JP5213007B2 - Battery separator and non-aqueous electrolyte battery - Google Patents

Battery separator and non-aqueous electrolyte battery Download PDF

Info

Publication number
JP5213007B2
JP5213007B2 JP2007043445A JP2007043445A JP5213007B2 JP 5213007 B2 JP5213007 B2 JP 5213007B2 JP 2007043445 A JP2007043445 A JP 2007043445A JP 2007043445 A JP2007043445 A JP 2007043445A JP 5213007 B2 JP5213007 B2 JP 5213007B2
Authority
JP
Japan
Prior art keywords
separator
fine particles
inorganic fine
battery
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007043445A
Other languages
Japanese (ja)
Other versions
JP2008210541A (en
Inventor
吉宣 佐藤
敏浩 阿部
映理 児島
青山  茂夫
秀昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2007043445A priority Critical patent/JP5213007B2/en
Publication of JP2008210541A publication Critical patent/JP2008210541A/en
Application granted granted Critical
Publication of JP5213007B2 publication Critical patent/JP5213007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高温環境下においても安全な非水電解質電池と、該非水電解質電池を構成するための電池用セパレータに関するものである。   The present invention relates to a non-aqueous electrolyte battery that is safe even in a high-temperature environment, and a battery separator for constituting the non-aqueous electrolyte battery.

非水電解質電池の一種であるリチウムイオン電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン電池の高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   Lithium ion batteries, which are a type of nonaqueous electrolyte battery, are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As the performance of portable devices increases, the capacity of lithium ion batteries tends to increase further, and ensuring safety is important.

現行のリチウムイオン電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の多孔性フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。   In the current lithium ion battery, as a separator interposed between a positive electrode and a negative electrode, for example, a polyolefin-based porous film having a thickness of about 20 to 30 μm is used. In addition, as separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to ensure the so-called shutdown effect, polyethylene having a low melting point may be applied.

ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを上記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。   By the way, as such a separator, for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the above stretching. However, with such a stretched film, the degree of crystallinity has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery. Therefore, it can be said that the margin for ensuring the safety of the battery is sufficient. hard.

また、上記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔性フィルムセパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による発火の危険性があるからである。   Further, the film is distorted by the stretching, and there is a problem that when this is exposed to high temperature, shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based porous film separator is used, when the battery temperature reaches the shutdown temperature in the case of abnormal charging, the current must be immediately decreased to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the contraction temperature of the separator, and there is a risk of ignition due to an internal short circuit.

このようなセパレータの熱収縮による短絡を防止し、電池の信頼性を高める技術として、例えば、耐熱性の良好な多孔質基体と、フィラー粒子と、シャットダウン機能を確保するための樹脂成分とを有するセパレータにより電気化学素子を構成することが提案されている(特許文献1)。   As a technique for preventing such a short circuit due to thermal contraction of the separator and improving the reliability of the battery, for example, it has a porous substrate with good heat resistance, filler particles, and a resin component for ensuring a shutdown function It has been proposed to configure an electrochemical element with a separator (Patent Document 1).

国際公開第2006/62153号公報International Publication No. 2006/62153

特許文献1に開示の技術によれば、異常過熱した際にも熱暴走が生じ難い安全性に優れた電池を提供することができる。   According to the technique disclosed in Patent Document 1, it is possible to provide a battery with excellent safety in which thermal runaway hardly occurs even when abnormal overheating occurs.

しかしながら、リチウムイオン電池などの非水電解質電池に要求される特性は、今後ますます高度になると予測され、かかる電池に利用されるセパレータにおいても、このような要求に十分に応え得るように、更なる改良が求められる。   However, the characteristics required for non-aqueous electrolyte batteries such as lithium ion batteries are expected to become more advanced in the future, and separators used in such batteries will be further improved so that these requirements can be fully met. An improvement is required.

本発明は上記事情に鑑みてなされたものであり、その目的は、エネルギー密度の低下を可及的に抑制しつつ耐短絡性を向上し、更には負荷特性も良好にした非水電解質電池と、該電池を構成し得る電池用セパレータを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to improve the short-circuit resistance while suppressing the decrease in energy density as much as possible, and to further improve the load characteristics and An object of the present invention is to provide a battery separator that can constitute the battery.

上記目的を達成し得た本発明の電池用セパレータは、少なくとも150℃で実質的に変形しない繊維状物と、少なくとも150℃で実質的に変形しない無機微粒子を有する多孔質膜からなり、上記無機微粒子の比率が、33.1体積%以上であり、上記無機微粒子の全個数中において、粒子径0.3μm以下の粒子の個数が10%以上であり、粒子径1μm以上の粒子の個数が15%以上であることを特徴とするものである。
The battery separator of the present invention were able to achieve the above object, a porous membrane having a fibrous material that does not substantially deform at least 0.99 ° C., the inorganic fine particles is not substantially deformed at least 0.99 ° C., the inorganic the ratio of the fine particles, and at 33.1% by volume or more, and have contact in the total number of the inorganic fine particles, and the number of particles less than the particle size 0.3μm of 10% or more, the number of particle size 1μm or more of the particles Is 15 % or more.

なお、上記の「少なくとも150℃で実質的に変形しない繊維状物」および「少なくとも150℃で実質的に変形しない無機微粒子」とは、150℃に加熱した状態における目視観察で、変形が認められない繊維状物および無機微粒子を意味している。   The above-mentioned “fibrous matter that does not substantially deform at least at 150 ° C.” and “inorganic fine particles that do not substantially deform at least at 150 ° C.” are recognized as being deformed by visual observation in a state heated to 150 ° C. Meaning no fibrous and inorganic particulates.

また、「粒子径0.3μm以下の粒子」および「粒子径1μm以上の粒子」の粒子径は、走査型電子顕微鏡(SEM)を用いて、倍率5000倍でセパレータ表面を観察し、20μm×15μmの視野において認められる無機微粒子から測定し、無機微粒子全個数中における「粒子径0.3μm以下の粒子」の割合および「粒子径1μm以上の粒子」の割合は、上記のSEM観察において、20μm×15μmの視野において認められる無機微粒子の全個数、粒子径0.3μm以下の粒子の個数、および粒子径1μm以上の粒子の個数を数えて算出したものである。   The particle diameters of “particles having a particle diameter of 0.3 μm or less” and “particles having a particle diameter of 1 μm or more” are 20 μm × 15 μm by observing the separator surface at a magnification of 5000 times using a scanning electron microscope (SEM). The ratio of “particles with a particle diameter of 0.3 μm or less” and the ratio of “particles with a particle diameter of 1 μm or more” in the total number of inorganic fine particles measured in the above-mentioned field of view are 20 μm × This is calculated by counting the total number of inorganic fine particles, the number of particles having a particle diameter of 0.3 μm or less, and the number of particles having a particle diameter of 1 μm or more, which are recognized in a 15 μm visual field.

また、正極、負極、非水電解液、および本発明の電池用セパレータを有する非水電解質電池も、本発明に含まれる。   Moreover, the nonaqueous electrolyte battery which has a positive electrode, a negative electrode, a nonaqueous electrolyte solution, and the battery separator of this invention is also contained in this invention.

本発明によれば、エネルギー密度の低下を可及的に抑制しつつ耐短絡性を向上し、更には負荷特性も良好にした非水電解質電池と、該電池を構成し得る電池用セパレータを提供することができる。   According to the present invention, there are provided a nonaqueous electrolyte battery that improves short-circuit resistance and further improves load characteristics while suppressing a decrease in energy density as much as possible, and a battery separator that can constitute the battery. can do.

本発明のセパレータは、少なくとも150℃で実質的に変形しない繊維状物と、少なくとも150℃で実質的に変形しない無機微粒子を有する多孔質膜からなるものである。本発明のセパレータは、上記のように熱収縮し難い材料で形成されており、また、従来のポリオレフィン製の多孔質フィルムセパレータのような製造時のひずみが、セパレータに残り難い製法により製造できる。よって電池内の温度が上昇した場合でも、セパレータの熱収縮が抑制され、正極と負極との接触による短絡が防止される。そのため、電池内が異常過熱した際にも、その熱暴走などが抑えられるため、安全性の高い電池となる。   The separator of the present invention comprises a porous film having a fibrous material that does not substantially deform at least 150 ° C. and inorganic fine particles that do not substantially deform at least 150 ° C. The separator of the present invention is formed of a material that hardly heat shrinks as described above, and can be manufactured by a manufacturing method in which distortion at the time of manufacturing unlike the conventional polyolefin porous film separator hardly remains in the separator. Therefore, even when the temperature in the battery rises, the thermal contraction of the separator is suppressed, and a short circuit due to contact between the positive electrode and the negative electrode is prevented. Therefore, even when the inside of the battery is abnormally overheated, the thermal runaway is suppressed, so that the battery is highly safe.

また、本発明のセパレータでは、セパレータを薄くしても、正極と負極とを良好に隔離でき、更に、特に無機微粒子の存在によって、リチウムデンドライトが発生した場合に生じ得る短絡も良好に防止できる。そのため、本発明のセパレータは、エネルギー密度の低下を可及的に抑制することができる。   In the separator of the present invention, even if the separator is thinned, the positive electrode and the negative electrode can be well separated, and in particular, the presence of inorganic fine particles can also prevent a short circuit that may occur when lithium dendrite is generated. Therefore, the separator of this invention can suppress the fall of energy density as much as possible.

そして、本発明のセパレータは、特定の粒度分布を有する無機微粒子を用いることで、優れた耐短絡性を確保できる他、電池の負荷特性も良好なものとすることができる。   And the separator of this invention can also make the load characteristic of a battery favorable while ensuring the outstanding short circuit resistance by using the inorganic fine particle which has a specific particle size distribution.

本発明のセパレータに係る無機微粒子は、粒子径が0.3μm以下の粒子を、無機微粒子全個数中、10%以上、好ましくは15%以上、より好ましくは20%以上含んでいる。粒子径が0.3μm以下の粒子の個数が少なすぎると、セパレータ中における無機微粒子の充填性が低下して、セパレータの耐短絡性が低下する。他方、粒子径が0.3μm以下の粒子が多すぎると、このセパレータを用いた電池の抵抗が高くなる傾向にあることから、粒子径が0.3μm以下の粒子は、無機微粒子全個数中、90%以下であることが好ましく、80%以下であることがより好ましい。   The inorganic fine particles according to the separator of the present invention contain 10% or more, preferably 15% or more, more preferably 20% or more of particles having a particle size of 0.3 μm or less in the total number of inorganic fine particles. When the number of particles having a particle size of 0.3 μm or less is too small, the filling properties of the inorganic fine particles in the separator are lowered, and the short circuit resistance of the separator is lowered. On the other hand, if there are too many particles having a particle size of 0.3 μm or less, the resistance of the battery using this separator tends to increase. Therefore, particles having a particle size of 0.3 μm or less are included in the total number of inorganic fine particles. It is preferably 90% or less, and more preferably 80% or less.

粒子径が0.3μm以下の粒子の粒子径は、0.3μm以下であればよいが、0.03μm以上であることが好ましく、0.1μm以上であることがより好ましい。粒子径の小さすぎる粒子は、製造が困難であったり、セパレータのイオン伝導の阻害要因となる虞がある。   The particle diameter of the particles having a particle diameter of 0.3 μm or less may be 0.3 μm or less, but is preferably 0.03 μm or more, and more preferably 0.1 μm or more. If the particle diameter is too small, it may be difficult to produce, or it may become an impediment to ionic conduction of the separator.

また、本発明のセパレータに係る無機微粒子は、粒子径が1μm以上の粒子を、無機微粒子全個数中、5%以上含んでいる。粒子径が1μm以下の粒子の個数が少なすぎると、このセパレータを用いた電池の抵抗が高くなり、負荷特性が低下する虞がある。他方、粒子径が1μm以上の粒子が多すぎると、セパレータの耐短絡性が低下することがあるため、粒子径が1μm以上の粒子は、無機微粒子全個数中、90%以下であることが好ましく、80%以下であることがより好ましい。
The inorganic fine particles according to the separator of the present invention has the above particle 1μm particle size, the inorganic fine particles total number, include 1 5% or more. If the number of particles having a particle diameter of 1 μm or less is too small, the resistance of a battery using this separator increases, and the load characteristics may be reduced. On the other hand, if there are too many particles having a particle size of 1 μm or more, the short circuit resistance of the separator may be lowered. Therefore, the particles having a particle size of 1 μm or more are preferably 90% or less in the total number of inorganic fine particles. 80% or less is more preferable.

