the content of the ceramic powder is preferably 1% of the weight of the separator for a non-aqueous electrolyte battery.
% By weight to 95% by weight, more preferably 5% by weight or less.
% By weight or more and 50% by weight or less. The content of ceramic powder is 1% by weight of the separator weight for non-aqueous electrolyte batteries
If it is less than 95%, the effect of promoting ion permeability and battery characteristics may not be sufficient, and if it exceeds 95% by weight, the separator may become brittle and difficult to handle. The shape of the ceramic powder is not particularly limited,
Spherical or random shapes can be used.

【0028】本発明におけるセラミック粉末としては、
電気絶縁性の金属酸化物、金属窒化物、金属炭化物等か
らなるセラミック粉末があげられ、例えばアルミナ、シ
リカ、二酸化チタンまたは酸化ジルコニウム等の粉末が
好ましく用いられる。上記セラミック粉末は、単独で用
いてもよいし、2種以上を混合して用いることもでき
る。
As the ceramic powder in the present invention,
Ceramic powders composed of electrically insulating metal oxides, metal nitrides, metal carbides, and the like can be used. For example, powders of alumina, silica, titanium dioxide, zirconium oxide, and the like are preferably used. The above ceramic powders may be used alone or as a mixture of two or more.

【0029】本発明における基材とは、電気絶縁性の有
機、無機繊維またはパルプからなる多孔質の織物、不織
布、紙または多孔質のフィルムがあげられるが、これら
の中で、価格、薄さの面から、不織布、紙または多孔質
のフィルムが好ましい。
The substrate in the present invention includes porous woven fabric, non-woven fabric, paper or porous film made of electrically insulating organic or inorganic fibers or pulp. In view of the above, a nonwoven fabric, paper or a porous film is preferred.

【0030】該基材の材質としては、電気絶縁性であれ
ば有機物でも無機物でもよく、合成物でも天然物でもよ
く、該基材は、有機繊維および/または無機繊維および
/または有機繊維のパルプおよび/または無機繊維のパ
ルプを含むものがあげられる。具体的には、有機繊維と
して、熱可塑性ポリマーからなる繊維やマニラ麻などの
天然繊維があげられる。該熱可塑性ポリマーからなる繊
維として、ポリエチレン、ポリプロピレン等のポリオレ
フィン、レーヨン、ビニロン、ポリエステル、アクリ
ル、ポリスチレン、ナイロン等の繊維があげられる。無
機繊維としては、ガラス繊維、アルミナ繊維等があげら
れる。
The material of the substrate may be an organic or inorganic material as long as it is electrically insulating, and may be a synthetic or natural material. The substrate may be made of organic fiber and / or inorganic fiber and / or organic fiber pulp. And / or inorganic fiber pulp. Specifically, examples of the organic fibers include fibers made of a thermoplastic polymer and natural fibers such as manila hemp. Examples of the fiber made of the thermoplastic polymer include polyolefin such as polyethylene and polypropylene, and fiber such as rayon, vinylon, polyester, acryl, polystyrene, and nylon. Examples of the inorganic fibers include glass fibers and alumina fibers.

【0031】本発明(2)の非水電解質電池用セパレー
ターは、織物、不織布、紙または多孔質のフィルムから
なる基材、耐熱性含窒素芳香族重合体およびセラミック
粉末を含むことを特徴とする。
The separator for a non-aqueous electrolyte battery according to the present invention (2) is characterized by comprising a substrate made of woven fabric, non-woven fabric, paper or porous film, a heat-resistant nitrogen-containing aromatic polymer and ceramic powder. .

【0032】本発明(2)の非水電解質電池用セパレー
ターは、該基材を、前記のセラミック粉末を含む耐熱性
含窒素芳香族重合体が被覆してなる、または該基材の空
隙を該耐熱性含窒素芳香族重合体が充填してなる、また
は該基材を該耐熱性含窒素芳香族重合体が被覆してな
り、かつ該基材の空隙を耐熱性含窒素芳香族重合体が充
填してなるものが好ましい。
The separator for a non-aqueous electrolyte battery of the present invention (2) is obtained by coating the substrate with a heat-resistant nitrogen-containing aromatic polymer containing the above-mentioned ceramic powder, or by forming a void in the substrate. A heat-resistant nitrogen-containing aromatic polymer is filled, or the substrate is coated with the heat-resistant nitrogen-containing aromatic polymer, and the voids of the substrate are filled with the heat-resistant nitrogen-containing aromatic polymer. Filled ones are preferred.

【0033】本発明(2)の非水電解質電池用セパレー
ターに用いる場合に、基材の単位面積当たりの重量は、
40g/m2以下が好ましく、さらに好ましくは15g
/m2以下である。また、該基材の空隙率は、40%以
上が好ましく、さらに好ましくは50%以上である。ま
た、該基材の厚みは、好ましくは70μm以下であり、
さらに好ましくは25μm以下である。
When used in the separator for a non-aqueous electrolyte battery of the present invention (2), the weight per unit area of the substrate is as follows:
It is preferably 40 g / m 2 or less, more preferably 15 g / m 2 or less.
/ M 2 or less. The porosity of the substrate is preferably 40% or more, more preferably 50% or more. The thickness of the substrate is preferably 70 μm or less,
More preferably, it is 25 μm or less.

【0034】また、本発明(3)の非水電解質電池用セ
パレーターは、該セパレーター全体に対して、260℃
以下で溶融する熱可塑性ポリマーを10重量%以上、好
ましくは30重量%以上、さらに好ましくは40重量%
以上含み、該熱可塑性ポリマーが、温度上昇時に溶融
し、該セパレーターの空隙を閉塞することを特徴とす
る。該熱可塑性ポリマーは、本発明の用途である電池用
のセパレーターに用いる場合、昇温時に溶融するもので
あればよい。該熱可塑性ポリマーは、リチウム二次電池
のセパレーターとして使用する場合、シャットダウン機
能の点から260℃以下で溶融するポリマーであること
が好ましく、200℃以下であることがさらに好まし
い。また、溶融温度は、シャットダウン温度として適当
なので、100℃程度以上であることが好ましい。
The separator for a non-aqueous electrolyte battery according to the present invention (3) has a temperature of 260 ° C.
10% by weight or more, preferably 30% by weight or more, more preferably 40% by weight
This is characterized in that the thermoplastic polymer melts when the temperature rises and closes the voids of the separator. When the thermoplastic polymer is used for a battery separator used in the present invention, any thermoplastic polymer may be used as long as it melts when the temperature is raised. When used as a separator of a lithium secondary battery, the thermoplastic polymer is preferably a polymer that melts at 260 ° C. or lower, and more preferably 200 ° C. or lower, from the viewpoint of a shutdown function. The melting temperature is preferably about 100 ° C. or more because it is appropriate as a shutdown temperature.

【0035】該熱可塑性ポリマーとしては、ポリオレフ
ィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル
樹脂またはナイロン樹脂などが例示される。特に、低密
度ポリエチレン、高密度ポリエチレン、線状ポリエチレ
ン等のポリエチレン、もしくはそれらの低分子量ワック
ス分、またはポリプロピレン等のポリオレフィン樹脂が
溶融温度が適当で、入手が容易なので好適に用いられ
る。これらは、1種または2種以上を混合して使用する
ことができる。
Examples of the thermoplastic polymer include polyolefin resin, acrylic resin, styrene resin, polyester resin and nylon resin. In particular, polyethylene such as low-density polyethylene, high-density polyethylene, linear polyethylene, or a low-molecular-weight wax thereof, or a polyolefin resin such as polypropylene is suitably used because it has an appropriate melting temperature and is easily available. These can be used alone or in combination of two or more.

【0036】本発明に用いる熱可塑性ポリマーは、溶媒
への分散性、塗工面の平滑性の点より、平均粒径が好ま
しくは10μm以下、さらに好ましくは6μm以下の粉
末であることが好ましい。該粉末粒子の形状は、特に限
定はなく、球状でもランダムな形状でも使用することが
できる。
The thermoplastic polymer used in the present invention is preferably a powder having an average particle diameter of preferably 10 μm or less, more preferably 6 μm or less, from the viewpoint of dispersibility in a solvent and smoothness of a coated surface. The shape of the powder particles is not particularly limited, and may be spherical or random.

【0037】本発明(3)の非水電解質電池用セパレー
ターにおいて、熱可塑性ポリマーは、非水電解質電池用
セパレーター中の全体、または部分的に粒子状に分散し
て配置しており、その態様は、該熱可塑性ポリマーが温
度上昇時に溶融し、該セパレーターの空隙を閉塞するよ
うな態様であれば特に制限はない。
In the separator for a non-aqueous electrolyte battery of the present invention (3), the thermoplastic polymer is dispersed in the whole or part of the separator for a non-aqueous electrolyte battery in a particle form. There is no particular limitation as long as the thermoplastic polymer melts when the temperature rises and closes the voids in the separator.

【0038】また、本発明(4)の非水電解質電池用セ
パレーターは、下記(a)〜(e)の工程を含む方法によ
り製造された塗工膜を用いてなるものである。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に、耐熱性含窒素芳香族重合体100重量部に対しセ
ラミック粉末を1〜1500重量部分散した、260℃
以下で溶融する熱可塑性樹脂を含んでいてもよいスラリ
ー溶液を調製する。 (b)該スラリー溶液を塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
する。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
Further, the separator for a non-aqueous electrolyte battery of the present invention (4) comprises a coating film produced by a method comprising the following steps (a) to (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of a heat-resistant nitrogen-containing aromatic polymer.
The following prepares a slurry solution that may contain a thermoplastic resin that melts. (B) applying the slurry solution to form a coating film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;

【0039】以下、本発明(4)の非水電解質電池用セ
パレーターの製造方法について具体的に説明する。 工程(a)スラリー溶液の調製 耐熱性含窒素芳香族重合体としてパラアラミドおよびポ
リイミドを用いる場合について例示する。
Hereinafter, the method for producing the separator for a non-aqueous electrolyte battery of the present invention (4) will be specifically described. Step (a) Preparation of Slurry Solution A case where para-aramid and polyimide are used as the heat-resistant nitrogen-containing aromatic polymer will be exemplified.

【0040】パラアラミドを用いる場合には、例えば、
アルカリ金属またはアルカリ土類金属の塩化物を2〜1
0重量%溶解した極性有機溶媒中で、パラ配向芳香族ジ
アミン1.00モルに対してパラ配向芳香族ジカルボン
酸ジハライド0.94〜0.99モルを添加して、温度
−20℃〜50℃で縮合重合して製造されるパラ配向芳
香族ポリアミド濃度が1〜10%で、固有粘度が1.0
〜2.8dl/gであるアラミドの極性有機溶媒溶液を
作成する。
When para-aramid is used, for example,
2 to 1 chloride of alkali metal or alkaline earth metal
In a polar organic solvent in which 0% by weight is dissolved, 0.94 to 0.99 mol of para-oriented aromatic dicarboxylic acid dihalide is added to 1.00 mol of para-oriented aromatic diamine, and the temperature is -20 ° C to 50 ° C. The para-oriented aromatic polyamide produced by condensation polymerization at a concentration of 1 to 10% and an intrinsic viscosity of 1.0
Make a solution of aramid in polar organic solvent that is ~ 2.8 dl / g.

【0041】パラアラミドの縮合重合に用いられるパラ
配向芳香族ジアミンとして、パラフェニレンジアミン、
4、4’−ジアミノビフェニル、2−メチル−パラフェ
ニレンジアミン、2−クロロ−パラフェニレンジアミ
ン、2、6−ジクロロ−パラフェニレンジアミン、2、
6−ナフタレンジアミン、1、5−ナフタレンジアミ
ン、4、4’−ジアミノベンズアニリド、3、4’−ジ
アミノジフェニルエーテル等をあげることができる。パ
ラ配向芳香族ジアミンは、1種または2種以上を混合し
て縮合重合に供することができる。
As the para-oriented aromatic diamine used in the condensation polymerization of para-aramid, para-phenylenediamine,
4,4′-diaminobiphenyl, 2-methyl-paraphenylenediamine, 2-chloro-paraphenylenediamine, 2,6-dichloro-paraphenylenediamine, 2,
Examples thereof include 6-naphthalenediamine, 1,5-naphthalenediamine, 4,4′-diaminobenzanilide, and 3,4′-diaminodiphenyl ether. The para-oriented aromatic diamine can be used for condensation polymerization by mixing one kind or two or more kinds.

【0042】パラアラミドの縮合重合に用いられるパラ
配向芳香族ジカルボン酸ジハライドとして、テレフタル
酸ジクロライド、ビフェニル−4、4’−ジカルボン酸
ジクロライド、2−クロロテレフタル酸ジクロライド、
2、5−ジクロロテレフタル酸ジクロライド、2−メチ
ルテレフタル酸ジクロライド、2、6−ナフタレンジカ
ルボン酸ジクロライド、1、5−ナフタレンジカルボン
酸ジクロライド等をあげることができる。パラ配向芳香
族ジアミンは、1種または2種以上を混合して縮合重合
に供することができる。
Examples of the para-oriented aromatic dicarboxylic acid dihalide used in the condensation polymerization of para-aramid include terephthalic acid dichloride, biphenyl-4,4'-dicarboxylic acid dichloride, 2-chloroterephthalic acid dichloride,
2,5-dichloroterephthalic acid dichloride, 2-methylterephthalic acid dichloride, 2,6-naphthalenedicarboxylic acid dichloride, 1,5-naphthalenedicarboxylic acid dichloride and the like can be mentioned. The para-oriented aromatic diamine can be used for condensation polymerization by mixing one kind or two or more kinds.

【0043】パラアラミドの溶媒への溶解性を改善する
目的で、アルカリ金属またはアルカリ土類金属の塩化物
が好適に使用される。具体例としては、塩化リチウムま
たは塩化カルシウムがあげられるが、これらに限定され
るものではない。
In order to improve the solubility of para-aramid in a solvent, an alkali metal or alkaline earth metal chloride is preferably used. Specific examples include, but are not limited to, lithium chloride or calcium chloride.

【0044】上記塩化物の重合系への添加量は、縮合重
合で生成するアミド基1.0モル当たり0.5〜6.0
モルの範囲が好ましく、1.0〜4.0モルの範囲がさ
らに好ましい。塩化物が0.5モル未満では、生成する
パラアラミドの溶解性が不十分となる場合があり、6.
0モルを越えると実質的に塩化物の溶媒への溶解量を越
えるので好ましくない場合がある。
The amount of the chloride to be added to the polymerization system is 0.5 to 6.0 per 1.0 mol of the amide group formed in the condensation polymerization.
The mole range is preferred, and the range of 1.0 to 4.0 moles is more preferred. When the amount of chloride is less than 0.5 mol, the solubility of the produced para-aramid may be insufficient, and
If the amount exceeds 0 mol, the amount of chloride substantially dissolves in the solvent, which may not be preferable.

【0045】一般には、アルカリ金属またはアルカリ土
類金属の塩化物が2重量%未満では、パラアラミドの溶
解性が不十分となる場合があり、10重量%を越えては
アルカリ金属またはアルカリ土類金属の塩化物は極性ア
ミド系溶媒または極性尿素系溶媒等の極性有機溶媒に溶
解しない場合がある。
In general, if the alkali metal or alkaline earth metal chloride is less than 2% by weight, the solubility of para-aramid may be insufficient, and if it exceeds 10% by weight, the alkali metal or alkaline earth metal may be insufficient. May not be dissolved in polar organic solvents such as polar amide solvents or polar urea solvents.

【0046】パラアラミド濃度が0.5重量%未満で
は、生産性が著しく低下し工業的に不利となる場合があ
る。パラアラミドが10重量%を越えるとパラアラミド
が析出し、安定なパラアラミド溶液となりにくい場合が
ある。
If the para-aramid concentration is less than 0.5% by weight, the productivity may be remarkably reduced, which may be industrially disadvantageous. If the amount of para-aramid exceeds 10% by weight, para-aramid may precipitate, and it may be difficult to obtain a stable para-aramid solution.

【0047】また、ポリイミドの極性有機溶媒溶液とし
ては、例えば、3、3’、4、4’−ジフェニルスルホ
ンテトラカルボン酸二無水物と、4、4’−ビス(p−
アミノフェキシ)ジフェニルスルホン等の芳香族ジアミ
ンとの重縮合反応で得られる、イミド化が完結したポリ
イミドのN−メチル−2−ピロリドン溶液があげられ
る。この極性有機溶媒としては、ポリイミドを用いる場
合には、上記例示の物のほかに、クレゾール、またはo
−クロロフェノール等があげられる。
Examples of the solution of polyimide in a polar organic solvent include 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and 4,4′-bis (p-
N-methyl-2-pyrrolidone solution of a polyimide which has been completely imidized and obtained by a polycondensation reaction with an aromatic diamine such as aminophenyl) diphenylsulfone. When polyimide is used as the polar organic solvent, in addition to the above-mentioned examples, cresol, or o
-Chlorophenol and the like.

【0048】上記極性有機溶媒溶液中に、セラミック粉
末を耐熱性含窒素芳香族重合体100重量部に対し1〜
1500重量部、好ましくは5〜100重量部を十分に
分散させてスラリー溶液を調製する。セラミック粉末の
量が1重量部未満ならイオン透過性および電池特性の向
上が十分でなく好ましくなく、1500重量部を超える
と、該セパレーターは、脆くなり、取り扱いが難しくな
るので好ましくない。また、必要に応じ、該スラリ−溶
液に熱可塑性ポリマーを添加しても良い。
In the above polar organic solvent solution, 1 to 100 parts by weight of the heat-resistant nitrogen-containing aromatic polymer was mixed with the ceramic powder.
1500 parts by weight, preferably 5 to 100 parts by weight, are sufficiently dispersed to prepare a slurry solution. If the amount of the ceramic powder is less than 1 part by weight, the ion permeability and battery characteristics are not sufficiently improved, and if it exceeds 1500 parts by weight, the separator becomes brittle and difficult to handle, which is not preferable. If necessary, a thermoplastic polymer may be added to the slurry solution.

【0049】工程(b)塗工膜の作成 このスラリー溶液をベースフィルム、スチールベルト、
ロール、ドラム上等に塗工し、湿潤な塗工膜を形成す
る。ベースフィルムとしては、例えば、ポリエチレンテ
レフタレート、離型処理した紙等があげられる。また、
鏡面仕上げした耐蝕性のあるスチールベルト上に塗工す
ることも工業的には良く用いられる。小規模的には、鏡
面仕上げした耐蝕性のあるロール、またはドラム上に塗
工することもできる。
Step (b) Preparation of Coated Film This slurry solution was applied to a base film, steel belt,
Coating on rolls, drums, etc. to form a wet coating film. Examples of the base film include polyethylene terephthalate, release-treated paper, and the like. Also,
Coating on a mirror-finished corrosion-resistant steel belt is also often used industrially. On a small scale, it can also be applied on a mirror-finished, corrosion-resistant roll or drum.

【0050】塗工の方法としては、例えばナイフ、ブレ
ード、バー、グラビア、ダイ等の塗工方法があげられ
る。小規模的には、バー、ナイフ等の塗工が簡便である
が、工業的には、溶液が外気と接触しない構造のダイ塗
工が好ましい。
Examples of the coating method include a knife, blade, bar, gravure, die and the like. On a small scale, coating with a bar, knife or the like is simple, but industrially, die coating having a structure in which the solution does not come into contact with the outside air is preferable.

