JP2004111229A - Polymer electrolyte support body and lithium secondary battery - Google Patents

Polymer electrolyte support body and lithium secondary battery Download PDF

Info

Publication number
JP2004111229A
JP2004111229A JP2002272590A JP2002272590A JP2004111229A JP 2004111229 A JP2004111229 A JP 2004111229A JP 2002272590 A JP2002272590 A JP 2002272590A JP 2002272590 A JP2002272590 A JP 2002272590A JP 2004111229 A JP2004111229 A JP 2004111229A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
inorganic
electrolyte support
mass
support according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002272590A
Other languages
Japanese (ja)
Inventor
Juichi Ino
猪野 寿一
Tetsuo Sakai
境 哲男
Sosho O
王 叢笑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Sheet Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2002272590A priority Critical patent/JP2004111229A/en
Publication of JP2004111229A publication Critical patent/JP2004111229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a short-circuiting tends to occur due to generation of metal dendrite when lithium metal is used for a negative electrode, since a gelatinous polymer electrolyte is inferior in film intensity and film formability, though higher in ion conductivity, compared with a solid electrolyte. <P>SOLUTION: By utilizing an organic fiber coated with an inorganic matter as a component member, a polymer electrolyte support body is obtained with flexibility and heat resistance, easy to handle, with improved ion conductivity of a polymer electrolyte, and with necessary intensity secured even with the polymer electrolyte getting fluid at a high temperature. Further, a lithium secondary battery of high safety is obtained with the use of the polymer electrolyte. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、リチウム二次電池に使用するポリマー電解質の支持体に関する。さらには、それを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、カメラ一体型VTR、CDプレーヤー、ラップトップ型コンピューターまたは携帯用電話などのポータブル電子機器が広く一般に普及しており、これらの電子機器の小型・軽量化が進められている。その中で、電池に対する性能向上の要求は高まっており、とくに経済的観点から二次電池に対する期待が大きくなっている。
【0003】
リチウム二次電池は、上記の要求を満たす電池システムとして注目され、盛んに研究が行われている。しかし、リチウム二次電池では、六フッ化リン酸リチウムまたはホウフッ化リチウムなどの腐食性の強い塩を有機溶媒に溶解し、これを液状電解質として使用するため、前記電解質の液漏れや腐食などの問題があった。この問題を解決するため、ゲル状電解質や固体電解質を使用するものが開発されている。
【0004】
一般的なポリマー電解質のイオン伝導度は、室温程度の低温域において10−5S/cm程度であり、液体イオン伝導性物質と比較すると、その値が2桁以上低い。しかし、ポリマー電解質がゲル状になれば、そのイオン伝導度が高くなることが知られている。ところが、ゲル状のポリマー電解質では、完全な固体としては取り扱えず、膜強度や成膜性が悪い、さらに電池に組み込んだ場合には、短絡が起こり易く、かつ、液状電解質の場合と同様に封止し難いという問題があった。とくに短絡について、負極にリチウム金属を用いた場合には、金属デンドライトが生成するため、その可能性が高くなるという問題もあった。
【0005】
これらの問題を解決するために、粒径が5μm以下のアルミナ粒子を添加してポリマー電解質の強度、安定性およびイオン伝導度を向上させる技術が知られている(たとえば、特許文献1を参照)。また、チタン酸カリウムなどのセラミック短繊維からなる不織布をセパレータとして使用する技術が提案されている(たとえば、特許文献2を参照)。また、ポリエチレンの合成パルプとポリプロピレン−ポリエチレン複合繊維とガラス繊維が混在した不織布からなるセパレータが提案されている(たとえば、特許文献3を参照)。
【0006】
【特許文献1】
特開平10−334731号公報
【特許文献2】
特開平9−92255号公報
【特許文献3】
特開昭59−180966号公報
【0007】
【発明が解決しようとする課題】
ところが、特許文献1に記載の技術では、アルミナ粒子をポリマー電解質に添加しただけでは、ポリマー電解質が高温になり流動化した場合に、アルミナ粒子も流動的となるため、ポリマー電解質の強度や安定性を向上させることが難しかった。また、粒子を添加した場合、それらはポリマー電解質中に分散するため、粒子の界面においてはイオン伝導度が向上するとしても、ポリマー電解質を巨視的に見れば、アルミナ粒子を添加することによるイオン伝導度の向上は限定的であった。
【0008】
また、特許文献2に記載の技術では、セラミック短繊維の界面においてイオン伝導度が向上するので、アルミナ粒子よりも形状が連続的であるという点ではイオン伝導度の向上が期待できるが、一方でセパレータの強度が不足し易く、巻回型の電池には使用できないという問題があった。
【0009】
また、特許文献3に記載の技術では、ガラス繊維の割合が多いと、必要な強度を確保することが難しく、薄いセパレータを作製することが困難であった。一方で、強度を確保するためにガラス繊維やセラミック繊維の含有率を抑えれば、イオン伝導度の向上に寄与する構成部材が少なくなり、その向上が期待できなくなる。
【0010】
この発明は、このような従来技術に存在する問題に着目してなされたものである。その目的とするところは、無機物で被覆した有機繊維を構成部材として利用することにより、柔軟性および耐熱性があり、取り扱いが容易で、ポリマー電解質のイオン伝導度を向上させることができ、さらに高温時にポリマー電解質が流動的となっても、必要な強度を確保できるポリマー電解質支持体を提供することにある。さらには、このポリマー電解質を用いた安全性の高いリチウム二次電池を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に記載の発明のポリマー電解質支持体は、無機物で被覆した有機繊維を含有するものである。
【0012】
請求項2に記載の発明のポリマー電解質支持体は、請求項1に記載の発明において、無機繊維を含有するものである。
【0013】
請求項3に記載の発明のポリマー電解質支持体は、請求項1または2に記載の発明において、無機物ないし無機繊維がリチウム、ナトリウム、マグネシウム、カルシウム、バリウム、ホウ素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、セレン、イットリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、スズ、アンチモンおよびテルルからなる群より選ばれた少なくとも一種の元素の酸化物、硫化物、窒化物またはヨウ化物を含有するものである。
【0014】
請求項4に記載の発明のポリマー電解質支持体は、請求項1〜3のいずれか1項に記載の発明において、無機物ないし無機繊維が、少なくともリチウム、アルミニウムおよびケイ素を含むガラスであるものである。
【0015】
請求項5に記載の発明のポリマー電解質支持体は、請求項1〜4のいずれか1項に記載の発明において、無機物で被覆した有機繊維の含有率が30質量%以上のものである。
【0016】
請求項6に記載の発明のポリマー電解質支持体は、請求項1〜5のいずれか1項に記載の発明において、ポリマー電解質支持体を含むポリマー電解質全体の質量を基準として、無機物で被覆した有機繊維および無機繊維の合計の含有率が1〜50質量%のものである。
【0017】
