JP6130845B2 - Separator integrated electrode and non-aqueous electrolyte secondary battery - Google Patents

Separator integrated electrode and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6130845B2
JP6130845B2 JP2014538113A JP2014538113A JP6130845B2 JP 6130845 B2 JP6130845 B2 JP 6130845B2 JP 2014538113 A JP2014538113 A JP 2014538113A JP 2014538113 A JP2014538113 A JP 2014538113A JP 6130845 B2 JP6130845 B2 JP 6130845B2
Authority
JP
Japan
Prior art keywords
porous layer
separator
electrode
electrolyte secondary
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014538113A
Other languages
Japanese (ja)
Other versions
JPWO2014049949A1 (en
Inventor
俊文 名木野
俊文 名木野
泰憲 馬場
泰憲 馬場
福井 厚史
厚史 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sanyo Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2014049949A1 publication Critical patent/JPWO2014049949A1/en
Application granted granted Critical
Publication of JP6130845B2 publication Critical patent/JP6130845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、セパレータ一体形電極及びこのセパレータ一体形電極を備えた非水電解質二次電池に関する。   The present invention relates to a separator integrated electrode and a nonaqueous electrolyte secondary battery including the separator integrated electrode.

近年、携帯電話やノートパソコン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池には更なる高容量化が要求されている。二次電池の中でも高エネルギー密度であるリチウム(Li)イオン電池に代表される非水電解質二次電池の高容量化は年々進んでいるが、現状ではその要求に十分に応えきれていない。最近では、非水電解質二次電池の特徴を利用して、携帯電話機、携帯型コンピュータ、PDA、携帯型音楽プレイヤー等のモバイル用途に限らず、電動工具や、電動自転車、電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)の動力用、バックアップ電源や電力貯蔵用等の蓄電用に至る中型から大型電池用途についても展開が進みつつあり、その用途が多様化してきている。   In recent years, mobile information terminals such as mobile phones and notebook personal computers have been rapidly reduced in size and weight, and a battery as a driving power source is required to have a higher capacity. Among secondary batteries, the capacity of non-aqueous electrolyte secondary batteries represented by lithium (Li) ion batteries having a high energy density is increasing year by year, but at present, the demand is not fully met. Recently, using the characteristics of nonaqueous electrolyte secondary batteries, not only mobile applications such as mobile phones, portable computers, PDAs, and portable music players, but also electric tools, electric bicycles, electric vehicles (EV), Development is progressing for medium-sized to large-sized battery applications ranging from power for hybrid electric vehicles (HEV, PHEV) to power storage such as backup power supplies and power storage, and the applications are diversifying.

これらの非水電解質二次電池の用途に応じて非水電解質二次電池の構造も多様化してきており、電極とセパレータとを渦巻き状に巻いた巻回電極体を用いた円筒形電池や、その巻回電極体をプレス成型して角形外装缶に挿入ないしラミネート外装体で被覆した角形電池、電極とセパレータとを積層した電極体を角形外装缶に挿入ないしラミネート外装体で被覆した角形電池、ボタン形電池等が開発されている。   The structure of the nonaqueous electrolyte secondary battery has also diversified according to the use of these nonaqueous electrolyte secondary batteries, and a cylindrical battery using a wound electrode body in which an electrode and a separator are wound in a spiral shape, A rectangular battery in which the wound electrode body is press-molded and inserted into a rectangular outer can or covered with a laminated outer casing, and an electrode body in which an electrode and a separator are laminated is inserted into a rectangular outer can or covered with a laminated outer casing, Button-type batteries have been developed.

非水電解質二次電池の形状の多様化により非水電解質二次電池の製造プロセスも複雑化してきているが、これによって非水電解質二次電池の製造コストの増加やリードタイムの増加等といった生産性の悪化が生じてしまう。このため、多様化する非水電解質二次電池の製造において、非水電解質二次電池の製造プロセスを簡略化する技術の開発が不可欠となっている。   The manufacturing process of non-aqueous electrolyte secondary batteries has become more complex due to the diversification of non-aqueous electrolyte secondary battery shapes. This has led to increased production costs and lead times for non-aqueous electrolyte secondary batteries. Sexual deterioration will occur. For this reason, in the manufacture of diversifying non-aqueous electrolyte secondary batteries, it is essential to develop a technology that simplifies the manufacturing process of non-aqueous electrolyte secondary batteries.

非水電解質二次電池のセパレータとして用いられているポリオレフィン製微多孔膜は、電池の材料コストの増加を招くとともに、電極との巻き取りや積層工程が製造プロセスの複雑化やリードタイムの増加を招く。そのため、本発明者らは、従来のポリオレフィン製微多孔膜を用いない、セパレータレス電池の技術開発を種々試みてきた。   Polyolefin microporous membranes used as separators for non-aqueous electrolyte secondary batteries increase the material cost of the battery, and the winding and lamination process with the electrodes complicates the manufacturing process and increases the lead time. Invite. For this reason, the present inventors have made various attempts to develop a separatorless battery without using a conventional polyolefin microporous membrane.

従来の非水電解質二次電池では、正極極板と負極極板の間にリチウムイオンを透過する絶縁性の多孔質材料をセパレータとして用いており、このセパレータとしては、ポリオレフィン製、例えばポリエチレンやポリプロピレン製の微多孔膜が用いられている。非水電解質二次電池において、このセパレータを備えていないセパレータレス電池とするには、ポリオレフィン製の微多孔膜に代わる低コスト材料からなる多孔質層を電極表面に直接形成することが必要となる。   In a conventional nonaqueous electrolyte secondary battery, an insulating porous material that transmits lithium ions is used as a separator between a positive electrode plate and a negative electrode plate. This separator is made of polyolefin, for example, made of polyethylene or polypropylene. A microporous membrane is used. In order to obtain a separatorless battery that does not include this separator in a non-aqueous electrolyte secondary battery, it is necessary to directly form a porous layer made of a low-cost material instead of a polyolefin microporous film on the electrode surface. .

下記特許文献1には、集電体に負極活物質塗布層を積層してなる負極と、集電体に正極活物質塗布層を積層してなる正極と、セパレータと、非水電解液とを有する非水電解液二次電池において、負極活物質塗布層ないし正極活物質塗布層の表面に、樹脂結着材と、粒径が0.1〜50μmの範囲にあるアルミナ粉末又はシリカ粉末からなる固体微粒子とを含む多孔性保護膜を、厚さ0.1〜200μmの範囲となるように形成した非水電解質二次電池の発明が開示されている。下記特許文献2には、セパレータを電極表面に接合一体化してなる電気化学素子用セパレータ電極一体形蓄電素子において、セパレータとしてエレクトロスピニング法により形成されたファイバーを含有した多孔質層によって形成した電気化学素子用セパレータ一体形蓄電素子の発明が開示されている。   In the following Patent Document 1, a negative electrode formed by laminating a negative electrode active material coating layer on a current collector, a positive electrode formed by laminating a positive electrode active material coating layer on a current collector, a separator, and a non-aqueous electrolyte A non-aqueous electrolyte secondary battery having a negative electrode active material coating layer or a positive electrode active material coating layer having a resin binder and alumina powder or silica powder having a particle size in the range of 0.1 to 50 μm on the surface An invention of a non-aqueous electrolyte secondary battery in which a porous protective film containing solid fine particles is formed to have a thickness in the range of 0.1 to 200 μm is disclosed. In the following Patent Document 2, an electrochemical device formed by a porous layer containing a fiber formed by an electrospinning method as a separator in a separator electrode integrated power storage device for an electrochemical device in which a separator is joined and integrated with an electrode surface. An invention of an element separator integrated power storage element is disclosed.

特許第3371301号公報Japanese Patent No. 3371301 特開2010−225809号公報JP 2010-225809 A

上記特許文献1に開示されている発明によれば、負極活物質塗布層ないし正極活物質塗布層の表面に形成された多孔性保護膜によって、脱落活物質による内部短絡が抑制された非水電解質二次電池が得られるようになる。また、上記特許文献2に開示されている発明によれば、電極の活物質合剤層表面にファイバーを含有した多孔質層を形成することで、機械的強度を損なうことなく多孔質層を薄層化することができ、内部抵抗の低減が可能な電気化学素子用セパレータ一体形蓄電素子が得られるようになる。   According to the invention disclosed in Patent Document 1, a non-aqueous electrolyte in which an internal short circuit due to a falling active material is suppressed by a porous protective film formed on the surface of a negative electrode active material coating layer or a positive electrode active material coating layer. A secondary battery can be obtained. Further, according to the invention disclosed in Patent Document 2, a porous layer containing fibers is formed on the surface of the active material mixture layer of the electrode, so that the porous layer is thinned without impairing mechanical strength. An electrochemical element separator-integrated energy storage device that can be layered and can reduce internal resistance can be obtained.