粒子径が1μm以上の粒子の粒子径は、1μm以上であればよいが、10μm以下であることが好ましく、6μm以下であることがより好ましい。粒子径の大きすぎる粒子では、製造するセパレータの厚みの調整を難しくする虞がある。   The particle diameter of the particles having a particle diameter of 1 μm or more may be 1 μm or more, but is preferably 10 μm or less, and more preferably 6 μm or less. If the particle diameter is too large, it may be difficult to adjust the thickness of the separator to be produced.

本発明に係る無機微粒子は、150℃で実質的に変形せず、電気絶縁性を有しており、電気化学的に安定で、更に後述する非水電解液や、セパレータ製造の際に使用する液状組成物に用いる溶媒に安定であり、高温状態で電解液に溶解しないものであれば、特に制限はない。高温状態とは具体的には150℃以上の温度であり、このような温度の電解液中で変形、化学的組成変化の起こらない安定な粒子であればよい。   The inorganic fine particles according to the present invention are not substantially deformed at 150 ° C., have an electrical insulating property, are electrochemically stable, and are used in the production of a non-aqueous electrolyte and a separator described later. There is no particular limitation as long as it is stable to the solvent used in the liquid composition and does not dissolve in the electrolytic solution at a high temperature. The high temperature state is specifically a temperature of 150 ° C. or higher, and may be a stable particle that does not deform or undergo a chemical composition change in the electrolyte at such a temperature.

このような無機粒子の具体例としては、以下の粒子が挙げられ、これらを1種単独で用いてよく、2種以上を併用してもよい。例えば、酸化鉄、SiO(シリカ)、Al(アルミナ)、TiO、BaTiO、ZrOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;タルク、モンモリロナイトなどの粘土微粒子;ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質またはそれらの人造物;などが挙げられる。また、金属微粒子;SnO、スズ−インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、上記の非電気伝導性の無機微粒子を構成する材料)でコーティングすることで、電気絶縁性を持たせた微粒子であってもよい。これらの無機微粒子の中でも、シリカ、アルミナ、アルミナ−シリカ複合酸化物、ベーマイトが好適である。 Specific examples of such inorganic particles include the following particles, which may be used alone or in combination of two or more. For example, fine oxide particles such as iron oxide, SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 , BaTiO 2 , ZrO; nitride fine particles such as aluminum nitride and silicon nitride; calcium fluoride, barium fluoride Poorly soluble ionic crystal particles such as barium sulfate; Covalent crystal particles such as silicon and diamond; Clay particles such as talc and montmorillonite; Boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, Examples include materials derived from mineral resources such as mica or artificial products thereof. Further, the surface of conductive fine particles such as metal fine particles; oxide fine particles such as SnO 2 and tin-indium oxide (ITO); carbon fine particles such as carbon black and graphite; Fine particles imparted with electrical insulation properties by coating with the above-mentioned material constituting non-electrically conductive inorganic fine particles) may be used. Among these inorganic fine particles, silica, alumina, alumina-silica composite oxide, and boehmite are preferable.

また、無機微粒子の形状は、球状(真球状、略球状)、ラグビーボール状、板状などのいずれでもよいが、セパレータの耐短絡性をより高める観点から、板状であることが好ましい。なお、板状の無機微粒子の場合、板の長軸方向の径がその粒子径となる。   The shape of the inorganic fine particles may be any of a spherical shape (true spherical shape, substantially spherical shape), a rugby ball shape, a plate shape, and the like, but a plate shape is preferable from the viewpoint of further improving the short circuit resistance of the separator. In the case of plate-like inorganic fine particles, the diameter in the major axis direction of the plate is the particle size.

板状粒子の形態としては、アスペクト比が、5以上、より好ましくは10以上であって、100以下、より好ましくは50以下であることが望ましい。また、粒子の平板面の長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値は、3以下、より好ましくは2以下で、1に近い値であることが望ましい。   As the form of the plate-like particles, it is desirable that the aspect ratio is 5 or more, more preferably 10 or more, and 100 or less, more preferably 50 or less. Further, the average value of the ratio of the length in the major axis direction to the length in the minor axis direction (length in the major axis direction / length in the minor axis direction) of the flat plate surface of the grain is 3 or less, more preferably 2 or less and close to 1. It is desirable to be a value.

なお、板状粒子における上記の平板面の長軸方向長さと短軸方向長さの比の平均値は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。更に板状粒子における上記のアスペクト比も、SEMにより撮影した画像を、画像解析することにより求めることができる。   In addition, the average value of the ratio of the length in the major axis direction to the length in the minor axis direction of the flat plate surface in the plate-like particles can be obtained, for example, by image analysis of an image taken with a scanning electron microscope (SEM). it can. Further, the above aspect ratio of the plate-like particles can also be obtained by image analysis of an image taken by SEM.

これら無機微粒子の具体的な例としては、昭和電工製の微粒アルミナ「A−43−M(製品名)」、キンセイマテック社製の塊状シリカ「SQPL2(製品名)」、アドマテックス社製の球状アルミナ「アドマファイン AO−802(製品名)」、アドマッテクス社製の球状シリカ「アドマファイン SO−E3(製品名)」、河合石灰社製の板状ベーマイト「BMM(製品名)」、日本軽金属社製のアルミナ「A33F(製品名)」などが入手可能である。   Specific examples of these inorganic fine particles include fine-grained alumina “A-43-M (product name)” manufactured by Showa Denko, bulk silica “SQPL2 (product name)” manufactured by Kinsei Matech, and spherical particles manufactured by Admatechs. Alumina "Admafine AO-802 (product name)", Admattex's spherical silica "Admafine SO-E3 (product name)", Kawai Lime's plate-like boehmite "BMM (product name)", Nippon Light Metal Co., Ltd. Alumina “A33F (product name)” and the like are available.

本発明に係る繊維状物は、150℃で実質的に変形せず、電気絶縁性を有しており、電気化学的に安定で、更に下記に詳述する非水電解液や、セパレータ製造の際に使用する液状組成物に用いる溶媒に安定であれば、特に制限はない。なお、本発明でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味している。本発明に係る繊維状物のアスペクト比は、10以上であることが好ましい。   The fibrous material according to the present invention is not substantially deformed at 150 ° C., has an electrical insulating property, is electrochemically stable, and is used for manufacturing a non-aqueous electrolyte solution and a separator described in detail below. There is no particular limitation as long as the solvent used in the liquid composition used is stable. The “fibrous material” referred to in the present invention means that having an aspect ratio [length in the long direction / width (diameter) in a direction perpendicular to the long direction] of 4 or more. The aspect ratio of the fibrous material according to the present invention is preferably 10 or more.

繊維状物の具体的な構成材料としては、例えば、セルロース、セルロース変成体(カルボキシメチルセルロースなど)、ポリプロピレン(PP)、ポリエステル[ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など]、ポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、ポリアラミド、ポリアミドイミド、ポリイミドなどの樹脂;ガラス、アルミナ、シリカなどの無機材料(無機酸化物);などが挙げられる。繊維状物は、これらの構成材料の1種を含有していてもよく、2種以上を含有していても構わない。また、繊維状物は、構成成分として、上記の構成材料の他に、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。   Specific constituent materials of the fibrous material include, for example, cellulose, modified cellulose (such as carboxymethyl cellulose), polypropylene (PP), polyester [polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT). And the like], resins such as polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyaramid, polyamideimide, and polyimide; inorganic materials (inorganic oxides) such as glass, alumina, and silica; and the like. The fibrous material may contain one kind of these constituent materials, or may contain two or more kinds. In addition to the above-described constituent materials, the fibrous material may contain various known additives (for example, an antioxidant in the case of a resin) as a constituent component. Absent.

繊維状物の直径は、セパレータの厚み以下であれば良いが、例えば、0.01〜5μmであることが好ましい。径が大きすぎると、繊維状物同士の絡み合いが不足して、これらで構成されるシート状物の強度、延いてはセパレータの強度が小さくなって取り扱いが困難となることがある。また、径が小さすぎると、セパレータの空隙が小さくなりすぎて、イオン透過性が低下して、電池の負荷特性が低下する傾向にある。   Although the diameter of a fibrous material should just be below the thickness of a separator, it is preferable that it is 0.01-5 micrometers, for example. If the diameter is too large, the entanglement between the fibrous materials may be insufficient, and the strength of the sheet-like material constituted by these, and consequently the strength of the separator may be reduced, making it difficult to handle. On the other hand, if the diameter is too small, the gap of the separator becomes too small, and the ion permeability tends to be lowered, and the load characteristics of the battery tend to be lowered.

本発明のセパレータは、上記の繊維状物が多数集合して、これらの繊維状物のみによりシート状物を形成している形式のもの、例えば織布、不織布、紙といった形態のものを用い、このシート状物中に無機微粒子が含有された構成のセパレータとしてもよいし、繊維状物と無機微粒子とが均一に分散された形で含有されている構成のセパレータとしてもよい。また、上記の両者の構成を合わせた構成とすることもできる。   The separator of the present invention uses a type in which a large number of the above-mentioned fibrous materials are gathered to form a sheet-like material only from these fibrous materials, for example, in the form of woven fabric, nonwoven fabric, paper, A separator having a structure in which inorganic fine particles are contained in the sheet-like material may be used, or a separator having a structure in which fibrous materials and inorganic fine particles are uniformly dispersed may be used. Moreover, it can also be set as the structure which combined both said structure.

セパレータ中での繊維状物の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。特に、繊維状物が、織布、不織布などのシート状物を形成している場合には、繊維状物が上記の状態で存在していることが好ましい。   The state of the presence of the fibrous material in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, and more preferably 20 ° or less. . In particular, when the fibrous material forms a sheet-like material such as a woven fabric or a non-woven fabric, the fibrous material is preferably present in the above-described state.

また、セパレータにシャットダウン機能を付与するために、80〜130℃で溶融する熱溶融性微粒子、または、非水電解液中で膨潤でき、かつ温度の上昇により膨潤度が増大する膨潤性微粒子を添加することが可能である。上記の熱溶融性微粒子や膨潤性微粒子を用いてセパレータを構成することで、高温に曝されたときにセパレータ中のイオンの透過性が低下する所謂シャットダウン機能を付与することができる。   In addition, in order to give the separator a shutdown function, hot-melt fine particles that melt at 80 to 130 ° C. or swellable fine particles that can swell in a non-aqueous electrolyte and increase the degree of swelling as the temperature rises are added. Is possible. By constituting the separator using the above-described hot-melt fine particles and swellable fine particles, a so-called shutdown function can be provided in which the permeability of ions in the separator is lowered when exposed to high temperatures.

本発明のセパレータにおける上記のシャットダウン機能は、例えば、モデルセルの温度による抵抗上昇により測定することが可能である。すなわち、正極、負極、セパレータ、および非水電解液を備えたモデルセルを作製し、該モデルセルを恒温槽中に保持し、5℃/分の速度で昇温しながら上記モデルセルの内部抵抗値を測定し、測定された内部抵抗値が、加熱前(室温で測定した抵抗値)の10倍以上となる温度を、シャットダウン温度として評価することができる。   The shutdown function in the separator of the present invention can be measured by, for example, an increase in resistance due to the temperature of the model cell. That is, a model cell including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte is prepared, and the model cell is held in a thermostatic bath, and the internal resistance of the model cell is increased while the temperature is increased at a rate of 5 ° C./min. The temperature at which the measured internal resistance value is 10 times or more that before heating (resistance value measured at room temperature) can be evaluated as the shutdown temperature.

80〜130℃で溶融する熱溶融性微粒子、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が80〜130℃である熱溶融性微粒子を含有しているセパレータでは、該セパレータが80〜130℃(またはそれ以上の温度)に曝されたときに、熱溶融性微粒子が溶融してセパレータの空隙が閉塞されるため、上記のシャットダウン機能がより確実に確保できる。よって、この場合、上記の内部抵抗上昇により評価される本発明のセパレータにおける空隙閉塞現象が発現する温度(内部抵抗値が加熱前の5倍以上となる温度)は、粒子の融点以上130℃以下となる。   Heat-melting fine particles that melt at 80 to 130 ° C., that is, heat-melting fine particles having a melting temperature of 80 to 130 ° C. measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121. In the contained separator, when the separator is exposed to 80 to 130 ° C. (or higher temperature), the heat-fusible fine particles are melted to close the voids of the separator. It can be secured more reliably. Therefore, in this case, the temperature at which the void clogging phenomenon occurs in the separator of the present invention evaluated by the above increase in internal resistance (temperature at which the internal resistance value is 5 times or more before heating) is not less than the melting point of the particles and not more than 130 ° C. It becomes.