請求項7に記載の発明のポリマー電解質支持体は、請求項1〜6のいずれか1項に記載の発明において、無機物で被覆する前の有機繊維の質量を基準として、無機物の付着率が1〜50質量%のものである。
【0018】
請求項8に記載の発明のポリマー電解質支持体は、請求項1〜7のいずれか1項に記載の発明において、無機物が粒子状であるものである。
【0019】
請求項9に記載の発明のポリマー電解質支持体は、請求項8に記載の発明において、無機物の平均粒径が1〜200nmであるものである。
【0020】
請求項10に記載の発明のリチウム二次電池は、請求項1〜9のいずれか1項に記載のポリマー電解質支持体を用いたものである。
【0021】
【発明の実施の形態】
以下、この発明の実施の形態について、詳細に説明する。
【0022】
ポリマー電解質支持体は、シリカ(SiO)粒子やリチウムイオン伝導体などの無機物で被覆した有機繊維を構成部材として含有するものである。有機繊維は柔軟性があり、加熱するだけでそれらの接点を融着できるので、これを含有する織布ないし不織布は、弾力性があり、かつ、形状保持性に優れるというポリマー電解質支持体として好ましい特性を備える。しかし一方で、有機繊維は界面のイオン伝導度を高めることができず、また高温環境下では流動的となってその形状を保持できないため、これらの点が嫌われて、従来リチウム二次電池のポリマー電解質支持体には利用されてこなかった。また、無機物は耐熱性が高く、その界面でイオン伝導度を高めることができるというポリマー電解質およびその支持体としての好ましい特性を備えるが、一方で柔軟性に欠けるという問題がある。そこで、それぞれの優れた特性が発揮され、かつ、互いの欠点が補完されるように、無機物で有機繊維の表面を被覆する。このポリマー電解質支持体を用いれば、高温となっても無機物が有機繊維の流動化を妨げるので、リチウム二次電池の安全性を確保しつつ、ポリマー電解質のイオン伝導度を効果的に高めることができる。
【0023】
無機物としては、リチウム、ナトリウム、マグネシウム、カルシウム、バリウム、ホウ素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、セレン、イットリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、スズ、アンチモンおよびテルルからなる群より選ばれた少なくとも一種の元素の酸化物、硫化物、窒化物またはヨウ化物を含有するものが例示される。
【0024】
また、無機物は、上記元素を成分として含むガラス状物質でもよい。このガラスには、リチウムイオン伝導体たとえばLiSiO−LiPO、LiO−SiO−ZrO、LiO−LiCl−B、LiS−GeS、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiI、LiN、LISICONおよびリン酸リチウム誘導体などが含まれる。リチウムイオン伝導体ではリチウムイオンが内部で移動できるため、これをポリマー電解質支持体に使用すれば、リチウム二次電池の内部抵抗を低下させることができる。リチウムイオン伝導体におけるリチウム含有率は、5質量%から30質量%であることが好ましい。リチウム含有率が5質量%未満の場合は、イオン伝導度が低下する。一方、30質量%を超えると、イオン伝導度が低下したり、ガラス化されないおそれがある。
【0025】
また、このガラスには、組成成分としてシリカおよび酸化アルミニウムが含まれていることが好ましい。とくに、LiO−Al−SiOからなるガラスが好適である。シリカおよび酸化アルミニウムは、リチウム二次電池内で化学的に安定で、親水特性もよく、工業的に安価で入手できるからである。LiO−Al−SiOからなるガラスを用いれば、室温程度の低温域でもイオン伝導度の低下がほとんどないので、使用条件を選ばずポリマー電解質のイオン伝導度を高めることができる。
【0026】
無機物で被覆した有機繊維の含有率は、ポリマー電解質支持体の質量を基準として、30質量%以上であることが好ましい。この含有率が30重量%未満の場合は、ポリマー電解質の強度が不足し易い。
【0027】
ポリマー電解質支持体には、無機物で被覆した有機繊維と共に、無機繊維を使用してもよい。無機繊維は、無機物と同様にポリマー電解質のイオン伝導度を向上させることができる。無機繊維の種類はとくに限定されるものではないが、ガラス繊維とくにLiO−Al−SiOからなるガラス繊維が好ましい。無機繊維は、無機物で被覆した有機繊維と均一に混ざり合う必要があるため、有機繊維と同等の平均径および平均長さであることが好ましい。
【0028】
無機物で被覆した有機繊維と無機繊維とを併用する場合、ポリマー電解質支持体を含むポリマー電解質全体の質量を基準として、ポリマー電解質支持体における無機物で被覆した有機繊維および無機繊維の合計の含有率が1〜50質量%であることが好ましい。この含有率が1質量%未満では、無機物ないし無機繊維によるポリマー電解質のイオン伝導度の向上が現れなくなる。一方、50質量%を超えると、ポリマー電解質支持体以外の構成材すなわち固体電解質またはゲル状電解質の含有率が相対的に低くなり、ポリマー電解質支持体がイオン伝導の主な担い手となって、ポリマー電解質のイオン伝導度の低下が顕著となる。
【0029】
無機物で被覆した有機繊維と無機繊維とを併用してポリマー電解質支持体を作製する場合、その方法はとくに限定されるものではない。有機繊維に無機物を付着させた後に無機繊維と混合、抄紙してもよいし、有機繊維と無機繊維とを混合、抄紙し、加熱成形を行った後、その不織布に対して無機物を塗布してもよい。とくに後者の方法によれば、強度が高く、かつ、無機繊維が均一に付着したポリマー電解質支持体を簡便に作製することができる。
【0030】
有機繊維を無機物で被覆する場合、ポリマー電解質支持体における被覆前の有機繊維の質量を基準として、無機物の付着率は1〜50質量%であることが好ましい。この付着率が1質量%未満の場合は、有機繊維の表面の一部しか無機物で被覆されないため、ポリマー電解質のイオン伝導度を効率的に向上させることが困難になる。また、高温時に有機繊維の流動化を妨げることができなくなるため、これを用いたリチウム二次電池の安全性を低下させてしまう。一方、50重量%を超えると、ポリマー電解液支持体内部の個々の空隙が小さくなり、また空隙率も小さくなるので、ゲル状電解質または固体電解質が行き渡り難くなり、リチウム二次電池の内部抵抗が高くなってしまう。
【0031】
有機繊維を無機物で被覆する方法としては、たとえばゾルゲル法もしくは析出法などの湿式法、CVD法、スパッタ法または蒸着法などの一般的な薄膜形成方法を用いてもよいが、無機物の粒子を分散させた溶液やスラリーを用いて、これを有機繊維の不織布または有機繊維と無機繊維との混合不織布に塗布する方法が、簡便、かつ、安価であることから好ましい。粒子を分散させた溶液やスラリーを塗布する場合、その溶液またはスラリーの中に無機物の粒子と有機繊維との付着力を高めるため、ポリビニルアルコールおよびカルボキシメチルセルロースなどの接着剤、あるいはポリエチレンまたはポリプロピレンのエマルジョンなどを添加してもよい。また、無機物の粒子を塗布した後に、前記接着剤を薄く塗布してもよい。
【0032】
無機物の粒子は、その平均粒径(一次粒子径)が1〜200nmであることが好ましく、さらには5〜100nmが好適である。平均粒径が1nm未満の場合は、凝集し易いため、溶液中での均一分散が困難になり、有機繊維に付着できないか二次凝集粒子がそのまま付着してしまう。その結果、ポリマー電解質支持体の柔軟性が低下し、巻回型電池に使用できなくなる、あるいは二次凝集により予期しないイオン伝導パスが形成され、粒子界面におけるイオン伝導が効率よく行われなくなる。一方200nmを超えると、ポリマー電解液支持体の表面に凹凸が形成され、電極との接触が不均一となり、リチウム二次電池の内部抵抗が高くなる。
【0033】
有機繊維としては、その種類および形状をとくに限定されるものではないが、ポリアミド繊維またはポリオレフィン系繊維などが例示される。また、平均径1〜20μm、平均長さ0.1〜20mmのものが好ましく、さらにはポリプロピレンなどの耐熱性の高い芯部と、ポリエチレンなどの比較的耐熱性の低い鞘部とからなる芯鞘複合繊維が好適である。また、有機繊維を不織布に成形した後、コロナ放電もしくはプラズマ放電などの表面処理を行ってもよい。
【0034】
ポリマー電解質支持体にゲル状電解質を含浸させ、または固体電解質を行き渡らせる方法は、とくに限定されるものではない。公知の手段をそのまま利用すればよい。固体電解質としては、その種類をとくに限定されるものではなく、たとえばポリエーテル系化合物などの有機高分子化合物が挙げられる。また、ポリエーテル系化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリオキシメチレンまたはこれらの誘導体が例示される。これらの有機高分子化合物の分子量は、固体電解質として使用できる大きさであれば、とくに制限されるものではないが、分子量10万以上、好ましくは50万〜500万、より好ましくは100万〜400万程度のものである。また、固体電解質に含まれるリチウム電解質塩もその種類をとくに限定されるものではなく、LiN(CFSO、LiCFSO、LiPF、LiBFまたはLiClOなどのアルカリ金属塩が例示される。
【0035】
上記手段により作製されたポリマー電解質は、リチウム二次電池に組み込まれる前に薄膜状に形成される。その形成方法はとくに制限はされるものではなく、たとえば離型フィルムに挟み、60〜100℃程度で加圧する手段が挙げられる。リチウム二次電池への組み込みも、公知の手段を用いればよい。
【0036】
【実施例】
以下、実施例および比較例により、この発明をさらに具体的に説明する。
【0037】
(実施例1)
まず、有機繊維を用いて不織布を製造する。ポリプロピレンが芯部でポリエチレンが鞘部である12μm径の芯鞘複合繊維を用いて、抄紙法により目付10g/m、厚さ20μmの不織布を作製した。