しかしながら、本発明者の実験結果によると、負極活物質合剤層ないし正極活物質合剤層の表面に固体粒子からなる多孔質層又は径が1μm未満のファイバーを含有する多孔質層を形成した電極を用いてセパレータレス非水電解質二次電池を作製した場合、初回充電時に活物質合剤層の表面にデンドライト(樹枝)状のリチウム金属が析出し、内部短絡を引き起こすことが見出された。   However, according to the experiment results of the present inventors, a porous layer made of solid particles or a porous layer containing fibers having a diameter of less than 1 μm was formed on the surface of the negative electrode active material mixture layer or the positive electrode active material mixture layer. It was found that when a separatorless non-aqueous electrolyte secondary battery was fabricated using an electrode, dendritic lithium metal was deposited on the surface of the active material mixture layer during the initial charge, causing an internal short circuit. .

これは、固体粒子からなる多孔質層又は径が1μm未満のファイバーを含有する多孔質層のみでは、数十μmの薄い層を形成した場合、微細形状の不均一化が生じ易く、リチウムイオンの透過に対する低抵抗部分の分布が発生してしまうことを意味している。これにより、初回充電時において、リチウムイオンの透過に対する低抵抗部分のリチウムイオン濃度が増加し、活物質合剤層表面にデンドライト状のリチウム金属が析出することで、正極と負極との間に物理的短絡が生じることになる。   This is because, when a porous layer made of solid particles or a porous layer containing fibers having a diameter of less than 1 μm is used, when a thin layer of several tens of μm is formed, the micro shape tends to be non-uniform, and the lithium ion This means that the distribution of the low resistance portion with respect to transmission occurs. As a result, the lithium ion concentration in the low resistance portion with respect to the permeation of lithium ions increases during the initial charge, and dendritic lithium metal precipitates on the surface of the active material mixture layer, so that the physical properties between the positive electrode and the negative electrode can be reduced. A short circuit will occur.

本発明によれば、正極合剤層ないし負極合剤層の表面に、リチウム金属の析出が抑制され、正極と負極との間の短絡の発生を抑制することができる多孔質層を形成したセパレータ一体形電極及びこのセパレータ一体形電極を用いた非水電解質二次電池を提供することができる。   According to the present invention, a separator having a porous layer on the surface of a positive electrode mixture layer or a negative electrode mixture layer, in which the deposition of lithium metal is suppressed and the occurrence of a short circuit between the positive electrode and the negative electrode can be suppressed. An integrated electrode and a nonaqueous electrolyte secondary battery using the separator integrated electrode can be provided.

本発明のセパレータ一体形電極は、集電体と、前記集電体の上に形成された電極合剤層と、前記電極合剤層の上に形成された多孔質層とを備え、前記多孔質層が無機材料製の粒子と、樹脂材料製のファイバーと、を含むことを特徴とする。   The separator-integrated electrode of the present invention includes a current collector, an electrode mixture layer formed on the current collector, and a porous layer formed on the electrode mixture layer. The quality layer includes particles made of an inorganic material and fibers made of a resin material.

本発明のセパレータ一体形電極においては、電極合剤層の表面に形成された多孔質層が、無機材料製の粒子と、樹脂材料製のファイバーと、を含むもので形成されているので、従来技術のような多孔質層の微細形状の不均一化が生じ難くなり、リチウムイオンの透過に対する低抵抗部分の発生が抑制される。これにより、本発明のセパレータ一体形電極によれば、低抵抗部分においてリチウムイオン濃度が増加することに起因するデンドライト状のリチウム金属の析出が抑止される。そのため、本発明のセパレータ一体形電極を用いて非水電解質二次電池を形成すると、電極間における短絡の発生が抑制され、信頼性及び電気化学特性が向上した非水電解質二次電池が得られるようになる。   In the separator-integrated electrode of the present invention, since the porous layer formed on the surface of the electrode mixture layer is formed of particles including inorganic material particles and resin material fibers, As a result, it becomes difficult to make the fine shape of the porous layer non-uniform as in the technology, and the generation of a low resistance portion against the permeation of lithium ions is suppressed. Thereby, according to the separator integrated electrode of this invention, precipitation of the dendritic lithium metal resulting from an increase in lithium ion concentration in a low resistance part is suppressed. Therefore, when a non-aqueous electrolyte secondary battery is formed using the separator-integrated electrode of the present invention, the occurrence of a short circuit between the electrodes is suppressed, and a non-aqueous electrolyte secondary battery with improved reliability and electrochemical characteristics is obtained. It becomes like this.

本発明のセパレータ一体形電極を形成する樹脂材料製のファイバーとは、直径が1〜数100nmの繊維状樹脂材料が好ましいが、数μm程度のものも使用し得る。本発明のセパレータ一体形電極は、正極集電体の表面に正極活物質合剤層を形成した正極に対しても、負極集電体の表面に負極活物質合剤層を形成した負極に対しても、同様に適用することができる。   The fiber made of a resin material forming the separator-integrated electrode of the present invention is preferably a fibrous resin material having a diameter of 1 to several 100 nm, but a fiber of about several μm can also be used. The separator-integrated electrode of the present invention is applied to the positive electrode in which the positive electrode active material mixture layer is formed on the surface of the positive electrode current collector and the negative electrode in which the negative electrode active material mixture layer is formed on the surface of the negative electrode current collector. However, the same can be applied.

係る態様のセパレータ一体形電極においては、前記多孔質層が、前記電極合剤層の上に形成された無機材料製の粒子を含む第1の多孔質層と、前記第1の多孔質層の上に形成された樹脂材料製のファイバーを含む第2の多孔質層と、を含むことが好ましい。   In the separator-integrated electrode according to this aspect, the porous layer includes a first porous layer including particles made of an inorganic material formed on the electrode mixture layer, and the first porous layer. And a second porous layer containing fibers made of a resin material formed thereon.

このような構成を備えていると、電極合剤層の表面に無機材料製の粒子を含む第1多孔質層及び樹脂材料製のファイバーによって形成される第2の多孔質層が形成されているので、それぞれの多孔質層の形成材料の相違に基づく特性が良好に奏されるようになる。   With such a configuration, a first porous layer containing inorganic material particles and a second porous layer formed of resin material fibers are formed on the surface of the electrode mixture layer. Therefore, the characteristics based on the difference in the forming material of each porous layer are favorably exhibited.

係る態様のセパレータ一体形電極においては、前記第2の多孔質層の平均厚みをx、前記第1の多孔質層の平均厚みをy、とした場合、0.5≦x/(x+y)≦0.95とすることが好ましい。   In the separator-integrated electrode according to such an embodiment, when the average thickness of the second porous layer is x and the average thickness of the first porous layer is y, 0.5 ≦ x / (x + y) ≦ 0.95 It is preferable to do.

樹脂材料製のファイバーによって構成される多孔質層の厚みxを、無機材料製の粒子を含む多孔質層及びファイバーによって構成される多孔質層の厚みの合計(x+y)で除したx/(x+y)の値が0.5未満であると、無機材料製の粒子を含む多孔質層とファイバーによって構成される多孔質層との抵抗分布の不均一化が生じるようになり、内部短絡が生じ易くなる。x/(x+y)の値が0.95を超えると、樹脂材料製のファイバーによって構成される多孔質層におけるリチウムイオンの透過に対する低抵抗部分の分布の発生がより抑制されるが、内部抵抗が大きくなるので好ましくない。   X / (x + y) obtained by dividing the thickness x of the porous layer constituted by the fiber made of the resin material by the total thickness (x + y) of the porous layer containing the particles made of the inorganic material and the fiber made of the fiber. If the value of) is less than 0.5, the resistance distribution between the porous layer containing particles made of inorganic material and the porous layer formed of fibers becomes non-uniform, and an internal short circuit is likely to occur. When the value of x / (x + y) exceeds 0.95, the generation of the low resistance portion with respect to the permeation of lithium ions in the porous layer constituted by the fiber made of the resin material is further suppressed, but the internal resistance increases. Therefore, it is not preferable.

係る態様のセパレータ一体形電極においては、前記第2の多孔質層を形成する樹脂材料製のファイバーは、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ(フッ化ビニリデン−テトラフルオロエチレン)共重合体、ポリ(フッ化ビニリデン−ヘキサフルオロプロピレン)共重合体、ポリ(フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリビニルアルコール、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド及びこれらの共重合体の高分子物質から選択された少なくとも1種からなることが好ましい。   In the separator-integrated electrode according to this aspect, the fiber made of a resin material forming the second porous layer is made of polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m. -Phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, polytetrafluoroethylene, poly (vinylidene fluoride-tetrafluoroethylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (Vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene) copolymer, poly (tetrafluoroethylene-hexafluoropropylene) copolymer, polyvinyl chloride, polyvinyl chloride -Acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, polycaprolactone, polylactic acid, polyvinyl alcohol, polyglycolic acid, collagen, polyhydroxybutyric acid It is preferably composed of at least one selected from the group consisting of polyvinyl acetate, polypeptide, and a high molecular weight material of these copolymers.