熱溶融性微粒子の構成材料の具体例としては、ポリエチレン(PE)、エチレン由来の構造単位が85モル%以上の共重合ポリオレフィン、ポリプロピレン(PP)、ポリオレフィン誘導体(塩素化ポリエチレン、塩素化ポリプロピレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。上記共重合ポリオレフィンとしては、エチレン−ビニルモノマー共重合体、より具体的には、エチレン−酢酸ビニル共重合体(EVA)、エチレン−メチルアクリレート共重合体、またはエチレン−エチルアクリレート共重合体が例示できる。また、ポリシクロオレフィンなどを用いることもできる。熱溶融性粒子は、これらの構成材料の1種のみを有していてもよく、2種以上を有していても構わない。これらの中でも、PE、ポリオレフィンワックス、またはエチレン由来の構造単位が85モル%以上のEVAが好適である。また、熱溶融性微粒子は、構成成分として、上記の構成材料の他に、必要に応じて、樹脂に添加される公知の各種添加剤(例えば、酸化防止剤など)を含有していても構わない。   Specific examples of the constituent material of the heat-meltable fine particles include polyethylene (PE), copolymerized polyolefin having a structural unit derived from ethylene of 85 mol% or more, polypropylene (PP), polyolefin derivative (chlorinated polyethylene, chlorinated polypropylene, etc.) Polyolefin wax, petroleum wax, carnauba wax and the like. Examples of the copolymer polyolefin include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-vinyl acetate copolymer (EVA), an ethylene-methyl acrylate copolymer, or an ethylene-ethyl acrylate copolymer. it can. Moreover, polycycloolefin etc. can also be used. The heat-fusible particles may have only one kind of these constituent materials, or may have two or more kinds. Among these, PE, polyolefin wax, or EVA having a structural unit derived from ethylene of 85 mol% or more is preferable. Further, the heat-meltable fine particles may contain various known additives (for example, antioxidants) added to the resin as necessary, in addition to the above-described constituent materials. Absent.

なお、熱溶融性微粒子は、セパレータ内部に含まれるのみならず、セパレータの正極側面若しくは負極側面、または両面に存在することによっても、シャットダウン機能の付与が可能となる。   The heat-meltable fine particles are not only contained in the separator, but also can be provided with a shutdown function by being present on the positive electrode side surface, the negative electrode side surface, or both surfaces of the separator.

熱溶融性微粒子の粒径[レーザー散乱粒度分布径(HORIBA社製「LA−920」)を用いて測定される数平均粒子径]としては、例えば、0.001μm以上、より好ましくは0.1μm以上であって、15μm以下、より好ましくは1μm以下であることが推奨される。   The particle size of the heat-meltable fine particles [number average particle diameter measured using a laser scattering particle size distribution diameter (“LA-920” manufactured by HORIBA)] is, for example, 0.001 μm or more, more preferably 0.1 μm. It is recommended that the thickness be 15 μm or less, more preferably 1 μm or less.

これら熱溶融性微粒子の具体的な例としては、三井化学社製のPEエマルジョン「ケミパール(製品名) 」、中京油脂社製のPEエマルジョン「K143(製品名)」、岐阜セラック社製のPEワックスエマルジョン、住友精化社製のPE「フロービーズ(製品名) 」、東洋ペトロライト社製のワックスエマルジョン「アクアペトロ(製品名)」などが入手可能である。   Specific examples of these heat-meltable fine particles include PE emulsion “CHEMIPARL (product name)” manufactured by Mitsui Chemicals, PE emulsion “K143 (product name)” manufactured by Chukyo Yushi Co., Ltd., PE wax manufactured by Gifu Shellac Co., Ltd. Emulsions, PE “Flow beads (product name)” manufactured by Sumitomo Seika Co., Ltd., wax emulsion “Aqua Petro (product name)” manufactured by Toyo Petrolite Co., Ltd., etc. are available.

非水電解液中で膨潤でき、かつ温度の上昇により膨潤度が増大する膨潤性微粒子をセパレータが有する場合には、電池内で高温に曝されたときに、膨潤性微粒子の膨潤によって非水電解液を吸収して大きく膨張する(以下、膨潤性微粒子における温度の上昇に伴って膨潤度が増大する機能を「熱膨潤性」という)ことにより、セパレータ内のLi(リチウム)イオンの伝導性を著しく低下させるため、電池の内部抵抗が上昇し、上記のシャットダウン機能を確実に確保することが可能となる。膨潤性微粒子としては、上記の熱膨潤性を示す温度が、75〜125℃であるものが好ましい。   When the separator has swellable fine particles that can swell in a non-aqueous electrolyte and increase in degree of swelling as the temperature rises, the non-aqueous electrolysis is caused by swelling of the swellable fine particles when exposed to high temperatures in the battery. By absorbing the liquid and expanding greatly (hereinafter, the function of increasing the degree of swelling with increasing temperature in the swellable fine particles is called “thermal swelling”), the conductivity of Li (lithium) ions in the separator is increased. Since it is significantly reduced, the internal resistance of the battery is increased, and the above-described shutdown function can be reliably ensured. As the swellable fine particles, those having a temperature of 75 to 125 ° C. exhibiting the above heat swellability are preferable.

このような熱膨潤性を有する膨潤性微粒子としては、例えば、架橋ポリスチレン(PS)、架橋アクリル樹脂[例えば、架橋ポリメチルメタクリレート(PMMA)]、架橋フッ素樹脂[例えば、架橋ポリフッ化ビニリデン(PVDF)]などが好適であり、架橋PMMAが特に好ましい。   Examples of such swellable fine particles having thermal swellability include crosslinked polystyrene (PS), crosslinked acrylic resin [for example, crosslinked polymethyl methacrylate (PMMA)], and crosslinked fluororesin [for example, crosslinked polyvinylidene fluoride (PVDF). ] Is preferred, and cross-linked PMMA is particularly preferred.

膨潤性微粒子の粒径は、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、微粒子を膨潤しない媒体(例えば水)に分散させて測定した数平均粒子径で、0.1〜20μmであることが好ましい。   The particle size of the swellable fine particles is a number average particle size measured by dispersing the fine particles in a non-swelling medium (for example, water) using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA). It is preferable that it is 1-20 micrometers.

膨潤性微粒子の具体的な例として、ガンツ化成社製の架橋PMMA「ガンツパール(製品名)」、東洋インキ社製の架橋PMMA「RSP1079(製品名)」などが入手可能である。   As specific examples of the swellable fine particles, cross-linked PMMA “Gantz Pearl (product name)” manufactured by Gantz Kasei Co., Ltd., and cross-linked PMMA “RSP1079 (product name)” manufactured by Toyo Ink Co., Ltd. are available.

本発明のセパレータにおいて、シャットダウン機能を確保するにあたっては、上記熱溶融性微粒子および上記膨潤性微粒子のいずれか一方を含有していてもよく、両者を含有していてもよい。更に、熱溶融性微粒子と熱膨潤性微粒子とを複合させた複合体をセパレータに含有させることで、シャットダウン機能を確保してもよい。   In the separator of this invention, when ensuring a shutdown function, either the said heat-meltable microparticles | fine-particles or the said swellable microparticles | fine-particles may be contained, and both may be contained. Furthermore, the shutdown function may be ensured by adding a composite containing the heat-meltable fine particles and the heat-swellable fine particles to the separator.

本発明のセパレータには、無機微粒子同士を結着したり、繊維状物と無機微粒子やその他の各種粒子(上記の熱溶融性微粒子や膨潤性微粒子など)などとを結着したりする目的で、バインダを用いてもよい。   In the separator of the present invention, for the purpose of binding inorganic fine particles to each other, or binding the fibrous material with inorganic fine particles and other various particles (such as the above-mentioned heat-meltable fine particles and swellable fine particles). A binder may be used.

バインダとしては、電気化学的に安定且つ非水電解液に対して安定で、良好に接着できるものであればよいが、例えば、EVA(酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリレート共重合体、各種ゴムおよびその誘導体[スチレン−ブタジエンゴム(SBR)、フッ素ゴム、ウレタンゴム、エチレン−プロピレン−ジエンゴム(EPDM)など]、セルロース誘導体[カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど]、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、エポキシ樹脂、PVDF、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)、アクリル樹脂などが挙げられ、これらを1種単独で用いてもよく、または2種以上を併用してもよい。なお、これらバインダを使用する場合には、後記するセパレータ形成用の液状組成物の溶媒に溶解するか、または分散させたエマルジョンの形態で用いることができる。   Any binder may be used as long as it is electrochemically stable and stable with respect to the non-aqueous electrolyte, and can be satisfactorily bonded. For example, EVA (having 20 to 35 mol% of a structural unit derived from vinyl acetate) , Ethylene-acrylate copolymers such as ethylene-ethyl acrylate copolymer, various rubbers and derivatives thereof [styrene-butadiene rubber (SBR), fluororubber, urethane rubber, ethylene-propylene-diene rubber (EPDM), etc.], cellulose derivatives [Carboxymethylcellulose (CMC), hydroxyethylcellulose, hydroxypropylcellulose, etc.], polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), polyurethane, epoxy resin, PVDF, vinylidene fluoride-hexafluo Propylene copolymer (PVDF-HFP), and acrylic resins. May be used these alone, or in combination of two or more. In addition, when using these binders, it can be used in the form of the emulsion which melt | dissolved or disperse | distributed to the solvent of the liquid composition for separator formation mentioned later.

これらバインダの具体的な例としては、JSR社製のSBR「TRD2001(製品名)」、日本ゼオン社製のSBR「BM400B(製品名)」などが入手可能である。   As specific examples of these binders, SBR “TRD2001 (product name)” manufactured by JSR, SBR “BM400B (product name)” manufactured by Zeon Corporation, and the like are available.

本発明のセパレータは、独立の多孔質膜の形態を有していてもよく、電池に用いられる正極および負極の少なくとも一方と一体化した形態を有していてもよい。   The separator of the present invention may have a form of an independent porous film, or may have a form integrated with at least one of a positive electrode and a negative electrode used in a battery.

セパレータの厚みは、3μm以上、より好ましくは5μm以上であって、50μm以下、より好ましくは30μm以下であることが望ましい。セパレータが薄すぎると、短絡防止効果が小さくなったり、セパレータの強度が不十分で取り扱いが困難になることがあり、他方、厚すぎると、電池としたときのエネルギー密度が小さくなる傾向にある。   The thickness of the separator is 3 μm or more, more preferably 5 μm or more, and is preferably 50 μm or less, more preferably 30 μm or less. If the separator is too thin, the short-circuit prevention effect may be reduced, or the separator may have insufficient strength and may be difficult to handle. On the other hand, if it is too thick, the energy density of the battery tends to be reduced.

また、セパレータの空隙率としては、乾燥した状態で15%以上、より好ましくは20%以上であって、70%以下、より好ましくは60%以下であることが望ましい。セパレータの空隙率が小さすぎると、イオン透過性が小さくなることがあり、また、空隙率が大きすぎると、セパレータの強度が不足することがある。なお、セパレータの空隙率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、次式を用いて各成分iについての総和を求めることにより計算できる。
P = Σaρ/(m/t)
ここで、上記式中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)、である。
Further, the porosity of the separator is preferably 15% or more, more preferably 20% or more, and 70% or less, more preferably 60% or less in a dry state. If the porosity of the separator is too small, the ion permeability may be reduced, and if the porosity is too large, the strength of the separator may be insufficient. The porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following formula.
P = Σa i ρ i / (m / t)
Here, in the above formula, a i : ratio of component i expressed by mass%, ρ i : density of component i (g / cm 3 ), m: mass per unit area of separator (g / cm 2 ), t: thickness of separator (cm).

更に、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値で示されるセパレータの透気度は、10〜300secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。また、セパレータが独立膜の場合、その強度としては、直径が1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する虞がある。 Furthermore, the air permeability of the separator, which is performed by a method in accordance with JIS P 8117 and indicated by a Gurley value indicated by the number of seconds in which 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2 , is 10 to 10. It is desirable to be 300 sec. If the air permeability is too high, the ion permeability is reduced, whereas if it is too low, the strength of the separator may be reduced. When the separator is an independent film, the strength is preferably 50 g or more in terms of puncture strength using a needle having a diameter of 1 mm. If the piercing strength is too low, a short circuit may occur due to the breakthrough of the separator when lithium dendrite crystals are generated.

セパレータにおける無機微粒子は、セパレータの構成成分の全体積中、33.1体積%以上であ。無機微粒子の体積比率を上記のようにすることで、無機微粒子の使用による作用をより有効に発揮させることができる。
Inorganic fine particles in the separator, the total volume of the components of the separator, Ru der least 33.1% by volume. By making the volume ratio of the inorganic fine particles as described above, the effect of using the inorganic fine particles can be more effectively exhibited.