【0051】工程(c)耐熱性含窒素芳香族重合体の析
出 得られた塗工膜を好ましくは20℃以上の温度、一定湿
度に制御した雰囲気中において、耐熱性含窒素芳香族重
合体を析出させ、その後凝固液中に浸漬させる。また
は、凝固液中に浸漬し、ポリマーの析出・凝固を同時に
行ない、湿潤塗工膜を得る。析出を均一に、早く行うた
め、あらかじめスラリー溶液中に貧溶媒、例えば水等を
加えて、析液状態にしておくこともできる。
Step (c) Precipitation of a Heat-Resistant Nitrogen-Containing Aromatic Polymer The obtained coating film is subjected to the heat-resistant nitrogen-containing aromatic polymer preferably in an atmosphere controlled at a temperature of 20 ° C. or more and a constant humidity. Precipitate and then immerse in the coagulation liquid. Alternatively, the polymer is immersed in a coagulation liquid to simultaneously precipitate and coagulate the polymer to obtain a wet coating film. In order to carry out the precipitation uniformly and quickly, a poor solvent, for example, water or the like may be added to the slurry solution in advance to make the slurry solution.

【0052】パラアラミドの場合は、溶媒の一部または
全部を蒸発させると同時にポリマーを析出させ、つまり
次の溶媒除去工程と析出工程を同時に行い、半乾燥また
は乾燥した塗工膜を得ることもできる。
In the case of para-aramid, a part or all of the solvent is evaporated and the polymer is precipitated at the same time, that is, the subsequent solvent removal step and the precipitation step are simultaneously performed to obtain a semi-dried or dried coating film. .

【0053】ここにいう凝固液としては、水系溶液また
はアルコール系溶液などを用いればよく、特に限定され
ないが、極性有機溶媒溶媒を含む水系溶液またはアルコ
ール系溶液を使用するのが、工業的には溶媒回収工程が
簡素化されるので好ましい。具体的には、極性有機溶媒
の水溶液があげられる。
As the coagulation liquid used herein, an aqueous solution or an alcoholic solution may be used, and it is not particularly limited, but an aqueous solution or an alcoholic solution containing a polar organic solvent solvent is industrially used. This is preferable because the solvent recovery step is simplified. Specifically, an aqueous solution of a polar organic solvent can be used.

【0054】工程(d)極性有機溶媒の除去 次に、この耐熱性含窒素芳香族重合体が析出した塗工膜
から、極性有機溶媒を除去する。除去の方法は、一部ま
たは全部を蒸発させても良いし、水、水系溶液、または
アルコール系溶液など極性有機溶媒を溶解できる溶媒で
除去しても良い。水を用いて除去する場合には、イオン
交換水を用いることが好ましい。また極性有機溶媒を一
定濃度含む水溶液中で洗浄した後に、更に水洗すること
も、工業的に好ましい。乾燥は、加熱により洗浄用の溶
媒を蒸発させて除去する。この時の乾燥温度は、溶融す
る熱可塑性ポリマーを含有する場合には、溶融する温度
以下であることが好ましい。
Step (d) Removal of Polar Organic Solvent Next, the polar organic solvent is removed from the coating film on which the heat-resistant nitrogen-containing aromatic polymer has been deposited. As for the method of removal, a part or the whole may be evaporated, or the solvent may be removed with a solvent capable of dissolving a polar organic solvent such as water, an aqueous solution, or an alcohol solution. When removing with water, it is preferable to use ion-exchanged water. It is also industrially preferable to further wash with water after washing in an aqueous solution containing a constant concentration of a polar organic solvent. Drying is performed by evaporating a solvent for washing by heating. The drying temperature at this time is preferably equal to or lower than the melting temperature when containing a melting thermoplastic polymer.

【0055】また、アルカリ金属またはアルカリ土類金
属の塩化物を用いてパラアラミドを調製した場合には、
パラアラミドが析出した湿潤塗工膜から、溶媒とともに
アルカリ金属またはアルカリ土類金属の塩化物を洗浄、
除去する。または乾燥塗工膜から、アルカリ金属または
アルカリ土類金属の塩化物を洗浄、除去する。この除去
方法には、塗工膜を溶液に浸漬して溶媒と塩化物を溶出
させる方法が採用される。溶媒または塩化物を溶出させ
るときの溶液としては、水、水系溶液、またはアルコー
ル系溶液が溶媒と塩化物を共に溶解できるので好まし
い。
When para-aramid is prepared using an alkali metal or alkaline earth metal chloride,
From the wet coating film on which para-aramid is deposited, wash the alkali metal or alkaline earth metal chloride with the solvent,
Remove. Alternatively, the alkali metal or alkaline earth metal chloride is washed and removed from the dried coating film. As this removing method, a method of immersing the coating film in a solution to elute the solvent and chloride is adopted. As a solution for eluting the solvent or the chloride, water, an aqueous solution, or an alcohol-based solution is preferable because both the solvent and the chloride can be dissolved.

【0056】(e)乾燥 極性有機溶媒が除去された塗工膜は、好ましくは加熱溶
融するポリマ−の溶融温度以下で乾燥し、目的とする乾
燥塗工膜が製造できる。
(E) Drying The coating film from which the polar organic solvent has been removed is preferably dried at a temperature not higher than the melting temperature of the polymer to be heated and melted, so that a desired dry coating film can be produced.

【0057】この乾燥塗工膜をそのまま非水電解質電池
用セパレーターとして使用することができる。シャット
ダウン性能を付与する観点からは、熱可塑性ポリマーを
含むことが好ましいが、どの工程で含ませても良い。ま
た、乾燥塗工膜に、さらに熱可塑性ポリマーの微粒状サ
スペンジョンを塗工、乾燥し、熱可塑性樹脂の微粒子層
を付設することが好ましい。
The dried coating film can be used as it is as a separator for a non-aqueous electrolyte battery. From the viewpoint of imparting shutdown performance, it is preferable to include a thermoplastic polymer, but it may be included in any step. Further, it is preferable to further apply a fine-grained suspension of a thermoplastic polymer to the dried coating film, dry the coating, and provide a fine particle layer of a thermoplastic resin.

【0058】塗工の方法としては例えばナイフ、ブレー
ド、バー、グラビア、ダイ等の塗工方法があげられる。
小規模的には、バー、ナイフ等の塗工が簡便である。
Examples of the coating method include a knife, blade, bar, gravure, die and the like.
On a small scale, coating with a bar, knife, etc. is simple.

【0059】また、本発明(5)の非水電解質電池用セ
パレーターは、下記(a)〜(e)の工程を含む方法に
より製造された塗工膜を用いてなるものである。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に耐熱性含窒素芳香族重合体100重量部に対しセラ
ミック粉末を1〜1500重量部分散した、260℃以
下で溶融する熱可塑性樹脂を含んでいてもよいスラリー
溶液を調製する。 (b)該スラリー溶液を織物、不織布、紙または多孔質
のフィルムからなる基材に塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
させる。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
The separator for a non-aqueous electrolyte battery of the present invention (5) uses a coating film produced by a method including the following steps (a) to (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of a heat-resistant nitrogen-containing aromatic polymer. Prepare a slurry solution that may include a resin. (B) The slurry solution is applied to a substrate made of woven fabric, nonwoven fabric, paper or a porous film to form a coated film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;

【0060】以下、本発明(5)の非水電解質電池用セ
パレーターの製造方法について具体的に説明する。
Hereinafter, the method for producing the separator for a non-aqueous electrolyte battery of the present invention (5) will be specifically described.

【0061】本発明(5)の非水電解質電池用セパレー
ターは、織物、不織布、紙または多孔質のフィルムから
なる基材を用いる点を除き、本発明(4)と同じ方法で
製造できる。工程(a)は、本発明(4)の工程(a)
と同じである。工程(b)は、織物、不織布、紙または
多孔質のフィルムからなる基材に塗工する点を除き、本
発明(4)の工程(b)と同じである。また、スラリー溶
液をロールまたはドラム上に塗工し、その後に該基材を
乗せて含浸させてもよい
The separator for a non-aqueous electrolyte battery of the present invention (5) can be produced by the same method as that of the present invention (4) except that a substrate made of woven fabric, nonwoven fabric, paper or a porous film is used. Step (a) is the same as step (a) of the present invention (4).
Is the same as The step (b) is the same as the step (b) of the present invention (4) except that the step (b) is applied to a substrate made of a woven fabric, a nonwoven fabric, a paper or a porous film. Alternatively, the slurry solution may be applied on a roll or a drum, and then the substrate may be impregnated with the substrate.

【0062】工程(c)、(d)および(e)は本発明
(4)の工程(c)、(d)および(e)と同じ方法で
実施できる。
Steps (c), (d) and (e) can be carried out in the same manner as steps (c), (d) and (e) of the present invention (4).

【0063】この乾燥塗工膜をそのまま非水電解質電池
用セパレーターとして、使用することができる。シャッ
トダウン性能を付与または補強する観点からは、熱可塑
性ポリマーを含むことが好ましいが、どの工程で含ませ
ても良い。また、乾燥塗工膜に、さらに熱可塑性ポリマ
ーの微粒状サスペンジョンを塗工、乾燥し、熱可塑性樹
脂の微粒子層を付設することが好ましい。塗工の方法
は、本発明(4)の方法と同じである。
The dried coating film can be used as it is as a separator for a non-aqueous electrolyte battery. From the viewpoint of imparting or reinforcing the shutdown performance, it is preferable to include a thermoplastic polymer, but it may be included in any step. Further, it is preferable to further apply a fine-grained suspension of a thermoplastic polymer to the dried coating film, dry the coating, and provide a fine particle layer of a thermoplastic resin. The coating method is the same as the method of the present invention (4).

【0064】本発明の非水電解質電池用セパレーターの
厚みは、5〜100μmが好ましい。該厚みが5μm未
満では、非水電解質電池用セパレーターとして強度が不
足し取り扱いが難しい場合がある。非水電解質電池用セ
パレーターとしては、厚いほど取り扱いが容易である
が、ニッケル・カドニウム電池ではあまり制約はないも
のの、リチウム二次電池では内部抵抗をできるだけ小さ
くするために、短絡しない範囲で厚みが小さいセパレ−
タ−が望ましい。即ち、リチウム二次電池用セパレータ
ーでは、厚みとして好ましくは5〜100μm、さらに
好ましくは5〜50μm、特に好ましくは5〜30μm
である。
The thickness of the separator for a non-aqueous electrolyte battery of the present invention is preferably 5 to 100 μm. If the thickness is less than 5 μm, the strength may be insufficient as a separator for a non-aqueous electrolyte battery and handling may be difficult. As a separator for a non-aqueous electrolyte battery, the thicker it is easier to handle, but for nickel-cadmium batteries there are not so many restrictions, but for lithium secondary batteries the internal resistance is as small as possible, in order to minimize the internal resistance Separation
Tar is desirable. That is, in the separator for a lithium secondary battery, the thickness is preferably 5 to 100 μm, more preferably 5 to 50 μm, and particularly preferably 5 to 30 μm.
It is.

【0065】本発明で用いる耐熱性含窒素芳香族重合体
は、常用温度200℃程度まで強度劣化がほとんど無
く、耐熱性に優れていることが知られている。また、自
己消火性で、約300℃程度まで熱分解せずに形態を保
ち、それ以上の温度で熱分解する。また、セラミック粉
末は、1000℃程度まで強度劣化がほとんど無く、耐
熱性に優れていることが知られている。従って、本発明
のセパレーターを用いた非水電解質電池は、電池内外の
短絡等により電池温度が上昇してもシャットダウン機能
が作動し、しかも、更に温度が上昇しても、高温まで形
態を保ち、即ち正負極間の絶縁性を保ち、安全性に特に
優れている。
It is known that the heat-resistant nitrogen-containing aromatic polymer used in the present invention has almost no strength deterioration up to a normal temperature of about 200 ° C. and is excellent in heat resistance. In addition, it is self-extinguishing and maintains its form without being thermally decomposed up to about 300 ° C., and is thermally decomposed at a higher temperature. Further, it is known that ceramic powder hardly deteriorates in strength up to about 1000 ° C. and is excellent in heat resistance. Therefore, the non-aqueous electrolyte battery using the separator of the present invention, even if the battery temperature rises due to a short circuit inside and outside the battery, the shutdown function operates, and, even if the temperature further rises, the form is maintained at a high temperature, That is, the insulation between the positive and negative electrodes is maintained, and the safety is particularly excellent.

【0066】本発明の非水電解質電池用セパレーターの
空隙の大きさ、または該空隙が球形に近似できるときは
その球の直径(以下、孔径ということがある)は、1μ
m程度以下が好ましい。該空隙の平均の大きさまたは孔
径が1μmを越える場合には、正極や負極の主成分であ
る炭素粉やその小片が脱落したときに、短絡しやすいな
どの問題が生じる可能性がある。
The size of the voids of the separator for a non-aqueous electrolyte battery of the present invention, or when the voids can be approximated to a sphere, the diameter of the sphere (hereinafter sometimes referred to as the pore diameter) is 1 μm.
m or less is preferable. If the average size or pore diameter of the voids exceeds 1 μm, there is a possibility that a problem such as a short circuit is likely to occur when carbon powder or a small piece thereof as a main component of the positive electrode or the negative electrode falls off.

【0067】本発明の非水電解質電池用セパレーター
は、リチウム二次電池に好適に使用することができる。
本発明の非水電解質電池用セパレーターは、耐熱性含窒
素芳香族重合体とセラミック粉末を含むので温度が上昇
しても非水電解質電池用セパレーターは、フィルム形状
を保つ。さらに、熱可塑性樹脂を含む本発明の非水電解
質電池用セパレーターを用いると、電池が局部的にまた
は全体的に温度上昇した時に、該熱可塑性ポリマーが溶
融し、該セパレーターの微細孔の中に入り込んで微細孔
を封じ、電流が流れないようにする。さらに温度が上昇
した時にも、表面ではなく微細孔の中に入り込んでいる
ので流れ出ることがない。このようにして、電池のシャ
ットダウンが行なわれる。
The separator for a non-aqueous electrolyte battery of the present invention can be suitably used for a lithium secondary battery.
Since the separator for a non-aqueous electrolyte battery of the present invention contains a heat-resistant nitrogen-containing aromatic polymer and ceramic powder, the separator for a non-aqueous electrolyte battery maintains a film shape even when the temperature is increased. Furthermore, when the separator for a non-aqueous electrolyte battery of the present invention containing a thermoplastic resin is used, when the temperature of the battery is locally or entirely increased, the thermoplastic polymer is melted, and the pores of the separator are filled into the pores. It penetrates and seals the micropores so that no current flows. Further, even when the temperature rises, it does not flow out because it enters not the surface but the micropores. In this way, the battery is shut down.

【0068】[0068]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明は、これらの実施例に限定されるも
のではない。実施例および比較例における試験・評価方
法または判定基準は、次に示すとおりである。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Test / evaluation methods or criteria in Examples and Comparative Examples are as follows.

【0069】(1)固有粘度 本発明において固有粘度とは、次の測定方法によるもの
と定義する。96〜98%硫酸100mlにパラアラミ
ド重合体0.5gを溶解した溶液および96〜98%硫
酸について、それぞれウベローデ型毛細管粘度計により
30℃にて流動時間を測定し、求められた流動時間の比
から次式により固有粘度を求めた。 固有粘度=ln(T/T0)/C 〔単位:dl/g〕 ここでTおよびT0は、それぞれパラアラミド硫酸溶液
および硫酸の流動時間であり、Cは、パラアラミド硫酸
溶液中のパラアラミド濃度(dl/g)を示す。
(1) Intrinsic Viscosity In the present invention, the intrinsic viscosity is defined by the following measuring method. For a solution in which 0.5 g of the para-aramid polymer was dissolved in 100 ml of 96-98% sulfuric acid and for a 96-98% sulfuric acid, the flow time was measured at 30 ° C. using an Ubbelohde capillary viscometer, and the ratio of the flow times was determined. The intrinsic viscosity was determined by the following equation. Intrinsic viscosity = ln (T / T 0 ) / C [unit: dl / g] where T and T 0 are the flow times of the para-aramid sulfate solution and sulfuric acid, respectively, and C is the concentration of para-aramid in the para-aramid sulfate solution ( dl / g).

【0070】(2)塗工膜等の厚み測定 得られた塗工膜等の厚みは、JIS規格 K7130−
1992 に従い測定した。
(2) Measurement of Thickness of Coated Film and the Like The thickness of the obtained coated film and the like is measured in accordance with JIS K7130-
1992.

【0071】(3)空隙率 塗工膜等を一辺の長さ10cmの正方形に切り取り、重
量(Wg)と厚み(Dcm)を測定した。サンプル中の
材質の重量を計算で割りだし、それぞれの材質の重量
(Wi)を真比重で割り、それぞれの材質の体積を仮定
して、次式より空隙率(体積%)を求めた。 空隙率(%)=100−{(W1/真比重1)+(W2/
真比重2)+・・+(Wn/真比重n)}/(100×
D)
(3) Porosity The coating film or the like was cut into a square having a side length of 10 cm, and the weight (Wg) and thickness (Dcm) were measured. The weight of the material in the sample was divided by calculation, the weight (Wi) of each material was divided by the true specific gravity, and the porosity (vol%) was determined from the following equation, assuming the volume of each material. Porosity (%) = 100 − {(W1 / true specific gravity 1) + (W2 /
True specific gravity 2) + .. + (Wn / true specific gravity n)} / (100 ×
D)

【0072】[0072]

【数1】 (Equation 1)

【0073】塗工膜等の目付けは、塗工膜等を10cm
角の正方形に切り出し、その重量を測定して下式より求
めた。 塗工膜等の目付け(g/m2)=サンプルの重量(g)
/0.01(m2) 各材料の目付けは、製膜に使用した量、比率より算出し
た。
The basis weight of the coating film is 10 cm
It was cut out into a square with a corner, and its weight was measured and determined by the following equation. Weight of coating film (g / m 2 ) = weight of sample (g)
/0.01 (m 2 ) The basis weight of each material was calculated from the amount and ratio used for film formation.

【0074】(4)透気度 ASTM F316−86に準拠して、測定面積11.
3cm2(直径38mm)の大きさのサンプルを 米国
Porous Materials Inc社のPer
m Porometerを使い、圧力3kg/cm2での
空気の流量を測定して透気度(cc/秒)とした。一般
に同一材料系では、透気度が大きければ、イオン透過性
が良く、電池特性も良好だと判断できる。
(4) Air permeability Measured area according to ASTM F316-86.
A sample having a size of 3 cm 2 (diameter 38 mm) was collected from Porous Materials Inc.
The air flow rate (cc / sec) was measured by measuring the flow rate of air at a pressure of 3 kg / cm 2 using m Porometer. In general, in the same material system, if the air permeability is large, it can be determined that the ion permeability is good and the battery characteristics are also good.

【0075】(5)引張り強度 得られた塗工膜等からダンベル社製ダンベルカッターに
て試験片を打ち抜き、インストロンジャパン社製インス
トロン万能試験機モデル4301を用い、JIS K−
7127に準じて引張り強度、弾性率および破断ひずみ
を求めた。
(5) Tensile strength A test piece was punched out from the obtained coating film or the like with a dumbbell cutter manufactured by Dumbbell Co., Ltd.
The tensile strength, elastic modulus and strain at break were determined according to 7127.