これらの樹脂材料製のファイバーを用いて作製された第2の多孔質層は、良好な電気絶縁性及び多孔質性を備えたものが得られるので、非水電解質二次電池を形成した場合には、よりリチウムのデンドライトが発生し難くなり、内部短絡が生じ難い非水電解質二次電池を得ることできるようになる。   Since the second porous layer produced using these resin-made fibers can be obtained with good electrical insulation and porosity, when a non-aqueous electrolyte secondary battery is formed, This makes it possible to obtain a non-aqueous electrolyte secondary battery in which lithium dendrite is less likely to occur and internal short circuit is less likely to occur.

係る態様のセパレータ一体形電極においては、前記第1の多孔質層に含まれる無機材料製の粒子は、チタニア(アナターゼ構造のものを除く)、アルミナ、ジルコニア及びマグネシアから選択された少なくとも1種であることが好ましい。   In the separator-integrated electrode of this aspect, the inorganic material particles contained in the first porous layer are at least one selected from titania (excluding anatase structure), alumina, zirconia, and magnesia. Preferably there is.

これらの無機材料製の粒子は、電気絶縁性が良好であり、しかも、凝集性が小さく、溶媒中への分散性が良好であるので、均質な第1の多孔質層を容易に形成することができるようになる。   These inorganic material particles have good electrical insulation, low cohesiveness, and good dispersibility in a solvent, so that a homogeneous first porous layer can be easily formed. Will be able to.

係る態様のセパレータ一体形電極においては、前記第2の多孔質層を形成する樹脂材料のファイバーは、エレクトロスピニング法によって形成されたものであることが好ましい。   In the separator-integrated electrode of this aspect, it is preferable that the fiber of the resin material forming the second porous layer is formed by an electrospinning method.

エレクトロスピニング法によれば、他の方法と比較して、形成されるファイバーの形状制御を行い易く、繊維長を長くし易く、また、使用し得る樹脂材料の制限が少なくなる。加えて、静電力によってファイバーが絶縁性の第1の多孔質層の孔内に進入し易くなるので、第2の多孔質層をより安定的に形成することができるとともに、第2の多孔質層と第1の多孔質層との間の付着強度が強くなる。   According to the electrospinning method, compared to other methods, the shape of the formed fiber can be easily controlled, the fiber length can be easily increased, and the resin material that can be used is less limited. In addition, since the fiber can easily enter the pores of the insulating first porous layer by electrostatic force, the second porous layer can be formed more stably and the second porous layer can be formed. The adhesion strength between the layer and the first porous layer is increased.

本発明の非水電解質二次電池は、上記いずれかに記載のセパレータ一体形電極と、前記セパレータ一体形電極と対になる対向電極と、を備えた非水電解質二次電池であって、前記対向電極は集電体の表面に形成された対向電極合剤層を有し、前記対向電極合剤層は前記セパレータ一体形電極の前記第2の多孔質層と接触するように対向配置され、前記セパレータ一体形電極の第1の多孔質層及び前記第2の多孔質層には非水電解液が含浸されていることを特徴とする。なお、非水電解質二次電池は、別体のセパレータを備えていてもよい。   A non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising any of the above-described separator integrated electrode and a counter electrode paired with the separator integrated electrode, The counter electrode has a counter electrode mixture layer formed on the surface of the current collector, and the counter electrode mixture layer is disposed so as to be in contact with the second porous layer of the separator-integrated electrode, The first porous layer and the second porous layer of the separator-integrated electrode are impregnated with a nonaqueous electrolytic solution. The nonaqueous electrolyte secondary battery may include a separate separator.

本発明の非水電解質二次電池によれば、電極間における短絡の発生が抑制され、信頼性が高い非水電解質二次電池が得られる。   According to the nonaqueous electrolyte secondary battery of the present invention, the occurrence of a short circuit between the electrodes is suppressed, and a highly reliable nonaqueous electrolyte secondary battery is obtained.

図1は実施形態に係る非水電解質二次電池の概略断面図である。FIG. 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery according to an embodiment. 図2は変形例に係る非水電解質二次電池の概略断面図である。FIG. 2 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery according to a modification.

本発明を実施するための形態について詳細に説明する。ただし、以下に示す実施形態は、本発明の一の局面の技術思想を理解するために例示するものであって、本発明をこの実施形態に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。本発明に係るセパレータ一体形電極は、正極及び負極のいずれに対しても適用可能であるので、以下では正極に代表させて説明することとする。   A mode for carrying out the present invention will be described in detail. However, the embodiment described below is illustrated for understanding the technical idea of one aspect of the present invention, and is not intended to specify the present invention as the embodiment. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims. Since the separator-integrated electrode according to the present invention can be applied to both the positive electrode and the negative electrode, the following description will be made taking the positive electrode as a representative.

実施形態に係る非水電解質二次電池10を、図1を用いて説明する。実施形態に係る非水電解質二次電池10においては、正極12がセパレータ一体形電極とされており、このセパレータ一体形電極である正極12と負極14とが積層された構成を有している。   A nonaqueous electrolyte secondary battery 10 according to an embodiment will be described with reference to FIG. In the nonaqueous electrolyte secondary battery 10 according to the embodiment, the positive electrode 12 is a separator-integrated electrode, and the positive electrode 12 and the negative electrode 14 that are the separator-integrated electrode are stacked.

正極12は、正極集電体22と、正極合剤層24と、無機材料製の粒子を含む第1の多孔質層26と、樹脂材料を含む第2の多孔質層28とが積層された構成を有している。負極14は、負極集電体32と、負極合剤層34とが積層された構成となっている。   In the positive electrode 12, a positive electrode current collector 22, a positive electrode mixture layer 24, a first porous layer 26 including particles made of an inorganic material, and a second porous layer 28 including a resin material are laminated. It has a configuration. The negative electrode 14 has a configuration in which a negative electrode current collector 32 and a negative electrode mixture layer 34 are laminated.

正極12は、具体的には、アルミニウム又はアルミニウム合金からなる正極集電体22と、この正極集電体22の表面に形成された正極合剤層24と、この正極合剤層24の正極集電体22とは反対側の面に形成された第1の多孔質層26と、この第1の多孔質層26の正極合剤層24とは反対側の面に形成された第2の多孔質層28とを有する。   Specifically, the positive electrode 12 includes a positive electrode current collector 22 made of aluminum or an aluminum alloy, a positive electrode mixture layer 24 formed on the surface of the positive electrode current collector 22, and a positive electrode current collector of the positive electrode mixture layer 24. The first porous layer 26 formed on the surface opposite to the electric body 22 and the second porous layer formed on the surface opposite to the positive electrode mixture layer 24 of the first porous layer 26. And a quality layer 28.

正極合剤層24に含有されているリチウムイオンの吸蔵・放出が可能な正極活物質としては、リチウムコバルト複合酸化物(LiCoO2)、リチウムマンガン複合酸化物(LiMn24、LiMnO2)、リチウムニッケル複合酸化物(LiNiO2)、リチウムニッケルコバルト複合酸化物(LiNixCo1-x2(x=0.01〜0.99))、リチウムニッケルマンガンコバルト複合酸化物(LiNixMnyCoz2(x+y+z=1))又は鉄酸リチウム(LiFePO4)等が一種単独もしくは複数種を混合して用いられる。リチウムコバルト複合酸化物にジルコニウムやマグネシウム、アルミニウム等の異種金属元素を添加したものも使用し得る。Examples of the positive electrode active material capable of occluding and releasing lithium ions contained in the positive electrode mixture layer 24 include lithium cobalt composite oxide (LiCoO 2 ), lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2 ), lithium nickel composite oxide (LiNiO 2), lithium nickel cobalt composite oxide (LiNi x Co 1-x O 2 (x = 0.01~0.99)), lithium nickel manganese cobalt composite oxide (LiNi x Mn y Co z O 2 (x + y + z = 1)) or lithium ferrate (LiFePO 4 ) is used singly or in combination. What added different metal elements, such as zirconium, magnesium, and aluminum, to lithium cobalt complex oxide can also be used.