つづいて、この不織布に無機物の粒子を付着させた。粒子には、シリカ(ガラス質 一次粒径20nm)を用いた。この粒子を2−プロパノール中に混入し、ホモジナイザー(Omni製)を用いて6,000〜9,000rpmで10分間撹拌した後、マイクロビーズミル(WAB社製)による微粉砕を行った。この分散液を浸漬槽に入れ、上記不織布を浸漬し、粒子を繊維の表面に付着させた。そして、常温エアーを吹き付けることにより乾燥させて、繊維の表面に前記粒子を定着させた。この粒子の付着率は、粒子を付着させる前の不織布の重量を基準として、12質量%であった。
つぎに、80℃で予め真空乾燥した平均分子量60,000のポリエチレンオキシドとLiClOとをモル比10:1でアセトニトリル溶媒に溶かし、この溶液を前記ポリマー電解質支持体に含浸させ、減圧乾燥してアセトニトリルを除去した。その後、離型フィルムに挟み、100℃で加熱乾燥しながら加圧成形して、厚さ20μmのポリマー電解質を作製した。
【0038】
<イオン伝導度の測定>
上記のポリマー電解質のイオン伝導度を、以下に述べる交流インピーダンス法により測定した。ポリマー電解質を直径10mmの円板状に切り抜き、その両面に直径10mmの白金円板を当てた。同白金円板に両方向から9Nの荷重を掛けて、前記ポリマー電解質を厚さを20μmにまで圧縮し、これをインピーダンス測定用の電極として、イオン伝導度測定用セルを構成した。交流インピーダンスは、インピーダンスアナライザにより、10mVの交流(周波数値は10mHz〜1MHz)を入力して測定した。
【0039】
<耐ショート性測定法>
耐ショート性の測定に用いた装置の概略図を図1に示す。ポリマー電解質1を上下から直径50mmのSUS円柱2で挟み込み、さらにバネ3を用いて、前記ポリマー電解質に14kPaの荷重が掛かるようにした。上下のSUS円柱2は耐熱絶縁板4で電気的に絶縁されている。これに1.6Vの電圧を掛けた状態でプログラム型高温槽に入れ、室温から250℃まで10時間で昇温した。固体電解質が溶解するような高温になると、正・負極間に圧力が掛かり、ポリマー電解質が流動して両極が短絡する。短絡したかどうかを抵抗測定器5で判断し、短絡が発生した温度で耐ショート性を評価した。
【0040】
<引張り強度測定法>
島津製作所製オートグラフAGS−5kND型を用いて、ポリマー電解質の引張り強度を測定した。まず、ポリマー電解質を40×125mmに切り出し、引張り用チャックの間隔を65mmとして、80mm/minの速度で引張った。そして前記試料が破断した時点の強度を引張り強度とした。
【0041】
これらイオン伝導度、耐ショート性および引張り強度について下記「表1」にまとめて示す。
【0042】
(実施例2)
実施例1において、シリカの粒子を酸化アルミニウム(平均一次粒径約20nm)に替えた以外は同様にして、ポリマー電解質を作製し、その特性を測定した。なお、この粒子の付着率は10質量%であった。測定結果を下記「表1」にまとめて示す。
【0043】
(実施例3)
まず、LiO:Al:SiO=25:25:50(質量比)で混合した粉末を1,350℃で2時間熔融し、これを急冷してガラスを作製した。このガラスを乳鉢で粉砕し、平均粒径約0.1μmの粒子にした。シリカの粒子を前記粒子に替えた以外は実施例1と同様にして、ポリマー電解質を作製し、その特性を測定した。なお、この粒子の付着率は10質量%であった。測定結果を下記「表1」にまとめて示す。
【0044】
(比較例1)
実施例1において、不織布に無機物の粒子を付着させることなく、ポリマー電解質支持体を作製した。それ以外は実施例1と同様にして、ポリマー電解質を作製し、その特性を測定した。測定結果を下記「表1」にまとめて示す。
【0045】
(比較例2)
平均径3μmのアルミナ短繊維を用いて、抄紙法により目付5g/m、厚さ20μmの不織布を作製した。この不織布に、実施例1で作製したLiClO含有溶液を塗布し、その後は実施例1と同様にしてポリマー電解質を作製し、その特性を評価した。その測定結果を下記「表1」にまとめて示す。
【0046】
【表1】

Figure 2004111229
【0047】
実施例1〜3と比較例1の対比から、同じ不織布を用いても、その表面に無機物の粒子が付着していれば、イオン伝導度が向上すると共に、ショート温度も大きく上昇することが判る。また、引張り強度も若干向上することが判る。とくに実施例3から、LiO−Al−SiOからなるガラスの粒子を用いれば、イオン伝導度が大きく向上することが判る。
【0048】
また、実施例1〜3と比較例2の対比から、有機繊維を構成部材としないポリマー電解質支持体では、引張り強度が大きく低下し、巻回型電池に不向きであることが判る。
【0049】
【発明の効果】
以上の説明から明らかなように、この発明によれば、無機物で被覆した有機繊維を構成部材とするので、柔軟性および耐熱性があり、取り扱いが容易で、ポリマー電解質のイオン伝導度を向上させることができ、さらに高温時にポリマー電解質が流動的となっても、必要な強度を確保できるポリマー電解質支持体を提供することができる。さらには、このポリマー電解質を用いた安全性の高いリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】実施例および比較例で耐ショート性の測定に用いた装置を示す図である
【符号の説明】
1 ポリマー電解質
2 SUS円柱
3 バネ
4 耐熱絶縁板
5 抵抗測定器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte support for use in a lithium secondary battery. Further, the present invention relates to a lithium secondary battery using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable electronic devices such as a camera-integrated VTR, a CD player, a laptop computer, and a portable telephone have become widespread, and the size and weight of these electronic devices have been reduced. Among them, demands for performance improvement for batteries are increasing, and expectations for secondary batteries are particularly high from an economic viewpoint.
[0003]
Lithium secondary batteries are attracting attention as battery systems that meet the above requirements, and are being actively studied. However, in a lithium secondary battery, a highly corrosive salt such as lithium hexafluorophosphate or lithium borofluoride is dissolved in an organic solvent, and this is used as a liquid electrolyte. There was a problem. In order to solve this problem, those using a gel electrolyte or a solid electrolyte have been developed.
[0004]
The ionic conductivity of a general polymer electrolyte is about 10 −5 S / cm in a low temperature range of about room temperature, and the value is two orders of magnitude lower than that of a liquid ion conductive substance. However, it is known that when the polymer electrolyte becomes gel-like, its ionic conductivity increases. However, a gel-like polymer electrolyte cannot be handled as a completely solid, has poor film strength and film-forming properties, and when incorporated into a battery, tends to cause a short circuit and seals like a liquid electrolyte. There was a problem that it was difficult to stop. In particular, regarding the short circuit, when lithium metal is used for the negative electrode, a metal dendrite is generated, so that there is a problem that the possibility of the occurrence increases.
[0005]