【0076】(6)引裂き強度の測定 塗工膜等からダンベル社製のJIS K−7128−1
991 C法(直角形引裂き法)用ダンベルカッターに
て試験片を打ち抜き、インストロンジャパン社製インス
トロン万能引張試験機モデル4301を用い、JIS
K−7128−1991 C法(直角形引裂き法)に準
じて引裂き強度の測定をおこなった。サンプルの両端を
万能引張試験機のチャックで掴み、200mm/分の速
度で引張り、その時の荷重、変位を記録計で記録した。
サンプルの引裂きが、開始された時の荷重より、引裂き
強さを求めた。その後サンプルが完全に破壊するまでの
荷重の平均値より、引裂き伝播抵抗を求めた。引裂き強
度および引裂き伝播抵抗は、次式で求めた。 引裂き強度(kg/mm)=サンプルの引裂きが開始さ
れた時の最大荷重÷サンプル厚み 引裂き伝播抵抗(kg/mm)=サンプルの引裂き開始
後、完全に破壊するまでの荷重の平均値/サンプル厚み
(6) Measurement of tear strength JIS K-7128-1 manufactured by Dumbbell Co., Ltd.
A test piece was punched out with a dumbbell cutter for the 991 C method (right angle tearing method), and JIS was used using an Instron universal tensile tester model 4301 manufactured by Instron Japan.
The tear strength was measured according to the K-7128-1991 C method (right angle tearing method). Both ends of the sample were gripped by a chuck of a universal tensile tester, pulled at a speed of 200 mm / min, and the load and displacement at that time were recorded by a recorder.
The tear strength was determined from the load at which the sample was torn. Thereafter, the tear propagation resistance was determined from the average value of the load until the sample was completely broken. The tear strength and the tear propagation resistance were determined by the following equations. Tear strength (kg / mm) = Maximum load when sample tearing started / Sample thickness Tear propagation resistance (kg / mm) = Average value of load from start of sample tearing until complete breakage / Sample thickness

【0077】(7)平板電池での内部電気抵抗の測定
(セパレーターの電気抵抗測定・シャットダウン作動の
評価と耐熱性の評価を目的とする。) 塗工膜等を一辺の長さ25mmの正方形に切り取り、L
iPF6の1Nプロピレンカーボネート溶液の電解液を
含浸させた。これを厚み0.5mm、直径18mmの2
枚の白金製円盤の電極の間にはさみ、この電極間に1K
Hzで1ボルトの電圧をかけて、平板電池の内部電気抵
抗を測定し、25℃での内部電気抵抗をセパレーターの
電気抵抗とした。本平板電池を熱板上に置き、25℃か
ら200℃まで、4℃/分で昇温した。この過程で内部
電気抵抗が増大する温度をシャットダウン作動温度とし
た。
(7) Measurement of the internal electric resistance of the flat battery (for the purpose of measuring the electric resistance of the separator, evaluating the shutdown operation, and evaluating the heat resistance) The coating film or the like is formed into a square having a side length of 25 mm. Cut, L
An electrolyte of a 1N propylene carbonate solution of iPF 6 was impregnated. This is 0.5mm thick, 18mm diameter 2
Between the electrodes of a platinum disc, 1K between the electrodes
The internal electric resistance of the flat battery was measured by applying a voltage of 1 volt at Hz, and the internal electric resistance at 25 ° C. was defined as the electric resistance of the separator. The flat battery was placed on a hot plate, and the temperature was raised from 25 ° C to 200 ° C at a rate of 4 ° C / min. The temperature at which the internal electric resistance increases in this process is defined as the shutdown operating temperature.

【0078】(8)非水電解質電池用セパレーターとし
ての評価 正極は、ニッケル酸リチウム粉末と炭素質導電材粉末、
およびポリフッ化ビニリデンを重量比87:10:3で
混合したペースト(N−メチルピロリドン溶媒)を、2
0μmのアルミニウム箔に塗布し、乾燥、プレスして厚
み85μmのシートを作製した。負極は、黒鉛粉末とポ
リフッ化ビニリデンを重量比90:10で混合したペー
スト(N−メチルピロリドン溶媒)を、10μmの銅箔
に塗布し、乾燥、プレスして厚み100μmのシートを
作製した。電解液は、エチレンカーボネート、ジメチル
カーボネートおよびエチルメチルカーボネートの混合溶
媒(重量比 30:35:35)に、6フッ化リン酸リ
チウムを溶解(1モル/L濃度)した液を用いた。セパ
レーターは、本発明の実施例で述べる非水電解質電池用
セパレーターを用いた。
(8) Evaluation as Separator for Nonaqueous Electrolyte Battery The positive electrode was made of lithium nickelate powder and carbonaceous conductive material powder.
And a paste (N-methylpyrrolidone solvent) obtained by mixing polyvinylidene fluoride at a weight ratio of 87: 10: 3 with 2
It was applied to a 0-μm aluminum foil, dried and pressed to produce a 85-μm-thick sheet. For the negative electrode, a paste (N-methylpyrrolidone solvent) in which graphite powder and polyvinylidene fluoride were mixed at a weight ratio of 90:10 was applied to a 10-μm copper foil, dried and pressed to prepare a 100-μm-thick sheet. As the electrolytic solution, a solution prepared by dissolving lithium hexafluorophosphate (1 mol / L concentration) in a mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (weight ratio: 30:35:35) was used. As the separator, a separator for a non-aqueous electrolyte battery described in Examples of the present invention was used.

【0079】電池は、正極面積が2.34cm2の平板
型構造とし、上記で準備したものをアルゴン雰囲気ボッ
クス内で、負極シート、セパレーター、正極シートの順
に重ねた後、セパレーターに電解液を充分に含浸させ
た。作製した平板電池を充電電圧4.2V、放電電圧
2.75Vで8サイクル繰り返し、8サイクル目の放電
容量(放電電流1.5mA)を測定し、0.2Cでの放
電容量とした。また、サイクル劣化を測定した。上記の
条件で充電し、放電容量(放電電流22.5mA)を測
定したときにはこれを、3Cでの放電容量とした。3C
での電池の負荷特性を下式で求めた。 3Cでの電池の負荷特性(%)=3Cでの放電容量/
0.2Cでの放電容量×100
The battery had a flat-plate structure with a positive electrode area of 2.34 cm 2. The above-prepared batteries were stacked in the argon atmosphere box in the order of a negative electrode sheet, a separator, and a positive electrode sheet. Was impregnated. The flat battery thus produced was subjected to eight cycles at a charge voltage of 4.2 V and a discharge voltage of 2.75 V, and the discharge capacity at the eighth cycle (discharge current: 1.5 mA) was measured. In addition, the cycle deterioration was measured. When the battery was charged under the above conditions and the discharge capacity (discharge current: 22.5 mA) was measured, this was taken as the discharge capacity at 3C. 3C
The load characteristics of the battery at were obtained by the following equation. Battery load characteristics at 3C (%) = discharge capacity at 3C /
Discharge capacity at 0.2C x 100

【0080】(9)円筒電池での安全性試験 (8)と同じ方法で作製した正極シート状電極、負極シ
ート状電極を上記のセパレーターを介して、負極、セパ
レーター、正極、セパレーターの順に積層し、この積層
体を一端より巻き取って渦巻形状の電極素子とした。前
記の電極素子を電池缶に挿入し、前記の非水電解質溶液
を含浸し、安全弁を備えた正極端子を兼ねる電池蓋をガ
スケットを介してかしめて18650サイズの円筒型電
池を得た。
(9) Safety Test on Cylindrical Battery A positive electrode sheet electrode and a negative electrode sheet electrode produced by the same method as in (8) are laminated in the order of a negative electrode, a separator, a positive electrode, and a separator via the above separator. The laminate was wound from one end to form a spiral electrode element. The above-mentioned electrode element was inserted into a battery can, impregnated with the above-mentioned non-aqueous electrolyte solution, and caulked via a gasket with a battery cover having a safety valve and serving as a positive electrode terminal, to obtain a cylindrical battery of 18650 size.

【0081】(10)セラミック粉末の平均粒径の測定
方法 平均粒径は、電子顕微鏡により得た写真を、ツアイス社
製の粒子径計測器TGZ3で解析して求める。
(10) Method of Measuring Average Particle Size of Ceramic Powder The average particle size is determined by analyzing a photograph obtained by an electron microscope using a particle size measuring instrument TGZ3 manufactured by Zeiss.

【0082】実施例1 1.ポリ(パラフェニレンテレフタルアミド)の製造 撹拌翼、温度計、窒素流入管および粉体添加口を有す
る、3リットルのセパラブルフラスコを使用して、ポリ
(パラフェニレンテレフタルアミド)(以下、PPTA
と略すことがある。)の製造を行った。フラスコを十分
乾燥し,N−メチル−2−ピロリドン2200gを仕込
み、200℃で2時間真空乾燥した塩化カルシウム粉末
151.07gを添加し、100℃に昇温して完全に溶
解させた。室温に戻して、パラフェニレンジアミン、6
8.23gを添加し完全に溶解させた。この溶液を20
℃±2℃に保ったまま、テレフタル酸ジクロライド、1
24.97gを10分割して約5分おきに添加した。た
だし10分割したテレフタル酸ジクロライドの1つは、
テレフタル酸ジクロライドと同重量のNMPに溶解して
最終の添加を行った。その後も撹拌しながら、溶液を2
0℃±2℃に保ったまま1時間熟成した。1500メッ
シュのステンレス金網でろ過した。得られた溶液は、P
PTA濃度6%の液晶相で、光学的異方性を示した。P
PTA溶液の一部をサンプリングし、水で再沈して得ら
れたPPTAの固有粘度は、2.01dl/gであっ
た。
Embodiment 1 1. Production of poly (paraphenyleneterephthalamide) Poly (paraphenyleneterephthalamide) (hereinafter referred to as PPTA) was prepared using a 3-liter separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a powder addition port.
May be abbreviated. ) Was manufactured. The flask was sufficiently dried, 2200 g of N-methyl-2-pyrrolidone was charged, 151.07 g of calcium chloride powder vacuum-dried at 200 ° C. for 2 hours was added, and the mixture was heated to 100 ° C. and completely dissolved. After returning to room temperature, paraphenylenediamine, 6
8.23 g was added and completely dissolved. Add this solution to 20
Terephthalic acid dichloride, 1
24.97 g was added in 10 portions and added about every 5 minutes. However, one of the 10 divided terephthalic acid dichlorides is
The final addition was made after dissolving in NMP of the same weight as terephthalic acid dichloride. Then, with stirring, add the solution to 2
Aging was performed for 1 hour while maintaining the temperature at 0 ° C. ± 2 ° C. The mixture was filtered through a 1500 mesh stainless steel wire mesh. The resulting solution is P
The liquid crystal phase having a PTA concentration of 6% exhibited optical anisotropy. P
The intrinsic viscosity of PPTA obtained by sampling a part of the PTA solution and reprecipitating with water was 2.01 dl / g.

【0083】2.塗工用PPTAスラリー溶液の調製 上記実施例1の1.のPPTA溶液65gを、撹拌翼、
温度計、窒素流入管および液体添加口を有する、500
mlのセパラブルフラスコに秤取し、235gのNMP
を添加し、最終的に、PPTA濃度が1.3重量%の等
方相の溶液に調製して60分間攪拌した。上記の溶液に
アルミナ微細粒子(日本アエロジル社製品;アルミナ
C、平均粒子径0.013μm)3.9gを混合し、2
40分間攪拌した。アルミナ微細粒子を十分に分散させ
たスラリー溶液を1000メッシュの金網でろ過後、減
圧下で脱泡し塗工用スラリー溶液とした。
2. Preparation of PPTA slurry solution for coating 65 g of PPTA solution of
500 with thermometer, nitrogen inlet and liquid addition port
weighing 235 g of NMP
Was finally added to prepare an isotropic phase solution having a PPTA concentration of 1.3% by weight, followed by stirring for 60 minutes. 3.9 g of alumina fine particles (Nippon Aerosil Co., Ltd., alumina C, average particle diameter 0.013 μm) were mixed with the above solution,
Stir for 40 minutes. The slurry solution in which the alumina fine particles were sufficiently dispersed was filtered through a 1000-mesh wire net, and then defoamed under reduced pressure to obtain a coating slurry solution.

【0084】3.塗工膜の作成 直径550mm、長さ350mmのドラム上に厚み10
0μmのPETフィルムを巻いた。PETフィルムの上
に基材(ポリエステル紙、商品名 0132TH−8細
デニールタイプ、目付け8g/m2、厚み20μm、;
日本バイリーン社製品)を巻いた。基材の片側をテープ
でドラムに固定した。もう片方に0.6kgの重りを基
材に均等に荷重がかかるように吊り下げた。ドラムの最
上部に直径20mmのステンレス製塗工バーをドラムと
のクリアランスが0.3mmになるように平行に配置し
た。ドラムと塗工バーの間に基材のテープで固定した側
の端がくるようにドラムを回転させ、止めた。塗工バー
手前の基材上に上記で調製した、塗工用PPTAスラリ
ー溶液を供給しながら、ドラムを0.5rpmで回転さ
せて、基材に塗工した。
3. Preparation of coating film Thickness of 10 on a drum of 550 mm in diameter and 350 mm in length
A 0 μm PET film was wound. On a PET film, a substrate (polyester paper, trade name: 0132TH-8 fine denier type, basis weight 8 g / m 2 , thickness 20 μm;
Japan Vilene Co., Ltd. product). One side of the substrate was fixed to the drum with tape. A 0.6 kg weight was hung on the other side so that a load was evenly applied to the substrate. A stainless steel coating bar having a diameter of 20 mm was arranged at the top of the drum in parallel so that the clearance from the drum was 0.3 mm. The drum was rotated and stopped so that the end of the side fixed with the tape of the base material was between the drum and the coating bar. While supplying the PPTA slurry solution for coating prepared above onto the base material before the coating bar, the drum was rotated at 0.5 rpm to coat the base material.

【0085】基材全体を塗工したら、ドラムの回転を止
め、そのまま23℃で湿度50%の雰囲気に10分間置
き、PPTAを析出させた。100μmのPETフィル
ムと基材にスラリー溶液を塗工・析出させた塗工膜を一
体にしたままドラムより取り外してイオン交換水に浸漬
し、イオン交換水を流しながら、12時間洗浄した。洗
浄後PETフィルムをとり、湿潤塗工膜を、両面からポ
リエステル布に挟み、さらにアラミド製フェルトで挟ん
で、厚み3mmのアルミ平板の上に置き、その上から厚
み0.1mmのナイロンフィルムを置いて、その回りを
シーリング材でシールし、内部を真空に引きながら、1
50℃で2時間乾燥して乾燥塗工膜等を得た。
After the entire substrate was coated, the rotation of the drum was stopped, and the substrate was kept at 23 ° C. in an atmosphere of 50% humidity for 10 minutes to precipitate PPTA. The 100 μm PET film and the coating film formed by coating and depositing the slurry solution on the substrate were removed from the drum while being integrated, immersed in ion exchange water, and washed for 12 hours while flowing ion exchange water. After washing, remove the PET film, sandwich the wet coated film between polyester fabrics from both sides, further sandwich with aramid felt, place on a 3 mm thick aluminum plate, and place a 0.1 mm thick nylon film on top of it. And seal it around with a sealing material.
It was dried at 50 ° C. for 2 hours to obtain a dry coated film and the like.

【0086】4.ポリオレフィンのサスペンジョンの塗
工 ポリオレフィン(以下「PO」と略することがある。)
のサスペンジョン(ケミパールWF640とケミパール
WP100(三井石油化学(株)製品))を同量ずつ混
合し、イオン交換水を固形分30%になるように加えて
塗工用ポリオレフィンのサスペンジョンを調製した。 ケミパールWF640およびケミパールWP100 :粒径 1μm(コールター・カウンター法で測定)の
低分子量ポリオレフィン
[0086] 4. Coating of a polyolefin suspension Polyolefin (hereinafter sometimes abbreviated as “PO”)
(Chemipearl WF640 and Chemipearl WP100 (manufactured by Mitsui Petrochemical Co., Ltd.)) were mixed in equal amounts, and ion-exchanged water was added to a solid content of 30% to prepare a polyolefin suspension for coating. Chemipearl WF640 and Chemipearl WP100: low molecular weight polyolefin having a particle size of 1 μm (measured by Coulter counter method)

【0087】直径550mm、長さ350mmのドラム
上に離型処理をした厚み25μmのPETフィルムを巻
いた。該PETフィルムの上に幅300mm、長さ90
0mmに切った上記乾燥塗工膜を巻き、片側をテープで
ドラムに固定した。もう片方に0.6kgの重りを乾燥
塗工膜に均等に荷重がかかるように吊り下げた。ドラム
の最上部に直径20mmのステンレス製塗工バーをドラ
ムとのクリアランスが0.075mmになるように平行
に配置した。ドラムと塗工バーの間に乾燥塗工膜のテー
プで固定した側の端がくるようにドラムを回転させ、止
めた。塗工バー手前の乾燥塗工膜上に上記で調整した、
塗工用ポリオレフィンのサスペンジョンを供給しなが
ら、ドラムを0.5rpmで回転させて、ポリオレフィ
ンのサスペンジョンを乾燥塗工膜上に塗工した。乾燥塗
工膜等全体を塗工したら、ドラムの回転を止め、そのま
ま60分間置き乾燥して、非水電解質セパレーターを得
た。
A 25 μm-thick PET film subjected to a release treatment was wound on a drum having a diameter of 550 mm and a length of 350 mm. On the PET film, width 300 mm, length 90
The dried coating film cut to 0 mm was wound, and one side was fixed to a drum with a tape. On the other side, a 0.6 kg weight was suspended so that a load was evenly applied to the dry coating film. A stainless steel coating bar having a diameter of 20 mm was arranged at the top of the drum in parallel so that the clearance from the drum was 0.075 mm. The drum was rotated and stopped so that the end of the side of the dry coating film fixed with the tape was between the drum and the coating bar. Adjusted above on the dry coating film just before the coating bar,
While supplying the polyolefin suspension for coating, the drum was rotated at 0.5 rpm to apply the polyolefin suspension onto the dry coating film. When the entire dry coating film or the like was coated, the rotation of the drum was stopped, and the coating was left for 60 minutes and dried to obtain a non-aqueous electrolyte separator.

【0088】5.非水電解質電池用セパレーターの物性 上記の非水電解質セパレーターは、厚みが26.3μ
m、目付け19.2g/m2(PET紙8g/m2、PP
TA3.1g/m2、アルミナ3.1g/m2、PO5.0
g/m2)、空隙率44.8%であった。走査型電子顕微
鏡で該セパレーターを観察したところ、片面は、約0.
1μm以下のフィブリル状、層状のPPTA樹脂からな
り、そのフィブリル間に粒径0.013μm程度のアル
ミナ微粒子が分散しており、孔径0.05〜0.2μm
の空孔を有する多孔質層であった。もう一方の片面は、
粒径1μm程度のポリオレフィン粒子が厚み5μm程度
あった。断面を観察すると、基材の紙のポリエステル繊
維の間に、約0.1μm以下のフィブリル状のPPTA
樹脂の間に粒径0.013μm程度のアルミナ微粒子が
分散した状態で充填されていた。本セパレーターの透気
度は、105cc/sec、引張り強度4.9kg/m
2、破断ひずみ2.8%、引裂き強度は、4.9kg
/mm、引裂き伝播抵抗は、2.5kg/mmであっ
た。
5. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte separator has a thickness of 26.3 μm.
m, basis weight 19.2g / m 2 (PET sheet 8g / m 2, PP
TA 3.1 g / m 2 , alumina 3.1 g / m 2 , PO 5.0
g / m 2 ) and the porosity was 44.8%. Observation of the separator with a scanning electron microscope revealed that one side had a thickness of about 0.1 mm.
1 μm or less of fibril-shaped or layered PPTA resin, alumina fine particles having a particle size of about 0.013 μm are dispersed between the fibrils, and a pore diameter of 0.05 to 0.2 μm
Was a porous layer having pores. On the other side,
Polyolefin particles having a particle size of about 1 μm had a thickness of about 5 μm. When the cross section is observed, a fibril-like PPTA of about 0.1 μm or less is formed between the polyester fibers of the base paper.
Alumina fine particles having a particle size of about 0.013 μm were filled between the resins in a dispersed state. The air permeability of the separator is 105 cc / sec, and the tensile strength is 4.9 kg / m.
m 2 , breaking strain 2.8%, tear strength 4.9kg
/ Mm, the tear propagation resistance was 2.5 kg / mm.