第1の多孔質層26は、例えば、無機材料製の粒子と樹脂系材料とにより構成される。無機材料製の粒子としては、チタニア(TiO2)、アルミナ(Al23)、ジルコニア(ZrO2)及びマグネシア(MgO)等を用いることができる。ルチル構造のチタニアは、アナターゼ構造のものと比較して、リチウムイオンの脱挿入が生じ難く、環境雰囲気(電位)によるリチウムイオンの吸蔵や電子伝導性の発現等が起こり難い。このため、容量の低下や短絡の発生がより抑制されるため、チタニアはルチル構造であることが好ましい。また、これら無機材料製の粒子は、平均粒径が1μm以下のものが好ましく、スラリーの分散性を考慮すると、アルミニウム(Al)やシリコン(Si)、チタン(Ti)等で表面処理されているものが特に好ましい。The first porous layer 26 is composed of, for example, particles made of an inorganic material and a resin material. As the particles made of an inorganic material, titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), or the like can be used. As compared with the anatase structure, the rutile-structure titania is less prone to the desorption / insertion of lithium ions, and is less likely to cause occlusion of lithium ions or expression of electronic conductivity due to the environmental atmosphere (potential). For this reason, since the fall of a capacity | capacitance and generation | occurrence | production of a short circuit are suppressed more, it is preferable that a titania is a rutile structure. In addition, these particles made of an inorganic material preferably have an average particle size of 1 μm or less, and are surface-treated with aluminum (Al), silicon (Si), titanium (Ti) or the like in consideration of the dispersibility of the slurry. Those are particularly preferred.

第1の多孔質層26を構成する樹脂系材料としては、非水溶性樹脂や水溶性樹脂を用いることができる。非水溶性樹脂としては、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレン等を用いることができる。水溶性樹脂としては、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリビニルメチルエーテル、ポリエチレングリコール等を用いることができる。   As the resin material constituting the first porous layer 26, a water-insoluble resin or a water-soluble resin can be used. As the water-insoluble resin, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyvinylidene fluoride, polyacrylonitrile, polyimide, polyamide, polyamideimide, polytetrafluoroethylene and the like can be used. As the water-soluble resin, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, polyvinyl methyl ether, polyethylene glycol, or the like can be used.

第1の多孔質層26を構成する樹脂系材料は、正極合剤層を形成するための正極合剤スラリーに用いられる溶媒とは異なる溶媒に溶解することが好ましい。そのため、溶媒をN−メチル−2−ピロリドン(NMP)とした正極合剤スラリーによって正極活物質合剤層を形成し、この表面に第1の多孔質層26を形成する場合、第1の多孔質層26を構成する樹脂系材料を溶解する溶媒は水とするのが好ましい。   The resin-based material constituting the first porous layer 26 is preferably dissolved in a solvent different from the solvent used for the positive electrode mixture slurry for forming the positive electrode mixture layer. Therefore, when the positive electrode active material mixture layer is formed with the positive electrode mixture slurry using N-methyl-2-pyrrolidone (NMP) as the solvent and the first porous layer 26 is formed on this surface, the first porous layer is formed. The solvent that dissolves the resin-based material constituting the porous layer 26 is preferably water.

第1の多孔質層26を形成するために無機材料製の粒子を分散させるとともに樹脂系材料を溶解する溶剤としては、有機溶媒系であれば、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)、リン酸ヘキサメチルトリアミド(HMPA)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ−ブチロラクトンなどが挙げられる。これら無機材料製の粒子を分散させるとともに樹脂系材料を溶解する溶剤としては、樹脂系材料の溶解性に合わせて適宜選すればよく、これらのものに限定されるものではない。   In order to form the first porous layer 26, the inorganic material particles are dispersed, and the solvent for dissolving the resin material is N, N-dimethylacetamide (DMAc), N- Examples thereof include methyl-2-pyrrolidone (NMP), phosphoric acid hexamethyltriamide (HMPA), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and γ-butyrolactone. The solvent for dispersing these inorganic material particles and dissolving the resin-based material may be appropriately selected according to the solubility of the resin-based material, and is not limited to these.

第1の多孔質層26を正極合剤層24の表面に形成する方法としては、無機材料系の粒子と樹脂系材料とを溶媒中で分散及び溶解させたスラリーを正極合剤24の表面に塗工する方法や、グラビアコート法、スプレーコート法、ダイコート法、ロールコート法、ディップコート法、スクリーン印刷法等を利用することができる。   As a method of forming the first porous layer 26 on the surface of the positive electrode mixture layer 24, a slurry in which inorganic material particles and resin material are dispersed and dissolved in a solvent is formed on the surface of the positive electrode mixture 24. A coating method, a gravure coating method, a spray coating method, a die coating method, a roll coating method, a dip coating method, a screen printing method, or the like can be used.

第2の多孔質層28は、ファイバーによって構成される。ファイバーを構成する樹脂材料としては、ポリプロピレンや、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ(フッ化ビニリデン−テトラフルオロエチレン)共重合体、ポリ(フッ化ビニリデン−ヘキサフルオロプロピレン)共重合体、ポリ(フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリビニルアルコール、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等及びこれらの共重合体等の高分子物質を用いることができる。また、上記より選ばれる一種でもよく、また、複数種類が混在していてもよい。なお、上記の樹脂材料は例示であり、ファイバーを構成する樹脂材料としてはこれらに限定されるものではない。   The second porous layer 28 is composed of fibers. The resin material constituting the fiber is polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, poly Tetrafluoroethylene, poly (vinylidene fluoride-tetrafluoroethylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene) copolymer, Poly (tetrafluoroethylene-hexafluoropropylene) copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylate Lilonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, polycaprolactone, polylactic acid, polyvinyl alcohol, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, polypeptide, and the like A high molecular weight material such as a copolymer can be used. Moreover, the kind chosen from the above may be sufficient and multiple types may be mixed. In addition, said resin material is an illustration and it is not limited to these as resin material which comprises a fiber.

ファイバーによって構成される第2の多孔質層28を第1の多孔質層26の表面に形成する方法としては、周知のエレクトロスピニング法や、セルフアッセンブリー法、フェイズ・セパレーション法等を用いることができる。生産性や安定性の観点からはエレクトロスピニング法が好ましい。エレクトロスピニング法は、容器に収容された紡糸溶液と対象物側のコレクタ電極との間に高電圧を印加することで、この紡糸溶液を容器から押し出し、電荷を帯び細かな繊維として対象物に付着させる方法である。ここでは正極集電体22をコレクタ電極として第2の多孔質層28を第1の多孔質層26の表面に形成すればよい。   As a method for forming the second porous layer 28 formed of fibers on the surface of the first porous layer 26, a known electrospinning method, self-assembly method, phase separation method, or the like can be used. . From the viewpoint of productivity and stability, the electrospinning method is preferable. In the electrospinning method, a high voltage is applied between the spinning solution contained in the container and the collector electrode on the object side, so that the spinning solution is pushed out of the container and attached to the object as finely charged fibers. It is a method to make it. Here, the second porous layer 28 may be formed on the surface of the first porous layer 26 using the positive electrode current collector 22 as a collector electrode.

エレクトロスピニング法による第2の多孔質層28の形成としては、まず、溶剤に樹脂材料を混合分散して紡糸溶液を調製する。溶剤に樹脂材料を混合分散する方法は特に限定されないが、プラネタリーミキサーや、ホモミキサー、ピンミキサー、ニーダー、ホモジナイザー等を用いることができる。溶剤に樹脂材料を混合分散する際、各種無機粒子や、分散剤、界面活性剤、安定剤、架橋剤等を、必要に応じて添加するようにしてもよい。   In forming the second porous layer 28 by electrospinning, first, a spinning solution is prepared by mixing and dispersing a resin material in a solvent. A method for mixing and dispersing the resin material in the solvent is not particularly limited, and a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer, or the like can be used. When mixing and dispersing the resin material in the solvent, various inorganic particles, a dispersant, a surfactant, a stabilizer, a crosslinking agent, and the like may be added as necessary.