他方、セパレータにおける無機微粒子の体積比率の上限は、セパレータの構成成分の全体積中、例えば80体積%であることが好ましい。無機微粒子の体積比率が上記上限値を超えると、セパレータを、短絡防止機能を十分に確保しつつシャットダウン機能も十分に確保できる構成とすることが困難となる。なお、セパレータにシャットダウン機能を付与しない構成とする場合には、セパレータの構成成分の全体積中における無機微粒子の体積比率は、更に高い比率、例えば95体積%以下であれば問題ない。   On the other hand, the upper limit of the volume ratio of the inorganic fine particles in the separator is preferably 80% by volume, for example, in the total volume of the constituent components of the separator. When the volume ratio of the inorganic fine particles exceeds the above upper limit, it is difficult to make the separator have a configuration that can sufficiently secure the shutdown function while sufficiently securing the short-circuit prevention function. In addition, when it is set as the structure which does not provide a shutdown function to a separator, there will be no problem if the volume ratio of the inorganic fine particles in the whole volume of the component of a separator is a still higher ratio, for example, 95 volume% or less.

また、セパレータにおける繊維状物は、セパレータの構成成分の全体積中、20体積%以上であることが好ましく、30体積%以上であることがより好ましい。繊維状物の体積比率を上記のようにすることで、繊維状物の使用による作用をより有効に発揮させることができる。   Moreover, it is preferable that the fibrous material in a separator is 20 volume% or more in the whole volume of the component of a separator, and it is more preferable that it is 30 volume% or more. By making the volume ratio of the fibrous material as described above, the effect of using the fibrous material can be more effectively exhibited.

他方、セパレータ中の繊維状物の体積比率が大きすぎると、無機微粒子やその他の粒子(熱溶融性微粒子、膨潤性微粒子など)の比率が小さくなって、これらによる作用を十分に発揮させ得ない虞があるため、セパレータの構成成分の全体積中における繊維状物の体積比率は、70体積%以下であることが好ましく、60体積%以下であることがより好ましい。   On the other hand, if the volume ratio of the fibrous material in the separator is too large, the ratio of inorganic fine particles and other particles (such as heat-meltable fine particles and swellable fine particles) becomes small, and the effects of these cannot be fully exhibited. Since there exists a possibility, it is preferable that the volume ratio of the fibrous material in the whole volume of the structural component of a separator is 70 volume% or less, and it is more preferable that it is 60 volume% or less.

更に、セパレータにおいて、熱溶融性微粒子および膨潤性微粒子は、これらの合計体積が、セパレータの構成成分の全体積中、10〜50体積%であることが好ましい。熱溶融性微粒子や膨潤性微粒子を上記の範囲で含有させることで、無機微粒子および繊維状物による作用を損なうことなく、良好なシャットダウン機能を確保することができる。また、バインダは、セパレータの構成成分の全体積中、1〜10体積%であることが好ましい。   Further, in the separator, the total volume of the heat-meltable fine particles and the swellable fine particles is preferably 10 to 50% by volume in the total volume of the constituent components of the separator. By including the heat-meltable fine particles and the swellable fine particles in the above range, a good shutdown function can be ensured without impairing the action of the inorganic fine particles and the fibrous material. Moreover, it is preferable that a binder is 1-10 volume% in the whole volume of the structural component of a separator.

本発明のセパレータの製造方法としては、例えば、下記(I)、(II)および(III)の方法が採用できる。(I)の方法は、イオン透過性のシート状物に、無機微粒子を含む液状組成物(スラリーなど)を塗布または含浸させた後、所定の温度で乾燥する製造方法である。   As the method for producing the separator of the present invention, for example, the following methods (I), (II) and (III) can be employed. The method (I) is a production method in which a liquid composition (slurry or the like) containing inorganic fine particles is applied to or impregnated into an ion-permeable sheet material and then dried at a predetermined temperature.

(I)の方法でいう「シート状物」には、上述の、繊維状物で構成されたシート状物(各種、織布、不織布など)が該当する。すなわち、上記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成され、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布、PVA不織布などの不織布などが例示できる。   The “sheet-like material” referred to in the method (I) corresponds to the above-described sheet-like materials composed of fibrous materials (various, woven fabric, non-woven fabric, etc.). That is, a porous sheet such as a non-woven fabric having a structure in which each of the above-exemplified materials is composed of at least one kind of fibrous material, and the fibrous materials are entangled with each other. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.), PAN non-woven fabric, and PVA non-woven fabric can be exemplified.

セパレータに用いる織布や不織布の厚みとしては、20μm以下であることが好ましく、10μm以下であることがより好ましい。また、織布や不織布の目付けとしては、15g/m以下であることが好ましく、10g/m以下であることがより好ましい。なお、織布や不織布の厚みは、5μm以上であることが好ましく、その目付けは、2g/m以上であることが好ましい。織布や不織布の製法としては、従来公知の方法を用いることができ、例えば不織布であれば、具体的には湿式、乾式、メルトブロー、スパンボンド、電荷溶融紡糸といった手法を用いることができる。 The thickness of the woven or non-woven fabric used for the separator is preferably 20 μm or less, and more preferably 10 μm or less. As the basis weight of the woven or nonwoven fabric, more preferably preferably at 15 g / m 2 or less, 10 g / m 2 or less. Incidentally, the woven fabric or nonwoven fabric thickness is preferably 5μm or more, the basis weight is preferably 2 g / m 2 or more. As a method for producing a woven fabric or a non-woven fabric, a conventionally known method can be used. For example, for a non-woven fabric, methods such as wet, dry, melt blow, spun bond, and charge melt spinning can be used.

本発明のセパレータを形成するための上記液状組成物は、無機微粒子や、必要に応じて、バインダ、熱溶融性微粒子などを含有し、これらを溶媒(分散媒を含む、以下同じ)に分散または溶解させたものである。液状組成物に用いられる溶媒は、無機微粒子や、熱溶融性微粒子などを均一に分散でき、また、バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;などの有機溶媒が好適である。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。   The liquid composition for forming the separator of the present invention contains inorganic fine particles and, if necessary, a binder, hot-melt fine particles, etc., and these are dispersed in a solvent (including a dispersion medium, hereinafter the same). It has been dissolved. The solvent used in the liquid composition may be any solvent that can uniformly disperse inorganic fine particles, heat-meltable fine particles, and the like, and can uniformly dissolve or disperse the binder. For example, aromatic hydrocarbons such as toluene Organic solvents such as furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; In addition, for the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when the binder is water-soluble or used as an emulsion, water may be used as a solvent. In this case, an alcohol (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) is added as appropriate to the interface. The tension can also be controlled.

上記液状組成物では、無機微粒子や、熱溶融性微粒子、バインダなどを含む固形分含量を、例えば10〜80質量%とすることが好ましく、20〜70質量%とすることがより好ましい。   In the liquid composition, the solid content including inorganic fine particles, heat-meltable fine particles, binder, and the like is preferably 10 to 80% by mass, and more preferably 20 to 70% by mass.

なお、熱溶融性微粒子が単独で接着性を有する場合には、これらがバインダを兼ねることもできる。   In addition, when a hot-melt fine particle has adhesiveness independently, these can also serve as a binder.

上記シート状物を有するセパレータの場合には、無機微粒子や熱溶融性微粒子、膨潤性微粒子などの微粒子の一部または全部が、シート状物の空隙内に存在する構造とすることが好ましい。セパレータがこのような構造を有する場合には、含有する微粒子の作用がより有効に発揮される。また、上記のシート状物が、紙、PP不織布、ポリエステル不織布などの不織布のように、繊維状物で構成されるものであって、特にその空隙の開口径が比較的大きい場合(例えば、空隙の開口径が5μm以上の場合)には、これが電池の短絡の要因となりやすい。よって、特にこの場合には、混合される微粒子の一部または全部がシート状物の空隙内に存在する構造とすることが好ましい。   In the case of the separator having the sheet-like material, it is preferable that part or all of the fine particles such as inorganic fine particles, heat-meltable fine particles, and swellable fine particles exist in the voids of the sheet-like material. When the separator has such a structure, the action of the contained fine particles is more effectively exhibited. In addition, the sheet-like material is composed of a fibrous material, such as a nonwoven fabric such as paper, PP nonwoven fabric, and polyester nonwoven fabric, and particularly when the opening diameter of the void is relatively large (for example, the void This is likely to cause a short circuit of the battery. Therefore, particularly in this case, it is preferable to have a structure in which some or all of the fine particles to be mixed are present in the voids of the sheet-like material.

シート状物の空隙内に無機微粒子などの各種微粒子を存在させるには、例えば、上記の液状組成物をシートに含浸させた後、一定のギャップを通し、余分の液状組成物を除去した後、乾燥するなどの工程を用いればよい。   In order to make various fine particles such as inorganic fine particles exist in the voids of the sheet-like material, for example, after impregnating the above liquid composition into the sheet, passing through a certain gap, and removing the excess liquid composition, A process such as drying may be used.

また、無機微粒子として板状粒子を用いる場合には、セパレータ中での板状粒子の配向性を高め、板状粒子をセパレータ面に平行または略平行に配向させることで、デンドライトによるセパレータの突き抜けを防止して、これによる短絡の発生を良好に抑制することができる。セパレータ中での板状粒子の配向性を高めて、その機能を有効に作用させるためには、上記液状組成物を含浸させた基体において、該液状組成物にシェアや磁場をかけるといった方法を用いればよい。例えば、上記のように、液状組成物をシート状物に含浸させた後、一定のギャップを通すことで、液状組成物にシェアをかけることができる。   When using plate-like particles as the inorganic fine particles, the orientation of the plate-like particles in the separator is enhanced, and the plate-like particles are oriented parallel or substantially parallel to the separator surface, thereby preventing the penetration of the separator by dendrites. Therefore, the occurrence of a short circuit can be satisfactorily suppressed. In order to increase the orientation of the plate-like particles in the separator and to make the function work effectively, a method in which a shear or magnetic field is applied to the liquid composition in the substrate impregnated with the liquid composition is used. That's fine. For example, as described above, the liquid composition can be sheared by impregnating the liquid composition into a sheet and then passing through a certain gap.

セパレータの(II)の製造方法は、上記液状組成物に更に繊維状物を含有させ、これをフィルムや金属箔などの基材上に塗布し、所定の温度で乾燥した後に、該基材から剥離する方法である。すなわち、繊維状物のシート化と無機微粒子を含有させる操作を同時に行う方法である。なお、(II)の方法で使用する液状組成物は、繊維状物を含有させることが必須である点を除き、(I)の方法で用いる液状組成物と同じである。また、(II)の方法で得られるセパレータにおいても、繊維状物で形成されるシート状物の空隙内に、無機微粒子の一部または全部が存在する構造とすることが望ましい。   The separator (II) is produced by adding a fibrous material to the liquid composition, coating the substrate on a substrate such as a film or a metal foil, and drying at a predetermined temperature. It is a method of peeling. That is, it is a method of simultaneously performing the operation of forming a sheet of fibrous material and containing inorganic fine particles. The liquid composition used in the method (II) is the same as the liquid composition used in the method (I) except that it is essential to contain a fibrous material. Moreover, it is desirable that the separator obtained by the method (II) also has a structure in which some or all of the inorganic fine particles are present in the voids of the sheet-like material formed of the fibrous material.

セパレータの(III)の製造方法は、例えば、上記の無機微粒子および繊維状物に、更に必要に応じて熱溶融性微粒子やバインダを用いて、水または適当な溶媒に分散させたスラリー状などの液状組成物を調製し、ブレードコーター、ロールコーター、ダイコーター、スプレーコーターなどの従来公知の塗布装置を用いて、上記液状組成物を電極(正極または負極)上に塗布し、乾燥する方法である。これにより、電極と一体化した構造のセパレータを得ることができる。上記液状組成物には、例えば、(I)や(II)の製造方法について説明した液状組成物と同じものが使用できる。   The method for producing the separator (III) is, for example, a slurry in which the above-described inorganic fine particles and fibrous materials are further dispersed in water or a suitable solvent using hot-melt fine particles or a binder as necessary. This is a method of preparing a liquid composition, applying the liquid composition on an electrode (positive electrode or negative electrode) using a conventionally known coating apparatus such as a blade coater, a roll coater, a die coater, or a spray coater, and drying it. . Thereby, the separator of the structure integrated with the electrode can be obtained. As the liquid composition, for example, the same liquid composition as described for the production method of (I) or (II) can be used.