In order to solve these problems, a technique for improving the strength, stability and ionic conductivity of a polymer electrolyte by adding alumina particles having a particle size of 5 μm or less is known (for example, see Patent Document 1). . In addition, a technique has been proposed in which a nonwoven fabric made of ceramic short fibers such as potassium titanate is used as a separator (for example, see Patent Document 2). In addition, a separator made of a nonwoven fabric in which a synthetic pulp of polyethylene, a polypropylene-polyethylene composite fiber, and a glass fiber are mixed has been proposed (for example, see Patent Document 3).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-334731 [Patent Document 2]
JP 9-92255 A [Patent Document 3]
JP-A-59-180966
[Problems to be solved by the invention]
However, in the technology described in Patent Document 1, simply adding alumina particles to the polymer electrolyte causes the alumina particles to be fluid when the polymer electrolyte is heated and fluidized, so that the strength and stability of the polymer electrolyte are increased. It was difficult to improve. In addition, when particles are added, they are dispersed in the polymer electrolyte, so that the ion conductivity is improved at the interface of the particles, but from the macroscopic viewpoint of the polymer electrolyte, the ion conductivity due to the addition of alumina particles is increased. The degree of improvement was limited.
[0008]
In the technique described in Patent Document 2, the ionic conductivity is improved at the interface between the short ceramic fibers, so that the ionic conductivity can be expected to be improved in that the shape is more continuous than the alumina particles. There is a problem that the strength of the separator tends to be insufficient, and the separator cannot be used for a wound type battery.
[0009]
Further, according to the technology described in Patent Document 3, when the proportion of glass fiber is large, it is difficult to secure necessary strength, and it is difficult to produce a thin separator. On the other hand, if the content of glass fibers or ceramic fibers is reduced to ensure strength, the number of components that contribute to the improvement in ionic conductivity decreases, and the improvement cannot be expected.
[0010]
The present invention has been made in view of such a problem existing in the related art. The purpose is to use organic fiber coated with inorganic material as a constituent member, which has flexibility and heat resistance, is easy to handle, can improve the ionic conductivity of the polymer electrolyte, and has a high temperature. An object of the present invention is to provide a polymer electrolyte support that can secure necessary strength even when the polymer electrolyte becomes fluid at times. Another object of the present invention is to provide a highly safe lithium secondary battery using the polymer electrolyte.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the polymer electrolyte support according to the first aspect of the present invention contains organic fibers coated with an inorganic substance.
[0012]
The polymer electrolyte support according to the second aspect of the present invention is the one according to the first aspect, wherein the polymer electrolyte support contains inorganic fibers.
[0013]
The polymer electrolyte support of the invention according to claim 3 is the polymer electrolyte support according to claim 1 or 2, wherein the inorganic substance or the inorganic fiber is lithium, sodium, magnesium, calcium, barium, boron, aluminum, silicon, phosphorus, titanium, At least one selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, yttrium, zirconium, niobium, molybdenum, silver, indium, tin, antimony and tellurium Contains oxides, sulfides, nitrides or iodides of the following elements:
[0014]
The polymer electrolyte support of the invention according to claim 4 is the polymer electrolyte support according to any one of claims 1 to 3, wherein the inorganic substance or the inorganic fiber is a glass containing at least lithium, aluminum, and silicon. .
[0015]
A polymer electrolyte support according to a fifth aspect of the present invention is the polymer electrolyte support according to any one of the first to fourth aspects, wherein the content of the organic fibers coated with the inorganic substance is 30% by mass or more.