この紡糸溶液をノズルへ供給し、ノズルから押し出すとともに、押し出した紡糸溶液に電界を作用させることにより、紡糸溶液に静電荷が蓄積され、捕集体側の電極によって電気的に引っ張られ、引き伸ばされて繊維化される。エレクトロスピニング法では、押出されて形成された繊維は、電気的に引き伸ばされているため、コレクタに近づくにしたがって電界により速度が加速され、繊維径のより小さいファイバーとなる。その間に、溶媒の蒸発によってさらに細くなり、静電気密度が高まり、その電気的反発力によって分裂し、さらに繊維径の小さいファイバーになる。この電界を作用させるために印加する電圧は、特に限定されないが、5〜50kV程度とするのが好ましい。印加する電圧の極性は、プラス及びマイナスのいずれとしてもよい。また、形成されたファイバーの層の空隙率を調整するため、形成されたファイバー層をプレスするようにしてもよい。   The spinning solution is supplied to the nozzle, pushed out from the nozzle, and an electric field is applied to the extruded spinning solution, so that an electrostatic charge is accumulated in the spinning solution and is electrically pulled and stretched by the collector-side electrode. Fiberized. In the electrospinning method, the fibers formed by extrusion are electrically stretched, so that the velocity is accelerated by the electric field as the position approaches the collector, and the fibers have a smaller fiber diameter. In the meantime, it becomes thinner by evaporation of the solvent, the electrostatic density is increased, it is split by the electric repulsive force, and it becomes a fiber having a smaller fiber diameter. Although the voltage applied in order to make this electric field act is not specifically limited, It is preferable to set it as about 5-50 kV. The polarity of the applied voltage may be either positive or negative. Further, the formed fiber layer may be pressed in order to adjust the porosity of the formed fiber layer.

紡糸溶液に用いられる溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホオキシド、ピリジン、水等を用いることができる。また、上記より選ばれる一種でもよく、また、複数種類が混在するようにしてもよい。なお、これらの紡糸溶液に用いられる溶媒は、例示であり、これらに限定されるものではない。   Solvents used in the spinning solution include methanol, ethanol, 1-propanol, 2-propanol, hexafluoroisopropanol, tetraethylene glycol, triethylene glycol, dibenzyl alcohol, 1,3-dioxolane, 1,4-dioxane, methyl ethyl ketone. , Methyl isobutyl ketone, methyl-n-hexyl ketone, methyl-n-propyl ketone, diisopropyl ketone, diisobutyl ketone, acetone, hexafluoroacetone, phenol, formic acid, methyl formate, ethyl formate, propyl formate, methyl benzoate, benzoic acid Ethyl, propyl benzoate, methyl acetate, ethyl acetate, propyl acetate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, methyl chloride, ethyl chloride, methylene chloride, chloroform o-chlorotoluene, p-chlorotoluene, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, dichloropropane, dibromoethane, dibromopropane, methyl bromide, ethyl bromide, propyl bromide , Acetic acid, benzene, toluene, hexane, cyclohexane, cyclohexanone, cyclopentane, o-xylene, p-xylene, m-xylene, acetonitrile, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, Pyridine, water, etc. can be used. One kind selected from the above may be used, or a plurality of kinds may be mixed. In addition, the solvent used for these spinning solutions is an illustration, and is not limited to these.

紡糸溶液に添加する無機材料としては、酸化物や、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を用いることができる。製造されるファイバーの耐熱性や加工性等の観点から、紡糸溶液に添加する無機材料としては、酸化物を用いることが好ましい。   As the inorganic material added to the spinning solution, oxides, carbides, nitrides, borides, silicides, fluorides, sulfides, and the like can be used. From the viewpoints of heat resistance and processability of the manufactured fiber, it is preferable to use an oxide as the inorganic material added to the spinning solution.

紡糸溶液に添加する酸化物としては、Al23や、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を用いることができる。上記より選ばれる一種でもよく、複数種類が混在してもかまわない。これらの紡糸溶液に添加する酸化物は、例示であり、これらに限定されるものではない。Examples of the oxide added to the spinning solution include Al 2 O 3 , SiO 2 , TiO 2 , Li 2 O, Na 2 O, MgO, CaO, SrO, BaO, B 2 O 3 , P 2 O 5 , SnO 2. , ZrO 2, K 2 O, Cs 2 O, ZnO, Sb 2 O 3, As 2 O 3, CeO 2, V 2 O 5, Cr 2 O 3, MnO, Fe 2 O 3, CoO, NiO, Y 2 O 3 , Lu 2 O 3 , Yb 2 O 3 , HfO 2 , Nb 2 O 5 and the like can be used. One kind selected from the above may be used, and a plurality of kinds may be mixed. The oxides added to these spinning solutions are examples and are not limited thereto.

紡糸溶液における溶媒と溶質との混合比率は、選定される溶媒の種類と溶質の種類とにより異なるが、溶媒量は約60質量%から98質量%とするのが好ましく、溶質は2〜40質量%とするのが好ましい。   The mixing ratio of the solvent and the solute in the spinning solution varies depending on the type of solvent selected and the type of solute, but the solvent amount is preferably about 60% by mass to 98% by mass, and the solute is 2 to 40% by mass. % Is preferable.

負極14は、銅又は銅合金からなる負極集電体32と、負極合剤層34とが積層された構成となっている。負極合剤層34に含有されているリチウムイオンの吸蔵・放出が可能な負極活物質としては、黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素などの炭素原料、LiTiO2及びTiO2などのチタン酸化物、ケイ素及びスズなどの半金属元素、酸化ケイ素(SiOx,0.5≦x<1.6)又はSn−Co合金等を使用し得る。The negative electrode 14 has a configuration in which a negative electrode current collector 32 made of copper or a copper alloy and a negative electrode mixture layer 34 are laminated. Examples of the negative electrode active material capable of occluding and releasing lithium ions contained in the negative electrode mixture layer 34 include carbon raw materials such as graphite, non-graphitizable carbon and graphitizable carbon, LiTiO 2 and TiO 2 . Titanium oxide, metalloid elements such as silicon and tin, silicon oxide (SiOx, 0.5 ≦ x <1.6), Sn—Co alloy, or the like may be used.

実施例1に係る非水電解質二次電池の作製について説明する。
[セパレータ一体形電極の作製]
セパレータ一体形電極は、以下のようにして作製した。
(正極合剤層の形成)
正極活物質としてのコバルト酸リチウム(LiCoO2)と、導電材としてのアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とをそれぞれ質量比で95:2.5:2.5となるように秤量し、分散媒としてのN−メチル2−ピロリドン(NMP)と混合して正極合剤スラリーを調製した。そして、この正極合剤スラリーを正極導電体としてのアルミニウム箔の表面にダイコーターによって塗布し、次いで、乾燥させて有機溶媒となるNMPを除去し、ロールプレスによって所定厚さとなるように圧縮し、所定サイズに切り出すことによって、正極を得た。
The production of the nonaqueous electrolyte secondary battery according to Example 1 will be described.
[Production of separator integrated electrode]
The separator integrated electrode was produced as follows.
(Formation of positive electrode mixture layer)
The mass ratio of lithium cobaltate (LiCoO 2 ) as the positive electrode active material, acetylene black as the conductive material, and polyvinylidene fluoride (PVdF) as the binder is 95: 2.5: 2.5, respectively. The mixture was weighed and mixed with N-methyl 2-pyrrolidone (NMP) as a dispersion medium to prepare a positive electrode mixture slurry. Then, this positive electrode mixture slurry is applied to the surface of an aluminum foil as a positive electrode conductor by a die coater, then dried to remove NMP as an organic solvent, and compressed to a predetermined thickness by a roll press, A positive electrode was obtained by cutting into a predetermined size.

(第1の多孔質層の形成)
無機材料製の粒子としての酸化チタン(日本チタン工業社製:KR−380)とアクリル系樹脂とをそれぞれ、3.75:96.25となるように秤量し、固形分濃度で30質量%となるように分散媒としての水と混合した。この混合物をフィルミックス(特殊機化工業製フィルミックス社製)で混合分散して、酸化チタン分散スラリーを調製した。そして、この酸化チタン分散スラリーを正極合剤層の表面にグラビアコート方式で塗工し、分散剤を乾燥・除去して、厚み8μmの第1の多孔質層を形成した。
(Formation of the first porous layer)
Titanium oxide (manufactured by Nippon Titanium Industry Co., Ltd .: KR-380) as an inorganic material particle and acrylic resin were weighed to be 3.75: 96.25, respectively, and the solid content concentration was 30% by mass. The mixture was mixed with water as a dispersion medium. This mixture was mixed and dispersed with a fill mix (manufactured by Filmix Co., Ltd., manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a titanium oxide dispersion slurry. Then, this titanium oxide dispersion slurry was applied to the surface of the positive electrode mixture layer by a gravure coating method, and the dispersing agent was dried and removed to form a first porous layer having a thickness of 8 μm.

(第2の多孔質層の形成)
ポリビニルアルコール系樹脂(PVA)を10質量%となるように水と混合し、これをT・Kロボミックス(田島化学機械社製)で混合分散して、紡糸溶液を調製した。この紡糸溶液を、エレクトロスピニング法を用い印加電圧30kVの条件で紡糸を行い、その後プレスして第2の多孔質層を目付10g/m2、厚み23μmとなるように形成した。これにより、実施形態のセパレータ一体形電極を作製した。
(Formation of second porous layer)
A polyvinyl alcohol resin (PVA) was mixed with water so as to be 10% by mass, and this was mixed and dispersed with TK Robotics (Tajima Chemical Machinery Co., Ltd.) to prepare a spinning solution. The spinning solution was spun using an electrospinning method under an applied voltage of 30 kV, and then pressed to form a second porous layer having a basis weight of 10 g / m 2 and a thickness of 23 μm. This produced the separator integrated electrode of the embodiment.