なお、本発明のセパレータは、上記の構造に限定されるものではない。例えば、無機微粒子は、個々に独立して存在していなくてもよく、互いに、または、繊維状物に、一部が融着されていても構わない。   In addition, the separator of this invention is not limited to said structure. For example, the inorganic fine particles may not be present independently of each other, and may be partially fused to each other or to a fibrous material.

上記(I)〜(III)の方法によって作製されたセパレータは、乾燥後に熱処理を施し、セパレータ中に含有されている水分や、溶媒(分散媒)といった揮発成分を除去することが望ましい。これらの揮発成分を除去することで、非水電解質電池において、充放電を繰り返した際の電池特性の劣化を抑制できるため、長期信頼性に優れた非水電解質電池を提供できるようになる。水分や溶媒の残留量としては、セパレータに対して100ppm以下であることが望ましい。   The separator produced by the methods (I) to (III) is preferably subjected to a heat treatment after drying to remove volatile components such as moisture and a solvent (dispersion medium) contained in the separator. By removing these volatile components, in the nonaqueous electrolyte battery, it is possible to suppress deterioration of battery characteristics when charging and discharging are repeated, so that it is possible to provide a nonaqueous electrolyte battery having excellent long-term reliability. The residual amount of moisture and solvent is desirably 100 ppm or less with respect to the separator.

上記熱処理の温度は、セパレータ中に熱溶融性微粒子を含む場合には、多孔質層のシャットダウン温度未満の温度とする。シャットダウン温度以上の温度で熱処理を施すと、多孔質層の空孔が閉塞してしまうため、このような電極を使用した非水電解質電池は、その特性が劣るものとなる。セパレータ中に熱溶融性微粒子を含まず、膨潤性微粒子の使用によってシャットダウン機能を付与したセパレータの場合には、喩えセパレータを加熱して高温に曝しても、その後に冷却すれば膨潤性微粒子が加熱前の状態に戻るため、セパレータの特性(イオン透過性など)は損なわれない。そのため、膨潤性微粒子を有するセパレータでは、膨潤性微粒子や繊維状物を構成する樹脂の熱分解温度以下の温度であれば熱処理温度に特に制限は無い。また、熱溶融性微粒子を使用せず、シャットダウン機能を付与していないセパレータについても、熱処理温度は、例えば繊維状物の熱分解温度以下であればよい。   The temperature of the heat treatment is set to a temperature lower than the shutdown temperature of the porous layer when the meltable fine particles are contained in the separator. When heat treatment is performed at a temperature equal to or higher than the shutdown temperature, the pores of the porous layer are blocked, so that the characteristics of the nonaqueous electrolyte battery using such an electrode are inferior. In the case of a separator that does not contain hot-melt fine particles and has a shutdown function due to the use of swellable fine particles, even if the separator is heated and exposed to high temperatures, the swellable fine particles are heated if cooled afterwards. Since it returns to the previous state, the characteristics of the separator (such as ion permeability) are not impaired. Therefore, in the separator having swellable fine particles, the heat treatment temperature is not particularly limited as long as the temperature is equal to or lower than the thermal decomposition temperature of the resin constituting the swellable fine particles and the fibrous material. Moreover, the heat processing temperature should just be below the thermal decomposition temperature of a fibrous material also about the separator which does not use a thermomeltable microparticle and does not provide the shutdown function, for example.

具体的な熱処理温度としては、例えば、70〜140℃、また、熱処理の時間としては、例えば、1時間以上、より好ましくは3時間以上であって、72時間以下、より好ましくは24時間以下とすることが望ましい。このような熱処理は、例えば、温風循環型の恒温槽中で行うことができる。また、必要に応じて真空乾燥機を用いて減圧乾燥を行なってもよい。   The specific heat treatment temperature is, for example, 70 to 140 ° C., and the heat treatment time is, for example, 1 hour or more, more preferably 3 hours or more, and 72 hours or less, more preferably 24 hours or less. It is desirable to do. Such heat treatment can be performed, for example, in a warm air circulation type thermostatic bath. Moreover, you may dry under reduced pressure using a vacuum dryer as needed.

このようにして得られるセパレータは、例えば150℃での熱収縮率を5%未満とすることができ、高温下での熱収縮が生じ難いため、電池内が高温になった場合でも、正極と負極とを良好に隔離して短絡の発生を抑制することができる。なお、セパレータにおける「150℃の熱収縮率」とは、セパレータを恒温槽に入れ、温度を150℃まで上昇させて30分放置した後に取り出して、恒温槽に入れる前のセパレータの寸法と比較することで求められる寸法の減少割合を百分率で表したものである。   The separator thus obtained can have a thermal shrinkage rate of, for example, less than 5% at 150 ° C., and heat shrinkage at high temperatures is unlikely to occur. The occurrence of a short circuit can be suppressed by separating the negative electrode well. The “150 ° C. heat shrinkage rate” of the separator refers to the size of the separator before putting the separator in a thermostatic bath, raising the temperature to 150 ° C. and leaving it for 30 minutes, and then putting it in the thermostatic bath. The reduction ratio of the dimension calculated | required by this is expressed in percentage.

本発明の非水電解質電池は、本発明のセパレータを有していれば特に制限はなく、従来公知の構成、構造が採用できる。なお、本発明の非水電解質電池には、一次電池と二次電池が含まれるが、以下には、特に主要な用途である二次電池の構成を例示する。   The nonaqueous electrolyte battery of the present invention is not particularly limited as long as it has the separator of the present invention, and a conventionally known configuration and structure can be adopted. In addition, although the primary battery and the secondary battery are contained in the nonaqueous electrolyte battery of this invention, the structure of the secondary battery which is especially main uses is illustrated below.

非水電解質電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Examples of the form of the nonaqueous electrolyte battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

正極としては、従来公知の非水電解質電池に用いられている正極であれば特に制限はない。例えば、活物質として、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mnなど)で表されるリチウム含有遷移金属酸化物;LiMnなどのリチウムマンガン酸化物;LiMnのMnの一部を他元素で置換したLiMn(1−x);オリビン型LiMPO(M:Co、Ni、Mn、Fe);LiMn0.5Ni0.5;Li(1+a)MnNiCo(1−x−y)(−0.1<a<0.1、0<x<0.5、0<y<0.5);などを適用することが可能であり、これらの正極活物質に公知の導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した正極合剤を、集電体を芯材として成形体に仕上げたものなどを用いることができる。 The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known nonaqueous electrolyte battery. For example, as an active material, lithium-containing transition metal oxide represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, etc.); lithium manganese such as LiMn 2 O 4 Oxide; LiMn x M (1-x) O 2 in which part of Mn of LiMn 2 O 4 is substituted with another element; olivine type LiMPO 4 (M: Co, Ni, Mn, Fe); LiMn 0.5 Ni 0.5 O 2 ; Li (1 + a) Mn x Ni y Co (1-xy) O 2 (−0.1 <a <0.1, 0 <x <0.5, 0 <y <0. 5); can be applied, and a positive electrode mixture in which a known conductive additive (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these positive electrode active materials, Using a current collector as a core material and forming a molded body That.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

負極としては、従来公知の非水電解質電池に用いられている負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した負極合剤を、集電体を芯材として成形体に仕上げたものが用いられる他、上記の各種合金やリチウム金属の箔を単独、もしくは集電体上に形成したものを用いてもよい。   The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known nonaqueous electrolyte battery. For example, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials One type or a mixture of two or more types of system materials is used. In addition, elements such as Si, Sn, Ge, Bi, Sb and In and alloys thereof, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys Can also be used as a negative electrode active material. A negative electrode mixture prepared by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials and using a current collector as a core material is used. In addition, the above-mentioned various alloys and lithium metal foils may be used alone or formed on a current collector.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、また、下限は5μmであることが望ましい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm.

負極側のリード部も、正極側のリード部と同様に、通常、負極作製時に、集電体の一部に負極剤層(負極活物質を有する層)を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、この負極側のリード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。   Similarly to the lead portion on the positive electrode side, the negative electrode lead portion is usually exposed to the current collector without forming a negative electrode agent layer (a layer having a negative electrode active material) on a part of the current collector during negative electrode fabrication. It is provided by leaving a part and using it as a lead part. However, the lead portion on the negative electrode side is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

電極は、上記の正極と上記の負極とを、本発明のセパレータを介して積層した積層体や、更にこれを巻回した巻回電極体の形態で用いることができる。なお、巻回電極体においては、セパレータに割れや無機微粒子などの微粒子の脱落などの欠陥が生じ易く、また、ラミネートフィルム外装体や角形の外装缶を用いる場合などでは、巻回電極体を更に扁平状に押しつぶしたような形状にして用いるため、セパレータの欠陥が特に生じ易い。セパレータに上記のような欠陥が生じた巻回電極体を用いて構成した電池では、その特性が劣るものとなる。しかし、本発明のセパレータでは、喩え上記のような扁平状の巻回電極体を構成しても、上記の欠陥が生じ難いため、信頼性に優れた非水電解質電池を構成することができる。   The electrode can be used in the form of a laminate in which the above positive electrode and the above negative electrode are laminated via the separator of the present invention, or a wound electrode body in which this is wound. In addition, in the wound electrode body, defects such as cracks and dropping off of fine particles such as inorganic fine particles are likely to occur in the separator. In addition, in the case of using a laminate film exterior body or a rectangular exterior can, Since the flattened shape is used, a separator defect is particularly likely to occur. In a battery configured using a wound electrode body in which the above-described defects are generated in the separator, the characteristics are inferior. However, in the separator of the present invention, even if the flat wound electrode body as described above is configured, the above-described defects are not easily generated, and thus a non-aqueous electrolyte battery excellent in reliability can be configured.

非水電解液としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの1種のみからなる有機溶媒、あるいは2種以上の混合溶媒に、例えば、LiClO 、LiPF 、LiBF 、LiAsF 、LiSbF 、LiCFSO 、LiCFCO 、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種を溶解させることによって調製したものが使用される。このリチウム塩の電解液中の濃度としては0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 Examples of the non-aqueous electrolyte include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1, 3-dioxolane, tetrahydrofuran, 2-methyl - tetrahydrofuran, one composed of only an organic solvent such as diethyl ether or a mixture of two or more solvents, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiC n F 2n + 1 SO 3 (n ≧ ), LiN (RfOSO 2) those 2 [here Rf of fluoroalkyl group] was prepared by dissolving at least one selected from lithium salts such as are used. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

また、上記の有機溶媒の代わりに、エチル−メチルイミダゾリウムトリフルオロメチルスルホニウムイミド、へプチル−トリメチルアンモニウムトリフルオロメチルスルホニウムイミド、ピリジニウムトリフルオロメチルスルホニウムイミド、グアジニウムトリフルオロメチルスルホニウムイミドといった常温溶融塩を用いることもできる。   In addition, instead of the above organic solvent, melting at room temperature such as ethyl-methylimidazolium trifluoromethylsulfonium imide, heptyl-trimethylammonium trifluoromethylsulfonium imide, pyridinium trifluoromethylsulfonium imide, guanidinium trifluoromethylsulfonium imide A salt can also be used.

更に、上記の非水電解液にPVDF、PVDF−HEP、PAN、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体、主鎖あるいは側鎖にエチレンオキシド鎖を含む架橋ポリマー、架橋したポリ(メタ)アクリル酸エステルといった公知のゲル電解質形成可能なホストポリマーを用いてゲル化した電解質を用いることもできる。   Furthermore, PVDF, PVDF-HEP, PAN, polyethylene oxide, polypropylene oxide, an ethylene oxide-propylene oxide copolymer, a crosslinked polymer containing an ethylene oxide chain in the main chain or side chain, and a crosslinked poly (meta) An electrolyte gelled using a known host polymer capable of forming a gel electrolyte such as an acrylate ester can also be used.

本発明の非水電解質電池は、従来公知の非水電解質電池が用いられている各種用途と同じ用途に適用することができる。   The nonaqueous electrolyte battery of the present invention can be applied to the same uses as various uses in which conventionally known nonaqueous electrolyte batteries are used.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。なお、後記の実施例のうち、実施例1および実施例3が、本発明の実施例に該当する。
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. Of the examples described later, Examples 1 and 3 correspond to Examples of the present invention.