【0089】6.シャットダウン性能の測定と耐熱性の
評価 上記セパレーターの加熱前の25℃における内部電気抵
抗は、25Ωであった。サンプルの温度を上げていく
と、内部電気抵抗は、徐々に下がっていくが、100℃
付近より、内部電気抵抗が上がりだして120℃付近で
100Ωに上昇した。さらに200℃まで温度を上げた
がメルトダウンによる電気抵抗の低下はなかった。以上
の結果より本セパレーターは、温度上昇時に電流を遮断
する、シャットダウン機能および耐熱性を有することが
わかった。
6. Measurement of Shutdown Performance and Evaluation of Heat Resistance The internal electrical resistance at 25 ° C. of the separator before heating was 25Ω. As the temperature of the sample increases, the internal electrical resistance gradually decreases,
From there, the internal electric resistance began to rise and rose to 100Ω at around 120 ° C. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0090】7.非水電解質電池用セパレーターとして
の評価 得られたセパレーターの8サイクル目の放電容量は、1
88mAH/g(放電電流1.5mA)であり、サイク
ル劣化もなく正常に動作した。負荷特性は、3Cで41
%であった。以上の結果より本セパレーターは、非水電
解質電池用セパレーターとしての性能を有することがわ
かった。
7. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained separator was 1
It was 88 mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. Load characteristics are 41 at 3C
%Met. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0091】8.円筒電池での安全性試験 前述の方法で得た円筒型電池2個について、定格容量の
150%の充電を行って過充電状態とした後、釘刺し試
験を実施した。釘刺し試験の方法は、(社)日木蓄電池
工業会のリチウム二次電池安全性評価基準ガイドライン
(日本蓄電池工業会指針SBA−G1101−199
5)にしたがった。試験に供した電池は過充電という苛
酷な状態にもかかわらず、破裂せず発火もしなかった。
8. Safety Test on Cylindrical Batteries Two cylindrical batteries obtained by the above-described method were charged to 150% of the rated capacity to make them overcharged, and then a nail penetration test was performed. The method of the nail penetration test is based on the guideline for evaluating the safety of lithium secondary batteries of the Japan Storage Battery Association (Japan Storage Battery Association of Japan guideline SBA-G1101-199).
According to 5). The batteries subjected to the test did not explode nor ignite, despite the severe condition of overcharging.

【0092】実施例2 1.塗工用PPTAスラリー溶液の調製 混合するアルミナ微細粒子の重量が39gである点を除
き、実施例1と同じ方法で調製した。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
1mmになるように平行に配置する以外は実施例1の3
と同じ方法で作製した。 3.ポリオレフィンのサスペンジョンの層の塗工 実施例1の4と同じ方法で非水電解質電池用セパレータ
ーを得た。
Embodiment 2 1. Preparation of PPTA Slurry Solution for Coating A coating solution was prepared in the same manner as in Example 1 except that the weight of the alumina fine particles to be mixed was 39 g. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
3 of Example 1 except that they are arranged in parallel so as to be 1 mm.
It was produced in the same manner as described above. 3. Coating of Polyolefin Suspension Layer A separator for a non-aqueous electrolyte battery was obtained in the same manner as in item 4 of Example 1.

【0093】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが24.
1μm、目付け17.8g/m2(PET紙8g/m2
PPTA0.42g/m2、アルミナ4.2g/m 2、PO
5.2g/m2)、空隙率45.3%であった。走査型電
子顕微鏡でセパレーターを観察したところ、片面は、約
0.1μm以下のフィブリル状、層状のPPTA樹脂か
らなり、そのフィブリル間に粒径0.013μm程度の
アルミナ微粒子が分散しており、孔径0.05〜0.2
μmの空孔を有する多孔質層であった。もう一方の片面
は、粒径1μm程度のポリオレフィン粒子が厚み5μm
程度あった。断面を観察すると、基材の紙のポリエステ
ル繊維の間に、約0.1μm以下のフィブリル状のPP
TA樹脂の間に粒径0.013μm程度のアルミナ微粒
子が分散した状態で充填されていた。本セパレーターの
透気度は750cc/secであった。
4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 24.
1 μm, basis weight 17.8 g / mTwo(PET paper 8g / mTwo,
PPTA 0.42 g / mTwo, Alumina 4.2g / m Two, PO
5.2g / mTwo), And the porosity was 45.3%. Scanning type
Observing the separator with a scanning microscope, one side was approximately
Fibrillar or layered PPTA resin of 0.1 μm or less
And a particle size of about 0.013 μm between the fibrils.
Alumina fine particles are dispersed, and the pore size is 0.05-0.2
The porous layer had pores of μm. The other side
Means that polyolefin particles having a particle size of about 1 μm
There was about. Observation of the cross section shows that the polyester paper
Fibril-like PP of about 0.1 μm or less
Fine alumina particles with a particle size of about 0.013 μm between TA resins
The child was packed in a dispersed state. Book separator
The air permeability was 750 cc / sec.

【0094】5.シャットダウン性能の測定と耐熱性の
評価 上記セパレーターの加熱前の25℃における内部電気抵
抗は20Ωであった。サンプルの温度を上げていくと、
内部電気抵抗は、徐々に下がっていくが、100℃付近
より、内部電気抵抗が上がりだして120℃付近で25
2Ωに上昇した。さらに200℃まで温度を上げたがメ
ルトダウンによる電気抵抗の低下はなかった。以上の結
果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
5. Measurement of Shutdown Performance and Evaluation of Heat Resistance The internal electrical resistance at 25 ° C. of the separator before heating was 20Ω. As you increase the temperature of the sample,
Although the internal electric resistance gradually decreases, the internal electric resistance starts to increase from around 100 ° C.
Rose to 2Ω. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0095】6.非水電解質電池用セパレーターとして
の評価 得られたセパレーターの8サイクル目の放電容量は、1
93mAH/g(放電電流1.5mA)であり、サイク
ル劣化もなく正常に動作した。負荷特性は、3Cで47
%であった。以上の結果より本セパレーターは、非水電
解質電池用セパレーターとしての性能を有することがわ
かった。
6. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained separator was 1
It was 93 mAH / g (discharge current: 1.5 mA), and it operated normally without cycle deterioration. The load characteristic is 47 at 3C.
%Met. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0096】実施例3 1.塗工用ポリイミド樹脂スラリー溶液の調製 ポリマー濃度20%の溶媒に可溶なポリイミド樹脂のN
MP溶液(リカコート、PN−20;新日本理化(株)
製品)100gとアルミナ微細粒子(日本アエロジル社
製品;アルミナC、平均粒子径0.013μm)を2g
を、撹拌翼、温度計、窒素流入管および液体添加口を有
する、500mlのセパラブルフラスコに秤取し、12
0分間攪拌した。NMP45mlを加え120分間攪拌
した。アルミナ微細粒子を十分に分散させたスラリー溶
液を1000メッシュの金網でろ過後、減圧下で脱泡し
塗工用スラリー溶液とした。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
1mmになるように平行に配置する以外は、実施例1の
3と同じ方法で調製した。 3.ポリオレフィンのサスペンジョンの塗工実施例1と
同じ方法で非水電解質電池用セパレーターを得た。
Embodiment 3 1. Preparation of Polyimide Resin Slurry Solution for Coating Polyimide Resin N Soluble in Solvent with 20% Polymer Concentration
MP solution (Ricacoat, PN-20; Shin Nippon Rika Co., Ltd.)
Product) 100 g and alumina fine particles (product of Nippon Aerosil Co .; alumina C, average particle diameter 0.013 μm) 2 g
Was weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube, and a liquid addition port.
Stirred for 0 minutes. NMP (45 ml) was added and the mixture was stirred for 120 minutes. The slurry solution in which the alumina fine particles were sufficiently dispersed was filtered through a 1000-mesh wire net, and then defoamed under reduced pressure to obtain a coating slurry solution. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
It was prepared in the same manner as 3 in Example 1 except that it was arranged in parallel so as to be 1 mm. 3. Coating of polyolefin suspension A separator for a non-aqueous electrolyte battery was obtained in the same manner as in Example 1.

【0097】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが27.
4μm、目付け18.1g/m2(PET紙8g/m2
ポリイミド4.4g/m2、アルミナ0.44g/m2、P
O5.3g/m2)、空隙率45.4%であった。走査型
電子顕微鏡でセパレーターの断面を観察したところ、基
材の紙のポリエステル繊維の間に、多孔質のポリイミド
樹脂の中に粒径0.013μm程度のアルミナ微粒子が
分散して、連続気泡になっているもので、充填されてい
る層と粒径1μm程度のポリオレフィン粒子が厚み5μ
m程度の層であった。本セパレーターの透気度は、15
0cc/secであった。
4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 27.
4 μm, basis weight 18.1 g / m 2 (PET paper 8 g / m 2 ,
Polyimide 4.4 g / m 2 , alumina 0.44 g / m 2 , P
O 5.3 g / m 2 ) and the porosity was 45.4%. When the cross section of the separator was observed with a scanning electron microscope, alumina particles having a particle size of about 0.013 μm were dispersed in the porous polyimide resin between the polyester fibers of the base paper to form open cells. The filled layer and polyolefin particles having a particle size of about 1 μm have a thickness of 5 μm.
m. The air permeability of this separator is 15
It was 0 cc / sec.

【0098】5.シャットダウン性能の測定と耐熱性の
評価 上記セパレーターの加熱前の25℃における内部電気抵
抗は、35Ωであった。サンプルの温度を上げていく
と、内部電気抵抗は、徐々に下がっていくが、100℃
付近より、内部電気抵抗が上がりだして120℃付近で
70Ωに上昇した。さらに200℃まで温度を上げたが
メルトダウンによる電気抵抗の低下はなかった。以上の
結果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
5. Measurement of Shutdown Performance and Evaluation of Heat Resistance The internal electrical resistance at 25 ° C. of the separator before heating was 35Ω. As the temperature of the sample increases, the internal electrical resistance gradually decreases,
From there, the internal electric resistance began to rise and rose to 70Ω at around 120 ° C. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0099】6.非水電解質電池用セパレーターとして
の評価 得られたセパレーターの8サイクル目の放電容量は、1
83mAH/g(放電電流1.5mA)であり、サイク
ル劣化もなく正常に動作した。負荷特性は3Cで8%で
あった。以上の結果より本セパレーターは、非水電解質
電池用セパレーターとしての性能を有することがわかっ
た。
6. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained separator was 1
It was 83 mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. The load characteristic was 8% at 3C. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0100】実施例4 1.塗工用ポリイミド樹脂スラリー溶液の調製 ポリマー濃度20%のポリイミド樹脂のNMP溶液(リ
カコート、PN−20;新日本理化(株)製品)100
gとアルミナ微細粒子(日本アエロジル社製品;アルミ
ナC、平均粒子径0.013μm )7gを、撹拌翼、
温度計、窒素流入管および液体添加口を有する、500
mlのセパラブルフラスコに秤取し、120分間攪拌し
た。NMP28mlを加え120分間攪拌した。アルミ
ナ微細粒子を十分に分散させたスラリー溶液を1000
メッシュの金網でろ過後、減圧下で脱泡し塗工用スラリ
ー溶液とした。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
1mmになるように平行に配置する以外は実施例1の3
と同じ方法で調製した。 3.ポリオレフィンのサスペンジョンの塗工 実施例1の4と同じ方法で非水電解質電池用セパレータ
ーを得た。
Embodiment 4 1. Preparation of Polyimide Resin Slurry Solution for Coating NMP Solution of Polyimide Resin with 20% Polymer Concentration (Licacoat, PN-20; Shin-Nippon Rika Co., Ltd.) 100
g and 7 g of alumina fine particles (product of Nippon Aerosil Co., Ltd .; alumina C, average particle size 0.013 μm),
500 with thermometer, nitrogen inlet and liquid addition port
The mixture was weighed into a ml separable flask and stirred for 120 minutes. 28 ml of NMP was added and stirred for 120 minutes. A slurry solution in which alumina fine particles are sufficiently dispersed is 1000
After filtration through a mesh wire mesh, the mixture was defoamed under reduced pressure to obtain a coating slurry solution. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
3 of Example 1 except that they are arranged in parallel so as to be 1 mm.
Prepared in the same manner as 3. Coating of polyolefin suspension A separator for a non-aqueous electrolyte battery was obtained in the same manner as in item 4 of Example 1.

【0101】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが26.
7μm、目付け17.7g/m2(PET紙8g/m2
ポリイミド3.4g/m2、アルミナ1.2g/m 2、PO
5.1g/m2)、空隙率46.5%であった。走査型電
子顕微鏡でセパレーターの断面を観察したところ、基材
の紙のポリエステル繊維の間に、多孔質のポリイミド樹
脂の中に粒径0.013μm程度のアルミナ微粒子が分
散して、連続気泡になっているもので、充填されている
層と粒径1μm程度のポリオレフィン粒子が厚み5μm
程度の層であった。本セパレーターの透気度は680c
c/secであった。
4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 26.
7 μm, basis weight 17.7 g / mTwo(PET paper 8g / mTwo,
3.4 g / m of polyimideTwo, Alumina 1.2g / m Two, PO
5.1 g / mTwo), And the porosity was 46.5%. Scanning type
When the cross section of the separator was observed with a microscope,
Porous polyimide tree between polyester fibers of paper
Alumina fine particles with a particle size of about 0.013 μm
It is dispersed and becomes an open cell, and it is filled
The layer and polyolefin particles having a particle size of about 1 μm have a thickness of 5 μm.
It was about a layer. The air permeability of this separator is 680c
c / sec.

【0102】5.シャットダウン性能の測定 上記セパレーターの加熱前の25℃における内部電気抵
抗は、25Ωであった。サンプルの温度を上げていく
と、内部電気抵抗は徐々に下がっていくが、100℃付
近より、内部電気抵抗が上がりだして120℃付近で7
9Ωに上昇した。さらに200℃まで温度を上げたがメ
ルトダウンによる電気抵抗の低下はなかった。以上の結
果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
5. Measurement of Shutdown Performance The internal electrical resistance at 25 ° C. of the separator before heating was 25Ω. As the temperature of the sample is increased, the internal electric resistance gradually decreases, but the internal electric resistance starts to increase from around 100 ° C.
Rose to 9Ω. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0103】6.非水電解質電池用セパレーターとして
の評価 得られたセパレーターの8サイクル目の放電容量は、1
90mAH/g(放電電流1.5mA)であり、サイク
ル劣化もなく正常に動作した。負荷特性は3Cで24%
であった。以上の結果より本セパレーターは、非水電解
質電池用セパレーターとしての性能を有することがわか
った。
6. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained separator was 1
It was 90 mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. Load characteristics 24% at 3C
Met. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0104】実施例5 1.塗工用ポリイミド樹脂スラリー溶液の調製 ポリマー濃度20%のポリイミド樹脂のNMP溶液(リ
カコート、PN−20;新日本理化(株)製品)100
gとアルミナ微細粒子(日本アエロジル社製品;アルミ
ナC、平均粒子径0.013μm )を10gを、撹拌
翼、温度計、窒素流入管および液体添加口を有する、5
00mlのセパラブルフラスコに秤取し、120分間攪
拌した。NMP40mlを加え120分間攪拌した。ア
ルミナ微細粒子を十分分散させたスラリー溶液を100
0メッシュの金網でろ過後、減圧下で脱泡し塗工用スラ
リー溶液を得た。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
1mmになるように平行に配置する以外は、実施例1の
3と同じ方法で調製した。 3.ポリオレフィンのサスペンジョンの塗工 ステンレス製塗工バーをドラムとのクリアランスが0.
05mmになるように平行に配置する以外は実施例1の
4と同じ方法で非水電解質電池用セパレーターを得た。
Embodiment 5 1. Preparation of Polyimide Resin Slurry Solution for Coating NMP Solution of Polyimide Resin with 20% Polymer Concentration (Licacoat, PN-20; Shin-Nippon Rika Co., Ltd.) 100
g and 10 g of alumina fine particles (product of Nippon Aerosil Co., Ltd .; alumina C, average particle size 0.013 μm) having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port.
It was weighed into a 00 ml separable flask and stirred for 120 minutes. NMP (40 ml) was added and the mixture was stirred for 120 minutes. A slurry solution in which alumina fine particles are sufficiently dispersed
After filtration through a 0-mesh wire net, defoaming was performed under reduced pressure to obtain a coating slurry solution. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
It was prepared in the same manner as 3 in Example 1 except that it was arranged in parallel so as to be 1 mm. 3. Polyolefin suspension coating Stainless steel coating bar with 0 mm clearance from drum.
A separator for a non-aqueous electrolyte battery was obtained in the same manner as in item 4 of Example 1, except that the separator was arranged in parallel so as to be 05 mm.

【0105】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが29.
6μm、目付け20.5g/m2(PET紙8g/m2
ポリイミド4.9g/m2、アルミナ2.5g/m 2、PO
5.1g/m2)、空隙率48.1%であった。走査型電
子顕微鏡でセパレーターの断面を観察したところ、基材
の紙のポリエステル繊維の間に、多孔質のポリイミド樹
脂の中に粒径0.013μm程度のアルミナ微粒子が分
散して、連続気泡になっているもので、充填されている
層と粒径1μm程度のポリオレフィン粒子が厚み5μm
程度の層であった。
4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 29.
6 μm, weight 20.5 g / mTwo(PET paper 8g / mTwo,
4.9 g / m of polyimideTwo, Alumina 2.5g / m Two, PO
5.1 g / mTwo), And the porosity was 48.1%. Scanning type
When the cross section of the separator was observed with a microscope,
Porous polyimide tree between polyester fibers of paper
Alumina fine particles with a particle size of about 0.013 μm
It is dispersed and becomes an open cell, and it is filled
The layer and polyolefin particles having a particle size of about 1 μm have a thickness of 5 μm.
It was about a layer.

【0106】本セパレーターの透気度は3200cc/
secで、引張り強度4.5kg/mm2、破断ひずみ1
4.0%、引裂き強度は、7.5kg/mm、引裂き伝
播抵抗は、3.3kg/mmであった。
The air permeability of the separator is 3200 cc /
sec, tensile strength 4.5 kg / mm 2 , breaking strain 1
4.0%, the tear strength was 7.5 kg / mm, and the tear propagation resistance was 3.3 kg / mm.

【0107】5.シャットダウン性能の測定と耐熱性の
評価 上記セパレーターの加熱前の25℃における内部電気抵
抗は35Ωであった。サンプルの温度を上げていくと、
内部電気抵抗は徐々に下がっていくが、100℃付近よ
り、内部電気抵抗が上がりだして120℃付近で221
Ωに上昇した。さらに200℃まで温度を上げたがメル
トダウンによる電気抵抗の低下はなかった。 以上の結
果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
5. Measurement of Shutdown Performance and Evaluation of Heat Resistance The internal electrical resistance at 25 ° C. of the separator before heating was 35Ω. As you increase the temperature of the sample,
Although the internal electric resistance gradually decreases, the internal electric resistance starts increasing from around 100 ° C. and reaches 221 around 120 ° C.
Rose to Ω. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0108】6.非水電解質電池用セパレーターとして
の評価 得られたセパレーターの8サイクル目の放電容量は、1
87mAH/g(放電電流1.5mA)であり、サイク
ル劣化もなく正常に動作した。負荷特性は3Cで63%
であった。以上の結果より本セパレーターは、非水電解
質電池用セパレーターとしての性能を有することがわか
った。
6. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained separator was 1
It was 87 mAH / g (discharge current: 1.5 mA), and it operated normally without cycle deterioration. 63% load characteristics at 3C
Met. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0109】7.円筒電池での安全性試験 上述の方法で得た円筒型電池2個について、定格容量の
150%の充電を行って過充電状態とした後、釘刺し試
験を実施した。釘刺し試験の方法は(社)日木蓄電池工
業会のリチウム二次電池安全性評価基準ガイドライン
(日本蓄電池工業会指針SBA−G1101−199
5)にしたがった。試験に供した電池は過充電という苛
酷な状態にもかかわらず、破裂せず発火もしなかった。
7. Safety Test with Cylindrical Battery Two cylindrical batteries obtained by the above-described method were charged to 150% of the rated capacity to make them overcharged, and then a nail penetration test was performed. The method of the nail penetration test is based on the guideline of safety evaluation standard for lithium secondary batteries by the Japan Storage Battery Association (Japan Storage Battery Association of Japan guideline SBA-G1101-199).
According to 5). The batteries subjected to the test did not explode nor ignite, despite the severe condition of overcharging.