[負極の作製]
負極は、以下のようにして調製した。
負極活物質としての炭素材(黒鉛)と、増粘剤としてのカルボキシメチルセルロースナトリウム(CMC)と、結着剤としてのスチレンブタジエンゴム(SBR)とをそれぞれ質量比で98:1:1となるように秤量し、これらを水に分散させて負極合剤スラリーを調製した。この負極合剤スラリーを負極集電体としての銅箔の表面にダイコーターによって塗布し、乾燥して負極集電体の両面に負極活物質合剤層を形成し、次いで、圧縮ローラーを用いて所定厚さに圧縮し、所定寸法に切り出して負極を得た。
[Production of negative electrode]
The negative electrode was prepared as follows.
Carbon material (graphite) as a negative electrode active material, sodium carboxymethylcellulose (CMC) as a thickener, and styrene butadiene rubber (SBR) as a binder are each in a mass ratio of 98: 1: 1. And were dispersed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry is applied to the surface of a copper foil as a negative electrode current collector by a die coater, dried to form a negative electrode active material mixture layer on both sides of the negative electrode current collector, and then using a compression roller It was compressed to a predetermined thickness and cut into a predetermined size to obtain a negative electrode.

[非水電解液の調製]
非水電解液は、以下のようにして調製した。エチレンカーボネート(EC)とジエチルカーボーネト(DEC)とをそれぞれ体積比(1気圧、25℃)で3:7の割合で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を1.0mol/Lの割合で溶解させた。
[Preparation of non-aqueous electrolyte]
The nonaqueous electrolytic solution was prepared as follows. Lithium hexafluorophosphate (LiPF 6) as an electrolyte salt was added to a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio (1 atm, 25 ° C.) in a ratio of 3: 7. ) Was dissolved at a rate of 1.0 mol / L.

[非水電解質二次電池の組み立て]
セパレータレス電池である非水電解質二次電池は、以下のようにして作製した。セパレータ一体形電極及び負極それぞれにリード端子(図示省略)を取り付けて積層した電極体を、アルミニウムラミネート製の電池外装体に挿入し、この電池外装体に非水電解液を注入したのち封止した。
[Assembly of non-aqueous electrolyte secondary battery]
A non-aqueous electrolyte secondary battery, which is a separatorless battery, was produced as follows. An electrode body obtained by attaching and laminating lead terminals (not shown) to each of the separator-integrated electrode and the negative electrode is inserted into an aluminum laminate battery exterior body, and a nonaqueous electrolyte is injected into the battery exterior body and sealed. .

実施例2に係る非水電解質二次電池は、セパレータ一体形電極の作製において、第1の多孔質層を厚みが13μm、第2の多孔質層を厚みが17μmとなるように形成した以外は、実施例1と同様にして作製した。   The nonaqueous electrolyte secondary battery according to Example 2 was different from the separator integrated electrode except that the first porous layer was formed to have a thickness of 13 μm and the second porous layer had a thickness of 17 μm. This was produced in the same manner as in Example 1.

[比較例1]
比較例1に係る非水電解質二次電池は、セパレータ一体形電極の作製において、第1の多孔質層を形成せず、第2の多孔質層を厚さ24μmとなるように形成した以外は、実施例1と同様にして作製した。
[Comparative Example 1]
The nonaqueous electrolyte secondary battery according to Comparative Example 1 was the same as that of the separator integrated electrode except that the first porous layer was not formed and the second porous layer was formed to a thickness of 24 μm. This was produced in the same manner as in Example 1.

[比較例2]
比較例2に係る非水電解質二次電池は、セパレータ一体形電極の作製において、第1の多孔質層を厚さ30μmとなるように形成し、第2の多孔質層を形成しないようにした以外は、実施例1と同様にして作製した。
[Comparative Example 2]
In the nonaqueous electrolyte secondary battery according to Comparative Example 2, in the production of the separator-integrated electrode, the first porous layer was formed to have a thickness of 30 μm, and the second porous layer was not formed. Except for the above, it was produced in the same manner as in Example 1.

[内部短絡試験]
上述のようにして作製された実施例1、2及び比較例1、2に係る非水電解質二次電池のそれぞれについて、内部短絡試験を行った。内部短絡試験の概要は以下のとおりである。
[Internal short circuit test]
An internal short circuit test was performed on each of the nonaqueous electrolyte secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2 manufactured as described above. The outline of the internal short circuit test is as follows.

実施例1、2及び比較例1、2のそれぞれの非水電解質二次電池について、0.2Itの定電流値で電池電圧が4.4Vとなるまで充電したときの充電挙動を観測した。電池電圧が4.4Vとなるまで充電した場合の電池の設計容量まで充電された際、電池電圧が4.4Vに達しない場合は内部短絡が発生したものとし、電池電圧が4.4Vに達した場合は内部短絡が発生していないものとして、内部短絡発生の有無を判断した。これは、非水電解質二次電池内で内部短絡が生じた場合、正極と負極との間で微小な短絡電流が流れるため、設計容量まで充電しても正常に電池電圧が上昇しないことに基くものである。   For each of the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2, the charging behavior was observed when the battery voltage was charged to a voltage of 4.4 V at a constant current value of 0.2 It. If the battery voltage does not reach 4.4V when the battery is charged up to 4.4V, if the battery voltage does not reach 4.4V, an internal short circuit has occurred, and the battery voltage reaches 4.4V. In the case where there was an internal short circuit, it was determined whether or not an internal short circuit occurred. This is based on the fact that when an internal short circuit occurs in a non-aqueous electrolyte secondary battery, a minute short circuit current flows between the positive electrode and the negative electrode, so that the battery voltage does not rise normally even when charged to the design capacity. Is.

実施例1、2及び比較例1、2に係る非水電解質二次電池のそれぞれの内部短絡試験の結果を、第1の多孔質層の厚みy、第2の多孔質層の厚みx及びx/(x+y)の値とともにまとめて表1に示した。   The results of the internal short circuit test of each of the nonaqueous electrolyte secondary batteries according to Examples 1 and 2 and Comparative Examples 1 and 2 are shown as follows: thickness y of the first porous layer, thickness x and x of the second porous layer The values are shown together with the value of / (x + y) in Table 1.

Figure 0006130845
Figure 0006130845

表1に示した結果から以下のことが分かる。すなわち、第1の多孔質層及び第2の多孔質層がともに形成された実施例1、2においては、内部短絡が発生しなかった。これに対し、第1の多孔質層及び第2の多孔質層いずれかが形成されていない比較例1、2においては、内部短絡が発生した。   From the results shown in Table 1, the following can be understood. That is, in Examples 1 and 2 in which both the first porous layer and the second porous layer were formed, an internal short circuit did not occur. In contrast, in Comparative Examples 1 and 2 in which either the first porous layer or the second porous layer was not formed, an internal short circuit occurred.

また、第1の多孔質層の厚みをyとし、第2の多孔質層の厚みをxとした場合に、第2の多孔質層の厚みを第1の多孔質層及び第2の多孔質層の厚みの合計で除したx/(x+y)の値が0.5以上0.9以下(すなわち、0.5≦x/(x+y)≦0.95)である場合、この範囲にない場合と比較して、電極への電解液への浸透を維持しつつ内部短絡を抑制する効果がより大きく発揮された。   Further, when the thickness of the first porous layer is y and the thickness of the second porous layer is x, the thickness of the second porous layer is set to the first porous layer and the second porous layer. When the value of x / (x + y) divided by the total thickness of the layer is 0.5 or more and 0.9 or less (that is, 0.5 ≦ x / (x + y) ≦ 0.95), and not in this range As compared with the above, the effect of suppressing the internal short circuit while exhibiting the penetration of the electrolyte into the electrode was exhibited more greatly.

なお、正極集電体22の両面に正極合剤層24を形成し、これら両面に形成された正極合剤層24に対してそれぞれ第1の多孔質層26及び第2の多孔質層28を形成し、両側に負極14を対向配置するようにしてもよい。   The positive electrode mixture layer 24 is formed on both surfaces of the positive electrode current collector 22, and the first porous layer 26 and the second porous layer 28 are respectively formed on the positive electrode mixture layer 24 formed on both surfaces. Alternatively, the negative electrode 14 may be disposed opposite to the both sides.