実施例1
水1000g、無機微粒子としてシリカ粉砕品1000g、およびバインダとしてSBRラテックス(無機微粒子100質量部に対してSBR固形分が3質量部)を容器入れ、スリーワンモーターで1時間攪拌して分散させ、均一なスラリーを得た。なお、シリカ粉砕品の粒度分布は、D10=0.284μm、D50=0.589μm、D90=1.343μmであった。このスラリー中に、厚みが15μmのPET製不織布を通し、引き上げ塗布によりスラリーを塗布した後、乾燥して、厚みが20μmのセパレータを作製した。
Example 1
1000 g of water, 1000 g of silica pulverized product as inorganic fine particles, and SBR latex (3 parts by mass of SBR solid content with respect to 100 parts by mass of inorganic fine particles) as a binder are put in a container and dispersed by stirring for 1 hour with a three-one motor. A slurry was obtained. The particle size distribution of the silica pulverized product was D 10 = 0.284 μm, D 50 = 0.589 μm, and D 90 = 1.343 μm. A nonwoven fabric made of PET having a thickness of 15 μm was passed through the slurry, and the slurry was applied by pulling up and then dried to produce a separator having a thickness of 20 μm.

作製したセパレータ表面を倍率5000倍にてSEM観察した。このとき、20μm×15μmの視野において確認できる粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ、20%、15%であった。   The manufactured separator surface was observed by SEM at a magnification of 5000 times. At this time, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more that can be confirmed in a visual field of 20 μm × 15 μm to the total number of inorganic fine particles was 20% and 15%, respectively.

上記のセパレータについて、無機微粒子であるシリカの比重を2.2g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、33.8%である。 For the above separator, the volume content of the inorganic fine particles calculated with the specific gravity of silica being inorganic fine particles being 2.2 g / cm 3 , the specific gravity of the binder being 1 g / cm 3 , and the specific gravity of PET being 1.38 g / cm 3 is 33.8%.

実施例2
無機微粒子を、大粒子径の板状ベーマイト(D10=0.393μm、D50=0.959μm、D90=1.767μm、アスペクト比10)500gと、小粒子径の板状ベーマイト(D10=0.132μm、D50=0.355μm、D90=1.030μm、アスペクト比20)500gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。なお、SEM観察により、大粒子径の板状ベーマイトおよび小粒子径の板状ベーマイトについて、その形状が板状であることを確認した。
Example 2
The inorganic fine particles were mixed with 500 g of plate boehmite having a large particle diameter (D 10 = 0.393 μm, D 50 = 0.959 μm, D 90 = 1.767 μm, aspect ratio 10), and plate boehmite having a small particle diameter (D 10 = 0.132 µm, D 50 = 0.355 µm, D 90 = 1.030 µm, aspect ratio 20) A separator was prepared in the same manner as in Example 1 except that the mixture was changed to 500 g. SEM observation confirmed that the plate-like boehmite having a large particle diameter and the plate-like boehmite having a small particle diameter were plate-like.

また、上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ13%、31%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles was 13 respectively. %, 31%.

上記のセパレータについて、無機微粒子であるベーマイトの比重を3.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、32.6%である。 For the above separator, the volume content of the inorganic fine particles calculated by setting the specific gravity of boehmite, which is inorganic fine particles, as 3.0 g / cm 3 , the specific gravity of the binder as 1 g / cm 3 , and the specific gravity of PET as 1.38 g / cm 3 , 32.6%.

実施例3
無機微粒子を、大粒子径の板状ベーマイト(D10=0.393μm、D50=0.959μm、D90=1.767μm、アスペクト比10)800gと、小粒子径の板状ベーマイト(D10=0.132μm、D50=0.355μm、D90=1.030μm、アスペクト比20)500gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。
Example 3
The inorganic fine particles were obtained by adding 800 g of plate-like boehmite having a large particle diameter (D 10 = 0.393 μm, D 50 = 0.959 μm, D 90 = 1.767 μm, aspect ratio 10) and plate-like boehmite having a small particle diameter (D 10 = 0.132 µm, D 50 = 0.355 µm, D 90 = 1.030 µm, aspect ratio 20) A separator was prepared in the same manner as in Example 1 except that the mixture was changed to 500 g.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ11%、42%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles is 11%, 42%.

また、上記のセパレータについて、無機微粒子であるベーマイトの比重を3.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、33.1%である。 In addition, with respect to the separator described above, the volume content of the inorganic fine particles calculated by setting the specific gravity of boehmite, which is inorganic fine particles, as 3.0 g / cm 3 , the specific gravity of the binder as 1 g / cm 3 , and the specific gravity of PET as 1.38 g / cm 3. Is 33.1%.

実施例4
無機微粒子を、大粒子径の板状ベーマイト(D10=0.393μm、D50=0.959μm、D90=1.767μm、アスペクト比10)200gと、小粒子径の板状ベーマイト(D10=0.132μm、D50=0.355μm、D90=1.030μm、アスペクト比20)800gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。
Example 4
200 g of inorganic fine particles and plate boehmite (D 10 = 0.393 μm, D 50 = 0.959 μm, D 90 = 1.767 μm, aspect ratio 10) with large particle diameter and plate boehmite with small particle diameter (D 10 = 0.132 µm, D 50 = 0.355 µm, D 90 = 1.030 µm, aspect ratio 20) A separator was prepared in the same manner as in Example 1 except that 800 g was mixed.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ20%、28%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 is 20%, 28%.

また、上記のセパレータについて、無機微粒子であるベーマイトの比重を3.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、31.3%である。 In addition, with respect to the separator described above, the volume content of the inorganic fine particles calculated by setting the specific gravity of boehmite, which is inorganic fine particles, as 3.0 g / cm 3 , the specific gravity of the binder as 1 g / cm 3 , and the specific gravity of PET as 1.38 g / cm 3. Is 31.3%.

実施例5
無機微粒子を、板状アルミナ(D10=0.426μm、D50=1.412μm、D90=2.107μm、アスペクト比25)570gと、小粒子径の板状ベーマイト(D10=0.132μm、D50=0.355μm、D90=1.030μm、アスペクト比20)430gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。
Example 5
570 g of plate-like alumina (D 10 = 0.426 μm, D 50 = 1.412 μm, D 90 = 2.107 μm, aspect ratio 25) and inorganic boehmite (D 10 = 0.132 μm). , D 50 = 0.355 μm, D 90 = 1.030 μm, aspect ratio 20) A separator was produced in the same manner as in Example 1 except that the mixture was changed to 430 g.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ11%、56%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles is 11%, 56%.

また、上記のセパレータについて、無機微粒子であるαアルミナの比重を3.98g/cm、ベーマイトの比重を3.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した板状アルミナの体積含有率は25.6%、板状ベーマイトの体積含有率は6.4%であり、以上より全無機微粒子の体積含有率は32.0%である。 Further, for the above separator, an inorganic fine particle α-alumina specific gravity 3.98 g / cm 3, and a specific gravity of boehmite 3.0 g / cm 3, the specific gravity of the specific gravity of the binder 1g / cm 3, PET 1.38g The volume content of plate alumina calculated as / cm 3 is 25.6%, the volume content of plate boehmite is 6.4%, and the volume content of all inorganic fine particles is 32.0%. .

実施例6
無機微粒子を、球状アルミナ(D10=0.242μm、D50=0.487μm、D90=1.06μm)249gと、大粒子径の板状ベーマイト(D10=0.393μm、D50=0.959μm、D90=1.767μm、アスペクト比10)751gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。
Example 6
249 g of spherical fine particles (D 10 = 0.242 μm, D 50 = 0.487 μm, D 90 = 1.06 μm) and inorganic boehmite (D 10 = 0.393 μm, D 50 = 0) A separator was produced in the same manner as in Example 1 except that the mixture was changed to a mixture of .959 μm, D 90 = 1.767 μm, and aspect ratio 10) 751 g.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ11%、40%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles is 11%, 40%.

また、上記のセパレータについて、無機微粒子であるアルミナの比重を3.98g/cm、ベーマイトの比重を3.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した球状アルミナの体積含有率は6.2%、板状ベーマイトの体積含有率は24.9%であり、以上より全無機微粒子の体積含有率は31.1%である。 Further, for the above separator, alumina specific gravity 3.98 g / cm 3 of an inorganic fine particle, the specific gravity of boehmite 3.0 g / cm 3, the specific gravity of the specific gravity of the binder 1g / cm 3, PET 1.38g / The volume content of spherical alumina calculated as cm 3 is 6.2%, the volume content of plate boehmite is 24.9%, and the volume content of all inorganic fine particles is 31.1%.

実施例7
無機微粒子を、球状アルミナ(D10=0.242μm、D50=0.487μm、D90=1.06μm)406gと、塊状シリカ(D10=0.284μm、D50=0.589μm、D90=1.343μm)594gとを混合したものに変更した以外は、実施例1と同様にしてセパレータを作製した。
Example 7
406 g of spherical fine particles (D 10 = 0.242 μm, D 50 = 0.487 μm, D 90 = 1.06 μm) and bulk silica (D 10 = 0.284 μm, D 50 = 0.589 μm, D 90) = 1.343 μm) A separator was produced in the same manner as in Example 1 except that the mixture was changed to a mixture of 594 g.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ18%、11%であった。   For the above separator, the ratio of the inorganic fine particles having a particle size of 0.3 μm or less and the inorganic fine particles having a particle size of 1 μm or more determined by SEM observation under the same conditions as in Example 1 was 18%, 11%.

また、上記のセパレータについて、無機微粒子であるアルミナの比重を3.98g/cm、シリカの比重を2.2g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した球状アルミナの体積含有率は6.6%、シリカの体積含有率は26.5%であり、以上より全無機微粒子の体積含有率は33.1%である。 Further, for the above separator, alumina specific gravity 3.98 g / cm 3 of an inorganic fine particle, the specific gravity of silica 2.2 g / cm 3, the specific gravity of the specific gravity of the binder 1g / cm 3, PET 1.38g / The volume content of spherical alumina calculated as cm 3 is 6.6%, the volume content of silica is 26.5%, and the volume content of all inorganic fine particles is 33.1%.

実施例8〜14
スラリー調製時に、熱溶融性微粒子としてPE微粒子(平均粒子径0.6μm、融点118℃)250gを更に加えた以外は、実施例1〜7と同様にしてセパレータを作製した。
Examples 8-14
Separators were produced in the same manner as in Examples 1 to 7, except that 250 g of PE fine particles (average particle size 0.6 μm, melting point 118 ° C.) were further added as heat-meltable fine particles during slurry preparation.

実施例8〜14のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合を、表1に示す。また、実施例8〜14のセパレータについて、PE微粒子の比重を1g/cmとした以外は、実施例1〜7のセパレータと同様にして求めた無機微粒子の体積含有率も、表1に併記する。 For the separators of Examples 8 to 14, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles, Table 1 shows. In addition, with respect to the separators of Examples 8 to 14, the volume content of inorganic fine particles obtained in the same manner as in the separators of Examples 1 to 7 except that the specific gravity of the PE fine particles was 1 g / cm 3 is also shown in Table 1. To do.

比較例1
水1000g、無機微粒子として球状シリカ1000g、およびバインダとしてSBRラテックス(無機微粒子100質量部に対してSBR固形分が3質量部)を容器入れ、スリーワンモーターで1時間攪拌して分散させ、均一なスラリーを得た。なお、球状シリカの粒度分布は、D10=0.396μm、D50=0.874μm、D90=1.205μmであった。また、球状シリカをSEM観察し、その形状が球状であることを確認した。
Comparative Example 1
1000 g of water, 1000 g of spherical silica as inorganic fine particles, and SBR latex (3 parts by mass of SBR solid content with respect to 100 parts by mass of inorganic fine particles) as a binder are placed in a container and dispersed by stirring for 1 hour with a three-one motor. Got. The particle size distribution of the spherical silica was D 10 = 0.396 μm, D 50 = 0.874 μm, D 90 = 1.205 μm. Moreover, SEM observation of the spherical silica confirmed that the shape was spherical.

上記のスラリー中に、厚みが15μmのPET製不織布を通し、引き上げ塗布により、スラリーを塗布した後、乾燥して、厚みが20μmのセパレータを作製した。   A non-woven fabric made of PET having a thickness of 15 μm was passed through the slurry, and the slurry was applied by pulling up and then dried to prepare a separator having a thickness of 20 μm.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ、7%、28%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles was 7%. 28%.

上記のセパレータについて、無機微粒子であるシリカの比重を2.2g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、28.5%である。 For the above separator, the volume content of the inorganic fine particles calculated with the specific gravity of silica being inorganic fine particles being 2.2 g / cm 3 , the specific gravity of the binder being 1 g / cm 3 , and the specific gravity of PET being 1.38 g / cm 3 is 28.5%.