[0016]
The polymer electrolyte support of the invention according to claim 6 is the organic electrolyte coated with an inorganic material based on the mass of the entire polymer electrolyte including the polymer electrolyte support in the invention according to any one of claims 1 to 5. The total content of fibers and inorganic fibers is 1 to 50% by mass.
[0017]
The polymer electrolyte support of the invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the adhesion rate of the inorganic substance is 1 based on the mass of the organic fiber before being coated with the inorganic substance. ~ 50% by mass.
[0018]
The polymer electrolyte support of the invention according to claim 8 is the polymer electrolyte support according to any one of claims 1 to 7, wherein the inorganic substance is in the form of particles.
[0019]
According to a ninth aspect of the present invention, in the polymer electrolyte support according to the eighth aspect, the average particle diameter of the inorganic substance is 1 to 200 nm.
[0020]
A lithium secondary battery according to a tenth aspect of the present invention uses the polymer electrolyte support according to any one of the first to ninth aspects.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0022]
The polymer electrolyte support contains organic fibers coated with an inorganic substance such as silica (SiO 2 ) particles or a lithium ion conductor as constituent members. Since organic fibers are flexible and can fuse their contacts only by heating, a woven or non-woven fabric containing the same is preferable as a polymer electrolyte support having elasticity and excellent shape retention. With characteristics. However, on the other hand, organic fibers cannot increase the ionic conductivity at the interface, and because they become fluid in a high-temperature environment and cannot maintain their shape, these points are disliked and conventional lithium secondary batteries have It has not been used for polymer electrolyte supports. Further, the inorganic substance has a high heat resistance and has a preferable property as a polymer electrolyte and its support, which can increase ionic conductivity at the interface, but has a problem of lacking flexibility. Then, the surface of the organic fiber is coated with an inorganic substance so that each of the excellent properties is exhibited and the mutual disadvantages are complemented. When this polymer electrolyte support is used, the inorganic substance hinders fluidization of the organic fibers even at high temperatures, so that it is possible to effectively increase the ionic conductivity of the polymer electrolyte while securing the safety of the lithium secondary battery. it can.
[0023]
As inorganic substances, lithium, sodium, magnesium, calcium, barium, boron, aluminum, silicon, phosphorus, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, yttrium, Examples include oxides, sulfides, nitrides, or iodides of at least one element selected from the group consisting of zirconium, niobium, molybdenum, silver, indium, tin, antimony, and tellurium.
[0024]
Further, the inorganic substance may be a glassy substance containing the above element as a component. This glass includes a lithium ion conductor such as Li 4 SiO 4 —Li 3 PO 4 , Li 2 O—SiO 2 —ZrO 2 , Li 2 O—LiCl—B 2 O 3 , Li 2 S—GeS 2 , and LiI— Li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —Li 2 S—SiS 2 , LiI, Li 3 N, LIICON, lithium phosphate derivative and the like are included. In the lithium ion conductor, lithium ions can move inside. Therefore, if this is used for the polymer electrolyte support, the internal resistance of the lithium secondary battery can be reduced. The lithium content in the lithium ion conductor is preferably 5% by mass to 30% by mass. When the lithium content is less than 5% by mass, the ionic conductivity decreases. On the other hand, if it exceeds 30% by mass, the ionic conductivity may be reduced or the glass may not be vitrified.
[0025]
It is preferable that the glass contains silica and aluminum oxide as composition components. In particular, the glass consisting of Li 2 O-Al 2 O 3 -SiO 2 being preferred. Silica and aluminum oxide are chemically stable in a lithium secondary battery, have good hydrophilic properties, and are commercially available at a low cost. If a glass made of Li 2 O—Al 2 O 3 —SiO 2 is used, there is almost no decrease in ionic conductivity even in a low temperature range of about room temperature, so that the ionic conductivity of the polymer electrolyte can be increased regardless of use conditions. .
[0026]
The content of the organic fibers coated with the inorganic substance is preferably 30% by mass or more based on the mass of the polymer electrolyte support. If the content is less than 30% by weight, the strength of the polymer electrolyte tends to be insufficient.
[0027]
For the polymer electrolyte support, inorganic fibers may be used together with organic fibers coated with an inorganic substance. The inorganic fiber can improve the ionic conductivity of the polymer electrolyte similarly to the inorganic material. The type of the inorganic fiber is not particularly limited, but a glass fiber, particularly a glass fiber made of Li 2 O—Al 2 O 3 —SiO 2 is preferable. Since the inorganic fibers need to be uniformly mixed with the organic fibers coated with the inorganic substance, the inorganic fibers preferably have an average diameter and an average length equivalent to those of the organic fibers.
[0028]
When the organic fiber and the inorganic fiber coated with the inorganic material are used in combination, the total content of the organic fiber and the inorganic fiber coated with the inorganic material in the polymer electrolyte support is based on the mass of the entire polymer electrolyte including the polymer electrolyte support. Preferably it is 1 to 50% by mass. When the content is less than 1% by mass, the improvement of the ionic conductivity of the polymer electrolyte by the inorganic substance or the inorganic fiber does not appear. On the other hand, if it exceeds 50% by mass, the content of components other than the polymer electrolyte support, ie, the solid electrolyte or the gel electrolyte, becomes relatively low, and the polymer electrolyte support becomes the main player of ion conduction, The decrease in the ionic conductivity of the electrolyte becomes significant.
[0029]
When a polymer electrolyte support is produced by using an organic fiber and an inorganic fiber coated with an inorganic material in combination, the method is not particularly limited. After adhering the inorganic substance to the organic fiber, it may be mixed with the inorganic fiber, papermaking may be performed, or the organic fiber and the inorganic fiber may be mixed, paper-formed, heat-molded, and then the inorganic substance is applied to the nonwoven fabric. Is also good. In particular, according to the latter method, a polymer electrolyte support having high strength and uniformly attached inorganic fibers can be easily prepared.
[0030]
When the organic fibers are coated with an inorganic substance, the adhesion rate of the inorganic substance is preferably 1 to 50% by mass, based on the mass of the organic fibers before coating on the polymer electrolyte support. When the adhesion rate is less than 1% by mass, only a part of the surface of the organic fiber is covered with the inorganic substance, and it is difficult to efficiently improve the ionic conductivity of the polymer electrolyte. In addition, the fluidization of the organic fibers cannot be prevented at high temperatures, so that the safety of the lithium secondary battery using the organic fibers is reduced. On the other hand, if it exceeds 50% by weight, individual voids inside the polymer electrolyte solution support become small and the porosity also becomes small, so that the gel electrolyte or the solid electrolyte becomes difficult to spread, and the internal resistance of the lithium secondary battery becomes low. Will be expensive.