<変形例>
実施形態の非水電解質二次電池10は、セパレータ一体形電極として正極に適用した例を示したが、変形例の非水電解質二次電池10Aとして負極に適用した例を図2を用いて説明する。なお、図2においては、実施形態の非水電解質二次電池10と同一の構成部分には同一の参照符号を付与してその詳細な説明は省略する。
<Modification>
The nonaqueous electrolyte secondary battery 10 according to the embodiment is applied to the positive electrode as the separator-integrated electrode. However, an example in which the nonaqueous electrolyte secondary battery 10A according to the modification is applied to the negative electrode will be described with reference to FIG. To do. In FIG. 2, the same components as those of the nonaqueous electrolyte secondary battery 10 of the embodiment are given the same reference numerals, and detailed descriptions thereof are omitted.

変形例の非水電解質二次電池10Aにおいては、負極42がセパレータ一体形電極として形成されており、セパレータ一体形電極である負極42と正極44とが積層された構成を有している。   In the nonaqueous electrolyte secondary battery 10A of the modification, the negative electrode 42 is formed as a separator integrated electrode, and the negative electrode 42 and the positive electrode 44 that are separator integrated electrodes are stacked.

負極42は、負極集電体32と、負極合剤層34と、無機材料製の粒子を含む第1の多孔質層26と、樹脂材料を含む第2の多孔質層28とが積層された構成を有している。正極44は、正極集電体32と、正極合剤層24とが積層された構成となっている。   In the negative electrode 42, a negative electrode current collector 32, a negative electrode mixture layer 34, a first porous layer 26 containing particles made of an inorganic material, and a second porous layer 28 containing a resin material are laminated. It has a configuration. The positive electrode 44 has a configuration in which the positive electrode current collector 32 and the positive electrode mixture layer 24 are laminated.

負極42の負極集電体32及び負極合剤層34の構成は実施形態の非水電解質二次電池10におけるものと同一とすることができ、正極44の正極集電体22及び正極合剤層24の構成も実施形態の非水電解質二次電池10におけるものと同一とすることができる。   The configurations of the negative electrode current collector 32 and the negative electrode mixture layer 34 of the negative electrode 42 can be the same as those in the nonaqueous electrolyte secondary battery 10 of the embodiment, and the positive electrode current collector 22 and the positive electrode mixture layer of the positive electrode 44. The configuration of 24 can be the same as that in the nonaqueous electrolyte secondary battery 10 of the embodiment.

また、負極42の負極合剤層34の表面に形成される第1の多孔質層26の構成は、実施形態の非水電解質二次電池10におけるものと同一である。さらに、負極42の第1の多孔質層26の表面に形成される第2の多孔質層28の構成も実施形態の非水電解質二次電池10におけるものと同一である。   Moreover, the structure of the 1st porous layer 26 formed in the surface of the negative mix layer 34 of the negative electrode 42 is the same as the thing in the nonaqueous electrolyte secondary battery 10 of embodiment. Furthermore, the configuration of the second porous layer 28 formed on the surface of the first porous layer 26 of the negative electrode 42 is also the same as that in the nonaqueous electrolyte secondary battery 10 of the embodiment.

ただ、負極合剤層34は、水を溶媒とする負極合剤スラリーを用いて作製されているので、第1の多孔質層26を構成する樹脂系材料は、有機溶媒系のものを用いることが好ましい。この第1の多孔質層26の組成及び形成方法、第1の多孔質層26上に形成される第2の多孔質層28の組成及び形成方法も、実施形態の非水電解質二次電池10におけるものと同一とすることができる。このような構成の変形例の非水電解質二次電池10Aにおいても、実施形態の非水電解質二次電池10の場合と同様の作用効果を奏する。   However, since the negative electrode mixture layer 34 is produced using a negative electrode mixture slurry containing water as a solvent, the resin material constituting the first porous layer 26 should be an organic solvent material. Is preferred. The composition and formation method of the first porous layer 26 and the composition and formation method of the second porous layer 28 formed on the first porous layer 26 are also the same as those of the nonaqueous electrolyte secondary battery 10 of the embodiment. Can be the same as in Also in the nonaqueous electrolyte secondary battery 10A of the modified example having such a configuration, the same operational effects as those of the nonaqueous electrolyte secondary battery 10 of the embodiment are exhibited.

なお、変形例の非水電解質二次電池10Aにおいても、負極集電体32の両面に負極合剤層34を形成し、これら両面に形成された負極合剤層34に対してそれぞれ第1の多孔質層26及び第2の多孔質層28を形成し、両側に正極44を対向配置するようにしてもよい。   In addition, in the nonaqueous electrolyte secondary battery 10A of the modified example, the negative electrode mixture layer 34 is formed on both surfaces of the negative electrode current collector 32, and the first negative electrode mixture layer 34 formed on both surfaces is the first. The porous layer 26 and the second porous layer 28 may be formed, and the positive electrodes 44 may be disposed opposite to each other.

10、10A…電極体
12…セパレータ一体形電極
14…負極
18…第2の多孔質層
22…正極集電体
24…正極合剤層
26…第1の多孔質層
28…第2の多孔質層
32…負極集電体
34…負極合剤層
40…電極体
42…セパレータ一体形電極
44…正極
DESCRIPTION OF SYMBOLS 10, 10A ... Electrode body 12 ... Separator integrated electrode 14 ... Negative electrode 18 ... 2nd porous layer 22 ... Positive electrode collector 24 ... Positive electrode mixture layer 26 ... 1st porous layer 28 ... 2nd porous Layer 32 ... Negative electrode current collector 34 ... Negative electrode mixture layer 40 ... Electrode body 42 ... Separator integrated electrode 44 ... Positive electrode

Claims (6)

集電体と、前記集電体の上に形成された電極合剤層と、前記電極合剤層の上に形成された多孔質層とを備え、
前記多孔質層が、前記電極合剤層の上に形成された、無機材料製の粒子と樹脂材料を含む第1の多孔質層と、前記第1の多孔質層の上に形成された、樹脂材料製のファイバーのみからなる第2の多孔質層と、を備える、セパレータ一体形電極。
A current collector, an electrode mixture layer formed on the current collector, and a porous layer formed on the electrode mixture layer;
The porous layer is formed on the electrode mixture layer, formed on the first porous layer, a first porous layer containing inorganic material particles and a resin material, A separator-integrated electrode, comprising: a second porous layer made only of a fiber made of a resin material.
前記第2の多孔質層の平均厚みをx、前記第1の多孔質層の平均厚みをy、とした場合、0.5≦x/(x+y)≦0.95である請求項に記載のセパレータ一体形電極。 The average thickness of the second porous layer x, if the average thickness of the first porous layer and y, a, according to claim 1 wherein 0.5 ≦ x / (x + y ) ≦ 0.95 Separator integrated electrode. 前記第2の多孔質層を形成する樹脂材料製のファイバーは、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ(フッ化ビニリデン−テトラフルオロエチレン)共重合体、ポリ(フッ化ビニリデン−ヘキサフルオロプロピレン)共重合体、ポリ(フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ(テトラフルオロエチレン−ヘキサフルオロプロピレン)共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリビニルアルコール、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド及びこれらの共重合体の高分子物質から選択された少なくとも1種からなる請求項1又は2に記載のセパレータ一体形電極。   The resin-made fibers forming the second porous layer are polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene iso Phthalate, polyvinylidene fluoride, polytetrafluoroethylene, poly (vinylidene fluoride-tetrafluoroethylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (vinylidene fluoride-tetrafluoroethylene-hexa) Fluoropropylene) copolymer, poly (tetrafluoroethylene-hexafluoropropylene) copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacryloni Ril, polyacrylonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, polycaprolactone, polylactic acid, polyvinyl alcohol, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, polypeptide and The separator-integrated electrode according to claim 1 or 2, comprising at least one selected from a polymer material of these copolymers. 前記第1の多孔質層に含まれる無機材料製の粒子は、チタニア(アナターゼ構造のものを除く)、アルミナ、ジルコニア及びマグネシアから選択された少なくとも1種である請求項1〜3のいずれかに記載のセパレータ一体形電極。   The inorganic material particles contained in the first porous layer are at least one selected from titania (excluding anatase structure), alumina, zirconia, and magnesia. The separator-integrated electrode as described. 前記第2の多孔質層を形成する樹脂材料のファイバーは、エレクトロスピニング法によって形成されたものである請求項〜4のいずれかに記載のセパレータ一体形電極。 The separator-integrated electrode according to any one of claims 1 to 4, wherein the fiber of the resin material forming the second porous layer is formed by an electrospinning method. 請求項1〜5のいずれかに記載のセパレータ一体形電極と、前記セパレータ一体形電極と対になる対向電極と、を備えた非水電解質二次電池であって、前記対向電極は集電体の表面に形成された対向電極合剤層を有し、前記対向電極合剤層は前記セパレータ一体形電極の前記第2の多孔質層と接触するように対向配置され、前記セパレータ一体形電極の第1の多孔質層及び前記第2の多孔質層には非水電解液が含浸されている非水電解質二次電池。

A non-aqueous electrolyte secondary battery comprising the separator-integrated electrode according to claim 1 and a counter electrode paired with the separator-integrated electrode, wherein the counter electrode is a current collector A counter electrode mixture layer formed on the surface of the separator, and the counter electrode mixture layer is disposed so as to be in contact with the second porous layer of the separator integrated electrode. A non-aqueous electrolyte secondary battery in which the first porous layer and the second porous layer are impregnated with a non-aqueous electrolyte.