比較例2
無機微粒子を球状アルミナ(D10=0.242μm、D50=0.487μm、D90=1.06μm)1000gに変更した以外は、比較例1と同様にしてセパレータを作製した。
Comparative Example 2
A separator was produced in the same manner as in Comparative Example 1 except that the inorganic fine particles were changed to 1000 g of spherical alumina (D 10 = 0.242 μm, D 50 = 0.487 μm, D 90 = 1.06 μm).

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ13%、8%であった。   For the above separator, the ratio of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 to the total number of inorganic fine particles is 13%, It was 8%.

また、上記のセパレータについて、無機微粒子であるアルミナの比重を4.0g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、28.2%である。 In addition, with respect to the separator described above, the volume content of the inorganic fine particles calculated by setting the specific gravity of alumina as inorganic fine particles to 4.0 g / cm 3 , the specific gravity of the binder as 1 g / cm 3 , and the specific gravity of PET as 1.38 g / cm 3. Is 28.2%.

比較例3
無機微粒子を、実施例1で用いたシリカ粉砕品から、沈降分離により微粉を分離したもの(D10=0.487μm、D50=0.959μm、D90=1.587μm、アスペクト比10)1000gに変更した以外は、比較例1と同様にしてセパレータを作製した。
Comparative Example 3
1000 g of fine inorganic particles separated from the pulverized silica used in Example 1 by sedimentation separation (D 10 = 0.487 μm, D 50 = 0.959 μm, D 90 = 1.587 μm, aspect ratio 10) A separator was produced in the same manner as in Comparative Example 1 except that the above was changed.

上記のセパレータについて、実施例1と同じ条件でのSEM観察により求めた粒子径0.3μm以下の無機微粒子および粒子径1μm以上の無機微粒子の、無機微粒子全個数中の割合は、それぞれ3%、53%であった。   For the above separator, the proportion of the inorganic fine particles having a particle diameter of 0.3 μm or less and the inorganic fine particles having a particle diameter of 1 μm or more determined by SEM observation under the same conditions as in Example 1 is 3%, respectively. 53%.

また、上記のセパレータについて、無機微粒子であるシリカの比重を2.2g/cm、バインダの比重を1g/cm、PETの比重を1.38g/cmとして算出した無機微粒子の体積含有率は、28.6%である。 In addition, for the separator described above, the volume content of the inorganic fine particles calculated with the specific gravity of silica being inorganic fine particles being 2.2 g / cm 3 , the specific gravity of the binder being 1 g / cm 3 , and the specific gravity of PET being 1.38 g / cm 3. Is 28.6%.

表1に、実施例1〜14および比較例1〜3のセパレータの構成を示す。また、実施例1〜14および比較例1〜3のセパレータについて、下記の方法により透気度を測定し、更に、熱溶融性微粒子を含有させた実施例8〜14のセパレータについて、下記のシャットダウン特性評価を行った。これらの結果を、セパレータの空隙率と合わせて表2に示す。   In Table 1, the structure of the separator of Examples 1-14 and Comparative Examples 1-3 is shown. Moreover, about the separator of Examples 1-14 and Comparative Examples 1-3, an air permeability was measured with the following method, and also about the separator of Examples 8-14 containing the heat-meltable fine particle, the following shutdown was carried out. Characterization was performed. These results are shown in Table 2 together with the porosity of the separator.

<セパレータの透気度>
JIS P 8117に準拠した方法で測定され、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値によりセパレータの透気度を評価した。
<Air permeability of separator>
The air permeability of the separator was evaluated by a Gurley value measured by a method according to JIS P 8117 and indicated by the Gurley value indicated by the number of seconds for 100 ml of air to pass through the membrane under a pressure of 0.879 g / mm 2 .

<セパレータのシャットダウン特性>
4cm×4cmの大きさに切断された各セパレータ片を、端子付きの2枚のステンレス板で挟み込みアルミラミネートフィルムの袋に挿入し、非水電解液を注入した後、端子の先を袋の外に出した状態で袋を封止して試験用の試料とした。ここで、非水電解液としては、エチレンカーボネートとエチルメチルカーボネートを体積比1:2で混合した溶媒にLiPFを1.2mol/lの濃度で溶解させた溶液を用いた。上記試料を恒温槽に入れ、接点抵抗計により、上記端子に1kHzの交流を印加したときの抵抗値を測定しながら、室温から毎分1℃の割合で温度上昇させて加熱し、内部抵抗の温度変化を求めた。そして、抵抗値が室温での値の10倍以上となった時の温度を、セパレータのシャットダウン温度とした。
<Separator shutdown characteristics>
Each separator piece cut to a size of 4 cm x 4 cm is sandwiched between two stainless steel plates with terminals, inserted into a bag of aluminum laminate film, injected with a non-aqueous electrolyte, and then the tip of the terminal is placed outside the bag. The bag was sealed in the state where it was taken out, and it was set as the sample for a test. Here, as the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / l in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2 was used. The sample was placed in a thermostat, heated by increasing the temperature from room temperature at a rate of 1 ° C. per minute while measuring the resistance when a 1 kHz alternating current was applied to the terminal with a contact resistance meter. The temperature change was determined. The temperature at which the resistance value was 10 times or more the value at room temperature was taken as the shutdown temperature of the separator.

Figure 0005213007
Figure 0005213007

Figure 0005213007
Figure 0005213007

更に、実施例1〜14および比較例1〜3のセパレータについて、下記の方法により耐短絡性を評価した。これらの結果は表3に示す。   Furthermore, about the separator of Examples 1-14 and Comparative Examples 1-3, the short circuit resistance was evaluated by the following method. These results are shown in Table 3.

<耐短絡性>
実施例1〜14または比較例1〜3のセパレータを直径23mmの円形に打ち抜き、該セパレータ片を、18mmの円形に打ち抜いた金属リチウムを貼り付けたステンレス板の金属リチウム側と18mmの円形に打ち抜いた銅箔とで挟み込み、ステンレス製のセル中央に設置した。ここで、セル内部に非水電解液として、エチレンカーボネートとエチルメチルカーボネートを体積比1:2で混合した溶媒に、LiPFを1.2mol/lの濃度で溶解させた溶液を注入し、ステンレス板上部より巻きばねで均一に加重した状態で完全に蓋をした。なお、このセルについて、銅箔側と金属リチウム側とは、電気的に絶縁された状態にあり、金属リチウム側を正極、銅箔側を負極として、それぞれに端子を接続した。
<Short-circuit resistance>
The separators of Examples 1 to 14 or Comparative Examples 1 to 3 were punched into a circle with a diameter of 23 mm, and the separator pieces were punched into a metal lithium side of a stainless steel plate to which metal lithium punched into a circle of 18 mm was attached and a circle of 18 mm. It was sandwiched with copper foil and placed in the center of a stainless steel cell. Here, as a nonaqueous electrolyte solution, a solution in which LiPF 6 was dissolved at a concentration of 1.2 mol / l was poured into a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 2 as a non-aqueous electrolyte. The lid was completely covered with a uniform weight applied from the top of the plate with a winding spring. In addition, about this cell, the copper foil side and the metal lithium side were in the state electrically insulated, The terminal was connected to each using the metal lithium side as the positive electrode and the copper foil side as the negative electrode.

このように作成されたモデルセルについて、電流値の上限を60mAとして、0mAから6mA/6minの割合で上昇させながら銅箔上へLi電析を行い、短絡が確認された時点の電流を短絡電流とした。すなわち、短絡電流が大きいほど、セパレータの耐短絡性が優れているといえる。   For the model cell created in this way, the upper limit of the current value is set to 60 mA, Li electrodeposition is performed on the copper foil while increasing at a rate of 0 mA to 6 mA / 6 min, and the current when the short circuit is confirmed is the short circuit current. It was. That is, it can be said that the larger the short circuit current, the better the short circuit resistance of the separator.

実施例15
<負極の作製>
負極活物質である黒鉛95質量部と、バインダであるPVDF5質量部とをNMPを溶剤として均一になるように混合して負極合剤含有ペーストを調整した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、活物質塗布長が表面320mm、裏面260mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って全厚が142μmになるように負極合剤の厚みを調整し、幅45mmになるように切断して、長さ330mm、幅45mmの負極を作成した。さらにこの負極の銅箔の露出部にタブを溶接してリード部を形成した。
Example 15
<Production of negative electrode>
A negative electrode mixture-containing paste was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent. This negative electrode mixture-containing paste was intermittently applied to both sides of a 10 μm thick current collector made of copper foil so that the active material application length was 320 mm on the front surface and 260 mm on the back surface, dried, and then subjected to calendar treatment. The thickness of the negative electrode mixture was adjusted so that the total thickness was 142 μm, and the negative electrode mixture was cut to have a width of 45 mm to produce a negative electrode having a length of 330 mm and a width of 45 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

<正極の作製>
正極活物質であるLiCoO:85質量部と、導電助剤であるアセチレンブラック10質量部と、バインダであるPVDF5質量部とを、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調整した。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、活物質塗布長が、表面320mm、裏面260mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って全厚が150μmになるように正極合剤層の厚みを調整し、その後裁断して、長さ330mm、幅43mmの正極を作製した。更にこの正極のアルミニウム箔の露出部にタブを溶接して、リード部を形成した。
<Preparation of positive electrode>
LiPoO 2 as a positive electrode active material: 85 parts by mass, 10 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of PVDF as a binder are mixed so as to be uniform using NMP as a solvent, and a positive electrode mixture The containing paste was adjusted. This paste is intermittently applied to both sides of a 15 μm thick aluminum foil serving as a current collector so that the active material application length is 320 mm on the front surface and 260 mm on the back surface, dried, and then subjected to a calendar treatment to obtain a total thickness. The thickness of the positive electrode mixture layer was adjusted to 150 μm and then cut to produce a positive electrode having a length of 330 mm and a width of 43 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

<電池の組み立て>
上記のようにして得られた正極と負極とを、幅47mmにスリットした実施例1のセパレータを介して渦巻状に巻回して巻回電極体とした。この巻回電極体を押しつぶして扁平状にし、ラミネートフィルム外装材内に装填し、電解液(エチレンカーボネートとエチルメチルカーボネートを1:2の体積比で混合した溶媒に、LiPFを1mol/lの濃度で溶解させた溶液)を注入し、真空封止を行って非水電解質電池を作製した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were spirally wound through the separator of Example 1 slit to a width of 47 mm to obtain a wound electrode body. The wound electrode body is crushed into a flat shape, loaded in a laminate film exterior material, and an electrolyte solution (LiPF 6 in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2 is 1 mol / l. A solution dissolved at a concentration) was injected, and vacuum sealing was performed to prepare a nonaqueous electrolyte battery.

実施例16〜28および比較例4〜6
セパレータを実施例2〜14または比較例1〜3のものに変更した他は、実施例15と同様にして非水電解質電池を作製した。
Examples 16 to 28 and Comparative Examples 4 to 6
A nonaqueous electrolyte battery was produced in the same manner as in Example 15 except that the separator was changed to those in Examples 2 to 14 or Comparative Examples 1 to 3.

実施例15〜28および比較例4〜6の非水電解質電池について、下記の充放電効率評価、負荷特性評価および耐短絡性評価を行った。結果を表3に示す。   The non-aqueous electrolyte batteries of Examples 15 to 28 and Comparative Examples 4 to 6 were subjected to the following charge / discharge efficiency evaluation, load characteristic evaluation, and short circuit resistance evaluation. The results are shown in Table 3.

<充放電効率>
実施例15〜28および比較例4〜6の非水電解質電池について、0.2Cでの定電流充電(4.2Vまで)と4.2Vでの定電圧充電による充電(定電流充電と定電圧充電の合計時間15時間)の後、3.0Vまで0.2Cで放電を行い、充放電効率(充電容量に対する放電容量の割合を百分率で示したもの)を求めた。なお、充放電効率はそれぞれ電池10個の平均値として求めた。
<Charge / discharge efficiency>
About the nonaqueous electrolyte batteries of Examples 15 to 28 and Comparative Examples 4 to 6, constant current charging at 0.2 C (up to 4.2 V) and charging by constant voltage charging at 4.2 V (constant current charging and constant voltage) After a total charge time of 15 hours, the battery was discharged at 0.2 C up to 3.0 V, and charge / discharge efficiency (percentage of discharge capacity with respect to charge capacity) was determined. In addition, charging / discharging efficiency was calculated | required as an average value of 10 batteries, respectively.