[0031]
As a method of coating the organic fiber with an inorganic substance, for example, a wet method such as a sol-gel method or a precipitation method, a general thin film forming method such as a CVD method, a sputtering method or a vapor deposition method may be used, but the inorganic particles are dispersed. A method of applying the solution or slurry to a nonwoven fabric of an organic fiber or a mixed nonwoven fabric of an organic fiber and an inorganic fiber using a solution or a slurry is preferable because it is simple and inexpensive. When applying a solution or slurry in which particles are dispersed, an adhesive such as polyvinyl alcohol and carboxymethyl cellulose, or an emulsion of polyethylene or polypropylene is used in the solution or slurry to increase the adhesion between the inorganic particles and the organic fibers. Etc. may be added. The adhesive may be thinly applied after the inorganic particles are applied.
[0032]
The inorganic particles preferably have an average particle size (primary particle size) of 1 to 200 nm, more preferably 5 to 100 nm. When the average particle diameter is less than 1 nm, the particles are easily aggregated, so that it is difficult to uniformly disperse them in a solution, and the particles cannot adhere to the organic fibers or the secondary aggregated particles adhere as they are. As a result, the flexibility of the polymer electrolyte support decreases, and the polymer electrolyte support cannot be used for a wound type battery, or an unexpected ion conduction path is formed due to secondary aggregation, and ion conduction at a particle interface is not efficiently performed. On the other hand, when it exceeds 200 nm, irregularities are formed on the surface of the polymer electrolyte solution support, the contact with the electrodes becomes uneven, and the internal resistance of the lithium secondary battery increases.
[0033]
The type and shape of the organic fiber are not particularly limited, and examples thereof include a polyamide fiber and a polyolefin-based fiber. Further, a core-sheath having an average diameter of 1 to 20 μm and an average length of 0.1 to 20 mm is preferable, and further, a core-sheath comprising a heat-resistant core such as polypropylene and a sheath having relatively low heat resistance such as polyethylene. Composite fibers are preferred. After the organic fibers are formed into a nonwoven fabric, a surface treatment such as corona discharge or plasma discharge may be performed.
[0034]
The method of impregnating the polymer electrolyte support with the gel electrolyte or distributing the solid electrolyte is not particularly limited. A known means may be used as it is. The type of the solid electrolyte is not particularly limited, and examples thereof include an organic polymer compound such as a polyether compound. Examples of the polyether compound include polyethylene oxide, polypropylene oxide, polyoxymethylene, and derivatives thereof. The molecular weight of these organic polymer compounds is not particularly limited as long as it can be used as a solid electrolyte, but the molecular weight is 100,000 or more, preferably 500,000 to 5,000,000, more preferably 1,000,000 to 400,000. It is about ten thousand. Further, the type of lithium electrolyte salt contained in the solid electrolyte is not particularly limited, and an alkali metal salt such as LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 or LiClO 4 is used. Is exemplified.
[0035]
The polymer electrolyte produced by the above means is formed into a thin film before being incorporated in a lithium secondary battery. The forming method is not particularly limited. For example, a method of sandwiching between release films and pressing at about 60 to 100 ° C. may be mentioned. Known means may be used for incorporation into the lithium secondary battery.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0037]
(Example 1)
First, a nonwoven fabric is manufactured using organic fibers. A nonwoven fabric having a basis weight of 10 g / m 2 and a thickness of 20 μm was prepared by a papermaking method using a core-sheath composite fiber having a core of polypropylene and a sheath of polyethylene and having a diameter of 12 μm.
Subsequently, inorganic particles were attached to the nonwoven fabric. Silica (vitreous primary particle diameter 20 nm) was used for the particles. The particles were mixed in 2-propanol, stirred at 6,000 to 9,000 rpm for 10 minutes using a homogenizer (manufactured by Omni), and then pulverized by a microbead mill (manufactured by WAB). This dispersion was placed in an immersion tank, and the above-mentioned nonwoven fabric was immersed in the dispersion so that particles adhered to the surface of the fiber. Then, the particles were dried by blowing air at room temperature to fix the particles on the surface of the fiber. The adhesion rate of the particles was 12% by mass based on the weight of the nonwoven fabric before the particles were adhered.
Next, polyethylene oxide having an average molecular weight of 60,000 and LiClO 4 previously dried under vacuum at 80 ° C. were dissolved in an acetonitrile solvent at a molar ratio of 10: 1, and this solution was impregnated into the polymer electrolyte support and dried under reduced pressure. Acetonitrile was removed. Thereafter, the resultant was sandwiched between release films and pressed under pressure while being heated and dried at 100 ° C. to produce a polymer electrolyte having a thickness of 20 μm.
[0038]
<Measurement of ionic conductivity>
The ionic conductivity of the polymer electrolyte was measured by the AC impedance method described below. The polymer electrolyte was cut into a disk having a diameter of 10 mm, and a platinum disk having a diameter of 10 mm was applied to both surfaces thereof. A load of 9 N was applied to the platinum disk from both directions to compress the polymer electrolyte to a thickness of 20 μm, and this was used as an electrode for impedance measurement to form an ion conductivity measurement cell. The AC impedance was measured by inputting an AC of 10 mV (frequency value is 10 mHz to 1 MHz) using an impedance analyzer.
[0039]
<Short resistance measurement method>
FIG. 1 shows a schematic diagram of an apparatus used for measuring short-circuit resistance. The polymer electrolyte 1 was sandwiched from above and below by a SUS cylinder 2 having a diameter of 50 mm, and a spring 3 was used to apply a load of 14 kPa to the polymer electrolyte. The upper and lower SUS cylinders 2 are electrically insulated by a heat-resistant insulating plate 4. A voltage of 1.6 V was applied thereto, and the mixture was placed in a programmable high-temperature bath, and the temperature was raised from room temperature to 250 ° C. in 10 hours. When the temperature becomes high enough to dissolve the solid electrolyte, pressure is applied between the positive electrode and the negative electrode, and the polymer electrolyte flows to short-circuit both electrodes. Whether or not a short circuit occurred was determined by the resistance measuring device 5, and the short-circuit resistance was evaluated at the temperature at which the short circuit occurred.
[0040]
<Tensile strength measurement method>
The tensile strength of the polymer electrolyte was measured using an autograph AGS-5kND manufactured by Shimadzu Corporation. First, the polymer electrolyte was cut into 40 × 125 mm, and was pulled at a speed of 80 mm / min, with the interval between the pulling chucks being 65 mm. The strength at the time when the sample was broken was defined as the tensile strength.
[0041]
The ionic conductivity, short-circuit resistance and tensile strength are summarized in Table 1 below.
[0042]
(Example 2)
A polymer electrolyte was prepared in the same manner as in Example 1 except that the silica particles were changed to aluminum oxide (average primary particle size: about 20 nm), and the characteristics were measured. The adhesion rate of the particles was 10% by mass. The measurement results are shown in Table 1 below.