【0110】実施例6 1.塗工用ポリイミド樹脂スラリー溶液の調製 ポリマー濃度20%のポリイミド樹脂のNMP溶液(リ
カコート、PN−20;新日本理化(株)製品)100
gと平均粒径0.4μmのアルミナ細粒子(AMS−1
2;住友化学(株)社製品)10gを、撹拌翼、温度
計、窒素流入管および液体添加口を有する、500ml
のセパラブルフラスコに秤取し、120分間攪拌した。
NMP45mlを加え120分間攪拌した後、減圧下で
脱泡し塗工用スラリー溶液とした。このスラリー溶液を
24時間静置したところ、アルミナ細粒子の一部が沈降
していた。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
1mmになるように平行に配置する以外は実施例1の3
と同じ方法で調製した。 3.ポリオレフィンのサスペンジョンの塗工 実施例1の4と同じ方法で非水電解質電池用セパレータ
ーを得た。
Embodiment 6 1. Preparation of Polyimide Resin Slurry Solution for Coating NMP Solution of Polyimide Resin with 20% Polymer Concentration (Licacoat, PN-20; Shin-Nippon Rika Co., Ltd.) 100
g and fine alumina particles having an average particle diameter of 0.4 μm (AMS-1
2; Sumitomo Chemical Co., Ltd. product) 10 g, 500 ml having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port
Was weighed into a separable flask and stirred for 120 minutes.
After adding 45 ml of NMP and stirring for 120 minutes, the mixture was defoamed under reduced pressure to obtain a coating slurry solution. When this slurry solution was allowed to stand for 24 hours, some of the alumina fine particles had settled. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
3 of Example 1 except that they are arranged in parallel so as to be 1 mm.
Prepared in the same manner as 3. Coating of polyolefin suspension A separator for a non-aqueous electrolyte battery was obtained in the same manner as in item 4 of Example 1.

【0111】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが26.
5μm、目付け17.8g/m2(PET紙8g/m2
3.0g/m2、アルミナ1.5g/m2、PO5.3g/
2)、空隙率46.0%であった。走査型電子顕微鏡
でセパレーターの断面を観察したところ、基材の紙のポ
リエステル繊維の間に、多孔質のポリイミド樹脂の中に
平均粒径0.4μm程度のアルミナ微粒子が分散して、
連続気泡になっているもので、充填されている層と粒径
1μm程度のポリオレフィン粒子が厚み5μm程度の層
であった。本セパレーターの透気度は120cc/se
cから270cc/secで場所ムラがあった。
[0111] 4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 26.
5 μm, basis weight 17.8 g / m 2 (PET paper 8 g / m 2 ,
3.0 g / m 2 , alumina 1.5 g / m 2 , PO 5.3 g / m 2
m 2 ), and the porosity was 46.0%. When the cross section of the separator was observed with a scanning electron microscope, alumina fine particles having an average particle size of about 0.4 μm were dispersed in the porous polyimide resin between the polyester fibers of the base paper,
It was an open cell, in which the filled layer and the polyolefin particles having a particle size of about 1 μm were a layer having a thickness of about 5 μm. The air permeability of this separator is 120 cc / sec.
There was unevenness in the location from c to 270 cc / sec.

【0112】比較例1 1.塗工用ポリイミド樹脂溶液の調製 ポリマー濃度20%のNMP溶液のポリイミド樹脂(リ
カコート、PN−20;新日本理化(株)製品)100
gを、撹拌翼、温度計、窒素流入管および液体添加口を
有する、500mlのセパラブルフラスコに秤取し、減
圧下で脱泡し塗工用溶液とした。 2.塗工膜の作成 ステンレス製塗工バーをドラムとのクリアランスが0.
05mmになるように平行に配置する以外は、実施例1
の3と同じ方法で調製した。 3.ポリオレフィンのサスペンジョンの塗工 実施例1の4と同じ方法で非水電解質電池用セパレータ
ーを得た。
Comparative Example 1 1. Preparation of Polyimide Resin Solution for Coating Polyimide resin of NMP solution with 20% polymer concentration (Licacoat, PN-20; product of Shin Nippon Rika Co., Ltd.) 100
g was weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port, and degassed under reduced pressure to obtain a coating solution. 2. Preparation of coating film The clearance between the stainless steel coating bar and the drum is 0.
Example 1 except that they were arranged in parallel so as to be 05 mm.
Prepared in the same manner as 3. 3. Coating of polyolefin suspension A separator for a non-aqueous electrolyte battery was obtained in the same manner as in item 4 of Example 1.

【0113】4.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが28.
0μm、目付け17.7g/m2(PET紙8g/m2
ポリイミド4.6g/m2、PO5.1g/m2)、空隙率
47.3%であった。走査型電子顕微鏡で非水電解質電
池用セパレーターの断面を観察したところ、基材の紙の
ポリエステル繊維の間に、多孔質のポリイミド樹脂で、
充填されている層と粒径1μm程度のポリオレフィン粒
子が厚み5μm程度の層であった。本セパレーターの透
気度は3cc/secと低かった。 5.シャットダウン性能の測定、電池用セパレーターと
しての評価 電解液の含浸不良のため測定不可であった。
4. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 28.
0 .mu.m, basis weight 17.7g / m 2 (PET sheet 8 g / m 2,
Polyimide 4.6g / m 2, PO5.1g / m 2), it was void ratio 47.3%. Observation of the cross section of the separator for non-aqueous electrolyte batteries with a scanning electron microscope, between the polyester fibers of the base paper, a porous polyimide resin,
The filled layer and the polyolefin particles having a particle size of about 1 μm were layers having a thickness of about 5 μm. The air permeability of this separator was as low as 3 cc / sec. 5. Measurement of shutdown performance, evaluation as separator for battery Measurement was impossible due to impregnation failure of electrolyte solution.

【0114】実施例7 1.塗工用PPTAドープの調製 塗工用PPTAドープ 上記実施例1の1.のPPTAドープ100gを、撹拌
翼、温度計、窒素流入管および液体添加口を有する、5
00mlのセパラブルフラスコに秤取し、140gのN
MPを添加し、最終的に、PPTA濃度が2.5重量%
の等方相の溶液に調製して60分間攪拌した。上記のP
PTA濃度が2.5重量%溶液にアルミナ微細粒子(日
本アエロジル社製品;アルミナC)を6g混合し、24
0分間攪拌した。ナノマイザーに3回通し、アルミナ微
細粒子を十分分散させた塗工ドープを1000メッシュ
の金網でろ過した。その後、減圧下で脱泡し塗工用ドー
プとした。
Embodiment 7 1. Preparation of PPTA dope for coating PPTA dope for coating 100 g of the PPTA dope of Example 1 having a stirring blade, a thermometer, a nitrogen inlet tube, and a liquid addition port.
Weighed into a 00 ml separable flask, 140 g of N
MP was added, and finally the PPTA concentration was 2.5% by weight.
And stirred for 60 minutes. P above
A PTA concentration of 2.5% by weight was mixed with 6 g of alumina fine particles (Alumina C, manufactured by Nippon Aerosil Co., Ltd.), and 24
Stirred for 0 minutes. The mixture was passed through a Nanomizer three times, and the coated dope in which alumina fine particles were sufficiently dispersed was filtered through a 1000-mesh wire net. Thereafter, defoaming was performed under reduced pressure to obtain a coating dope.

【0115】2.多孔質フィルム層の作製 直径550mm、長さ350mmのドラム上に厚み10
0μmのPETフィルムを巻いた。 PETフィルムの
上に基材(ポリエチレンセパレーター、目付け10.5
g/m2、厚み16μm、空隙率40%)を巻いた。基
材の片側をテープでドラムに固定した。もう片方に0.
6kgの重りを基材に均等に荷重がかかるように吊り下
げた。ドラムの最上部に直径25mmのステンレス製塗
工バーをドラムとのクリアランスが0.15mmになる
ように平行に配置した。ドラムと塗工バーの間に基材の
テープで固定した側の端がくるようにドラムを回転さ
せ、止めた。塗工バー手前の基材上に上記で調整した、
塗工ドープを供給しながら、ドラムを0.5rpmで回
転させて、基材に塗工した。基材全体を塗工し、さらに
ドラムを回転させながら、そのまま23℃で湿度50%
の雰囲気に10分間置き、PPTAを析出させた。10
0μmのPETフィルムと基材にドープを塗工・析出さ
せたフィルムを一体にしたままドラムより取り外してイ
オン交換水に浸漬し、イオン交換水を流しながら、12
時間洗浄した。洗浄後PETフィルムをとり、湿潤フィ
ルムを、両面からポリエステル布に挟み、さらにアラミ
ド製フェルトで挟んで、厚み3mmのアルミ平板の上に
置き、その上から厚み0.1mmのナイロンフィルムを
置いて、その回りをシーリング材でシールし、内部を真
空に引きながら、70℃で6時間乾燥して非水電解質電
池用セパレーターを得た。
[0115] 2. Preparation of Porous Film Layer Thickness 10 on a 550 mm diameter, 350 mm long drum
A 0 μm PET film was wound. Substrate (polyethylene separator, basis weight 10.5) on PET film
g / m 2 , thickness 16 μm, porosity 40%). One side of the substrate was fixed to the drum with tape. 0 in the other.
A 6 kg weight was suspended so that a load was evenly applied to the substrate. A stainless steel coating bar having a diameter of 25 mm was arranged at the top of the drum so as to have a clearance of 0.15 mm from the drum. The drum was rotated and stopped so that the end of the side fixed with the tape of the base material was between the drum and the coating bar. Adjusted above on the substrate before the coating bar,
While supplying the coating dope, the drum was rotated at 0.5 rpm to coat the substrate. Apply the entire base material and further rotate the drum while keeping the temperature at 23 ° C and 50% humidity.
For 10 minutes to precipitate PPTA. 10
The PET film having a thickness of 0 μm and the film obtained by coating and depositing the dope on the substrate were removed from the drum while being integrated, and immersed in ion-exchanged water.
Washed for hours. After washing, take the PET film, sandwich the wet film between the polyester cloth from both sides, further sandwich with felt made of aramid, put on a 3 mm thick aluminum flat plate, put a 0.1 mm thick nylon film from above, The periphery was sealed with a sealing material, and dried at 70 ° C. for 6 hours while evacuating the inside to obtain a separator for a non-aqueous electrolyte battery.

【0116】3.非水電解質電池用セパレーターの物性 上記の非水電解質電池用セパレーターは、厚みが24.
0μm、目付け17.0g/m2(ポリエチレンセパレ
ーター10.5g/m2、PPTA3.2g/m2、アルミ
ナ3.2g/m2)、耐熱層の空隙率59.4%であっ
た。走査型電子顕微鏡でフィルムを観察したところ、片
面は約0.1μm以下のフィブリル状、層状のPPTA
樹脂からなり、そのフィブリル間に粒径0.013μm
程度のアルミナ微粒子が分散しており、孔径0.05〜
0.2μmの空孔を有する多孔質層であった。断面を観
察すると、基材のポリエチレンセパレーターにPPTA
樹脂が入り込んで接着した状態で2層構造となってい
た。本フィルムの透気度は43cc/secであった。
3. Physical Properties of Nonaqueous Electrolyte Battery Separator The above nonaqueous electrolyte battery separator has a thickness of 24.
0 .mu.m, basis weight 17.0 g / m 2 (polyethylene separator 10.5g / m 2, PPTA3.2g / m 2, alumina 3.2g / m 2), was void ratio 59.4% of the heat-resistant layer. Observation of the film with a scanning electron microscope revealed that one side was fibril-like or layer-like PPTA of about 0.1 μm or less.
Resin, 0.013μm particle size between the fibrils
About alumina fine particles are dispersed, and the pore size is 0.05 to
The porous layer had pores of 0.2 μm. Observation of the cross section shows that PPTA
It had a two-layer structure with the resin penetrating and bonding. The air permeability of this film was 43 cc / sec.

【0117】4.シャットダウン性能の測定 上記フィルムの加熱前の25℃における内部電気抵抗は
20Ωであった。サンプルの温度を上げていくと、内部
電気抵抗は徐々に下がっていくが、130℃付近より、
内部電気抵抗が上がりだして135℃付近で2KΩに上
昇した。さらに200℃まで温度を上げたがメルトダウ
ンによる電気抵抗の低下はなかった。以上の結果より本
セパレーターは温度上昇時に電流を遮断する、シャット
ダウン機能および耐熱性を有することがわかった。
4. Measurement of shutdown performance The internal electrical resistance at 25 ° C. of the film before heating was 20Ω. As the temperature of the sample increases, the internal electrical resistance gradually decreases.
The internal electrical resistance began to rise and rose to 2 KΩ at around 135 ° C. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0118】5.非水電解質電池用セパレーターとして
の評価 得られたフィルムの8サイクル目の放電容量は、193
mAH/g(放電電流1.5mA)であり、サイクル劣
化もなく正常に動作した。負荷特性は3Cで53% で
あった。 以上の結果より本セパレーターは、非水電解
質電池用セパレーターとしての性能を有することがわか
った。
[0118] 5. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained film was 193.
It was mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. The load characteristic was 53% at 3C. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0119】実施例8 1.塗工用ポリイミド樹脂ドープの調製 ポリマー濃度20%のNMP溶液のポリイミド樹脂(P
N20、;新日本理化(株)製品)100gとアルミナ
微細粒子(日本アエロジル社製品;アルミナC)を10
gを、撹拌翼、温度計、窒素流入管および液体添加口を
有する、500mlのセパラブルフラスコに秤取し、1
20分間攪拌した。NMP60mlを加え120分間攪
拌した。ナノマイザーに3回通し、アルミナ微細粒子を
十分分散させ、塗工ドープを1000メッシュの金網で
ろ過した。その後、減圧下で脱泡し塗工用ドープとし
た。
Embodiment 8 1. Preparation of Polyimide Resin Dope for Coating Polyimide resin (P
N20, a product of Shin Nihon Rika Co., Ltd.) 100 g and alumina fine particles (alumina C, a product of Nippon Aerosil Co., Ltd.)
g was weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube, and a liquid addition port.
Stirred for 20 minutes. NMP (60 ml) was added and the mixture was stirred for 120 minutes. The mixture was passed through a Nanomizer three times to sufficiently disperse the alumina fine particles, and the coated dope was filtered through a 1000-mesh wire net. Thereafter, defoaming was performed under reduced pressure to obtain a coating dope.

【0120】2.多孔質フィルム層の作製 直径550mm、長さ350mmのドラム上に厚み10
0μmのPETフィルムを巻いた。 PETフィルムの
上に基材(ポリエチレンセパレーター 、目付け10.
5g/m2、厚み16μm、空隙率40%)を巻いた。
基材の片側をテープでドラムに固定した。もう片方に
0.6kgの重りを基材に均等に荷重がかかるように吊
り下げた。ドラムの最上部に直径25mmのステンレス
製塗工バーをドラムとのクリアランスが0.03mmに
なるように平行に配置した。ドラムと塗工バーの間に基
材のテープで固定した側の端がくるようにドラムを回転
させ、止めた。塗工バー手前の基材上に上記で調整し
た、塗工ドープを供給しながら、ドラムを0.5rpm
で回転させて、基材に塗工した。
[0120] 2. Preparation of Porous Film Layer Thickness 10 on a 550 mm diameter, 350 mm long drum
A 0 μm PET film was wound. 10. Substrate (polyethylene separator, basis weight) on PET film
5 g / m 2 , thickness 16 μm, porosity 40%).
One side of the substrate was fixed to the drum with tape. A 0.6 kg weight was hung on the other side so that a load was evenly applied to the substrate. A stainless steel coating bar having a diameter of 25 mm was arranged at the top of the drum in parallel so that the clearance from the drum was 0.03 mm. The drum was rotated and stopped so that the end of the side fixed with the tape of the base material was between the drum and the coating bar. While supplying the coating dope prepared above on the base material before the coating bar, the drum was rotated at 0.5 rpm.
And applied to the substrate.

【0121】基材全体を塗工し、さらにドラムを回転さ
せながら、そのまま23℃で湿度50%の雰囲気に10
分間置き、PPTAを析出させた。100μmのPET
フィルムと基材にドープを塗工・析出させたフィルムを
一体にしたままドラムより取り外してイオン交換水に浸
漬し、イオン交換水を流しながら、12時間洗浄した。
洗浄後PETフィルムをとり、湿潤フィルムを、両面か
らポリエステル布に挟み、さらにアラミド製フェルトで
挟んで、厚み3mmのアルミ平板の上に置き、その上か
ら厚み0.1mmのナイロンフィルムを置いて、その回
りをシーリング材でシールし、内部を真空に引きなが
ら、70℃で6時間乾燥して非水電解質電池用セパレー
ターを得た。
The whole substrate was coated, and while rotating the drum, it was kept in an atmosphere of 23 ° C. and 50% humidity for 10 minutes.
After a few minutes, PPTA was precipitated. 100 μm PET
The film in which the dope was coated and deposited on the film and the substrate was removed from the drum while being integrated, immersed in ion-exchanged water, and washed for 12 hours while flowing ion-exchanged water.
After washing, take the PET film, sandwich the wet film between the polyester cloth from both sides, further sandwich with felt made of aramid, put on a 3 mm thick aluminum flat plate, put a 0.1 mm thick nylon film from above, The periphery was sealed with a sealing material, and dried at 70 ° C. for 6 hours while evacuating the inside to obtain a separator for a non-aqueous electrolyte battery.

【0122】3.非水電解質電池用セパレーターの物性 上記の乾燥フィルムは、厚みが28.0μm、目付け
17.5g/m2(ポリエチレンセパレーター10.5
g/m2、PI4.7g/m2、アルミナ 2.3g/m2
耐熱層の空隙率 65.9%)であった。走査型電子顕
微鏡でフィルムの断面を観察したところ、多孔質のポリ
イミド樹脂の中にアルミナ微粒子が分散して、連続気泡
になっているものが基材のポリエチレンセパレーターに
入り込んで接着した状態で2層構造となっていた。本フ
ィルムの透気度は60cc/secであった。
3. Physical Properties of Separator for Nonaqueous Electrolyte Battery The above dried film has a thickness of 28.0 μm and a basis weight.
17.5 g / m 2 (polyethylene separator 10.5
g / m 2, PI4.7g / m 2, alumina 2.3 g / m 2)
The porosity of the heat-resistant layer was 65.9%). Observation of the cross section of the film with a scanning electron microscope revealed that alumina microparticles were dispersed in porous polyimide resin, and those that had become open cells entered the polyethylene separator of the base material and were bonded together in two layers. Had a structure. The air permeability of this film was 60 cc / sec.

【0123】4.シャットダウン性能の測定 上記フィルムの加熱前の25℃における内部電気抵抗
は、35Ωであった。サンプルの温度を上げていくと、
内部電気抵抗は徐々に下がっていくが、130℃付近よ
り、内部電気抵抗が上がりだして135℃付近で2.5
KΩに上昇した。さらに200℃まで温度を上げたがメ
ルトダウンによる電気抵抗の低下はなかった。以上の結
果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
4. Measurement of Shutdown Performance The internal electrical resistance at 25 ° C. of the film before heating was 35Ω. As you increase the temperature of the sample,
Although the internal electric resistance gradually decreases, the internal electric resistance starts to increase from around 130 ° C.
Rose to KΩ. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0124】5.非水電解質電池用セパレーターとして
の評価 得られたフィルムの8サイクル目の放電容量は、183
mAH/g(放電電流1.5mA)であり、サイクル劣
化もなく正常に動作した。負荷特性は3Cで61% で
あった。 以上の結果より本セパレーターは、非水電解
質電池用セパレーターとしての性能を有することがわか
った。
[0124] 5. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained film was 183
It was mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. The load characteristic was 61% at 3C. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0125】実施例9 1.塗工用ポリイミド樹脂ドープの調製 ポリマー濃度20%のNMP溶液のポリイミド樹脂(P
N20、;新日本理化(株)製品)50gとアルミナ微
細粒子(住友化学社製品;スミコランダム、平均粒径
0.3μm、粒径分布0.1〜1.0μm)を150g
を、撹拌翼、温度計、窒素流入管および液体添加口を有
する、500mlのセパラブルフラスコに秤取し、NM
P350mlを加え120分間攪拌した。ナノマイザー
に3回通し、アルミナ微細粒子を十分分散させ、塗工ド
ープを減圧下で脱泡し塗工用ドープとした。
Embodiment 9 1. Preparation of Polyimide Resin Dope for Coating Polyimide resin (P
N20, 50 g of Shin Nippon Rika Co., Ltd.) and 150 g of alumina fine particles (Sumitomo Chemical Co., Ltd. product, Sumicorundum, average particle size 0.3 μm, particle size distribution 0.1 to 1.0 μm)
Is weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port, and NM
P350ml was added and stirred for 120 minutes. The mixture was passed through a nanomizer three times to sufficiently disperse the alumina fine particles, and the coating dope was defoamed under reduced pressure to obtain a coating dope.