<負荷特性>
0.2Cでの定電流充電(4.2Vまで)と4.2Vでの定電圧充電による充電(定電流充電と定電圧充電の合計時間15時間)の後、3.0Vまで所定電流値で放電を行い、そのときの放電容量を、充放電効率評価の際に求めた0.2C放電での放電容量で除したものを百分率で表して、電池の負荷特性を評価した。なお、放電時の電流値は、1Cと2Cとした。
<Load characteristics>
After constant current charging at 0.2C (up to 4.2V) and constant voltage charging at 4.2V (total time of constant current charging and constant voltage charging for 15 hours), up to 3.0V at a predetermined current value Discharge was performed, and the load capacity of the battery was evaluated by expressing the discharge capacity divided by the discharge capacity at 0.2 C discharge obtained at the time of charge / discharge efficiency evaluation as a percentage. In addition, the electric current value at the time of discharge was set to 1C and 2C.

Figure 0005213007
Figure 0005213007

表3より次のことが分かる。実施例15〜28の非水電解質電池では、負荷特性はいずれも2Cでの放電容量が0.2Cでの放電容量の85〜92%と高い値であり、かつ、これらの非水電解質電池に用いたセパレータ(実施例1〜14のセパレータ)は、短絡電流がいずれも60mAを超えており、高い耐短絡性を備えていることが確認できた。   Table 3 shows the following. In the nonaqueous electrolyte batteries of Examples 15 to 28, all of the load characteristics had a discharge capacity at 2C as high as 85 to 92% of the discharge capacity at 0.2C, and these nonaqueous electrolyte batteries had The used separators (separators of Examples 1 to 14) all have a short-circuit current exceeding 60 mA, and it was confirmed that they have high short-circuit resistance.

なお、実施例1〜14のセパレータでは、上記の通り、短絡電流が60mAを超えているが、これらの結果から、実施例1〜14のセパレータを用いた非水電解質電池(例えば、実施例15〜28の非水電解質電池)では、10Cの電流値で充電しても短絡が生じないと推測される。   In addition, in the separator of Examples 1-14, as above-mentioned, although a short circuit current exceeds 60 mA, from these results, the nonaqueous electrolyte battery using the separator of Examples 1-14 (for example, Example 15) In the case of a non-aqueous electrolyte battery of ~ 28), it is estimated that no short circuit occurs even if charging is performed at a current value of 10C.

また、実施例15〜28の非水電解質電池は、正極、負極およびセパレータを重ね合わせて渦巻状に巻回し、更に扁平状に押しつぶした形状の巻回電極体を有しているが、実施例15〜28の非水電解質電池では、充放電効率および負荷特性が良好に評価できており、上記のような形態の巻回電極体であっても、セパレータの欠陥に基づく短絡が生じていない。よって、本発明のセパレータは、巻回電極体(特に扁平状の巻回電極体)を有する電池に用いても、優れた信頼性を確保できることが分かる。   In addition, the nonaqueous electrolyte batteries of Examples 15 to 28 have a spirally wound electrode body in which the positive electrode, the negative electrode, and the separator are overlapped, wound in a spiral shape, and further flattened. In the non-aqueous electrolyte batteries of 15 to 28, charge / discharge efficiency and load characteristics can be evaluated satisfactorily, and even a wound electrode body having the above-described form does not cause a short circuit due to a separator defect. Therefore, it can be seen that the separator of the present invention can ensure excellent reliability even when used in a battery having a wound electrode body (particularly a flat wound electrode body).

一方、比較例4〜6の非水電解質電池においては、2Cでの放電容量が0.2Cでの放電容量の87〜91%であり負荷特性は良好であるものの、これらの電池に用いたセパレータ(比較例1〜3のセパレータ)は、短絡電流が18〜30mAと低く、このようなセパレータを有する電池も、実施例1〜14の電池に比べると耐短絡性が劣っているといえ、負荷特性と耐短絡性とが、良好に両立できていない。   On the other hand, in the nonaqueous electrolyte batteries of Comparative Examples 4 to 6, the discharge capacity at 2C was 87 to 91% of the discharge capacity at 0.2C and the load characteristics were good, but the separator used for these batteries (The separator of Comparative Examples 1 to 3) has a short circuit current as low as 18 to 30 mA, and the battery having such a separator is also inferior in short circuit resistance compared to the batteries of Examples 1 to 14; The characteristics and short circuit resistance are not well balanced.

Claims (7)

少なくとも150℃で実質的に変形しない繊維状物と、少なくとも150℃で実質的に変形しない無機微粒子を有する多孔質膜からなり、
上記無機微粒子の比率が、33.1体積%以上であり、
上記無機微粒子の全個数中において、粒子径0.3μm以下の粒子の個数が10%以上であり、粒子径1μm以上の粒子の個数が15%以上であることを特徴とする電池用セパレータ。
Comprising a porous film having a fibrous material that does not substantially deform at least at 150 ° C. and inorganic fine particles that do not substantially deform at least at 150 ° C .;
The ratio of the inorganic fine particles is 33.1% by volume or more,
And have you in the total number of the inorganic fine particles, and the particle size 0.3μm or less of the number of particles of 10% or more, a battery separator, wherein the number of particle size 1μm or more of the particles is not less than 15% .
無機微粒子が、シリカ、ベーマイトまたはアルミナである請求項1に記載の電池用セパレータ。   The battery separator according to claim 1, wherein the inorganic fine particles are silica, boehmite, or alumina. 無機微粒子の一部または全部が、繊維状物で構成されたシート状物の空隙内に存在している請求項1または2に記載の電池用セパレータ。   The battery separator according to claim 1 or 2, wherein a part or all of the inorganic fine particles are present in the voids of the sheet-like material composed of the fibrous material. 繊維状物で構成されたシート状物は、織布または不織布である請求項3に記載の電池用セパレータ。   The battery separator according to claim 3, wherein the sheet-like material composed of the fibrous material is a woven fabric or a non-woven fabric. 80〜130℃で溶融する粒子を更に有している請求項1〜4のいずれかに記載の電池用セパレータ。   The battery separator according to any one of claims 1 to 4, further comprising particles that melt at 80 to 130 ° C. 正極、負極、非水電解液および請求項1〜5のいずれかに記載の電池用セパレータを有することを特徴とする非水電解質電池。   A nonaqueous electrolyte battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and the battery separator according to claim 1. 電池用セパレータが、正極および負極の少なくとも一方と一体化している請求項6に記載の非水電解質電池。
The nonaqueous electrolyte battery according to claim 6, wherein the battery separator is integrated with at least one of the positive electrode and the negative electrode.
JP2007043445A 2007-02-23 2007-02-23 Battery separator and non-aqueous electrolyte battery Active JP5213007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043445A JP5213007B2 (en) 2007-02-23 2007-02-23 Battery separator and non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043445A JP5213007B2 (en) 2007-02-23 2007-02-23 Battery separator and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2008210541A JP2008210541A (en) 2008-09-11
JP5213007B2 true JP5213007B2 (en) 2013-06-19

Family

ID=39786689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043445A Active JP5213007B2 (en) 2007-02-23 2007-02-23 Battery separator and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5213007B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP5309628B2 (en) * 2007-03-23 2013-10-09 住友化学株式会社 Porous film
WO2009044741A1 (en) * 2007-10-03 2009-04-09 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
WO2010029994A1 (en) * 2008-09-12 2010-03-18 日本バイリーン株式会社 Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
JP5491137B2 (en) * 2009-10-15 2014-05-14 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
CN103283060B (en) 2010-07-19 2017-02-15 奥普图多特公司 Separators for electrochemical cells
CN103201878B (en) * 2010-08-19 2015-06-24 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
JP5614560B2 (en) * 2011-01-13 2014-10-29 株式会社村田製作所 Power storage device separator and power storage device
KR101499676B1 (en) * 2011-06-09 2015-03-06 주식회사 엘지화학 A separator having porous coating layer and electrochemical device containing the same
JP5834940B2 (en) * 2012-01-18 2015-12-24 トヨタ自動車株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5841510B2 (en) * 2012-08-27 2016-01-13 三菱製紙株式会社 Metal ion secondary battery separator coating liquid and metal ion secondary battery separator
JP6367713B2 (en) 2012-09-19 2018-08-01 旭化成株式会社 Separator, manufacturing method thereof, and lithium ion secondary battery
JP6130845B2 (en) * 2012-09-27 2017-05-17 三洋電機株式会社 Separator integrated electrode and non-aqueous electrolyte secondary battery
JP6172910B2 (en) * 2012-10-19 2017-08-02 日本バイリーン株式会社 Electrochemical element separator
JP6761341B2 (en) * 2013-03-15 2020-09-23 アムテック リサーチ インターナショナル エルエルシー Microporous web with self-supporting dimensional stability
US11095000B2 (en) 2013-03-21 2021-08-17 Zeon Corporation Slurry for lithium ion secondary battery porous film, production method therefor, separator for lithium ion secondary battery, and lithium ion secondary battery
WO2014179355A1 (en) * 2013-04-29 2014-11-06 Madico, Inc. Nanoporous composite separators with increased thermal conductivity
JP2015062174A (en) * 2013-08-22 2015-04-02 ユニチカ株式会社 Porous film
CN104628610B (en) * 2013-11-15 2016-07-06 中国石油化工股份有限公司 A kind of acrylamide monomers and its preparation method and application
JP6296278B2 (en) * 2013-11-28 2018-03-20 株式会社デンソー Nonaqueous electrolyte secondary battery
JP6489023B2 (en) 2013-12-27 2019-03-27 株式会社村田製作所 Battery, method of manufacturing battery, battery pack, electronic device, electric vehicle, storage device, and power system
KR101788430B1 (en) * 2014-08-29 2017-10-19 스미또모 가가꾸 가부시키가이샤 Porous layer, separator formed by laminating porous layer, and non-aqueous electrolyte secondary battery including porous layer or separator
KR101749848B1 (en) 2014-08-29 2017-06-21 스미또모 가가꾸 가부시키가이샤 Porous layer, separator formed by laminating porous layer, and non-aqueous electrolyte secondary battery including porous layer or separator
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
JP6630811B2 (en) * 2015-07-10 2020-01-15 エルジー・ケム・リミテッド Separator and electrochemical device including the same
KR102273186B1 (en) * 2016-06-08 2021-07-05 주식회사 엘지에너지솔루션 Separator and electrochemical device containing the same
CN108292728B (en) 2016-06-08 2021-06-29 株式会社Lg化学 Separator and electrochemical device comprising same
EP3518317B1 (en) * 2016-11-18 2020-09-23 LG Chem, Ltd. Separator and electrochemical device comprising same
KR102132756B1 (en) 2017-12-06 2020-07-13 주식회사 엘지화학 Separator coating slurry composition for secondary battery and seperator for secondary battery comprising the same
KR102277377B1 (en) * 2018-05-11 2021-07-14 주식회사 엘지에너지솔루션 Anti-flame Separator for Secondary Battery
KR102311778B1 (en) * 2018-06-22 2021-10-12 주식회사 엘지화학 Separator for electrochemical device, electrochemical device comprising the same and manufacturing method of the separator
JP6634133B2 (en) * 2018-09-26 2020-01-22 積水化学工業株式会社 Separator and electrochemical device
CN117343375B (en) * 2023-12-06 2024-03-01 新乡市中科膜材料科技有限公司 Low-closed-pore high-safety composite diaphragm and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223195A (en) * 1997-02-03 1998-08-21 Asahi Chem Ind Co Ltd New battery
JP4676728B2 (en) * 2004-08-30 2011-04-27 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008210541A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP5213007B2 (en) Battery separator and non-aqueous electrolyte battery
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5403857B2 (en) Battery separator, method for producing the same, and lithium secondary battery
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
US8822082B2 (en) Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4743747B2 (en) Separator, manufacturing method thereof, and nonaqueous electrolyte battery
JP5530353B2 (en) Porous membrane for separator, battery separator, battery electrode and manufacturing method thereof, and lithium secondary battery
JP5805160B2 (en) Battery separator, battery separator manufacturing method, and lithium secondary battery
JP5650738B2 (en) Battery separator and battery
JP4994054B2 (en) Battery separator and lithium secondary battery
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP2008004438A (en) Separator for battery, and lithium secondary cell
JP2009032677A (en) Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP2006164761A5 (en)
JP2008210791A (en) Porous membrane, separator for battery and lithium secondary battery
JP2009064566A (en) Separator for battery and nonaqueous electrolyte battery
JP2008066094A (en) Separator for battery, and lithium secondary battery
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP2008004442A (en) Separator for lithium secondary battery, and lithium secondary battery
JPWO2012005152A1 (en) Nonaqueous battery separator and nonaqueous battery
JP2014022051A (en) Separator for electrochemical element and electrochemical element
WO2012050152A1 (en) Separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

R150 Certificate of patent or registration of utility model

Ref document number: 5213007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250