JP2014538113A 2012-09-27 2013-08-26 Separator integrated electrode and non-aqueous electrolyte secondary battery Active JP6130845B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012214448 2012-09-27
JP2012214448 2012-09-27
PCT/JP2013/005014 WO2014049949A1 (en) 2012-09-27 2013-08-26 Separator-integrated electrode and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPWO2014049949A1 JPWO2014049949A1 (en) 2016-08-22
JP6130845B2 true JP6130845B2 (en) 2017-05-17

Family

ID=50387398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538113A Active JP6130845B2 (en) 2012-09-27 2013-08-26 Separator integrated electrode and non-aqueous electrolyte secondary battery

Country Status (4)

Country Link
US (1) US9620756B2 (en)
JP (1) JP6130845B2 (en)
CN (1) CN104685670A (en)
WO (1) WO2014049949A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560345B2 (en) * 2014-10-31 2019-08-14 エルジー・ケム・リミテッド Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
KR101899199B1 (en) * 2015-03-19 2018-09-14 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
JP6570855B2 (en) * 2015-03-23 2019-09-04 積水化学工業株式会社 Separator and electrochemical device
JP6377586B2 (en) * 2015-09-10 2018-08-22 株式会社東芝 Electrode, electrode manufacturing method, and nonaqueous electrolyte battery
CN107394115B (en) 2016-04-29 2022-03-29 三星电子株式会社 Negative electrode for lithium metal battery and lithium metal battery including the same
US10741846B2 (en) 2016-05-09 2020-08-11 Samsung Electronics Co., Ltd. Negative electrode for lithium metal battery and lithium metal battery comprising the same
CN107516721A (en) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 Battery core and energy storage device
CN107516725A (en) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 Battery core and energy storage device
JP6536524B2 (en) * 2016-10-03 2019-07-03 トヨタ自動車株式会社 Separator integrated electrode plate and storage element using the same
KR20180040334A (en) 2016-10-12 2018-04-20 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20180049401A (en) * 2016-11-01 2018-05-11 주식회사 아모그린텍 Electrode and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
EP3327853A1 (en) * 2016-11-29 2018-05-30 Robert Bosch Gmbh Method and circuit arrangement for pre-indication of dendrite formation in an electrode assembly of a battery cell and battery cell
JP7103234B2 (en) * 2017-01-26 2022-07-20 日本電気株式会社 Secondary battery
KR102296814B1 (en) * 2017-02-22 2021-08-31 삼성에스디아이 주식회사 Electrode assembly, manufacturing method of same and rechargeable battery including same
JP6805102B2 (en) * 2017-09-19 2020-12-23 株式会社東芝 Electrode structure for secondary batteries, secondary batteries, battery packs and vehicles
US20190088984A1 (en) 2017-09-19 2019-03-21 Kabushiki Kaisha Toshiba Positive electrode, secondary battery, battery pack, and vehicle
DE102017217669A1 (en) 2017-10-05 2019-04-11 Robert Bosch Gmbh Composite material for use in solid electrochemical cells
JP6808667B2 (en) * 2018-03-01 2021-01-06 株式会社東芝 Laminated body, manufacturing method of laminated body and secondary battery
KR102235277B1 (en) * 2018-03-15 2021-04-01 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery including same
KR20220060566A (en) * 2018-04-20 2022-05-11 다라믹 엘엘씨 Lead acid battery with fibrous mat
JP7029637B2 (en) 2018-05-30 2022-03-04 トヨタ自動車株式会社 Method for producing a porous body of a water-soluble polymer
JP6992701B2 (en) * 2018-08-06 2022-01-13 トヨタ自動車株式会社 Manufacturing method of separator integrated electrode and separator integrated electrode
DE102018217756A1 (en) * 2018-10-17 2020-04-23 Robert Bosch Gmbh Method for producing an electrode unit for a battery cell and battery cell
JP7447406B2 (en) 2018-11-09 2024-03-12 株式会社リコー Electrodes, electrode elements, non-aqueous electrolyte storage elements
JP7466154B2 (en) * 2019-06-26 2024-04-12 パナソニックIpマネジメント株式会社 Secondary battery electrode, secondary battery separator, and secondary battery
JP6773862B2 (en) * 2019-08-07 2020-10-21 積水化学工業株式会社 Separator and its manufacturing method
CN110635093B (en) * 2019-08-30 2022-03-15 电子科技大学 Lithium-sulfur battery anode and diaphragm integrated structure and preparation method thereof
US11978921B2 (en) * 2020-01-31 2024-05-07 Lg Energy Solution, Ltd. Method of manufacturing separator-composite electrode comprising multilayer-structured inorganic layer and separator-composite electrode manufactured thereby
JP7470205B2 (en) * 2020-03-27 2024-04-17 新能源科技有限公司 Electrochemical Equipment
CN113113620B (en) * 2021-04-16 2022-11-11 峰特(浙江)新材料有限公司 Preparation method of alkaline zinc-iron flow battery
CN114029088A (en) * 2021-12-09 2022-02-11 南京环保产业创新中心有限公司 Photo-assisted electrochemical catalytic oxidation electrode and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371301B2 (en) 1994-01-31 2003-01-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP5213007B2 (en) * 2007-02-23 2013-06-19 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
JP2010225809A (en) * 2009-03-23 2010-10-07 Mitsubishi Paper Mills Ltd Separator-electrode integration type electric storage element for electrochemical element, and electrochemical element using the same
DE102009058606A1 (en) * 2009-12-17 2011-06-22 Li-Tec Battery GmbH, 01917 Lithium Ion Battery
JP2011258462A (en) * 2010-06-10 2011-12-22 Du pont teijin advanced paper co ltd Thinned material for nonaqueous electric and electronic component
JP2012059486A (en) 2010-09-08 2012-03-22 Konica Minolta Holdings Inc Lithium ion secondary battery and porous insulating layer for lithium ion secondary battery
US8808923B2 (en) * 2010-09-30 2014-08-19 Panasonic Corporation Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5552040B2 (en) * 2010-12-22 2014-07-16 三菱製紙株式会社 Separator for lithium secondary battery

Also Published As

Publication number Publication date
JPWO2014049949A1 (en) 2016-08-22
US9620756B2 (en) 2017-04-11
WO2014049949A1 (en) 2014-04-03
US20150249243A1 (en) 2015-09-03
CN104685670A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6130845B2 (en) Separator integrated electrode and non-aqueous electrolyte secondary battery
JP6116630B2 (en) Organic-inorganic composite porous film and electrochemical device using the same
JP5378399B2 (en) Separator having porous coating layer formed thereon and electrochemical device having the same
JP5415609B2 (en) Separator including porous coating layer, method for producing the same, and electrochemical device including the same
JP5384631B2 (en) Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same
JP5834322B2 (en) Separator, method for producing the same, and electrochemical device including the same
JP6306159B2 (en) Method for manufacturing separator for lithium secondary battery, separator manufactured by the method, and lithium secondary battery including the same
US8841031B2 (en) Surface-treated microporous membrane and electrochemical device prepared thereby
JP6208663B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
CN112106223B (en) Separator for electrochemical device and method for manufacturing the same
JP2015092487A (en) Lithium secondary battery
KR20180049401A (en) Electrode and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
WO2018168075A1 (en) Positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
KR20210046405A (en) A separator for electrochemical device, an electrochemical device comprising the separator and a method for manufacturing the same
JP2014060122A (en) Lithium ion secondary battery
KR20140037661A (en) Separator for electrochemical device and electrochemical device including the same
KR101579575B1 (en) Lithium secondary battery with improved life and safety
WO2018198967A1 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
KR20140018029A (en) Separator for electrochemical device and electrochemical device including the same
KR20220048854A (en) A negative electrode for a lithium secondary battery, a lithium secondary battery comprising the same, and a method for manufacturing the lithium secondary battery
KR20190057941A (en) The Electrode For Secondary Battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350