[0043]
(Example 3)
First, a powder mixed in a ratio of Li 2 O: Al 2 O 3 : SiO 2 = 25: 25: 50 (mass ratio) was melted at 1,350 ° C. for 2 hours, and this was quenched to produce a glass. This glass was ground in a mortar to obtain particles having an average particle size of about 0.1 μm. A polymer electrolyte was prepared and its characteristics were measured in the same manner as in Example 1 except that the silica particles were changed to the above-mentioned particles. The adhesion rate of the particles was 10% by mass. The measurement results are shown in Table 1 below.
[0044]
(Comparative Example 1)
In Example 1, a polymer electrolyte support was produced without attaching inorganic particles to the nonwoven fabric. Otherwise in the same manner as in Example 1, a polymer electrolyte was prepared and its characteristics were measured. The measurement results are shown in Table 1 below.
[0045]
(Comparative Example 2)
A nonwoven fabric having a basis weight of 5 g / m 2 and a thickness of 20 μm was prepared by a papermaking method using alumina short fibers having an average diameter of 3 μm. The LiClO 4 -containing solution prepared in Example 1 was applied to this nonwoven fabric, and thereafter, a polymer electrolyte was prepared in the same manner as in Example 1, and the characteristics were evaluated. The measurement results are shown in Table 1 below.
[0046]
[Table 1]
Figure 2004111229
[0047]
From the comparison between Examples 1 to 3 and Comparative Example 1, it can be seen that, even when the same nonwoven fabric is used, if the inorganic particles adhere to the surface, the ionic conductivity is improved and the short-circuit temperature is significantly increased. . Further, it can be seen that the tensile strength is slightly improved. In particular, Example 3 shows that the use of glass particles made of Li 2 O—Al 2 O 3 —SiO 2 greatly improves ionic conductivity.
[0048]
Further, from the comparison between Examples 1 to 3 and Comparative Example 2, it can be seen that the tensile strength of the polymer electrolyte support having no organic fiber as a constituent member is greatly reduced and is not suitable for a wound type battery.
[0049]
【The invention's effect】
As is apparent from the above description, according to the present invention, since the organic fiber coated with the inorganic material is used as the constituent member, it has flexibility and heat resistance, is easy to handle, and improves the ionic conductivity of the polymer electrolyte. It is possible to provide a polymer electrolyte support that can secure necessary strength even when the polymer electrolyte becomes fluid at a high temperature. Further, a highly safe lithium secondary battery using this polymer electrolyte can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an apparatus used for measuring short-circuit resistance in Examples and Comparative Examples.
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte 2 SUS cylinder 3 Spring 4 Heat-resistant insulating plate 5 Resistance measuring instrument

Claims (10)

無機物で被覆した有機繊維を含有するポリマー電解質支持体。A polymer electrolyte support containing organic fibers coated with an inorganic substance. 無機繊維を含有する請求項1に記載のポリマー電解質支持体。The polymer electrolyte support according to claim 1, which contains inorganic fibers. 上記無機物ないし無機繊維は、リチウム、ナトリウム、マグネシウム、カルシウム、バリウム、ホウ素、アルミニウム、ケイ素、リン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、セレン、イットリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、スズ、アンチモンおよびテルルからなる群より選ばれた少なくとも一種の元素の酸化物、硫化物、窒化物またはヨウ化物を含有するものである請求項1または2に記載のポリマー電解質支持体。The inorganic substances or inorganic fibers include lithium, sodium, magnesium, calcium, barium, boron, aluminum, silicon, phosphorus, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, and selenium. 2. An oxide, sulfide, nitride or iodide of at least one element selected from the group consisting of, yttrium, zirconium, niobium, molybdenum, silver, indium, tin, antimony and tellurium. Or the polymer electrolyte support according to 2. 上記無機物ないし無機繊維が、少なくともリチウム、アルミニウムおよびケイ素を含むガラスである請求項1〜3のいずれか1項に記載のポリマー電解質支持体。The polymer electrolyte support according to any one of claims 1 to 3, wherein the inorganic substance or the inorganic fiber is a glass containing at least lithium, aluminum, and silicon. 上記無機物で被覆した有機繊維の含有率が30質量%以上である請求項1〜4のいずれか1項に記載のポリマー電解質支持体。The polymer electrolyte support according to any one of claims 1 to 4, wherein the content of the organic fibers coated with the inorganic substance is 30% by mass or more. ポリマー電解質支持体を含むポリマー電解質全体の質量を基準として、無機物で被覆した有機繊維および無機繊維の合計の含有率が1〜50質量%である請求項1〜5のいずれか1項に記載のポリマー電解質支持体。The total content of the organic fibers and the inorganic fibers coated with the inorganic material is 1 to 50% by mass, based on the mass of the entire polymer electrolyte including the polymer electrolyte support. Polymer electrolyte support. 無機物で被覆する前の有機繊維の質量を基準として、前記無機物の付着率が1〜50質量%である請求項1〜6のいずれか1項に記載のポリマー電解質支持体。The polymer electrolyte support according to any one of claims 1 to 6, wherein the adhesion rate of the inorganic substance is 1 to 50% by mass based on the mass of the organic fiber before being coated with the inorganic substance. 上記無機物が粒子状である請求項1〜7のいずれか1項に記載のポリマー電解質支持体。The polymer electrolyte support according to any one of claims 1 to 7, wherein the inorganic substance is in the form of particles. 上記無機物の平均粒径が1〜200nmである請求項8に記載のポリマー電解質支持体。The polymer electrolyte support according to claim 8, wherein the inorganic material has an average particle size of 1 to 200 nm. 請求項1〜9のいずれか1項に記載のポリマー電解質支持体を用いたリチウム二次電池。A lithium secondary battery using the polymer electrolyte support according to claim 1.