【0126】2.多孔質フィルム層の作製 直径550mm、長さ350mmのドラム上に厚み10
0μmのPETフィルムを巻いた。 PETフィルムの
上に基材(ポリエチレンセパレーター、目付け10.5
g/m2、厚み16μm、空隙率40%)を巻いた。基
材の片側をテープでドラムに固定した。もう片方に0.
6kgの重りを基材に均等に荷重がかかるように吊り下
げた。ドラムの最上部に直径25mmのステンレス製塗
工バーをドラムとのクリアランスが0.05mmになる
ように平行に配置した。ドラムと塗工バーの間に基材の
テープで固定した側の端がくるようにドラムを回転さ
せ、止めた。塗工バー手前の基材上に上記で調整した、
塗工ドープを供給しながら、ドラムを0.5rpmで回
転させて、基材に塗工した。基材全体を塗工した後、さ
らにドラムを回転させながら、70℃で2時間加熱して
溶媒を蒸発させて、非水電解質電池用セパレーターを得
た。
2. Preparation of Porous Film Layer Thickness 10 on a 550 mm diameter, 350 mm long drum
A 0 μm PET film was wound. Substrate (polyethylene separator, basis weight 10.5) on PET film
g / m 2 , thickness 16 μm, porosity 40%). One side of the substrate was fixed to the drum with tape. 0 in the other.
A 6 kg weight was suspended so that a load was evenly applied to the substrate. A stainless steel coating bar having a diameter of 25 mm was arranged at the top of the drum so as to have a clearance of 0.05 mm from the drum. The drum was rotated and stopped so that the end of the side fixed with the tape of the base material was between the drum and the coating bar. Adjusted above on the substrate before the coating bar,
While supplying the coating dope, the drum was rotated at 0.5 rpm to coat the substrate. After coating the entire base material, the solvent was evaporated by heating at 70 ° C. for 2 hours while further rotating the drum to obtain a separator for a non-aqueous electrolyte battery.

【0127】3.非水電解質電池用セパレーターの物性 上記の乾燥フィルムは、厚みが24.0μm、目付け
28.1g/m2(ポリエチレンセパレーター10.5
g/m2、PI1.1g/m2、アルミナ 16.5g/
2)、耐熱層の空隙率 25.7%であった。走査型電
子顕微鏡でフィルムの断面を観察したところ、多孔質の
ポリイミド樹脂の中にアルミナ微粒子が分散して、連続
気泡になっているものが基材のポリエチレンセパレータ
ーに入り込んで接着した状態で2層構造となっていた。
本フィルムの透気度は38cc/secであった。
[0127] 3. Physical Properties of Separator for Nonaqueous Electrolyte Battery The above dried film has a thickness of 24.0 μm and a basis weight.
28.1 g / m 2 (polyethylene separator 10.5
g / m 2, PI1.1g / m 2, alumina 16.5g /
m 2 ), and the porosity of the heat-resistant layer was 25.7%. Observation of the cross section of the film with a scanning electron microscope revealed that alumina microparticles were dispersed in porous polyimide resin, and those that had become open cells entered the polyethylene separator of the base material and were bonded together in two layers. Had a structure.
The air permeability of the film was 38 cc / sec.

【0128】4.シャットダウン性能の測定 上記フィルムの加熱前の25℃における内部電気抵抗
は、31Ωであった。サンプルの温度を上げていくと、
内部電気抵抗は徐々に下がっていくが、130℃付近よ
り、内部電気抵抗が上がりだして135℃付近で2.8
KΩに上昇した。さらに200℃まで温度を上げたがメ
ルトダウンによる電気抵抗の低下はなかった。以上の結
果より本セパレーターは、温度上昇時に電流を遮断す
る、シャットダウン機能および耐熱性を有することがわ
かった。
4. Measurement of Shutdown Performance The internal electrical resistance at 25 ° C. of the film before heating was 31Ω. As you increase the temperature of the sample,
Although the internal electric resistance gradually decreases, the internal electric resistance starts increasing from about 130 ° C. and becomes 2.8 at about 135 ° C.
Rose to KΩ. The temperature was further increased to 200 ° C., but there was no decrease in electric resistance due to the meltdown. From the above results, it was found that the present separator has a shutdown function and a heat resistance for interrupting the current when the temperature rises.

【0129】5.非水電解質電池用セパレーターとして
の評価 得られたフィルムの8サイクル目の放電容量は、183
mAH/g(放電電流1.5mA)であり、サイクル劣
化もなく正常に動作した。負荷特性は3Cで40% で
あった。 以上の結果より本セパレーターは、非水電解
質電池用セパレーターとしての性能を有することがわか
った。
5. Evaluation as Separator for Nonaqueous Electrolyte Battery The discharge capacity at the eighth cycle of the obtained film was 183
It was mAH / g (discharge current: 1.5 mA) and operated normally without cycle deterioration. The load characteristics were 40% at 3C. From the above results, it was found that the present separator has performance as a separator for a non-aqueous electrolyte battery.

【0130】[0130]

【発明の効果】本発明の非水電解質電池用セパレーター
は、高耐熱性でショート温度が高いという耐熱性含窒素
芳香族重合体の特長を生かしつつ、さらにイオン透過性
が良好で電池特性が良い。また、本発明の非水電解質電
池用セパレーターは、過熱時にシャットダウンする安全
性を備え、さらに加熱されても溶融せず、ショート温度
が高いので、より安全性に優れている。さらに本発明の
リチウム二次電池は、該セパレーターを使用することに
より、ショート温度が高く、より安全性に優れている。
The separator for a non-aqueous electrolyte battery of the present invention makes use of the characteristics of a heat-resistant nitrogen-containing aromatic polymer having high heat resistance and a high short-circuit temperature, and has good ion permeability and good battery characteristics. . Further, the separator for a non-aqueous electrolyte battery of the present invention has the safety of shutting down when overheated, does not melt even when heated, and has a high short-circuit temperature, so that it is more excellent in safety. Furthermore, the lithium secondary battery of the present invention has a high short-circuit temperature and is more excellent in safety by using the separator.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】耐熱性含窒素芳香族重合体およびセラミッ
ク粉末を含むことを特徴とする非水電解質電池セパレー
ター。
1. A non-aqueous electrolyte battery separator comprising a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.
【請求項2】織物、不織布、紙または多孔質のフィルム
からなる基材、耐熱性含窒素芳香族重合体およびセラミ
ック粉末を含むことを特徴とする非水電解質電池セパレ
ーター。
2. A non-aqueous electrolyte battery separator comprising a substrate made of woven fabric, non-woven fabric, paper or porous film, a heat-resistant nitrogen-containing aromatic polymer and ceramic powder.
【請求項3】基材が、単位面積当たりの重量が40g/
2以下であり、かつその厚みが70μm以下の基材で
あることを特徴とする請求項2に記載の非水電解質電池
セパレーター。
3. The method according to claim 1, wherein the weight of the substrate is 40 g / unit area.
m 2 or less, and a non-aqueous electrolyte battery separator of claim 2 in which the thickness is equal to or is less base material 70 [mu] m.
【請求項4】基材が、有機繊維および/または無機繊維
を含む基材であることを特徴とする請求項2または3に
記載の非水電解質電池セパレーター。
4. The non-aqueous electrolyte battery separator according to claim 2, wherein the substrate is a substrate containing organic fibers and / or inorganic fibers.
【請求項5】有機繊維が、熱可塑性ポリマーからなるこ
とを特徴とする請求項4に記載の非水電解質電池セパレ
ーター。
5. The non-aqueous electrolyte battery separator according to claim 4, wherein the organic fibers are made of a thermoplastic polymer.
【請求項6】無機繊維が、ガラス繊維であることを特徴
とする請求項4に記載の非水電解質電池セパレーター。
6. The non-aqueous electrolyte battery separator according to claim 4, wherein the inorganic fibers are glass fibers.
【請求項7】非水電解質電池セパレーターが、260℃
以下で溶融する熱可塑性ポリマーをセパレーター全体に
対して10重量%以上含み、該熱可塑性ポリマーは、温
度上昇時に溶融し、該セパレーターの空隙を閉塞するポ
リマーであることを特徴とする請求項1〜6のいずれか
に記載の非水電解質電池セパレーター。
7. A non-aqueous electrolyte battery separator having a temperature of 260 ° C.
A thermoplastic polymer which melts below is contained in an amount of 10% by weight or more based on the whole of the separator, and the thermoplastic polymer is a polymer which melts when a temperature rises and closes a gap of the separator. 7. The non-aqueous electrolyte battery separator according to any one of 6.
【請求項8】下記(a)〜(e)の工程を含む方法によ
り製造された塗工膜からなる非水電解質電池セパレータ
ー。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に、該耐熱性含窒素芳香族重合体100重量部に対し
セラミック粉末を1〜1500重量部分散した、260
℃以下で溶融する熱可塑性樹脂を含んでいてもよいスラ
リー溶液を調製する。 (b)該スラリー溶液を塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
する。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
8. A non-aqueous electrolyte battery separator comprising a coating film produced by a method comprising the following steps (a) to (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of the heat-resistant nitrogen-containing aromatic polymer.
Prepare a slurry solution that may contain a thermoplastic resin that melts at or below 0 ° C. (B) applying the slurry solution to form a coating film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;
【請求項9】下記(a)〜(e)の工程を含む方法によ
り製造された塗工膜からなる非水電解質電池セパレータ
ー。 (a)耐熱性含窒素芳香族重合体を含む極性有機溶媒溶
液に、該耐熱性含窒素芳香族重合体100重量部に対し
セラミック粉末を1〜1500重量部分散した、260
℃以下で溶融する熱可塑性樹脂を含んでいてもよいスラ
リー溶液を調製する。 (b)該スラリー溶液を織物、不織布、紙または多孔質
のフィルムからなる基材に塗工して塗工膜を作成する。 (c)該塗工膜上に該耐熱性含窒素芳香族重合体を析出
させる。 (d)該塗工膜から極性有機溶媒を除去する。 (e)該塗工膜を乾燥する。
9. A non-aqueous electrolyte battery separator comprising a coating film produced by a method comprising the following steps (a) to (e). (A) In a polar organic solvent solution containing a heat-resistant nitrogen-containing aromatic polymer, 1 to 1500 parts by weight of a ceramic powder is dispersed with respect to 100 parts by weight of the heat-resistant nitrogen-containing aromatic polymer.
Prepare a slurry solution that may contain a thermoplastic resin that melts at or below 0 ° C. (B) The slurry solution is applied to a substrate made of woven fabric, nonwoven fabric, paper or a porous film to form a coated film. (C) depositing the heat-resistant nitrogen-containing aromatic polymer on the coating film. (D) removing the polar organic solvent from the coating film; (E) drying the coated film;
【請求項10】請求項8または9に記載の非水電解質電
池セパレーターにさらに熱可塑性ポリマーの微粒状サス
ペンジョンを塗工、乾燥し、熱可塑性樹脂の微粒子層を
付設してなることを特徴とする非水電解質電池セパレー
ター。
10. The non-aqueous electrolyte battery separator according to claim 8 or 9, further comprising a fine particle suspension of a thermoplastic polymer, followed by drying and a fine particle layer of a thermoplastic resin. Non-aqueous electrolyte battery separator.
【請求項11】耐熱性含窒素芳香族重合体が芳香族ポリ
イミドまたは芳香族ポリアミドであることを特徴とする
請求項1〜10のいずれかに記載の非水電解質電池セパ
レーター。
11. The non-aqueous electrolyte battery separator according to claim 1, wherein the heat-resistant nitrogen-containing aromatic polymer is an aromatic polyimide or an aromatic polyamide.
【請求項12】芳香族ポリアミドが固有粘度1.0〜
2.8dl/gのパラ配向芳香族ポリアミドである請求
項11に記載の非水電解質電池セパレーター。
12. An aromatic polyamide having an intrinsic viscosity of 1.0 to 1.0.
The non-aqueous electrolyte battery separator according to claim 11, which is a para-oriented aromatic polyamide of 2.8 dl / g.
【請求項13】芳香族ポリイミドが溶媒に可溶な芳香族
ポリイミドである請求項11に記載の非水電解質電池セ
パレーター。
13. The non-aqueous electrolyte battery separator according to claim 11, wherein the aromatic polyimide is a solvent-soluble aromatic polyimide.
【請求項14】セラミック粉末が、一次粒子の平均粒径
が1.0μm以下であり、該セラミック粉末の含有量
が、セパレーター全体の重量の1重量%以上95重量%
以下であるセラミック粉末であることを特徴とする請求
項1〜13のいずれかに記載の非水電解質電池セパレー
ター。
14. The ceramic powder, wherein primary particles have an average particle size of 1.0 μm or less, and the content of the ceramic powder is 1% by weight to 95% by weight of the total weight of the separator.
The nonaqueous electrolyte battery separator according to any one of claims 1 to 13, wherein the separator is a ceramic powder as described below.
【請求項15】セラミック粉末が、金属酸化物、金属窒
化物および金属炭化物からなる群から選ばれる少なくと
も1種のセラミック粉末である請求項1〜14のいずれ
かに記載の非水電解質電池セパレーター。
15. The non-aqueous electrolyte battery separator according to claim 1, wherein the ceramic powder is at least one ceramic powder selected from the group consisting of metal oxides, metal nitrides, and metal carbides.
【請求項16】金属酸化物がアルミナ、シリカ、二酸化
チタンまたは酸化ジルコニウムであることを特徴とする
請求項15に記載の非水電解質電池セパレーター。
16. The non-aqueous electrolyte battery separator according to claim 15, wherein the metal oxide is alumina, silica, titanium dioxide or zirconium oxide.
【請求項17】請求項1〜16に記載の非水電解質電池
セパレーターを含むことを特徴とするリチウム二次電
池。
17. A lithium secondary battery comprising the non-aqueous electrolyte battery separator according to claim 1.
JP11800499A 1998-04-27 1999-04-26 Non-aqueous electrolyte battery separator and lithium secondary battery Expired - Fee Related JP3175730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11800499A JP3175730B2 (en) 1998-04-27 1999-04-26 Non-aqueous electrolyte battery separator and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11683898 1998-04-27
JP10-116838 1998-04-27
JP11800499A JP3175730B2 (en) 1998-04-27 1999-04-26 Non-aqueous electrolyte battery separator and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000030686A true JP2000030686A (en) 2000-01-28
JP3175730B2 JP3175730B2 (en) 2001-06-11

Family

ID=26455072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11800499A Expired - Fee Related JP3175730B2 (en) 1998-04-27 1999-04-26 Non-aqueous electrolyte battery separator and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3175730B2 (en)

Cited By (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310658A (en) * 1998-04-27 1999-11-09 Ube Ind Ltd Polyimide porous membrane and its production
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
JP2001009222A (en) * 1999-06-24 2001-01-16 Ube Ind Ltd Porous film for filter and filter
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
JP2001329104A (en) * 2000-05-23 2001-11-27 Teijin Ltd Porous film of para-type aromatic polyamide
JP2002151042A (en) * 2000-11-15 2002-05-24 Yuasa Corp Separator and its manufacturing method as well as battery using the same and its manufacturing method
JP2002151044A (en) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd Separator for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2002201303A (en) * 2000-12-27 2002-07-19 Toray Coatex Co Ltd Porous sheet material
JP2002208393A (en) * 2001-01-12 2002-07-26 Tomoegawa Paper Co Ltd Electrolyte retention membrane, electrolyte retention membrane with base material and manufacturing method of electrolyte retention membrane
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
JP2003059480A (en) * 2001-08-16 2003-02-28 Yuasa Corp Separator for battery and battery using it
KR20030065089A (en) * 2002-01-29 2003-08-06 주식회사 뉴턴에너지 Fibroid separator and energy storage device using the same
JP2004111229A (en) * 2002-09-19 2004-04-08 National Institute Of Advanced Industrial & Technology Polymer electrolyte support body and lithium secondary battery
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it
JP2005536860A (en) * 2002-08-27 2005-12-02 デグサ アクチエンゲゼルシャフト Ion conductive battery separator for lithium battery, its production method and its use
JP2005536658A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Electrical separator, its manufacturing method and use in lithium high power battery
JP2005536857A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Separator for use in a high energy battery and method for producing the same
JP2006504228A (en) * 2002-02-26 2006-02-02 デグサ アクチエンゲゼルシャフト Electric separator, its manufacturing method and use
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006139978A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Nonaqueous battery and method for manufacturing same
JP2006155914A (en) * 2004-11-25 2006-06-15 Toyobo Co Ltd Composite porous membrane, its manufacturing method and secondary battery using it
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
JP2006307193A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Porous film and manufacturing method of porous film
JP2006348280A (en) * 2005-05-20 2006-12-28 Sumitomo Chemical Co Ltd Porous film and laminated porous film
WO2007011053A1 (en) 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072759A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007169661A (en) * 2007-03-22 2007-07-05 Ube Ind Ltd Polyimide porous film
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
JP2007204518A (en) * 2006-01-31 2007-08-16 Toray Ind Inc Porous film containing aromatic polyamide or aromatic polyimide, separator for battery and method for producing the same
JP2007273443A (en) * 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp Multilayered porous membrane and its manufacturing method
WO2007123248A1 (en) 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Powder for positive electrode and positive electrode composite
WO2007123246A1 (en) 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Positive electrode active material powder
JP2007534122A (en) * 2004-04-20 2007-11-22 デグサ ゲーエムベーハー Electrolyte composition and its use as an electrolyte material for electrochemical energy storage systems
JP2007311151A (en) 2006-05-18 2007-11-29 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
WO2008007752A1 (en) 2006-07-10 2008-01-17 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2008041606A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2008032754A1 (en) 2006-09-12 2008-03-20 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
WO2008117840A1 (en) 2007-03-23 2008-10-02 Sumitomo Chemical Company, Limited Porous film
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2008132792A1 (en) * 2007-04-12 2008-11-06 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2008140124A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Laminated porous film
WO2008140120A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Laminated porous film
WO2009005164A1 (en) 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2009507353A (en) * 2005-09-05 2009-02-19 エボニック デグサ ゲーエムベーハー Separator with improved handling
WO2009041722A1 (en) 2007-09-28 2009-04-02 Sumitomo Chemical Company, Limited Lithium complex metal oxide and nonaqueous electrolyte secondary battery
JP2009070605A (en) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd Lithium polymer battery
JP2009087889A (en) * 2007-10-03 2009-04-23 Sony Corp Separator with heat-resistant insulating layer, and nonaqueous electrolyte secondary battery
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
WO2009057727A1 (en) 2007-10-30 2009-05-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
WO2009060828A1 (en) 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
WO2009069813A1 (en) 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Method for inspecting coating film defect in resin-coated film
WO2009096335A1 (en) 2008-01-28 2009-08-06 Sumitomo Chemical Company, Limited Positive electrode active material, sodium rechargeable battery, and process for producing olivine phosphate
WO2009099062A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
WO2009099058A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
WO2009099061A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
WO2009099068A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Sodium rechargeable battery
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
JP2009209038A (en) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd Composite metal oxide and sodium secondary battery
WO2009116688A1 (en) 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same
JP2009224320A (en) * 2008-02-18 2009-10-01 Sumitomo Chemical Co Ltd Sodium secondary battery
JP2009224341A (en) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd Separator for battery, its manufacturing method, and lithium secondary battery
JP2009231281A (en) * 2008-02-28 2009-10-08 Teijin Ltd Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2009259662A (en) * 2008-04-18 2009-11-05 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
WO2009151128A1 (en) 2008-06-11 2009-12-17 住友化学株式会社 Method for producing lithium complex metal oxide
WO2010005095A1 (en) 2008-07-09 2010-01-14 住友化学株式会社 Nonaqueous electrolyte secondary battery
WO2010005097A1 (en) 2008-07-09 2010-01-14 住友化学株式会社 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
JP2010015917A (en) * 2008-07-07 2010-01-21 Hitachi Maxell Ltd Separator for battery and nonaqueous electrolyte battery
WO2010013837A1 (en) 2008-07-30 2010-02-04 住友化学株式会社 Sodium rechargeable battery
JP2010504625A (en) * 2006-09-25 2010-02-12 エルジー・ケム・リミテッド Novel separation membrane and electrochemical device including the separation membrane
JP2010036335A (en) * 2008-07-31 2010-02-18 Evonik Degussa Gmbh Method for cutting mechanically sensitive web product
JP2010036336A (en) * 2008-07-31 2010-02-18 Evonik Degussa Gmbh Method for cutting and/or punching material containing support and polishing particle
WO2010024304A1 (en) 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
WO2010027038A1 (en) 2008-09-02 2010-03-11 住友化学株式会社 Electrode active material, electrode, and nonaqueous electrolyte secondary battery
WO2010030019A1 (en) * 2008-09-10 2010-03-18 住友化学株式会社 Non-aqueous electrolyte secondary cell
JP2010517811A (en) * 2007-02-05 2010-05-27 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane coated with porous active layer and electrochemical device comprising the same
WO2010074293A1 (en) 2008-12-22 2010-07-01 住友化学株式会社 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
JP2010149011A (en) * 2008-12-24 2010-07-08 Teijin Ltd Method of manufacturing coating film and method of manufacturing separator for non-aqueous secondary battery
JP2010160939A (en) * 2009-01-07 2010-07-22 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010165664A (en) * 2009-09-25 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
WO2010098187A1 (en) 2009-02-27 2010-09-02 住友化学株式会社 Lithium composite metal oxide and positive electrode active material
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
WO2010104202A1 (en) 2009-03-13 2010-09-16 住友化学株式会社 Composite metal oxide, electrode, and sodium secondary battery
JP2010205719A (en) * 2009-02-03 2010-09-16 Sony Corp Separator and battery
WO2010110402A1 (en) 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
WO2010110465A1 (en) 2009-03-25 2010-09-30 住友化学株式会社 Sodium ion battery
JP2010262939A (en) * 2010-07-20 2010-11-18 Sony Corp Nonaqueous electrolyte secondary battery
JP2011006668A (en) * 2009-05-26 2011-01-13 Toray Ind Inc Porous film including aromatic polyamide and electricity storage device
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JPWO2009044741A1 (en) * 2007-10-03 2011-02-10 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
WO2011016571A1 (en) 2009-08-06 2011-02-10 住友化学株式会社 Porous film, separator for batteries, and battery
WO2011037201A1 (en) 2009-09-28 2011-03-31 住友化学株式会社 Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
CN102017233A (en) * 2008-04-08 2011-04-13 Sk能源株式会社 Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
US7976987B2 (en) 2007-06-19 2011-07-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
JP2011137183A (en) * 2003-09-25 2011-07-14 Daicel Chemical Industries Ltd Chemical resistant porous film
WO2011102497A1 (en) 2010-02-22 2011-08-25 住友化学株式会社 Electrode mixture, electrode, and lithium secondary battery
JP2011190447A (en) * 2004-09-02 2011-09-29 Lg Chem Ltd Organic-inorganic composite porous film, and electrochemical element using the same
WO2011158889A1 (en) * 2010-06-17 2011-12-22 住友化学株式会社 Transition metal composite hydroxide and lithium composite metal oxide
JPWO2010029994A1 (en) * 2008-09-12 2012-02-02 日本バイリーン株式会社 Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
US20120077083A1 (en) * 2009-06-08 2012-03-29 Sumitomo Chemical Company, Limited Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8221921B2 (en) 2007-03-26 2012-07-17 Sony Corporation Non-aqueous electrolyte battery
US8268487B2 (en) 2009-11-25 2012-09-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8293405B2 (en) 2007-05-21 2012-10-23 Panasonic Corporation Rechargeable lithium ion battery and method for producing the same
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
JP2012238621A (en) * 2006-10-16 2012-12-06 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US8399127B2 (en) 2007-02-20 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
US8404377B2 (en) 2006-04-28 2013-03-26 Panasonic Corporation Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
KR101298501B1 (en) * 2005-03-30 2013-08-21 스미또모 가가꾸 가부시키가이샤 Porous film, and production method and applications thereof
JP2013536981A (en) * 2010-09-06 2013-09-26 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same
JP2014505339A (en) * 2011-01-19 2014-02-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium battery separator with shutdown function
CN103717390A (en) * 2012-03-26 2014-04-09 三菱树脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2014112553A (en) * 2014-02-07 2014-06-19 Sony Corp Separator and battery
US8815435B2 (en) 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
WO2014148036A1 (en) 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2014222669A (en) * 2009-02-03 2014-11-27 ソニー株式会社 Separator and battery
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
WO2015005180A1 (en) 2013-07-10 2015-01-15 株式会社田中化学研究所 Cathode active material for lithium secondary battery, cathode, and secondary battery
JP2015037078A (en) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium battery
WO2015111740A1 (en) 2014-01-27 2015-07-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US9099739B2 (en) 2011-10-20 2015-08-04 Samsung Sdi Co., Ltd. Lithium secondary battery
KR20150091471A (en) 2012-11-30 2015-08-11 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
EP2860789A4 (en) * 2012-04-30 2015-10-14 Lg Chemical Ltd Separator and an electro-chemical device having the same
US9190647B2 (en) 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
KR20150129669A (en) 2013-03-19 2015-11-20 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
EP2808923A4 (en) * 2012-11-12 2016-01-20 Lg Chemical Ltd Method for manufacturing separator, separator manufactured thereby, and electrochemical device including same
US9287544B2 (en) 2011-10-03 2016-03-15 Hitachi Maxell, Ltd. Heat-resistant porous film, separator for nonaqueous battery, and nonaqueous battery
JP2016081835A (en) * 2014-10-21 2016-05-16 東京応化工業株式会社 Porous film, method for manufacturing the same, porous separator for secondary battery, and secondary battery
KR101660210B1 (en) 2015-11-30 2016-10-10 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101688370B1 (en) 2015-11-30 2016-12-20 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
EP3168901A1 (en) 2015-11-13 2017-05-17 Sumitomo Chemical Company Limited Porous layer for nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery laminated separator
WO2017119171A1 (en) * 2016-01-06 2017-07-13 ソニー株式会社 Nonaqueous secondary battery, and positive electrode active material for nonaqueous secondary batteries and method for producing same
JP2018067543A (en) * 2011-07-11 2018-04-26 カリフォルニア インスティチュート オブ テクノロジー Novel separators for electrochemical systems
KR20180096519A (en) 2017-02-21 2018-08-29 유니티카 가부시끼가이샤 Porous composite and method for producing the same
WO2018181555A1 (en) 2017-03-29 2018-10-04 住友化学株式会社 Composite metal oxide, positive electrode active material, positive electrode, sodium secondary battery, and method for producing composite metal oxide
WO2018181461A1 (en) 2017-03-29 2018-10-04 住友化学株式会社 Electrode active material for sodium secondary battery, electrode for sodium secondary battery, sodium secondary battery and method for preparing composite metal oxide
KR20180116084A (en) 2017-04-14 2018-10-24 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery insulating porous layer
CN108878745A (en) * 2017-05-12 2018-11-23 住友化学株式会社 Nonaqueous electrolytic solution secondary battery spacer porous layer and nonaqueous electrolytic solution secondary battery lamination spacer
US10147923B2 (en) 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
US10149425B2 (en) 2013-10-15 2018-12-11 Lemken Gmbh & Co. Kg. Seed meter for a single-grain seeder
CN109804488A (en) * 2016-09-29 2019-05-24 日本电气株式会社 Electrode with heat-resistant insulating layer
KR20190070322A (en) 2016-10-28 2019-06-20 도레이 카부시키가이샤 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2019102126A (en) * 2017-11-28 2019-06-24 東レ株式会社 Battery separator and non-aqueous electrolyte secondary battery
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
JP2019169349A (en) * 2018-03-23 2019-10-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10468676B2 (en) 2013-03-28 2019-11-05 Sumitomo Chemical Company, Limited Positive electrode-active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell
JP2019200901A (en) * 2018-05-16 2019-11-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Ion conductive membrane with anomaly detection function
JP2019212446A (en) * 2018-06-01 2019-12-12 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2019220280A (en) * 2018-06-15 2019-12-26 住友化学株式会社 Porous layer and laminate separator for nonaqueous electrolyte secondary battery
CN110892550A (en) * 2018-03-27 2020-03-17 皓智环球有限公司 Lithium ion battery
WO2020059471A1 (en) 2018-09-21 2020-03-26 株式会社田中化学研究所 Positive electrode active material for secondary battery, and method for producing same
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US10756343B2 (en) 2015-06-02 2020-08-25 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
CN111834586A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer and laminated separator for nonaqueous electrolyte secondary battery
WO2020235508A1 (en) * 2019-05-17 2020-11-26 帝人株式会社 Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery
WO2021117890A1 (en) 2019-12-13 2021-06-17 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021125271A1 (en) 2019-12-17 2021-06-24 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
WO2021141112A1 (en) 2020-01-09 2021-07-15 住友化学株式会社 Lithium metal composite oxide, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium metal composite oxide
WO2021172509A1 (en) 2020-02-26 2021-09-02 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2021199860A1 (en) 2020-03-31 2021-10-07 住友化学株式会社 Electrode active material for sodium secondary battery, electrode mixture for sodium secondary battery, electrode for sodium secondary battery, sodium secondary battery, and all-solid-state sodium secondary battery
WO2021210524A1 (en) 2020-04-14 2021-10-21 住友化学株式会社 Positive electrode active material particles for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021225095A1 (en) 2020-05-07 2021-11-11 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021225094A1 (en) 2020-05-07 2021-11-11 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, method for producing positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2022004323A1 (en) 2020-06-29 2022-01-06 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2022009843A1 (en) 2020-07-06 2022-01-13 住友化学株式会社 Precursor for positive electrode active material of lithium secondary battery, lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022039088A1 (en) 2020-08-19 2022-02-24 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022044720A1 (en) 2020-08-24 2022-03-03 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2022050311A1 (en) 2020-09-04 2022-03-10 住友化学株式会社 Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022050314A1 (en) 2020-09-04 2022-03-10 住友化学株式会社 Lithium metal composite oxide, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022107861A1 (en) 2020-11-19 2022-05-27 住友化学株式会社 Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022107754A1 (en) 2020-11-17 2022-05-27 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022113904A1 (en) 2020-11-24 2022-06-02 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022168780A1 (en) 2021-02-03 2022-08-11 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022196376A1 (en) 2021-03-16 2022-09-22 住友化学株式会社 Metal complex compound, production method for lithium metal complex oxide, and production method for metal complex compound
WO2022209506A1 (en) 2021-03-31 2022-10-06 住友化学株式会社 Negative electrode active material for lithium secondary battery, metal negative electrode, and lithium secondary battery
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188703A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP5611505B2 (en) * 2006-03-29 2014-10-22 日立マクセル株式会社 Battery separator and lithium secondary battery
JP2009070726A (en) * 2007-09-14 2009-04-02 Teijin Ltd Method for manufacturing nonaqueous electrolyte battery
WO2013146402A1 (en) 2012-03-29 2013-10-03 東レバッテリーセパレータフィルム株式会社 Battery separator and method for producing same
JP5412009B1 (en) 2012-04-13 2014-02-12 東レバッテリーセパレータフィルム株式会社 Battery separator and method for producing the same
US11637351B2 (en) 2017-02-23 2023-04-25 Toray Industries, Inc. Porous film, separator for rechargeable battery, and rechargeable battery
JP7440296B2 (en) 2020-02-28 2024-02-28 帝人株式会社 Separators for non-aqueous secondary batteries and non-aqueous secondary batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH09170153A (en) * 1995-12-21 1997-06-30 Tonen Chem Corp Heat stable nonwoven fabric
JPH10275634A (en) * 1997-03-31 1998-10-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH09170153A (en) * 1995-12-21 1997-06-30 Tonen Chem Corp Heat stable nonwoven fabric
JPH10275634A (en) * 1997-03-31 1998-10-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Cited By (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310658A (en) * 1998-04-27 1999-11-09 Ube Ind Ltd Polyimide porous membrane and its production
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith
JP2001009222A (en) * 1999-06-24 2001-01-16 Ube Ind Ltd Porous film for filter and filter
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
JP2001329104A (en) * 2000-05-23 2001-11-27 Teijin Ltd Porous film of para-type aromatic polyamide
JP2002151044A (en) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd Separator for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2002151042A (en) * 2000-11-15 2002-05-24 Yuasa Corp Separator and its manufacturing method as well as battery using the same and its manufacturing method
JP2002201303A (en) * 2000-12-27 2002-07-19 Toray Coatex Co Ltd Porous sheet material
JP2002208393A (en) * 2001-01-12 2002-07-26 Tomoegawa Paper Co Ltd Electrolyte retention membrane, electrolyte retention membrane with base material and manufacturing method of electrolyte retention membrane
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
JP2003059480A (en) * 2001-08-16 2003-02-28 Yuasa Corp Separator for battery and battery using it
KR20030065089A (en) * 2002-01-29 2003-08-06 주식회사 뉴턴에너지 Fibroid separator and energy storage device using the same
JP2006504228A (en) * 2002-02-26 2006-02-02 デグサ アクチエンゲゼルシャフト Electric separator, its manufacturing method and use
JP2005536658A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Electrical separator, its manufacturing method and use in lithium high power battery
JP2005536857A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Separator for use in a high energy battery and method for producing the same
US7892673B2 (en) 2002-08-24 2011-02-22 Evonik Degussa Gmbh Electric separator, method for making same and use thereof in high-power lithium cells
JP4800618B2 (en) * 2002-08-24 2011-10-26 エボニック デグサ ゲーエムベーハー Electrical separator, its manufacturing method and use in lithium high power battery
CN100353589C (en) * 2002-08-24 2007-12-05 德古萨公司 Separator for use in high-energy batteries and method for the production thereof
CN100454611C (en) * 2002-08-24 2009-01-21 德古萨公司 Electrical separator, method for making same and use thereof in high-power lithium cells
JP2005536860A (en) * 2002-08-27 2005-12-02 デグサ アクチエンゲゼルシャフト Ion conductive battery separator for lithium battery, its production method and its use
JP4662768B2 (en) * 2002-08-27 2011-03-30 エボニック デグサ ゲーエムベーハー Ion conductive battery separator for lithium battery, its production method and its use
JP2004111229A (en) * 2002-09-19 2004-04-08 National Institute Of Advanced Industrial & Technology Polymer electrolyte support body and lithium secondary battery
JP2011137183A (en) * 2003-09-25 2011-07-14 Daicel Chemical Industries Ltd Chemical resistant porous film
WO2005057690A1 (en) * 2003-12-15 2005-06-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery
US8137846B2 (en) 2003-12-15 2012-03-20 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP2005285740A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, its manufacturing method, and lithium ion secondary battery using it
JP2007534122A (en) * 2004-04-20 2007-11-22 デグサ ゲーエムベーハー Electrolyte composition and its use as an electrolyte material for electrochemical energy storage systems
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP2006066355A (en) * 2004-08-30 2006-03-09 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
JP4676728B2 (en) * 2004-08-30 2011-04-27 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same
JP2011190447A (en) * 2004-09-02 2011-09-29 Lg Chem Ltd Organic-inorganic composite porous film, and electrochemical element using the same
JP2014130819A (en) * 2004-09-02 2014-07-10 Lg Chem Ltd Organic/inorganic composite porous film and electrochemical device using the same
JP2006139978A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Nonaqueous battery and method for manufacturing same
JP2006155914A (en) * 2004-11-25 2006-06-15 Toyobo Co Ltd Composite porous membrane, its manufacturing method and secondary battery using it
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7687202B2 (en) 2004-12-24 2010-03-30 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US9190647B2 (en) 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
KR101298501B1 (en) * 2005-03-30 2013-08-21 스미또모 가가꾸 가부시키가이샤 Porous film, and production method and applications thereof
JP2006307193A (en) * 2005-03-30 2006-11-09 Sumitomo Chemical Co Ltd Porous film and manufacturing method of porous film
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
JP2006348280A (en) * 2005-05-20 2006-12-28 Sumitomo Chemical Co Ltd Porous film and laminated porous film
WO2007011053A1 (en) 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009507353A (en) * 2005-09-05 2009-02-19 エボニック デグサ ゲーエムベーハー Separator with improved handling
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JP5143568B2 (en) * 2005-12-20 2013-02-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072759A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2007072759A1 (en) * 2005-12-20 2009-05-28 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2007273443A (en) * 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp Multilayered porous membrane and its manufacturing method
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
JP2007204518A (en) * 2006-01-31 2007-08-16 Toray Ind Inc Porous film containing aromatic polyamide or aromatic polyimide, separator for battery and method for producing the same
WO2007123248A1 (en) 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Powder for positive electrode and positive electrode composite
US8029928B2 (en) 2006-04-21 2011-10-04 Sumitomo Chemical Company, Limited Positive electrode active material powder
WO2007123246A1 (en) 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Positive electrode active material powder
US8404377B2 (en) 2006-04-28 2013-03-26 Panasonic Corporation Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2007311151A (en) 2006-05-18 2007-11-29 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
JP2008010316A (en) * 2006-06-29 2008-01-17 Sharp Corp Lithium ion secondary battery
WO2008007752A1 (en) 2006-07-10 2008-01-17 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2008041606A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2010157521A (en) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd Battery separator, and lithium secondary battery using the same
JP2009224341A (en) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd Separator for battery, its manufacturing method, and lithium secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2013030497A (en) * 2006-09-07 2013-02-07 Hitachi Maxell Ltd Lithium secondary battery
WO2008032754A1 (en) 2006-09-12 2008-03-20 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
JP2010504625A (en) * 2006-09-25 2010-02-12 エルジー・ケム・リミテッド Novel separation membrane and electrochemical device including the separation membrane
JP2012238621A (en) * 2006-10-16 2012-12-06 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013008690A (en) * 2006-10-16 2013-01-10 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2008062727A1 (en) * 2006-11-20 2010-03-04 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
US8906538B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing the same, and non-aqueous secondary battery
KR100971107B1 (en) 2006-11-20 2010-07-20 데이진 가부시키가이샤 Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
US8906537B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JP2012009445A (en) * 2007-02-05 2012-01-12 Lg Chem Ltd Organic/inorganic composite separation film coated with porous active layer, and electrochemical element with the same
JP2010517811A (en) * 2007-02-05 2010-05-27 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane coated with porous active layer and electrochemical device comprising the same
JP2015156377A (en) * 2007-02-05 2015-08-27 エルジー・ケム・リミテッド Organic/inorganic composite separation film coated with porous active layer, and electrochemical element including the same
US8399127B2 (en) 2007-02-20 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2007169661A (en) * 2007-03-22 2007-07-05 Ube Ind Ltd Polyimide porous film
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
WO2008117840A1 (en) 2007-03-23 2008-10-02 Sumitomo Chemical Company, Limited Porous film
US8221921B2 (en) 2007-03-26 2012-07-17 Sony Corporation Non-aqueous electrolyte battery
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8221922B2 (en) 2007-04-12 2012-07-17 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR100996556B1 (en) 2007-04-12 2010-11-24 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
WO2008132792A1 (en) * 2007-04-12 2008-11-06 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2008140124A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Laminated porous film
JP2008311221A (en) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd Laminated porous film
WO2008140120A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Laminated porous film
JP2008307893A (en) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd Laminated porous film
US8293405B2 (en) 2007-05-21 2012-10-23 Panasonic Corporation Rechargeable lithium ion battery and method for producing the same
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US7976987B2 (en) 2007-06-19 2011-07-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US9029002B2 (en) 2007-06-19 2015-05-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
WO2009005164A1 (en) 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
US8920960B2 (en) 2007-07-04 2014-12-30 Hitachi Maxell, Ltd. Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
JP2009070605A (en) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd Lithium polymer battery
WO2009041722A1 (en) 2007-09-28 2009-04-02 Sumitomo Chemical Company, Limited Lithium complex metal oxide and nonaqueous electrolyte secondary battery
JPWO2009044741A1 (en) * 2007-10-03 2011-02-10 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
JP2009087889A (en) * 2007-10-03 2009-04-23 Sony Corp Separator with heat-resistant insulating layer, and nonaqueous electrolyte secondary battery
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
JP5144651B2 (en) * 2007-10-03 2013-02-13 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
US9583754B2 (en) 2007-10-03 2017-02-28 Sony Corporation Heat-resistant insulating layer-provided separator containing heat-resistant resin and oxidation-resistant ceramic particles and non-aqueous electrolyte secondary battery
EP2214235A4 (en) * 2007-10-30 2012-03-28 Sumitomo Chemical Co Nonaqueous electrolyte secondary battery, electrode and carbon material
EP2214235A1 (en) * 2007-10-30 2010-08-04 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
WO2009057727A1 (en) 2007-10-30 2009-05-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
WO2009060828A1 (en) 2007-11-09 2009-05-14 Sumitomo Chemical Company, Limited Complex metal oxide and sodium secondary battery
WO2009069813A1 (en) 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Method for inspecting coating film defect in resin-coated film
JP2009133725A (en) * 2007-11-30 2009-06-18 Sumitomo Chemical Co Ltd Method of inspecting coating film defect of resin coated film
WO2009096335A1 (en) 2008-01-28 2009-08-06 Sumitomo Chemical Company, Limited Positive electrode active material, sodium rechargeable battery, and process for producing olivine phosphate
US8795894B2 (en) 2008-01-28 2014-08-05 Sumitomo Chemical Company, Limited Positive electrode active material, sodium secondary battery, and production method of olivine-type phosphate
WO2009099058A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
WO2009099068A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Sodium rechargeable battery
WO2009099062A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
EP2242132A1 (en) * 2008-02-04 2010-10-20 Sumitomo Chemical Company, Limited Sodium rechargeable battery
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
EP2242132A4 (en) * 2008-02-04 2013-10-23 Sumitomo Chemical Co Sodium rechargeable battery
WO2009099061A1 (en) 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
JP2009209038A (en) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd Composite metal oxide and sodium secondary battery
JP2009224320A (en) * 2008-02-18 2009-10-01 Sumitomo Chemical Co Ltd Sodium secondary battery
JP2009231281A (en) * 2008-02-28 2009-10-08 Teijin Ltd Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
WO2009116688A1 (en) 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
CN102017233A (en) * 2008-04-08 2011-04-13 Sk能源株式会社 Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2009259662A (en) * 2008-04-18 2009-11-05 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2010021134A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for manufacturing lithium complex metal oxide
WO2009151128A1 (en) 2008-06-11 2009-12-17 住友化学株式会社 Method for producing lithium complex metal oxide
JP2010015917A (en) * 2008-07-07 2010-01-21 Hitachi Maxell Ltd Separator for battery and nonaqueous electrolyte battery
WO2010005097A1 (en) 2008-07-09 2010-01-14 住友化学株式会社 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
US8795889B2 (en) 2008-07-09 2014-08-05 Sumitomo Chemical Company, Limited Transition metal phosphate, production process thereof, positive electrode, and sodium secondary battery
WO2010005095A1 (en) 2008-07-09 2010-01-14 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
WO2010013837A1 (en) 2008-07-30 2010-02-04 住友化学株式会社 Sodium rechargeable battery
JP2010036335A (en) * 2008-07-31 2010-02-18 Evonik Degussa Gmbh Method for cutting mechanically sensitive web product
JP2010036336A (en) * 2008-07-31 2010-02-18 Evonik Degussa Gmbh Method for cutting and/or punching material containing support and polishing particle
US8815435B2 (en) 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
WO2010024304A1 (en) 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
WO2010027038A1 (en) 2008-09-02 2010-03-11 住友化学株式会社 Electrode active material, electrode, and nonaqueous electrolyte secondary battery
WO2010030019A1 (en) * 2008-09-10 2010-03-18 住友化学株式会社 Non-aqueous electrolyte secondary cell
JP2010092845A (en) * 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary cell
JP5470255B2 (en) * 2008-09-12 2014-04-16 日本バイリーン株式会社 Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
US8741489B2 (en) 2008-09-12 2014-06-03 Japan Vilene Company, Ltd. Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
JPWO2010029994A1 (en) * 2008-09-12 2012-02-02 日本バイリーン株式会社 Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
WO2010074293A1 (en) 2008-12-22 2010-07-01 住友化学株式会社 Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
JP2010149011A (en) * 2008-12-24 2010-07-08 Teijin Ltd Method of manufacturing coating film and method of manufacturing separator for non-aqueous secondary battery
JP2010160939A (en) * 2009-01-07 2010-07-22 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN105742550A (en) * 2009-02-03 2016-07-06 索尼公司 Separator And Battery
JP2010205719A (en) * 2009-02-03 2010-09-16 Sony Corp Separator and battery
JP2014222669A (en) * 2009-02-03 2014-11-27 ソニー株式会社 Separator and battery
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
WO2010098187A1 (en) 2009-02-27 2010-09-02 住友化学株式会社 Lithium composite metal oxide and positive electrode active material
WO2010104202A1 (en) 2009-03-13 2010-09-16 住友化学株式会社 Composite metal oxide, electrode, and sodium secondary battery
WO2010110402A1 (en) 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
JP2010225525A (en) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd Sodium ion battery
WO2010110465A1 (en) 2009-03-25 2010-09-30 住友化学株式会社 Sodium ion battery
JP2011006668A (en) * 2009-05-26 2011-01-13 Toray Ind Inc Porous film including aromatic polyamide and electricity storage device
US9577256B2 (en) * 2009-06-08 2017-02-21 Sumitomo Chemical Company, Limited Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
US20120077083A1 (en) * 2009-06-08 2012-03-29 Sumitomo Chemical Company, Limited Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
WO2011013300A1 (en) * 2009-07-31 2011-02-03 パナソニック株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2011016571A1 (en) 2009-08-06 2011-02-10 住友化学株式会社 Porous film, separator for batteries, and battery
US9259900B2 (en) 2009-08-06 2016-02-16 Sumitomo Chemical Company, Limited Porous film, battery separator, and battery
JP2010165664A (en) * 2009-09-25 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
WO2011037201A1 (en) 2009-09-28 2011-03-31 住友化学株式会社 Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
US8268487B2 (en) 2009-11-25 2012-09-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US9269985B2 (en) 2009-11-25 2016-02-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2011102497A1 (en) 2010-02-22 2011-08-25 住友化学株式会社 Electrode mixture, electrode, and lithium secondary battery
JP2012003948A (en) * 2010-06-17 2012-01-05 Sumitomo Chemical Co Ltd Transition metal composite hydroxide and lithium composite metal oxide
CN102947226A (en) * 2010-06-17 2013-02-27 住友化学株式会社 Transition metal composite hydroxide and lithium composite metal oxide
WO2011158889A1 (en) * 2010-06-17 2011-12-22 住友化学株式会社 Transition metal composite hydroxide and lithium composite metal oxide
US10103383B2 (en) 2010-06-17 2018-10-16 Sumitomo Chemical Company, Limited Transition metal composite hydroxide and lithium composite metal oxide
KR101777897B1 (en) 2010-06-17 2017-09-12 스미또모 가가꾸 가부시키가이샤 Transition metal composite hydroxide and lithium composite metal oxide
US9356288B2 (en) 2010-06-17 2016-05-31 Sumitomo Chemical Company, Limited Transition metal composite hydroxide and lithium composite metal oxide
JP2010262939A (en) * 2010-07-20 2010-11-18 Sony Corp Nonaqueous electrolyte secondary battery
JP2013536981A (en) * 2010-09-06 2013-09-26 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
JP2014505339A (en) * 2011-01-19 2014-02-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium battery separator with shutdown function
JP2014506716A (en) * 2011-01-19 2014-03-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium battery separator with shutdown function
JP2018067543A (en) * 2011-07-11 2018-04-26 カリフォルニア インスティチュート オブ テクノロジー Novel separators for electrochemical systems
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US9287544B2 (en) 2011-10-03 2016-03-15 Hitachi Maxell, Ltd. Heat-resistant porous film, separator for nonaqueous battery, and nonaqueous battery
US9099739B2 (en) 2011-10-20 2015-08-04 Samsung Sdi Co., Ltd. Lithium secondary battery
US10147923B2 (en) 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
CN103717390A (en) * 2012-03-26 2014-04-09 三菱树脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9252412B2 (en) 2012-03-26 2016-02-02 Mitsubishi Plastics, Inc. Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US9666851B2 (en) 2012-04-30 2017-05-30 Lg Chem, Ltd. Separator and electrochemical device having the same
EP2860789A4 (en) * 2012-04-30 2015-10-14 Lg Chemical Ltd Separator and an electro-chemical device having the same
EP2808923A4 (en) * 2012-11-12 2016-01-20 Lg Chemical Ltd Method for manufacturing separator, separator manufactured thereby, and electrochemical device including same
US10084167B2 (en) 2012-11-12 2018-09-25 Lg Chem, Ltd. Method of preparing separator, separator prepared therefrom, and electrochemical device having the same
US10347892B2 (en) 2012-11-30 2019-07-09 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR20150091471A (en) 2012-11-30 2015-08-11 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US10074840B2 (en) 2012-11-30 2018-09-11 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US10374204B2 (en) 2013-03-19 2019-08-06 Teijin Limited Non-aqueous-secondary-battery separator and non-aqueous secondary battery
KR20150131005A (en) 2013-03-19 2015-11-24 소니 주식회사 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
WO2014148036A1 (en) 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
EP3306708A1 (en) 2013-03-19 2018-04-11 Sony Corporation Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
EP3573137A1 (en) 2013-03-19 2019-11-27 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
KR20150129669A (en) 2013-03-19 2015-11-20 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US10079379B2 (en) 2013-03-19 2018-09-18 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system
US10468676B2 (en) 2013-03-28 2019-11-05 Sumitomo Chemical Company, Limited Positive electrode-active substance for sodium secondary cell, positive electrode for sodium secondary cell, and sodium secondary cell
WO2015005180A1 (en) 2013-07-10 2015-01-15 株式会社田中化学研究所 Cathode active material for lithium secondary battery, cathode, and secondary battery
US10297824B2 (en) 2013-07-10 2019-05-21 Tanaka Chemical Corporation Positive electrode active material for lithium secondary battery, positive electrode, and secondary battery
JP2015037078A (en) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Rechargeable lithium battery
US10149425B2 (en) 2013-10-15 2018-12-11 Lemken Gmbh & Co. Kg. Seed meter for a single-grain seeder
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US11557754B2 (en) 2014-01-27 2023-01-17 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2015111740A1 (en) 2014-01-27 2015-07-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2014112553A (en) * 2014-02-07 2014-06-19 Sony Corp Separator and battery
JP2016081835A (en) * 2014-10-21 2016-05-16 東京応化工業株式会社 Porous film, method for manufacturing the same, porous separator for secondary battery, and secondary battery
US10756343B2 (en) 2015-06-02 2020-08-25 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
EP3168901A1 (en) 2015-11-13 2017-05-17 Sumitomo Chemical Company Limited Porous layer for nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery laminated separator
US9741990B2 (en) 2015-11-30 2017-08-22 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery laminated separator
KR101660210B1 (en) 2015-11-30 2016-10-10 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN106803562B (en) * 2015-11-30 2018-04-17 住友化学株式会社 Nonaqueous electrolytic solution secondary battery lamination spacer, nonaqueous electrolytic solution secondary battery component and nonaqueous electrolytic solution secondary battery
CN106803562A (en) * 2015-11-30 2017-06-06 住友化学株式会社 Nonaqueous electrolytic solution secondary battery lamination spacer, nonaqueous electrolytic solution secondary battery component and nonaqueous electrolytic solution secondary battery
KR101688370B1 (en) 2015-11-30 2016-12-20 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery
WO2017119171A1 (en) * 2016-01-06 2017-07-13 ソニー株式会社 Nonaqueous secondary battery, and positive electrode active material for nonaqueous secondary batteries and method for producing same
US11233231B2 (en) * 2016-09-29 2022-01-25 Nec Corporation Electrode with heat-resistant insulating layer
CN109804488B (en) * 2016-09-29 2023-03-10 日本电气株式会社 Electrode with heat-resistant insulating layer
CN109804488A (en) * 2016-09-29 2019-05-24 日本电气株式会社 Electrode with heat-resistant insulating layer
KR20190070322A (en) 2016-10-28 2019-06-20 도레이 카부시키가이샤 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
US10992009B2 (en) 2016-10-28 2021-04-27 Toray Industries, Inc. Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR20180096519A (en) 2017-02-21 2018-08-29 유니티카 가부시끼가이샤 Porous composite and method for producing the same
WO2018181461A1 (en) 2017-03-29 2018-10-04 住友化学株式会社 Electrode active material for sodium secondary battery, electrode for sodium secondary battery, sodium secondary battery and method for preparing composite metal oxide
WO2018181555A1 (en) 2017-03-29 2018-10-04 住友化学株式会社 Composite metal oxide, positive electrode active material, positive electrode, sodium secondary battery, and method for producing composite metal oxide
US10593984B2 (en) 2017-04-14 2020-03-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery insulating porous layer
KR20180116084A (en) 2017-04-14 2018-10-24 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery insulating porous layer
CN108878745A (en) * 2017-05-12 2018-11-23 住友化学株式会社 Nonaqueous electrolytic solution secondary battery spacer porous layer and nonaqueous electrolytic solution secondary battery lamination spacer
JP2019102126A (en) * 2017-11-28 2019-06-24 東レ株式会社 Battery separator and non-aqueous electrolyte secondary battery
JP2019169349A (en) * 2018-03-23 2019-10-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN110892550A (en) * 2018-03-27 2020-03-17 皓智环球有限公司 Lithium ion battery
CN110892550B (en) * 2018-03-27 2022-07-12 皓智环球有限公司 Lithium ion battery
JP7133352B2 (en) 2018-05-16 2022-09-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ion conductive membrane with anomaly detection function
JP2019200901A (en) * 2018-05-16 2019-11-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Ion conductive membrane with anomaly detection function
JP2019212446A (en) * 2018-06-01 2019-12-12 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP7218104B2 (en) 2018-06-15 2023-02-06 住友化学株式会社 Porous layer and laminated separator for non-aqueous electrolyte secondary battery
JP2019220280A (en) * 2018-06-15 2019-12-26 住友化学株式会社 Porous layer and laminate separator for nonaqueous electrolyte secondary battery
WO2020059471A1 (en) 2018-09-21 2020-03-26 株式会社田中化学研究所 Positive electrode active material for secondary battery, and method for producing same
CN111834586A (en) * 2019-04-16 2020-10-27 住友化学株式会社 Porous layer and laminated separator for nonaqueous electrolyte secondary battery
CN113678313B (en) * 2019-05-17 2023-12-01 帝人株式会社 Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
WO2020235508A1 (en) * 2019-05-17 2020-11-26 帝人株式会社 Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery
JP7204905B2 (en) 2019-05-17 2023-01-16 帝人株式会社 SEPARATOR FOR NON-AQUEOUS SECONDARY BATTERY, METHOD FOR MANUFACTURING SAME, AND NON-AQUEOUS SECONDARY BATTERY
CN113678313A (en) * 2019-05-17 2021-11-19 帝人株式会社 Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
JPWO2020235508A1 (en) * 2019-05-17 2021-12-09 帝人株式会社 Separator for non-aqueous secondary battery and its manufacturing method and non-aqueous secondary battery
WO2021117890A1 (en) 2019-12-13 2021-06-17 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021125271A1 (en) 2019-12-17 2021-06-24 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
WO2021141112A1 (en) 2020-01-09 2021-07-15 住友化学株式会社 Lithium metal composite oxide, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium metal composite oxide
WO2021172509A1 (en) 2020-02-26 2021-09-02 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2021199860A1 (en) 2020-03-31 2021-10-07 住友化学株式会社 Electrode active material for sodium secondary battery, electrode mixture for sodium secondary battery, electrode for sodium secondary battery, sodium secondary battery, and all-solid-state sodium secondary battery
WO2021210524A1 (en) 2020-04-14 2021-10-21 住友化学株式会社 Positive electrode active material particles for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021225095A1 (en) 2020-05-07 2021-11-11 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2021225094A1 (en) 2020-05-07 2021-11-11 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, method for producing positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2022004323A1 (en) 2020-06-29 2022-01-06 住友化学株式会社 Positive electrode active material precursor for lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2022009843A1 (en) 2020-07-06 2022-01-13 住友化学株式会社 Precursor for positive electrode active material of lithium secondary battery, lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022039088A1 (en) 2020-08-19 2022-02-24 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022044720A1 (en) 2020-08-24 2022-03-03 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2022050314A1 (en) 2020-09-04 2022-03-10 住友化学株式会社 Lithium metal composite oxide, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022050311A1 (en) 2020-09-04 2022-03-10 住友化学株式会社 Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022107754A1 (en) 2020-11-17 2022-05-27 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022107861A1 (en) 2020-11-19 2022-05-27 住友化学株式会社 Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022113904A1 (en) 2020-11-24 2022-06-02 住友化学株式会社 Method for producing lithium metal composite oxide
WO2022168780A1 (en) 2021-02-03 2022-08-11 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022196376A1 (en) 2021-03-16 2022-09-22 住友化学株式会社 Metal complex compound, production method for lithium metal complex oxide, and production method for metal complex compound
WO2022209506A1 (en) 2021-03-31 2022-10-06 住友化学株式会社 Negative electrode active material for lithium secondary battery, metal negative electrode, and lithium secondary battery