JP2002272590A 2002-09-19 2002-09-19 Polymer electrolyte support body and lithium secondary battery Pending JP2004111229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272590A JP2004111229A (en) 2002-09-19 2002-09-19 Polymer electrolyte support body and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272590A JP2004111229A (en) 2002-09-19 2002-09-19 Polymer electrolyte support body and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2004111229A true JP2004111229A (en) 2004-04-08

Family

ID=32269572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272590A Pending JP2004111229A (en) 2002-09-19 2002-09-19 Polymer electrolyte support body and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2004111229A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248497A (en) * 2008-04-09 2009-10-29 Japan Vilene Co Ltd Composite sheet and method for manufacturing the same
WO2009157302A1 (en) * 2008-06-23 2009-12-30 コニカミノルタホールディングス株式会社 Ion-conductive composition
JP2013524418A (en) * 2010-03-29 2013-06-17 ショット アクチエンゲゼルシャフト Battery cell component having an inorganic component with low thermal conductivity
EP3364487A1 (en) * 2017-02-21 2018-08-22 Kabushiki Kaisha Toshiba Secondary battery, composite electrolyte, battery pack, and vehicle
WO2019180845A1 (en) * 2018-03-20 2019-09-26 日立化成株式会社 Electrolyte composition, electrolyte sheet, and secondary battery
WO2019181943A1 (en) * 2018-03-20 2019-09-26 日立化成株式会社 Electrolyte composition, electrolyte sheet, and secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152666A (en) * 1981-03-17 1982-09-21 Sanyo Electric Co Ltd Separator for battery
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH11157872A (en) * 1997-02-14 1999-06-15 Ohara Inc Lithium ion conductive glass ceramics and cell and gas sensor using same
JPH11219727A (en) * 1998-01-30 1999-08-10 Hitachi Maxell Ltd Polymer battery
JPH11260338A (en) * 1998-03-09 1999-09-24 Nippon Muki Co Ltd Nonaqueous electrolyte battery and separator thereof
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000173654A (en) * 1998-12-04 2000-06-23 Toshiba Battery Co Ltd Polymer lithium secondary battery
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2003323878A (en) * 2002-04-26 2003-11-14 Japan Storage Battery Co Ltd Composite sheet, its manufacturing method, and nonaqueous electrolyte secondary battery using its composite sheet
JP2005534599A (en) * 2002-07-29 2005-11-17 エバナイト ファイバー コーポレーション Glass composition
JP2006504228A (en) * 2002-02-26 2006-02-02 デグサ アクチエンゲゼルシャフト Electric separator, its manufacturing method and use

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152666A (en) * 1981-03-17 1982-09-21 Sanyo Electric Co Ltd Separator for battery
WO1996030954A1 (en) * 1995-03-31 1996-10-03 Mitsubishi Paper Mills Limited Non-woven fabric for separator of non-aqueous electrolyte cell, and non-aqueous electrolyte cell using the same
JPH11157872A (en) * 1997-02-14 1999-06-15 Ohara Inc Lithium ion conductive glass ceramics and cell and gas sensor using same
JPH11219727A (en) * 1998-01-30 1999-08-10 Hitachi Maxell Ltd Polymer battery
JPH11260338A (en) * 1998-03-09 1999-09-24 Nippon Muki Co Ltd Nonaqueous electrolyte battery and separator thereof
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2000173654A (en) * 1998-12-04 2000-06-23 Toshiba Battery Co Ltd Polymer lithium secondary battery
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2006504228A (en) * 2002-02-26 2006-02-02 デグサ アクチエンゲゼルシャフト Electric separator, its manufacturing method and use
JP2003323878A (en) * 2002-04-26 2003-11-14 Japan Storage Battery Co Ltd Composite sheet, its manufacturing method, and nonaqueous electrolyte secondary battery using its composite sheet
JP2005534599A (en) * 2002-07-29 2005-11-17 エバナイト ファイバー コーポレーション Glass composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248497A (en) * 2008-04-09 2009-10-29 Japan Vilene Co Ltd Composite sheet and method for manufacturing the same
WO2009157302A1 (en) * 2008-06-23 2009-12-30 コニカミノルタホールディングス株式会社 Ion-conductive composition
JPWO2009157302A1 (en) * 2008-06-23 2011-12-08 コニカミノルタホールディングス株式会社 Ion conductive composition
JP5644497B2 (en) * 2008-06-23 2014-12-24 コニカミノルタ株式会社 Ion conductive composition
JP2013524418A (en) * 2010-03-29 2013-06-17 ショット アクチエンゲゼルシャフト Battery cell component having an inorganic component with low thermal conductivity
US9105908B2 (en) 2010-03-29 2015-08-11 Schott Ag Components for battery cells with inorganic constituents of low thermal conductivity
EP3364487A1 (en) * 2017-02-21 2018-08-22 Kabushiki Kaisha Toshiba Secondary battery, composite electrolyte, battery pack, and vehicle
KR20180096472A (en) * 2017-02-21 2018-08-29 가부시끼가이샤 도시바 Secondary battery, composite electrolyte, battery pack and vehicle
KR102072468B1 (en) * 2017-02-21 2020-02-03 가부시끼가이샤 도시바 Secondary battery, composite electrolyte, battery pack and vehicle
WO2019180845A1 (en) * 2018-03-20 2019-09-26 日立化成株式会社 Electrolyte composition, electrolyte sheet, and secondary battery
WO2019181943A1 (en) * 2018-03-20 2019-09-26 日立化成株式会社 Electrolyte composition, electrolyte sheet, and secondary battery
JPWO2019181943A1 (en) * 2018-03-20 2021-03-11 昭和電工マテリアルズ株式会社 Electrolyte composition, electrolyte sheet and secondary battery
JP7337432B2 (en) 2018-03-20 2023-09-04 エルジー エナジー ソリューション リミテッド Electrolyte composition, electrolyte sheet and secondary battery

Similar Documents

Publication Publication Date Title
JP5101569B2 (en) Battery separator, manufacturing method thereof, and lithium secondary battery
JP5213007B2 (en) Battery separator and non-aqueous electrolyte battery
CN107112444B (en) Electrochemical cell with semi-solid electrode and method of making same
KR101590339B1 (en) Separator for electrochemical cell and method for its manufacture
JP5400417B2 (en) Composite porous film and method for producing the same, battery separator and non-aqueous electrolyte secondary battery using the same
US9548496B2 (en) Paper-based lithium-ion batteries
JP6607959B2 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
TW200950182A (en) A separator having porous coating layer and electrochemical device containing the same
JP2010044935A (en) Compound porous film, battery separator using the same, and nonaqueous electrolyte secondary battery
JP2015525437A (en) Composite particles
TW200415813A (en) Durable separator for an electrochemical cell
CN105324870A (en) Organic-inorganic complex porous membrane, separator comprising same, and electrode structure body
JP2008004438A (en) Separator for battery, and lithium secondary cell
WO2018110133A1 (en) Secondary battery electrode, secondary battery, and method for producing same
WO2022236951A1 (en) Negative electrode, and preparation method therefor and use thereof
JP2011154967A (en) Separator for battery, and lithium ion secondary battery using it
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP6665343B2 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material membrane for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP2004111229A (en) Polymer electrolyte support body and lithium secondary battery
JP7226314B2 (en) ELECTRODE, ELECTRODE, AND METHOD FOR MANUFACTURING ELECTRODE
JP2022527038A (en) Ionic conductivity assembly and its fabrication method
JP2020198275A (en) Current collector for all-solid battery, and all-solid battery
JP7016392B2 (en) Separator and its manufacturing method
CN114156596B (en) Diaphragm for lithium ion battery and lithium ion battery containing diaphragm

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106