Also Published As

Publication number Publication date
JP3175730B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JP3175730B2 (en) Non-aqueous electrolyte battery separator and lithium secondary battery
KR100721688B1 (en) Non-aqueous electrolyte battery separator and lithium secondary battery
JP4038868B2 (en) Para-aramid porous film and battery separator and lithium secondary battery using the same
JP3721639B2 (en) Para-aramid porous film and battery separator using the same
JP5424179B1 (en) Battery separator and battery separator manufacturing method
JP5932161B1 (en) Laminated body, separator and non-aqueous secondary battery
KR102190068B1 (en) Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
JP4946006B2 (en) Composite porous membrane and method for producing the same
TWI422092B (en) Non-aqueous battery separator, nonaqueous battery separator manufacturing method, and non-aqueous battery
JP5870925B2 (en) Composite porous membrane and method for producing the same
JP5636619B2 (en) Composite porous membrane and method for producing the same
JP5648481B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP2017201622A (en) Laminated porous membrane, battery separator, and battery
JP5358774B1 (en) Battery separator and manufacturing method thereof
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
JP6048753B2 (en) Battery separator and battery separator manufacturing method
JP2019061969A (en) Sealed package
JP2013173862A (en) Laminated porous film, battery separator and battery
JP2007277580A (en) Aramid porous film, and separator for battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3175730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees